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1. Simplicial complexes and face rings.

K: simplicial complex on V = {v1, . . . , vm}.

σ ∈ K a simplex.

R[v1, . . . , vm]: polynomial algebra on V over R,
deg vi = 2. Given ω ⊆ V , set vω :=

∏
i∈ω vi. The

Stanley-Reisner algebra (or face ring) of K is

R[K] := R[v1, . . . , vm]/(vω : ω /∈ K).
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R[K] = R[v1, . . . , v5]/(v1v5, v3v4, v1v2v3, v2v4v5).
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2. Moment-angle complexes.

D2 ⊂ C: the unit disk.

Bω := {(z1, . . . , zm) ∈ (D2)m : |zi| = 1 for vi /∈ ω}.

The moment-angle complex

ZK :=
∪
σ∈K

Bσ ⊂ (D2)m.

Prop 2 ZK is a Tm-space, with quotient coneK′:

ZK −→ (D2)my y
coneK′ −→ Im

,

where K′ is the barycentric subdivision of K,

σ = {vi1, . . . , vik} 7→ eσ = (ε1, . . . , εm),

where εi = 0 if vi ∈ σ and εi = 1 if vi /∈ σ.

∅ 7→ e∅ = (1, . . . ,1).
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Ex 3 Embedding coneK′ ↪→ Im:
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K = 3 points
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K = ∂∆2

Prop 4 (a) Let |K| ∼= Sn−1 (a sphere triangulation
on m vertices). Then ZK is an (m+ n)-manifold;

(b) Let K be a triangulated manifold. Then ZK\Z∅
is an open manifold, where Z∅ = Tm.

Ex 5 Z∂∆n ∼= S2n+1. For n = 1,

S3 = D2 × S1 ∪ S1 ×D2 ⊂ D2 ×D2.
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3. Other important toric spaces.

(a) Original Davis-Januszkiewicz construction:

ZK ∼= Tm × | coneK|
/
∼,

where the equivalence relation ∼ is defined via the
dual cell decomposition of |K|:

The facets of |K| are of the form

Fi := starK′ vi.

Given x ∈ | coneK|, set

T (x) := {(t1, . . . , tm) ∈ Tm : ti = 1 if x /∈ Fi}.

Then set (t, x) ∼ (s, x) if t−1s ∈ T (x).

Important particular case: coneK = Pn, a simple
convex polytope.
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(b) Homotopy fibre construction:

The Davis-Januszkiewicz space is the Borel con-
struction

DJ(K) := ETm ×Tm ZK = ETm ×ZK/∼,

where (e, z) ∼ (et−1, tz).

Prop 6 There is a canonical homotopy eqce

DJ(K)
≃−→

∪
σ∈K

BTσ ⊆ BTm = (CP∞)m,

therefore, DJ(K) may be regarded as a canonical
cellular subcomplex in the product (CP∞)m.

Cor 7 (a) ZK ≃ hofibre
( ∪
σ∈K

BTσ ↪→ BTm
)
;

(b) H∗(DJ(K);R) ∼= H∗
Tm(ZK;R) ∼= R[K].
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(c) Subspace arrangement complements:

A coordinate subspace in Cm is given by

Lω = {(z1, . . . , zm) ∈ Cm : zi1 = · · · = zik = 0},
where ω = {i1, . . . , ik}. Coordinate subspace ar-
rangements are parametrised by simplicial com-
plexes K on m vertices. Set

U(K) = Cm \
∪
ω/∈K

Lω,

a coordinate subspace arrangement complement.

Prop 8 There is a Tm-equivariant deformation re-
traction

U(K)
≃−→ ZK.

Pf Write

U(K) =
∪
σ∈K

Uσ, ZK =
∪
σ∈K

Bσ,

where

Uσ := {(z1, . . . , zm) ∈ Cm : zi ̸= 0 for i /∈ σ}.
Then there are obvious homotopy equivalences

Cσ × (C \ 0)V \σ ∼= Uσ
≃−→ Bσ

∼= (D2)σ × (S1)V \σ.
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Ex 9 1. Let K = ∂∆m−1. Then U(K) = Cm \ 0.

