Toric topology

Taras Panov

Moscow State University

joint work with Victor Buchstaber and other members of our algebraic topology

group at Moscow State University

Plan

1. Simplicial complexes and face rings.
2. Moment-angle complexes.
3. Other important toric spaces.
4. From combinatorial to toric topology.
5. Cellular cochain algebras.
6. Cohomology of toric spaces.
7. Combinatorial homological algebra.
8. Massey products and formality.
9. Toral rank conjecture.

1. Simplicial complexes and face rings.

K : simplicial complex on $V=\left\{v_{1}, \ldots, v_{m}\right\}$.
$\sigma \in K$ a simplex.
$R\left[v_{1}, \ldots, v_{m}\right]$: polynomial algebra on V over R, $\operatorname{deg} v_{i}=2$. Given $\omega \subseteq V$, set $v_{\omega}:=\prod_{i \in \omega} v_{i}$. The Stanley-Reisner algebra (or face ring) of K is

$$
R[K]:=R\left[v_{1}, \ldots, v_{m}\right] /\left(v_{\omega}: \omega \notin K\right)
$$

Ex 1
K :

$R[K]=R\left[v_{1}, \ldots, v_{5}\right] /\left(v_{1} v_{5}, v_{3} v_{4}, v_{1} v_{2} v_{3}, v_{2} v_{4} v_{5}\right)$.

2. Moment-angle complexes.

$D^{2} \subset \mathbb{C}$: the unit disk.

$$
B_{\omega}:=\left\{\left(z_{1}, \ldots, z_{m}\right) \in\left(D^{2}\right)^{m}:\left|z_{i}\right|=1 \text { for } v_{i} \notin \omega\right\}
$$

The moment-angle complex

$$
\mathcal{Z}_{K}:=\bigcup_{\sigma \in K} B_{\sigma} \subset\left(D^{2}\right)^{m}
$$

Prop $2 \mathcal{Z}_{K}$ is a T^{m}-space, with quotient cone K^{\prime} :

where K^{\prime} is the barycentric subdivision of K,

$$
\sigma=\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \mapsto e_{\sigma}=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)
$$

where $\varepsilon_{i}=0$ if $v_{i} \in \sigma$ and $\varepsilon_{i}=1$ if $v_{i} \notin \sigma$.

$$
\varnothing \mapsto e_{\varnothing}=(1, \ldots, 1)
$$

Ex 3 Embedding cone $K^{\prime} \hookrightarrow I^{m}$:

$K=3$ points

$K=\partial \Delta^{2}$

Prop 4 (a) Let $|K| \cong S^{n-1}$ (a sphere triangulation on m vertices). Then \mathcal{Z}_{K} is an $(m+n)$-manifold; (b) Let K be a triangulated manifold. Then $\mathcal{Z}_{K} \backslash \mathcal{Z}_{\varnothing}$ is an open manifold, where $\mathcal{Z}_{\varnothing}=T^{m}$.

Ex $5 \mathcal{Z}_{\partial \Delta^{n}} \cong S^{2 n+1}$. For $n=1$,

$$
S^{3}=D^{2} \times S^{1} \cup S^{1} \times D^{2} \subset D^{2} \times D^{2}
$$

3. Other important toric spaces.

(a) Original Davis-Januszkiewicz construction:

$$
\mathcal{Z}_{K} \cong T^{m} \times \mid \text { cone } K \mid / \sim
$$

where the equivalence relation \sim is defined via the dual cell decomposition of $|K|$:

The facets of $|K|$ are of the form

$$
F_{i}:=\operatorname{star}_{K^{\prime}} v_{i}
$$

Given $x \in \mid$ cone $K \mid$, set

$$
T(x):=\left\{\left(t_{1}, \ldots, t_{m}\right) \in T^{m}: t_{i}=1 \text { if } x \notin F_{i}\right\}
$$

Then set $(t, x) \sim(s, x)$ if $t^{-1} s \in T(x)$.

Important particular case: cone $K=P^{n}$, a simple convex polytope.
(b) Homotopy fibre construction:

The Davis-Januszkiewicz space is the Borel construction

$$
D J(K):=E T^{m} \times T^{m} \mathcal{Z}_{K}=E T^{m} \times \mathcal{Z}_{K} / \sim,
$$

where $(e, z) \sim\left(e t^{-1}, t z\right)$.

