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1. Simple polytopes.

An arrangement of half-spaces is a collection H of
subsets

Si={z €V :(a;z)—b; >0}, 1<i<m,

where a; € V = R" and b; € R. When the inter-
section of the §; is bounded, it forms a convex
polytope P; otherwise, it is a polyhedron.

We may specify P by the matrix inequality Apx > b.

Assume dim P = n, and no redundant half-spaces.
So P has m facets Fj;, defined by its intersection
with the bounding hyperplanes

Hy={xecV: (a;,z) = b;}.

When the bounding hyperplanes are in general po-
sition, every vertex is the intersection of precisely
n facets, and P is simple.

The positive cone

RY = {heR™: h; >0 fori=1,...,m}.



2. Spaces of polytopes.

Following , we fix Ap and identify the
m-dimensional vector b with the arrangement H,
and hence with the polytope P. The coordinates
b; describe the signed distances of the hyperplanes
H,; from the origin 0 in V, so long as the normal
vectors a; have length 1; otherwise, the distances
have to be scaled accordingly. The sign is positive
or negative as O lies in the interior or exterior of S,
respectively.

Every vector in R™ may then be identified with
an analogous arrangement of halfspaces, obtained
from H by parallel displacement of the S;. Some
such arrangements define polytopes, and others,
dubbed virtual polytopes by Khovanskii, do not;
in either case, we also describe the correspond-
ing intersections as analogous. The zero vector is
therefore identified with the virtual polytope {0O}.
An n-parameter family of examples is given by the
translations of V, for which the corresponding poly-
topes are congruent to P.



In this context, we denote the m-dimensional vec-
tor space of polytopes analogous to P by R(P),
and interpret the identification as an isomorphism
kE: R™ — R(P).

We may interpret the matrix Ap as a linear trans-
formation V — R™. Since the points of P are spec-
ified by the constraint Apx > b, it follows that the
intersection of the affine subspace Ap(V) — b with
the positive cone R? is a copy of P in R™. Denote

’iin—)Rm; Vl—>Ap(’U)—b.

SO x = koip restricts to an affine embedding P —
R(P), for which x(x) is the polytope congruent to
P with origin at z, for all x € P. In particular, x(P)
is a submanifold of the positive cone R(P)-.



3. Toric manifolds.

A toric manifold (cf. )
M = M?2" over a simple polytope P = P"™ has

e an action of an n-dimensional torus T that lo-
cally looks like the standard T-action on C";

e the orbit map n: M — P sending every set of
orbits with the same isotropy group onto the
interior of a face of P.

The notion of a toric manifolds is a purely topo-
logical approximation to smooth compact toric va-
rieties from algebraic geometry.



M has m codimension-two characteristic submani-
folds M;, +=1,...,m, which can be defined either
as the inverse images 7=~ 1(F;) of the facets F; of
P, or as connected submanifolds fixed pointwise by
a certain circle subgroup of T.

We denote by p; the canonical orientable 2-dimen-
sional real bundle over M determined by M;; it
restricts to the normal bundle v(M; — M). An
omniorientation of M consists of a choice of orien-
tation for each p;; we also always assume here that
M itself is oriented.



A choice of orientation of p; identifies it as a com-
plex line bundle. The one-dimensional isotropy sub-
group TM@' of M, acts in the fibres of the normal
bundle v(M; — M). We orient the circle Ty, in
such way that this action preserves the orientation
determined by the complex structure in p;. Thereby
we obtain a map

AT - T, TFZ'|—>TMZ.,

called the characteristic map of M. Due to a non-
singularity condition the kernel K(\) of X is isomor-
phic to a (m — n)-dimensional torus.



Thm1( ). There is an isomor-
phism of real 2m-plane bundles:

(M) @R2(Mm—n) =2 5 oy @ o,

Idea of proof. Consider the pullback diagram

Zp=T"x P/~ 4 T™M x RZ/~ =C™

J o

p B R
where p(z1,...,2m) = (|z1|%,...,|zm|?). It deter-

mines a canonically framed manifold Zp.

The map A: T™ — T induces a principal K()\)-
fioration p: Zp = T™ x P/~ — T x P/~ = M.
The tangent bundle to Zp decomposes as

T(Zp) = p"T(M) & &(p)
where £(p) is the tangent bundle along the fibres

of p. The required bundle isomorphism comes from
's identification

(M) & (§(p)/K(N)) & (v(iz)/K(X) =p1® ... 8 pm

by noticing that both &(p)/K(A\) and v(iy)/K(\)
are trivial real (m — n)-plane bundles over M. ||
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4. Stably almost complex structures.

Thm 2. A choice of omniorientation of M, order-
ing of facets, and initial vertex of P gives rise to
a canonical framing of the real 2(m — n)-bundle
v(iz)/ K(A) @ &(p)/K(X\) over M, thereby determin-
ing a canonical stably complex structure for M.

Prop 3. The equivalence class of the stably com-
plex structure on M defined in Theorem 2, and
therefore the corresponding complex cobordism
class, depends on only on a choice of orientations
for M and for each normal bundle v(M; — M).



5. Complex cobordisms.

Thm 4 ( '01, corrected by

). In dimensions > 2, every complex
cobordism class contains a toric manifold, neces-
sarily connected, whose stably complex structure
is induced by an omniorientation, and is therefore
compatible with the action of the torus.

Idea of proof. Start with the additive basis in the
complex cobordism ring consisting of toric mani-
folds, constructed by Buchstaber and Ray in 1999.
Then one needs to replace the disjoint union (rep-
resenting the cobordism sum) by something con-
nected.

Given two cobordism classes represented by 2n-
dimensional omnioriented toric manifolds M7 and
M-, with quotient polytopes P; and P> respectively,
we need to construct a third such manifold M, with
quotient polytope P, representing the sum of the
cobordism classes of M1 and M»,. This is done
using the connected sum construction. [ ]
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Ex 5. Connected sum of CP2 and CP2. The re-
sulting stably complex structure on the manifold
CP2 # CP2? bounds, that is, represents the zero

cobordism class.

(0,1)

(0,1) (0,1) (—-1,—1)

) o) - ) e

170) (170 (_17_1

(1,0)

However, it is not possible to take the connected
sum of two copies of CP? with the standard om-
niorientation by a procedure like this. A modifica-

tion is needed here.
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