2. Let K = {v1, . . . , vm} (m points). Then

U(K) = Cm \
∪

16i<j6m
{zi = zj = 0},

the complement to the set of all codim 2 co-
ordinate planes.

3. More generally, if K is the i-skeleton of ∆m−1,
then U(K) is the complement to the set of all
coordinate planes of codimension (i+2).
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(d) (Quasi)toric manifolds:

Define s = s(K) as the maximal dimension for
which there exists a subgroup

T s ⊂ Tm

acting freely on ZK.

The number s(K) is a combinatorial invariant of
K. We have

1 6 s(K) 6 m− n.

Let K be a simplicial m-vertex subdivision of Sn−1

(e.g., a boundary of a simplicial polytope) and as-
sume s(K) = m− n. Then the quotient

M2n := ZK/Tm−n

is called a quasitoric manifold.

All compact nonsingular toric varieties are qua-
sitoric manifolds. Quotients of ZK by almost free
torus actions produce toric orbifolds.
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4. From combinatorial to toric topology.

Let K1, K2 be simplicial complexes on vertex sets

V = {v1, . . . , vm1} and W = {w1, . . . , wm2}

respectively. A simplicial map φ : K1 → K2 is in-
duced by a vertices map φ : V →W such that

φ(σ) ∈ K2 for all σ ∈ K1.

Such φ induces a map

ψ : (D2)m1 → (D2)m2,

(z1, . . . , zm1) 7→ (y1, . . . , ym2)

where

yj =


1 if φ−1(wj) = ∅,∏
vi∈φ−1(wj)

zi otherwise.

It restricts to a map

φ : ZK1
→ ZK2

.

Thus, the correspondence K 7→ ZK gives rise to
a functor from simplicial complexes and maps to
spaces with torus actions and equivariant maps.
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Bigraded cell decomposition of D2:

'

&

$

%

u1T
D

cells

[1]

[T ]

[D]


cellular
chain
generators

Set the bidegree (bdg) of the generators by

bdg[1] = (0,0), bdg[T ] = (−1,2), bdg[D] = (0,2);

∂[1] = 0, ∂[T ] = 0, ∂[D] = [T ].

Then

C∗((D2)m; ∂) =
m⊗
i=1

C∗(D2; ∂),

and ZK ⊂ (D2)m is a cellular subcomplex!

Thus, the cellular chains C∗(ZK) are defined.

The functor K 7→ ZK induces a homomorphism
between the standard simplicial chain complex of
K and the bigraded cellular chain complex of ZK.
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5. Cellular cochain algebras.

The map ∆̃: D2 → D2 ×D2 given by

ρeiφ 7→


(
1+ ρ(e2iφ − 1),1

)
for φ ∈ [0, π],(

1,1+ ρ(e2iφ − 1)
)

for φ ∈ [π,2π),

is a cellular map sending ∂D2 to ∂D2 × ∂D2 and
homotopic to the diagonal ∆: D2 → D2 × D2 in
the class of such maps. Therefore, it gives rise to
a canonical cellular diagonal approximation

∆̃: ZK → ZK ×ZK.

Thm 10 The bigraded cellular cochain algebra
C∗(ZK;R) is given by

C∗(ZK;R) = Λ[u1, . . . , um]⊗R[K]
/
(uivi = v2i = 0),

where ui = [Ti]
∗, vi = [Di]

∗ are the dual cochain
generators of bideg (−1,2) and (0,2) resp.
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6. Cohomology of toric spaces.

Thm 11 There is an isomorphism of bigraded al-
gebras

H∗(ZK;Z) ∼= Tor∗,∗Z[v1,...,vm](Z[K],Z)
∼= H

[
Λ[u1, . . . , um]⊗ Z[K]; d

]
,

where dui = vi, dvi = 0. In particular,

Hp(ZK) ∼=
∑

−i+2j=p

Tor−i,2jZ[v1,...,vm](Z[K],Z).

Two ways of proving:

(a) Use the Eilenberg–Moore spectral sequence of
the fibration

ZK −→ ETmy y
DJ(K) −→ BTm

.

This gives the Tor part of the answer.

(b) Use the above calculations with cellular cochains
(note: (uivi, v

2
i ; i = 1, . . . ,m) is an acylic ideal).

