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1. Simplicial complexes and face rings.

K: simplicial complex on V. ={v1,...,vm}.

o€ K a simplex.

R[v1,...,vm]: polynomial algebra on V over R,

degv; = 2. Given w C V, set vy = [[;e,v;- The
Stanley-Reisner algebra (or face ring) of K is

R[K] := R[v1,...,vm]/(vw: w ¢ K).

Ex 1

R[K] = R|vy,...,vs]/(v1v5,v3V04, V10203, U2V4V5).



2. Moment-angle complexes.

D2 C C: the unit disk.

By i ={(z1,...,2m) € (D?)™: |z;| = 1 for v; ¢ w}.

The moment-angle complex

ZK L= U Bs C (DQ)m
ceK

Prop 2 Zy is a T™-space, with quotient cone K':

Zx — (D)™

l |

coneK’ — ™
where K' is the barycentric subdivision of K,

o = {’l}il,...,vik}l—)e(j: (81,---78’”’1,)7

where e; =0 ifv;€eo andeg; =1 ifv; ¢ o.

ey =(1,...,1).



Ex 3 Embedding cone K/ — ™

/S L]
Z

B P it

K = 3 points = A2

N —
o
|
|

=

Prop 4 (a) Let |K| 2 S*~ 1 (a sphere triangulation
on m vertices). Then Zg is an (m + n)-manifold;

(b) Let K be a triangulated manifold. Then Zi\Z4
is an open manifold, where Zg = T™.

ExX 5 Zy n = 52" Tl Forn=1,

S3=D2><Slu51><D2CD2><D2.



3. Other important toric spaces.

(a) Original Davis-Januszkiewicz construction:
Zp =T x |coneK|/~,

where the equivalence relation ~ is defined via the
dual cell decomposition of |K|:

The facets of |K| are of the form
Fz' L= starK/ (U
Given z € |cone K|, set

T(x) ={(t1,...,tm) €T": t; =1 if x & F;}.
Then set (¢t,z) ~ (s,z) if t71s € T(2).

Important particular case: cone K = P", a simple
convex polytope.



(b) Homotopy fibre construction:

The Davis-Januszkiewicz space is the Borel con-
struction

DJ(K) .= ETm Xm ZK = ETm X ZK/N,

where (e, z) ~ (et™1,t2).

Prop 6 There is a canonical homotopy eqce
DJ(K) — |J BT C BT™ = (CP*>)™,
ceK

therefore, DJ(K) may be regarded as a canonical
cellular subcomplex in the product (CP°)™,

Cor 7 (a) Zy ~ hofibre( ) BT — BTm) ;
ceK

(b) H*(DJ(K); R) & Him(Zk; R) = R[K].



(c) Subspace arrangement complements:

A coordinate subspace in C™ is given by

Lw:{(zl,...,zm)é(cm: Zilz--.:zik:O},

where w = {i1,...,4}. Coordinate subspace ar-
rangements are parametrised by simplicial com-
plexes K on m vertices. Set

UK)=C"\ (J Lu,
w&K
a coordinate subspace arrangement complement.

Prop 8 There is a T"™-equivariant deformation re-
traction

U(K) = Z.
Pf Write
UK)= |J Us, Zxg= |J Bo,
ceK ceK
where

Us :={(21,...,2m) €C™: z; 20 for i ¢ o}.
Then there are obvious homotopy equivalences

C? x (C\O)V\* 2 U, = B, 2 (D37 x (sH)V\e.
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Ex9 1. Let K=0A""1 Then U(K)=C™\O.

2. Let K ={v1,...,um} (m points). Then

vy =cm\ U {a=z=0}
1<i<j<m

the complement to the set of all codim 2 co-
ordinate planes.

3. More generally, if K is the i-skeleton of Am—1,
then U(K) is the complement to the set of all
coordinate planes of codimension (i 4 2).



(d) (Quasi)toric manifolds:

Define s = s(K) as the maximal dimension for
which there exists a subgroup

T CT™

acting freely on Zy.

The number s(K) is a combinatorial invariant of
K. We have

1 <s(K)<m—n.

Let K be a simplicial m-vertex subdivision of S7—1
(e.g., a boundary of a simplicial polytope) and as-
sume s(K) = m —n. Then the quotient

M2" = Zy /T
is called a quasitoric manifold.
All compact nonsingular toric varieties are qua-

sitoric manifolds. Quotients of Zy by almost free
torus actions produce toric orbifolds.
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4. From combinatorial to toric topology.