Prop 6 There is a canonical homotopy eqce

$$
D J(K) \xrightarrow{\simeq} \bigcup_{\sigma \in K} B T^{\sigma} \subseteq B T^{m}=\left(\mathbb{C} P^{\infty}\right)^{m},
$$

therefore, $D J(K)$ may be regarded as a canonical cellular subcomplex in the product $\left(\mathbb{C} P^{\infty}\right)^{m}$.

Cor 7 (a) $\mathcal{Z}_{K} \simeq \operatorname{hofibre}\left(\bigcup_{\sigma \in K} B T^{\sigma} \hookrightarrow B T^{m}\right)$;
(b) $H^{*}(D J(K) ; R) \cong H_{T^{m}}^{*}\left(\mathcal{Z}_{K} ; R\right) \cong R[K]$.
(c) Subspace arrangement complements:

A coordinate subspace in \mathbb{C}^{m} is given by

$$
L_{\omega}=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}: z_{i_{1}}=\cdots=z_{i_{k}}=0\right\}
$$

where $\omega=\left\{i_{1}, \ldots, i_{k}\right\}$. Coordinate subspace arrangements are parametrised by simplicial complexes K on m vertices. Set

$$
U(K)=\mathbb{C}^{m} \backslash \bigcup_{\omega \notin K} L_{\omega},
$$

a coordinate subspace arrangement complement.
Prop 8 There is a T^{m}-equivariant deformation retraction

$$
U(K) \xrightarrow{\simeq} \mathcal{Z}_{K} .
$$

Pf Write

$$
U(K)=\bigcup_{\sigma \in K} U_{\sigma}, \quad \mathcal{Z}_{K}=\bigcup_{\sigma \in K} B_{\sigma},
$$

where

$$
U_{\sigma}:=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}: z_{i} \neq 0 \text { for } i \notin \sigma\right\} .
$$

Then there are obvious homotopy equivalences

$$
\mathbb{C}^{\sigma} \times(\mathbb{C} \backslash 0)^{V \backslash \sigma} \cong U_{\sigma} \xrightarrow{\simeq} B_{\sigma} \cong\left(D^{2}\right)^{\sigma} \times\left(S^{1}\right)^{V \backslash \sigma} .
$$

Ex 9 1. Let $K=\partial \Delta^{m-1}$. Then $U(K)=\mathbb{C}^{m} \backslash 0$.
2. Let $K=\left\{v_{1}, \ldots, v_{m}\right\}$ (m points). Then

$$
U(K)=\mathbb{C}^{m} \backslash \bigcup_{1 \leqslant i<j \leqslant m}\left\{z_{i}=z_{j}=0\right\}
$$

the complement to the set of all codim 2 coordinate planes.
3. More generally, if K is the i-skeleton of Δ^{m-1}, then $U(K)$ is the complement to the set of all coordinate planes of codimension $(i+2)$.
(d) (Quasi)toric manifolds:

Define $s=s(K)$ as the maximal dimension for which there exists a subgroup

$$
T^{s} \subset T^{m}
$$

acting freely on \mathcal{Z}_{K}.
The number $s(K)$ is a combinatorial invariant of K. We have

$$
1 \leqslant s(K) \leqslant m-n .
$$

Let K be a simplicial m-vertex subdivision of S^{n-1} (e.g., a boundary of a simplicial polytope) and assume $s(K)=m-n$. Then the quotient

$$
M^{2 n}:=\mathcal{Z}_{K} / T^{m-n}
$$

is called a quasitoric manifold.

All compact nonsingular toric varieties are quasitoric manifolds. Quotients of \mathcal{Z}_{K} by almost free torus actions produce toric orbifolds.

4. From combinatorial to toric topology.

Let K_{1}, K_{2} be simplicial complexes on vertex sets

$$
V=\left\{v_{1}, \ldots, v_{m_{1}}\right\} \text { and } W=\left\{w_{1}, \ldots, w_{m_{2}}\right\}
$$

respectively. A simplicial map $\varphi: K_{1} \rightarrow K_{2}$ is induced by a vertices map $\varphi: V \rightarrow W$ such that

$$
\varphi(\sigma) \in K_{2} \text { for all } \sigma \in K_{1} .
$$

Such φ induces a map

$$
\begin{aligned}
\psi:\left(D^{2}\right)^{m_{1}} & \rightarrow\left(D^{2}\right)^{m_{2}}, \\
\left(z_{1}, \ldots, z_{m_{1}}\right) & \mapsto\left(y_{1}, \ldots, y_{m_{2}}\right)
\end{aligned}
$$

where

$$
y_{j}= \begin{cases}1 & \text { if } \varphi^{-1}\left(w_{j}\right)=\varnothing \\ \prod_{v_{i} \in \varphi^{-1}\left(w_{j}\right)} z_{i} & \text { otherwise }\end{cases}
$$