(a) and (b) are related by the Koszul complex!
14



Ex 12 1. K = ∂∆m−1. Then

Z[K] = Z[v1, . . . , vm]/(v1 · · · vm).

The fundamental class of ZK = S2m−1 is repre-
sented by the bideg (−1,2m) cocycle

u1v2v3 · · · vm ∈ Λ[u1, . . . , um]⊗ Z[K].

2. Let K be the boundary of a 5-gon. Then

Z[K] = Z[v1, . . . , v5]/(v1v3, v2v4, v3v5, v4v1, v5v2).

H3(ZK) = H−1,4(ZK) has 5 generators

uivi+2 ∈ Λ[u1, . . . , um]⊗ Z[K], i = 1, . . . ,5.

H4(ZK) = H−2,6(ZK) has 5 generators

uiui+1vi+3, i = 1, . . . ,5.

H7(ZK) = H−3,10(ZK) is generated by u1u2u3v4v5.
Thus, ZK is a 7-manifold with Betti vector

(1,0,0,5,5,0,0,1).

Similarly, for K the boundary of an m-gon

dimH∗(ZK) = (m− 4)2m−2 +4.
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3. Let K = {v1, . . . , vm} (m points). Then

Z[K] = Z[v1, . . . , vm]/(vivj, i ̸= j).

Cocycles in Λ[u1, . . . , um]⊗ Z[K]:

vi1ui2ui3 · · ·uik, k > 2 and ip ̸= iq for p ̸= q.

Coboundaries:

d(ui1 · · ·uik).

Therefore,

dimH0
(
U(K)

)
= 1,

dimH1
(
U(K)

)
= H2

(
U(K)

)
= 0,

dimHk+1
(
U(K)

)
= m

(
m−1
k−1

)
−

(
m
k

)
= (k − 1)

(
m
k

)
,

2 6 k 6 m,

and the multiplication in the cohomology is trivial.
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7. Combinatorial homological algebra.

Let ω = {vi1, . . . , vik} ⊆ V , and Kω the full subcom-
plex of K. Then there is a canonical retraction

ZKω
i
↪→ ZK

p−→ ZKω,

where i is induced by Kω ⊆ K and p is the projec-
tion induced by the contraction coneK → coneKω
sending the extra vertices to the vertex of the cone.

Moreover, given a subcomplex L ⊆ K, the subcom-
plex ZL retracts off ZK if and only if L is full.

Put C∗,∗(ZK) =
⊕
ω⊆V

C∗,2ω(ZK) (multigrading),

where C∗,2ω(ZK) is generated by uω\σvσ, σ ⊆ ω,
σ ∈ K. Then

H−i,2j(ZK) =
⊕

ω⊆V : |ω|=j
H−i,2ω(ZK),

where H−i,2ω(ZK) = H[C−i,2ω(ZK)].
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Given complexes K1 on V and K2 on W , define
their join as the following complex on V ⊔W :

K1∗K2 = {ω ⊆ V ⊔W : ω = σ1∪σ2, σ1 ∈ K1, σ2 ∈ K2}.

We introduce a multiplication on⊕
p>−1
ω⊆V

H̃p(Kω)

(here H̃−1(∅) = Z).

Take a ∈ H̃p(Kω1), b ∈ H̃q(Kω2).

Assume ω1 ∩ ω2 = ∅. Then we get

i : Kω1⊔ω2 = Kω1 ⊔Kω2 ↪→ Kω1 ∗Kω2,

f : C̃p(Kω1)⊗ C̃q(Kω2)
∼=−→ C̃p+q+1(Kω1 ∗Kω2).

Now define

a·b =

 0, if ω1 ∩ ω2 ̸= ∅,

i∗f(a⊗ b) ∈ H̃p+q+1(Kω1⊔ω2), ω1 ∩ ω2 = ∅.
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Thm 13 (Baskakov, 2003) For all p and ω ⊆ V

there are isomorphisms

H̃p(Kω)
∼=−→ Hp+1−|ω|,2ω(ZK),

inducing a ring isomorphism

γ :
⊕
p>−1
ω⊆V

H̃p(Kω)
∼=−→ H∗,∗(ZK).

