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1. Motivations.

Object of study of “toric topology”: torus actions
on manifolds or complexes with a rich combinato-
rial structure in the orbit quotient.

Particular examples:

• Non-singular compact toric varieties M2n

T n-action is a part of an algebraic C∗n-action with a dense

orbit;

• (Quasi)toric manifolds M2n of Davis–Januszkiewicz
“locally standard” (i.e., locally look like T n acting on Cn)

and M/T combinatorially is a simple polytope;

• Torus manifolds of Hattori–Masuda, “moment-
angle complexes”, complex coordinate sub-
space arrangement complements etc.
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2. Simplicial complexes and face rings.

K a simplicial complex on V = {v1, . . . , vm} (e.g.,
the dual to the boundary of a simplicial polytope).

σ ∈ K a simplex.

R[v1, . . . , vm] polynomial algebra on V over R,
deg vi = 2. Given ω ⊆ V , set vω :=

∏
i∈ω vi. The

Stanley-Reisner algebra (or face ring) of K is

R[K] := R[v1, . . . , vm]/(vω : ω /∈ K).

Ex 1.
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R[K] = R[v1, . . . , v5]/(v1v5, v3v4, v1v2v3, v2v4v5).
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The Poincaré series of R[K] is given by

F (R∗[K]; t) =
n−1∑
i=−1

fit
2(i+1)

(1− t2)i+1

=
h0 + h1t

2 + . . .+ hnt2n

(1− t2)n
,

where dimK = n − 1, fi is the number of i-
dimensional simplices in K, f−1 = 1, and the num-
bers hi are defined from the second identity.

A missing face of K is a subset ω ⊆ V s.t. ω /∈ K,
but every proper subset of ω is a simplex. K is
a flag complex if any of its missing faces has two
vertices. In this case

R[K] = T (v1, . . . , vm)
/(

vivj − vjvi = 0 for {i, j} ∈ K,

vivj = 0 for {i, j} /∈ K
)
,

a quadratic algebra.
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3. Sample questions.

[g-conjecture] Characterise the f-vectors (f0, . . . , fn−1)

of triangulations of Sn−1 (done for polytopes).

[Charney–Davis conj] Let K2q−1 be flag Goren-
stein* (e.g., a sphere triangulation). Then

(−1)q(h0 − h1 + h2 − h3 + . . .+ h2q) > 0.

Calculate the (co)homology of R[K]. When the
Ext-cohomology Extk[K](k,k) has a rational Poincaré
series?
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The Davis-Januszkiewicz space

DJ(K) :=
∪

σ∈K
BTσ ⊆ BTm = (CP∞)m.

Let M2n be a toric variety (or a quasitoric manifold)
and Kn−1 the underlying simplicial complex of the
corresponding fan.

Prop 2. DJ(K) ≃ ETn ×Tn M2n;
H∗(DJ(K);Z) ∼= H∗

Tn(M ;Z) ∼= Z[K].

Define

ZK := hofibre
(
DJ(K) ↪→ BTm

)
.

The space ZK is a finite cell complex acted on by
Tm, called the moment-angle complex. There is a
principal Tm−n-bundle ZK → M . This space also
has many other interesting interpretations, e.g. as
a complex coordinate subspace arrangement com-
plement or as a level surface for a certain moment
map.
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4. (Co)homology of face rings and toric
spaces.

Thm 3 (Buchstaber-P). There is an isomorphism
of bigraded algebras

H∗(ZK;Z) ∼= Tor∗,∗Z[v1,...,vm](Z[K],Z)
∼= H

[
Λ[u1, . . . , um]⊗ Z[K]; d

]
,

where dui = vi, dvi = 0.

What about Extk[K](k,k)?

The fibration DJ(K) → BTm with fibre ZK splits
after looping: ΩDJ(K) ≃ ΩZK × Tm. This is not
an H-space splitting, and the exact sequence of
Pontrjagin homology rings

0 → H∗(ΩZK) → H∗(ΩDJ(K)) → Λ[u1, . . . , um] → 0

does not split in general.