It restricts to a map

$$
\varphi: \mathcal{Z}_{K_{1}} \rightarrow \mathcal{Z}_{K_{2}} .
$$

Thus, the correspondence $K \mapsto \mathcal{Z}_{K}$ gives rise to a functor from simplicial complexes and maps to spaces with torus actions and equivariant maps.

Bigraded cell decomposition of D^{2} :

Set the bidegree (bdg) of the generators by

$$
\begin{array}{lll}
\operatorname{bdg}[1]=(0,0), & \operatorname{bdg}[T]=(-1,2), & \operatorname{bdg}[D]=(0,2) \\
\partial[1]=0, & \partial[T]=0, & \partial[D]=[T]
\end{array}
$$

Then

$$
C_{*}\left(\left(D^{2}\right)^{m} ; \partial\right)=\bigotimes_{i=1}^{m} C_{*}\left(D^{2} ; \partial\right)
$$

and $\mathcal{Z}_{K} \subset\left(D^{2}\right)^{m}$ is a cellular subcomplex!

Thus, the cellular chains $C_{*}\left(\mathcal{Z}_{K}\right)$ are defined.

The functor $K \mapsto \mathcal{Z}_{K}$ induces a homomorphism between the standard simplicial chain complex of K and the bigraded cellular chain complex of \mathcal{Z}_{K}.

5. Cellular cochain algebras.

The map $\widetilde{\triangle}: D^{2} \rightarrow D^{2} \times D^{2}$ given by

$$
\rho e^{i \varphi} \mapsto \begin{cases}\left(1+\rho\left(e^{2 i \varphi}-1\right), 1\right) & \text { for } \varphi \in[0, \pi], \\ \left(1,1+\rho\left(e^{2 i \varphi}-1\right)\right) & \text { for } \varphi \in[\pi, 2 \pi),\end{cases}
$$

is a cellular map sending ∂D^{2} to $\partial D^{2} \times \partial D^{2}$ and homotopic to the diagonal $\Delta: D^{2} \rightarrow D^{2} \times D^{2}$ in the class of such maps. Therefore, it gives rise to a canonical cellular diagonal approximation

$$
\widetilde{\Delta}: \mathcal{Z}_{K} \rightarrow \mathcal{Z}_{K} \times \mathcal{Z}_{K}
$$

Thm 10 The bigraded cellular cochain algebra $C^{*}\left(\mathcal{Z}_{K} ; R\right)$ is given by $C^{*}\left(\mathcal{Z}_{K} ; R\right)=\wedge\left[u_{1}, \ldots, u_{m}\right] \otimes R[K] /\left(u_{i} v_{i}=v_{i}^{2}=0\right)$, where $u_{i}=\left[T_{i}\right]^{*}, v_{i}=\left[D_{i}\right]^{*}$ are the dual cochain generators of bideg $(-1,2)$ and $(0,2)$ resp.

6. Cohomology of toric spaces.

Thm 11 There is an isomorphism of bigraded algebras

$$
\begin{aligned}
H^{*}\left(\mathcal{Z}_{K} ; \mathbb{Z}\right) & \cong \operatorname{Tor}_{\mathbb{Z}}^{*, *}\left(v_{1}, \ldots, v_{m}\right] \\
& \cong H[K], \mathbb{Z}) \\
& \cong H\left[\wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] ; d\right]
\end{aligned}
$$

where $d u_{i}=v_{i}, d v_{i}=0$. In particular,

$$
H^{p}\left(\mathcal{Z}_{K}\right) \cong \sum_{-i+2 j=p} \operatorname{Tor}_{\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]}^{-i, 2 j}(\mathbb{Z}[K], \mathbb{Z})
$$

Two ways of proving:

(a) Use the Eilenberg-Moore spectral sequence of the fibration

This gives the Tor part of the answer.
(b) Use the above calculations with cellular cochains (note: $\left(u_{i} v_{i}, v_{i}^{2} ; i=1, \ldots, m\right)$ is an acylic ideal).
(a) and (b) are related by the Koszul complex!