Let K1, Ko be simplicial complexes on vertex sets

V: {’U]_,...,'Uml} and W:{w17°"7wm2}

respectively. A simplicial map ¢: K1 — Ko is in-
duced by a vertices map ¢: V — W such that

o(o) € K5 for all o € K7.
Such ¢ induces a map
Y (D)™ — (D)2,

(zla"'azml) = (yla“'ame)

1 if cp_l(wj) = J,
Y; — :
_ - otherwise.
Hoep L(wy) #
It restricts to a map
Q. ZKl — ZKQ-

Thus, the correspondence K — Zj gives rise to
a functor from simplicial complexes and maps to
spaces with torus actions and equivariant maps.
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Bigraded cell decomposition of D2:

- ) 1] )
T b 1 cellular
! Tl ¢ chain
cells D generators
_ J D]

Set the bidegree (bdg) of the generators by

bdg[1] = (0,0), bdg[T]= (-1,2), bdg[D] = (0,2);
o[1] =0, o[T] = 0, o[D] = [T].
Then

m
C.((D*)™;0) = Q) C+(D?;9),
i=1
and Zx C (D?)™ is a cellular subcomplex!

Thus, the cellular chains C«(Zyx) are defined.

The functor K — Zj induces a homomorphism
between the standard simplicial chain complex of
K and the bigraded cellular chain complex of Zj.
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5. Cellular cochain algebras.

The map A: D2 — D? x D2 given by

. (1 + p(e2 — 1), 1) for ¢ € [0, 7],
pe'? — ,
(1, 1+ p(e?i — 1)) for ¢ € [m, 27),
is a cellular map sending D2 to dD? x 8D? and
homotopic to the diagonal A: D? — D2 x D? in

the class of such maps. Therefore, it gives rise to
a canonical cellular diagonal approximation

—

JANN ZK — ZK X ZK.
Thm 10 The bigraded cellular cochain algebra
C*(Zk; R) is given by

C*(Zk; R) = ANua, ..., um] ® RIK] /(ujv; = vf = 0),

where u; = [T;]*, v; = [D;]* are the dual cochain
generators of bideg (—1,2) and (0,2) resp.
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6. Cohomology of toric spaces.

Thm 11 There is an isomorphism of bigraded al-
gebras

H*(Z: 7)) = Tor%’[’;lw’vm](Z[K], 7)
=) H[/\[ul, o um] @ ZIK]; d},
where du; = v;, dv; = 0. In particular,
~ —1,29
HP(Z) = > TorZ[’?’jli_.,vm](Z[K],Z).
—i+2j=p

Two ways of proving:

(a) Use the Eilenberg—Moore spectral sequence of
the fibration

ZK — ET™

|

DJ(K) — BT™
This gives the Tor part of the answer.

(b) Use the above calculations with cellular cochains

(note: (uwv;,v?;4=1,...,m) is an acylic ideal).

(a) and (b) are related by the Koszul complex!
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Ex 12 1. K =98A™ 1 Then

ZIK] = Zlv1i,...,vm]/(v1 - vm).

The fundamental class of Zp = S2™~ 1 is repre-
sented by the bideg (—1,2m) cocycle

uUQVrv3 -+ - Um € Nuq,...,um] ® Z[K].

2. Let K be the boundary of a 5-gon. Then

Z[K] — Z[’Ula - 7U5]/(U1U37 U2U4, V3V5, V471, U5U2)°
H3(Z) = H 1%(Zx) has 5 generators
wVi42 € N[ug,...,um] ®Z[K], i=1,...,5.
H*(Zp) = H 2%(Zx) has 5 generators
UzU;4-1V;4-3, 1= 1, «oey 5.

H'(Zr) = H319(2,) is generated by ujusuzvavs.
Thus, Zx is a 7-manifold with Betti vector

(17 O? O? 57 57 O? O? 1)'

Similarly, for K the boundary of an m-gon
dim H*(Zx) = (m — 4)2™ 2 4+ 4.
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3. Let K =A{v1,...,vm} (m points). Then

Z[K] — Z[’Ul, « . ,vm]/(vivj, ”L# ])

Cocycles in Alu1,...,um] ® Z[K]:

Vjq Ui Ujg * =+ Uy s k > 2 and ’ip 7 ’iq for p # q.