Prop 4. H∗(ΩDJ(K),k) ∼= Extk[K](k,k)

Idea of proof: Use Adams’ cobar construction and
formality of DJ(K).
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Prop 5. Suppose K is flag. Then

H∗(ΩDJ(K),k) ∼= Tk(u1, . . . , um)
/(

u2i = 0,

uiuj + ujui = 0 for {i, j} ∈ K
)
.

Idea of proof: Use Koszul duality for algebras.

Cor 6. If K is flag then

π∗(ΩDJ(K))⊗Z Q ∼=FL(u1, . . . , um)
/(

[ui, ui] = 0,

[ui, uj] = 0 for {i, j} ∈ K
)
,

where FL( ) is a free Lie algebra and degui = 1.

Cor 7. If K is flag, then the rational homology
Poincaré series of ΩDJ(K) is given by

F
(
H∗(ΩDJ(K)); t

)
=

(1+ t)n

1− h1t+ . . .+ (−1)nhntn
.
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5. Categories and colimits.

cat(K): face category of K (simplices and incl);
mc: a model category (e.g., top, tgp or dga);

X ∈ mc
XK : cat(K) → mc exponential diagram; its value
on σ ⊆ τ is the inclusion Xσ ⊆ Xτ ; X∅ = pt.

Many previous constructions are colimits, e.g.,

DJ(K) = colimtopBTK,

R∗[K] = dual coalgebra of R[K] = colimdgcC(v)K,

where C(v) is the symmetric coalgebra on v,
deg v = 2.

Cor 8. Assume K is flag. Then

ΩDJ(K) ∼= colimtgp TK;

H∗(ΩDJ(K),Q) ∼= colimgaΛ[u]K;

π∗(ΩDJ(K))⊗Z Q ∼= colimgl CL(u)K,

where CL(u) is the commutative Lie algebra,
degu = 1.

In general colimit models do not work! (Look at
K = ∂∆2, in which case DJ(K) is not coformal.)
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6. Homotopy colimit models.

Appropriate notions of homotopy colimits exist in
the model categories tgp, tmon, dga, dgc and dgl.

Thm 9. (P.-Ray-Vogt) The loop space functor
Ω: top → tmon commutes with the homotopy col-
imit, i.e., there is a weak equivalence

ΩhocolimtopD → hocolimtmonΩD

for every diagram D : c → top.

For diagrams over cat(K) we get
Thm 10. (P.-Ray-Vogt) There is a homotopy com-
mutative diagram

ΩhocolimtopBTK hK−−→ hocolimtgp TKyΩpK

y
ΩDJ(K)

hK−−→ colimtgp TK

,

in which ΩpK and hK are weak equivalences, while
hK is a weak equivalence only if K is flag.
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There is a similar result in algebraic mc. The al-
gebraic analogue of the loop functor is the cobar
construction Ω∗ : dgc → dga.

Thm 11. There is a htpy commutative diagram

Ω∗ hocolimdgcC(v)K
ηK−−→ hocolimdgaΛ[u]KyΩ∗ρK

y
Ω∗(Q∗[K])

ηK−−→ colimdgaΛ[u]K

,

in which Ω∗ρK and ηK are weak equivalences, while
ηK is a weak equivalence only if K is flag.

Cor 12.

H∗(ΩDJ(K);Q) ∼= H
(
hocolimdgaΛ[u]K

)
π∗(ΩDJ(K))⊗Z Q ∼= H

(
hocolimdgl CL(u)K

)
.
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Ex 13. Let K be the 1-skeleton of a 3-simplex.
A calculation using the previous results gives

H∗(ΩDJ(K))

∼=
T (u1, u2, u3, u4, w123, w124, w134, w123)

(relations)
,

where degwijk = 4 and there are 3 types of rela-
tions:

(a) exterior algebra relations for u1, u2, u3, u4;

(b) [ui, wjkl] = 0 for i ∈ {j, k, l};

(c) [u1, w234]+[u2, w134]+[u3, w124]+[u4, w123]=0.

wijk is the higher commutator (Hurevicz image of
the higher Samelson product) of ui, uj and uk, so
the last equation is a higher Jacobian identity.
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