Ex 12 1. $K=\partial \Delta^{m-1}$. Then

$$
\mathbb{Z}[K]=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right] /\left(v_{1} \cdots v_{m}\right)
$$

The fundamental class of $\mathcal{Z}_{K}=S^{2 m-1}$ is represented by the bideg ($-1,2 m$) cocycle

$$
u_{1} v_{2} v_{3} \cdots v_{m} \in \wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K]
$$

2. Let K be the boundary of a 5-gon. Then
$\mathbb{Z}[K]=\mathbb{Z}\left[v_{1}, \ldots, v_{5}\right] /\left(v_{1} v_{3}, v_{2} v_{4}, v_{3} v_{5}, v_{4} v_{1}, v_{5} v_{2}\right)$. $H^{3}\left(\mathcal{Z}_{K}\right)=H^{-1,4}\left(\mathcal{Z}_{K}\right)$ has 5 generators

$$
u_{i} v_{i+2} \in \wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K], \quad i=1, \ldots, 5
$$

$H^{4}\left(\mathcal{Z}_{K}\right)=H^{-2,6}\left(\mathcal{Z}_{K}\right)$ has 5 generators

$$
u_{i} u_{i+1} v_{i+3}, \quad i=1, \ldots, 5
$$

$H^{7}\left(\mathcal{Z}_{K}\right)=H^{-3,10}\left(\mathcal{Z}_{K}\right)$ is generated by $u_{1} u_{2} u_{3} v_{4} v_{5}$. Thus, \mathcal{Z}_{K} is a 7 -manifold with Betti vector

$$
(1,0,0,5,5,0,0,1)
$$

Similarly, for K the boundary of an m-gon

$$
\operatorname{dim} H^{*}\left(\mathcal{Z}_{K}\right)=(m-4) 2^{m-2}+4
$$

3. Let $K=\left\{v_{1}, \ldots, v_{m}\right\}$ (m points). Then

$$
\mathbb{Z}[K]=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right] /\left(v_{i} v_{j}, \quad i \neq j\right)
$$

Cocycles in $\wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K]:$

$$
v_{i_{1}} u_{i_{2}} u_{i_{3}} \cdots u_{i_{k}}, \quad k \geqslant 2 \text { and } i_{p} \neq i_{q} \text { for } p \neq q
$$

Coboundaries:

$$
d\left(u_{i_{1}} \cdots u_{i_{k}}\right)
$$

Therefore,
$\operatorname{dim} H^{0}(U(K))=1$,
$\operatorname{dim} H^{1}(U(K))=H^{2}(U(K))=0$,
$\operatorname{dim} H^{k+1}(U(K))=m\binom{m-1}{k-1}-\binom{m}{k}=(k-1)\binom{m}{k}$,
$2 \leqslant k \leqslant m$,
and the multiplication in the cohomology is trivial.

7. Combinatorial homological algebra.

Let $\omega=\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \subseteq V$, and K_{ω} the full subcomplex of K. Then there is a canonical retraction

$$
\mathcal{Z}_{K_{\omega}} \stackrel{i}{\hookrightarrow} \mathcal{Z}_{K} \xrightarrow{p} \mathcal{Z}_{K_{\omega}},
$$

where i is induced by $K_{\omega} \subseteq K$ and p is the projection induced by the contraction cone $K \rightarrow$ cone K_{ω} sending the extra vertices to the vertex of the cone.

Moreover, given a subcomplex $L \subseteq K$, the subcomplex \mathcal{Z}_{L} retracts off \mathcal{Z}_{K} if and only if L is full.

Put $C^{*, *}\left(\mathcal{Z}_{K}\right)=\bigoplus_{\omega \subseteq V} C^{*, 2 \omega}\left(\mathcal{Z}_{K}\right)$ (multigrading), where $C^{*, 2 \omega}\left(\mathcal{Z}_{K}\right)$ is generated by $u_{\omega \backslash \sigma} v_{\sigma}, \quad \sigma \subseteq \omega$, $\sigma \in K$. Then

$$
H^{-i, 2 j}\left(\mathcal{Z}_{K}\right)=\bigoplus_{\omega \subseteq V:|\omega|=j} H^{-i, 2 \omega}\left(\mathcal{Z}_{K}\right)
$$

where $H^{-i, 2 \omega}\left(\mathcal{Z}_{K}\right)=H\left[C^{-i, 2 \omega}\left(\mathcal{Z}_{K}\right)\right]$.