Cor 14

H−i,2j(ZK) =
⊕

ω⊆V : |ω|=j
H̃j−i−1(Kω).

Cor 15 (Hochster, 1975)

Tor−i,∗k[v1,...,vm](k[K],k) ∼=
⊕
ω⊆V

H̃ |ω|−i−1(Kω;k).

(additively and with field coefs).
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8. Massey products and formality.

Given σ ∈ K, the stellar subdivision of K at σ is

K̂ = ζσ(K) =
(
K \ starK σ

)
∪

(
cone ∂ starK σ

)
.

Let Ki be a triangulation of Sni−1 with |Vi| = mi
vertices, i = 1,2,3.

Put m = m1 +m2 +m3, n = n1 + n2 + n3,

Kn−1 = K
n1−1
1 ∗Kn2−1

2 ∗Kn3−1
3 ,

ZK = ZK1
×ZK2

×ZK3
.

Choose maximal simplices

σ1 ∈ K1, σ′2, σ
′′
2 ∈ K2, σ

′
2 ∩ σ′′2 = ∅, σ3 ∈ K3.

Set ̂̂
K = ζσ1∪σ′2

(
ζσ′′2∪σ3

(K)
)
. Then ̂̂

K is a triangu-

lation of Sn−1 with m+2 vertices.

Consider the generators

ai ∈ H̃ni−1(
̂̂
KVi),

and set

bi = γ(ai) ∈ Hni−mi,2mi(Z ̂̂
K
) ⊂ Hmi+ni(Z ̂̂

K
).
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Then

a1a2 ∈ H̃n1+n2−1
(̂̂
KV1⊔V2

)
∼= H̃n1+n2−1(Sn1+n2−1 \ pt) = 0,

b1b2 = γ(a1a2) = 0.

Similarly, b2b3 = 0. Therefore the Massey product
⟨b1, b2, b3⟩ ∈ Hm+n−1(Z ̂̂

K
) is defined.

Thm 16 The cohomology of the (m + n + 2)-
manifold Z ̂̂

K
has non-trivial Massey products (e.g.,

⟨b1, b2, b3⟩).

Cor 17 We get a family of non-formal 2-connected
manifolds.

The dual homology class D⟨b1, b2, b3⟩ ∈ H3(Z ̂̂
K
)

is represented by the embedding S3 ⊂ Z ̂̂
K

cor-

responding to the pair of vertices added to K =

K1 ∗K2 ∗K3 under the stellar subdivisions.
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9. Toral rank conjecture.

A T k-action on X is almost free if all isotropy sub-
groups are finite. The toral rank of X, denoted
trk(X), is the largest k for which there exist a al-
most free T k-action on X.

Prop 18 If K is an (n−1)-dim complex on m ver-
tices, then trkZK > m− n.

In 1985 S. Halperin conjectured that

dimH∗(X;Q) > 2trk(X)

for any finite dimensional space X.

Cor 19 Assuming that the toral rank conjecture is
true, we come to the following inequality:

dim
⊕

ω⊆[m]

H̃∗(Kω;Q) > 2m−n.

Ex 20 K the boundary of an m-gon. Then

dimH∗(ZK) = (m− 4)2m−2 +4 > 2m−2.

22



References

[1] Victor M. Buchstaber and Taras E. Panov.
Torus Actions and Their Applications in Topol-
ogy and Combinatorics, University Lecture Se-
ries 24, Amer. Math. Soc., Providence, R.I.,
2002.

[2] В.М. Бухштабер, Т. Е. Панов. Торические
действия в топологии и комбинаторике (in
Russian), Москва, издательство МЦНМО,
2004. (Extended version of [1]).

[3] I. V. Baskakov, V.M. Buchstaber and T. E.
Panov, Cellular cochains and torus actions
(Russian), Uspekhi Mat. Nauk 59 (2004),
no. 3, 159–160; English translation in: Rus-
sian Math. Surveys 59 (2004), no. 3.

[4] V.M. Buchstaber and T. E. Panov, Combina-
torics of simplicial cell complexes and torus ac-
tions, Proc. Steklov Inst. Math., Vol. 247,
2004, pp. 41–58.

23