Coboundaries:

Therefore,
dim HO(U(K)) =1,
dim HY(U(K)) = H2(U(K)) =0,
dim 1+ (UG0) = m(31) ~ (1) = G~ D(5).
2< k<m,

and the multiplication in the cohomology is trivial.
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7. Combinatorial homological algebra.

Let w = {v;;,..., v, } €V, and K, the full subcom-
plex of K. Then there is a canonical retraction

v p
ZKW — ZK — Zva

where ¢ is induced by K, € K and p is the projec-
tion induced by the contraction cone K — cone K,
sending the extra vertices to the vertex of the cone.

Moreover, given a subcomplex L C K, the subcom-
plex Z; retracts off Zg if and only if L is full.

Put C**(Zg) = &P C*2¥(Zgr) (multigrading),
wCV
where C*2¥(Zk) is generated by u,,vs, o C w,
o€ K. Then
H"¥(zg)= @ H " (Zg),

wCV: |w|=j

where H™42¥(Z) = H[CT"2¥(Z)].
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Given complexes K1 on V and K, on W, define
their join as the following complex on V L W:

KixKo ={w CVUW: w = 01Uop, 01 € K1, 02 € K5}.

We introduce a multiplication on

P HP(Kw)
p=—1
wCV

(here H 1(2) = 7).
Take a € HP(K.,), b e HI(Ky,).

Assume w1 Nwo = &. Then we get

7. Kw1|_|w2 — le LI KCUQ —> le X KwQ,

fi CP(Ky,) ® C1UKy,) — CPTITI(K,, * Ku,).
Now define

0, if w1 Nwo #= 9,
a-b = N
*fla®Db) € Hp+q+1(Kw1uUJ2), w1 Nwy = .
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Thm 13 (Baskakov, 2003) For all p and w C V
there are isomorphisms

HP(K,) — Hp-l-l—lwl,Qw(ZK)’
inducing a ring isomorphism

~

v: @ HP(Ku) — HY*(Z2g).

p=—1
wCV
Cor 14
H"2(z2g)= @ HHK).

wCV: |w|=j

Cor 15 (Hochster, 1975)

Tor ™ (k[K]Lk) = @ g9l=i =g, k).
wCV

(additively and with field coefs).
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8. Massey products and formality.

Given o € K, the stellar subdivision of K at o is

—~

K=((K)= (K\starK 0) U (coneastarK a>.

Let K; be a triangulation of S™~1 with |V;| = m;
vertices, 1 =1, 2, 3.
Put m =mq +mo +m3, n =n1 + no + n3,

K-l = gt gl glsTt

ZK :ZKl XZK2 XZK3.

Choose maximal simplices
o1 € K, 0’2,0’2’€K2, J/QOU/Q’ZQ, o3 € K3.
Set K = Caané(gagU%(K)). Then K is a triangu-
lation of S™*~1 with m + 2 vertices.
Consider the generators
a; S ﬁni_l(f{\%)a
and set

b; = ~v(a;) € H”i—mw?mi(zﬁ) C Hmi+”i(2f().
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Then

ajany € ﬁn1+n2_1(k\vl|_|v2>
[l ﬁn1+n2—l(sn1+n2—l \ Dt) — O,
bibo = vy(ayaz) = 0.

Similarly, bobz = 0. Therefore the Massey product
(b1, bo,b3) € Hm+n—1(z§) is defined.

Thm 16 The cohomology of the (m + n + 2)-

manifold Z}g{ has non-trivial Massey products (e.g.,

(b1,b2,b3)).

Cor 17 We get a family of non-formal 2-connected
manifolds.

The dual homology class D({by,bp,b3) € H3(Z[/;€)

IS represented by the embedding S3 Zf( COr-

responding to the pair of vertices added to K =
K4 x Ko x K3 under the stellar subdivisions.
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9. Toral rank conjecture.

A Tk-action on X is almost free if all isotropy sub-
groups are finite. The toral rank of X, denoted
trk(X), is the largest k& for which there exist a al-
most free Tk-action on X.

Prop 18 If K is an (n— 1)-dim complex on m ver-
tices, then trk Zgr > m — n.
In 1985 S. Halperin conjectured that

dim H*(X; Q) > 2tkX)

for any finite dimensional space X.
Cor 19 Assuming that the toral rank conjecture is
true, we come to the following inequality:

dim @ H*(Kw;Q)=2m"
wC[m]

Ex 20 K the boundary of an m-gon. Then
dim H*(Zx) = (m — 4)2™ 2 4 4 > 22,
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