Given complexes K_{1} on V and K_{2} on W, define their join as the following complex on $V \sqcup W$:
$K_{1} * K_{2}=\left\{\omega \subseteq V \sqcup W: \omega=\sigma_{1} \cup \sigma_{2}, \sigma_{1} \in K_{1}, \sigma_{2} \in K_{2}\right\}$.

We introduce a multiplication on

$$
\bigoplus_{\substack{p \geqslant-1 \\ \omega \subseteq V}} \widetilde{H}^{p}\left(K_{\omega}\right)
$$

(here $\left.\widetilde{H}^{-1}(\varnothing)=\mathbb{Z}\right)$.

Take $a \in \widetilde{H}^{p}\left(K_{\omega_{1}}\right), b \in \widetilde{H}^{q}\left(K_{\omega_{2}}\right)$.

Assume $\omega_{1} \cap \omega_{2}=\varnothing$. Then we get
$i: \quad K_{\omega_{1} \sqcup \omega_{2}}=K_{\omega_{1}} \sqcup K_{\omega_{2}} \hookrightarrow K_{\omega_{1}} * K_{\omega_{2}}$,
$f: \quad \widetilde{C}^{p}\left(K_{\omega_{1}}\right) \otimes \widetilde{C}^{q}\left(K_{\omega_{2}}\right) \stackrel{\cong}{\cong} \widetilde{C}^{p+q+1}\left(K_{\omega_{1}} * K_{\omega_{2}}\right)$.
Now define
$a \cdot b= \begin{cases}0, & \text { if } \omega_{1} \cap \omega_{2} \neq \varnothing, \\ i^{*} f(a \otimes b) \in \widetilde{H}^{p+q+1}\left(K_{\omega_{1} \sqcup \omega_{2}}\right), & \omega_{1} \cap \omega_{2}=\varnothing .\end{cases}$

Thm 13 (Baskakov, 2003) For all p and $\omega \subseteq V$ there are isomorphisms

$$
\widetilde{H}^{p}\left(K_{\omega}\right) \xlongequal{\cong} H^{p+1-|\omega|, 2 \omega}\left(\mathcal{Z}_{K}\right),
$$

inducing a ring isomorphism

$$
\gamma: \bigoplus_{\substack{p \geqslant-1 \\ \omega \subseteq V}} \widetilde{H}^{p}\left(K_{\omega}\right) \stackrel{\cong}{\cong} H^{*, *}\left(\mathcal{Z}_{K}\right) .
$$

Cor 14

$$
H^{-i, 2 j}\left(\mathcal{Z}_{K}\right)=\bigoplus_{\omega \subseteq V:|\omega|=j} \widetilde{H}^{j-i-1}\left(K_{\omega}\right)
$$

Cor 15 (Hochster, 1975)

$$
\operatorname{Tor}_{\mathbf{k}\left[v_{1}, \ldots, v_{m}\right]}^{-i, *}(\mathbf{k}[K], \mathbf{k}) \cong \bigoplus_{\omega \subseteq V} \widetilde{H}^{|\omega|-i-1}\left(K_{\omega} ; \mathbf{k}\right) .
$$

(additively and with field coefs).

8. Massey products and formality.

Given $\sigma \in K$, the stellar subdivision of K at σ is

$$
\widehat{K}=\zeta_{\sigma}(K)=\left(K \backslash \operatorname{star}_{K} \sigma\right) \cup\left(\operatorname{cone} \partial \operatorname{star}_{K} \sigma\right)
$$

Let K_{i} be a triangulation of $S^{n_{i}-1}$ with $\left|V_{i}\right|=m_{i}$ vertices, $i=1,2,3$.

$$
\begin{aligned}
& \text { Put } m=m_{1}+m_{2}+m_{3}, n=n_{1}+n_{2}+n_{3} \\
& \qquad \begin{array}{l}
K^{n-1}=K_{1}^{n_{1}-1} * K_{2}^{n_{2}-1} * K_{3}^{n_{3}-1} \\
\mathcal{Z}_{K}=\mathcal{Z}_{K_{1}} \times \mathcal{Z}_{K_{2}} \times \mathcal{Z}_{K_{3}}
\end{array}
\end{aligned}
$$

Choose maximal simplices

$$
\sigma_{1} \in K_{1}, \quad \sigma_{2}^{\prime}, \sigma_{2}^{\prime \prime} \in K_{2}, \sigma_{2}^{\prime} \cap \sigma_{2}^{\prime \prime}=\varnothing, \quad \sigma_{3} \in K_{3}
$$

Set $\widehat{\widehat{K}}=\zeta_{\sigma_{1} \cup \sigma_{2}^{\prime}}\left(\zeta_{\sigma_{2}^{\prime \prime} \cup \sigma_{3}}(K)\right)$. Then $\widehat{\widehat{K}}$ is a triangulation of S^{n-1} with $m+2$ vertices.

Consider the generators

$$
a_{i} \in \widetilde{H}^{n_{i}-1}\left(\widehat{\widehat{K}}_{V_{i}}\right)
$$

and set

$$
b_{i}=\gamma\left(a_{i}\right) \in H^{n_{i}-m_{i}, 2 m_{i}}\left(\mathcal{Z}_{\widehat{\widehat{K}}}\right) \subset H^{m_{i}+n_{i}}\left(\mathcal{Z}_{\widehat{\widehat{K}}}\right)
$$

Then

$$
\begin{aligned}
a_{1} a_{2} & \in \widetilde{H}^{n_{1}+n_{2}-1}\left(\widehat{\widehat{K}}_{V_{1} \sqcup V_{2}}\right) \\
& \cong \widetilde{H}^{n_{1}+n_{2}-1}\left(S^{n_{1}+n_{2}-1} \backslash \mathrm{pt}\right)=0 \\
b_{1} b_{2} & =\gamma\left(a_{1} a_{2}\right)=0
\end{aligned}
$$

Similarly, $b_{2} b_{3}=0$. Therefore the Massey product $\left\langle b_{1}, b_{2}, b_{3}\right\rangle \in H^{m+n-1}\left(\mathcal{Z}_{\widehat{\widehat{K}}}\right)$ is defined.

Thm 16 The cohomology of the $(m+n+2)$ manifold $\mathcal{Z}_{\widehat{\widehat{K}}}$ has non-trivial Massey products (e.g., $\left.\left\langle b_{1}, b_{2}, b_{3}\right\rangle\right)$.

Cor 17 We get a family of non-formal 2-connected manifolds.

The dual homology class $D\left\langle b_{1}, b_{2}, b_{3}\right\rangle \in H_{3}\left(\mathcal{Z}_{\widehat{\widehat{K}}}\right)$ is represented by the embedding $S^{3} \subset \mathcal{Z}_{\widehat{\widehat{K}}}$ corresponding to the pair of vertices added to $K=$ $K_{1} * K_{2} * K_{3}$ under the stellar subdivisions.

9. Toral rank conjecture.

A T^{k}-action on X is almost free if all isotropy subgroups are finite. The toral rank of X, denoted $\operatorname{trk}(X)$, is the largest k for which there exist a almost free T^{k}-action on X.

Prop 18 If K is an ($n-1$)-dim complex on m vertices, then $\operatorname{trk} \mathcal{Z}_{K} \geqslant m-n$.

In 1985 S. Halperin conjectured that

$$
\operatorname{dim} H^{*}(X ; \mathbb{Q}) \geqslant 2^{\operatorname{trk}(X)}
$$

for any finite dimensional space X.

Cor 19 Assuming that the toral rank conjecture is true, we come to the following inequality:

$$
\operatorname{dim} \underset{\omega \subseteq[m]}{ } \widetilde{H}^{*}\left(K_{\omega} ; \mathbb{Q}\right) \geqslant 2^{m-n} .
$$

Ex $20 K$ the boundary of an m-gon. Then

$$
\operatorname{dim} H^{*}\left(\mathcal{Z}_{K}\right)=(m-4) 2^{m-2}+4 \geqslant 2^{m-2} .
$$

References

[1] Victor M. Buchstaber and Taras E. Panov. Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series 24, Amer. Math. Soc., Providence, R.I., 2002.
[2] В.М. Бухштабер, Т.Е. Панов. Торические действия в топологии и комбинаторике (in Russian), Москва, издательство МЦНМО, 2004. (Extended version of [1]).
[3] I. V. Baskakov, V.M. Buchstaber and T.E. Panov, Cellular cochains and torus actions (Russian), Uspekhi Mat. Nauk 59 (2004), no. 3, 159-160; English translation in: Russian Math. Surveys 59 (2004), no. 3.
[4] V.M. Buchstaber and T. E. Panov, Combinatorics of simplicial cell complexes and torus actions, Proc. Steklov Inst. Math., Vol. 247, 2004, pp. 41-58.

