Rational aspects of toric topology

Taras Panov

Moscow State University

Joint work with Nigel Ray (Manchester)

1. Motivations and definitions.

Object of study: T^n -manifolds M^{2n} and their orbit quotients.

Notation:
$$T := T^n$$
, $M := M^{2n}$, $Q := M/T$.

Particular examples:

- Non-singular compact toric varieties T-action is a part of algebraic \mathbb{C}^{*n} -action with a dense orbit;
- (Quasi)toric manifolds of Davis-Januszkiewicz "locally standard" (i.e., locally look like T^n acting on \mathbb{C}^n) and Q combinatorially is a simple polytope;
- Torus manifolds of Hattori-Masuda.

K a simplicial complex on $V = \{v_1, \ldots, v_m\}$ (e.g., K is the dual to the boundary of Q).

S(V) a symmetric algebra on V over a ring R, $\deg v_i=2$. Given $\omega\subseteq V$, set $v_\omega:=\prod_{i\in\omega}v_i$. The Stanley-Reisner algebra (or face ring) of K is

$$R^*[K] := S(V)/(v_\omega : \omega \notin K).$$

The Davis-Januszkiewicz space

$$DJ(K) := \bigcup_{\sigma \in K} BT^{\sigma} \subseteq BT^{m} = (\mathbb{C}P^{\infty})^{m}.$$

Properties:

- $DJ(K) \simeq ET \times_T M$ for $K = (\partial Q)^*$;
- $H^*(\mathcal{D}J(K); R) \cong H_T^*(M; R) \cong R^*[K].$

Define

$$\mathcal{Z}_K := \mathsf{hofibre} (DJ(K) \hookrightarrow BT^m).$$

Thus, we have two homotopy pullback diagrams

The map $DJ(K) \to BT^n$ is determined by a choice of a regular sequence in the Cohen-Macaulay algebra $\mathbb{Z}[K] = H^*(DJ(K))$.

Overal aim: Relate

- ullet Topology of M, \mathcal{Z}_K , DJ(K) and their loop spaces;
- Combinatorics of Q, K;
- ullet Commutative and homological algebra of $\mathbb{Q}[K]$

through rational homotopy theory

2. Rational homotopy theory.

Sullivan's framework: Piecewise polynomial differential forms functor A^* : top \rightarrow cdga together with a natural isomorphism

$$H(A^*(X)) \xrightarrow{\cong} H^*(X,\mathbb{Q})$$

for any $X \in \text{top.}$ The algebra $A^*(X)$ may be thought of as a commutative replacement for the singular \mathbb{Q} -cochains.

A space X is *formal* if $A^*(X)$ is a formal dga, i.e. if there is a weak equivalence $A^*(X) \simeq H^*(X)$. In particular, X is formal if there is a multiplicative "choice of a representative" map $H^*(X,\mathbb{Q}) \to A^*(X)$.

Quillen's framework: Quillen's approach is dual (in the Eckmann-Hilton sense) to Sullivan's. The rational homotopy groups $\pi_*(\Omega X) \otimes_{\mathbb{Z}} \mathbb{Q}$ of a space X form a graded Lie algebra, called the *rational homotopy Lie algebra of X*, with respect to the *Samelson bracket*. There is a Quillen functor

$$Q_*$$
: top₁ \rightarrow dgl₀

from pointed simply connected spaces to connected differential graded Lie algebras, with a natural isomorphism

$$H(Q_*(X)) \xrightarrow{\cong} \pi_*(\Omega X) \otimes_{\mathbb{Z}} \mathbb{Q}$$

for any $X \in \mathsf{top}_1$.

A space X is called *coformal* if $Q_*(X)$ is a coformal differential graded Lie algebra. In particular, X is coformal if there is a weak equivalence $Q_*(X) \to \pi_*(\Omega X) \otimes_{\mathbb{Z}} \mathbb{Q}$.

3. Cohomology of DJ(K), \mathcal{Z}_K and M.

According to a result of Notbohm-Ray, there is a commutative diagram

$$H^*(BT^m) = S(V) \longrightarrow A^*(BT^m)$$

$$\downarrow \qquad \qquad \downarrow$$
 $H^*(DJ(K)) = \mathbb{Q}[K] \longrightarrow A^*(DJ(K))$

in which the horizontal arrows are weak equivalences. In particular, DJ(K) is formal.

Applying $A^*(\)$ to the pullback square defining \mathcal{Z}_K , we get

$$A^*(\mathcal{Z}_K) \leftarrow A^*(ET^m)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad A^*(DJ(K)) \leftarrow A^*(BT^m)$$

This may fail to be a pushout square in cdga.

Nevertheless, an Eilenberg-Moore type result implies that the induced map

$$B(A^*(DJ(K)), A^*(BT^m), A^*(ET^m)) \to A^*(\mathcal{Z}_K)$$

is a quism. Consider the free extension diagram

$$\Lambda(U) \otimes \mathbb{Q}[K] \leftarrow \Lambda(U) \otimes S(V)
\uparrow \qquad \qquad \uparrow \qquad ,
\mathbb{Q}[K] \leftarrow S(V)$$

where $\Lambda(U) = \Lambda[u_1, \dots, u_m]$, $\deg u_i = 1$, and the dga structure in $\Lambda(U) \otimes \mathbb{Q}[K]$ and $\Lambda(U) \otimes S(V)$ is defined by $dv_i = 0$, $du_i = v_i$.

Thm 1 The free extension $\Lambda(U) \otimes \mathbb{Q}[K]$ of the Stanley-Reisner ring $\mathbb{Q}[K]$ is weakly equivalent to $A^*(\mathcal{Z}_K)$. Hence, there are isomorphisms of (bi)graded algebras

$$H^*(\mathcal{Z}_K;\mathbb{Q}) \cong \operatorname{Tor}_{S(V)}(\mathbb{Q}[K],\mathbb{Q}) \cong H(\Lambda(U) \otimes \mathbb{Q}[K]).$$

The statement is also true with \mathbb{Z} coefficients, although the proof uses different techniques. It has also been proven by M. Franz in his thesis in a slightly different context of non-compact non-singular toric varieties.

The following is a generalisation of an argument due to Bousfield-Gugenheim.

Prop 2 Let B be a simply connected space and t_1, \ldots, t_n a sequence of elements in $H^2(B; \mathbb{Z})$. Then we have a pullback diagram of fibre bundles

$$\begin{array}{ccc}
E & \longrightarrow & ET^n \\
\downarrow & & \downarrow \\
B & \longrightarrow & BT^n
\end{array}$$

Assume that B is formal and $H^*(B; \mathbb{Q})$ is free as a $S(t_1, \ldots, t_n)$ -module. Then E is also formal and

$$H^*(E;\mathbb{Q}) \cong H^*(B;\mathbb{Q})/(t_1,\ldots,t_n).$$

Cor 3 All toric manifolds are formal.

The same argument works also in a more general case of torus manifolds over homology polytopes. Even more generally, torus manifolds M with $H^{odd}(M) = 0$ are also formal. In this case the face ring $\mathbb{Z}[K]$ has to be replaced by the face ring $\mathbb{Z}[S]$ of an appropriate simplicial poset S determined by M. This face ring still admits an Isop $t_1, \ldots t_n$ and is free as a $\mathbb{Z}[t_1, \ldots, t_n]$ -module.

4. Flag complexes and loop spaces

A missing face of K is a subset $\omega \subseteq V$ s.t. $\omega \notin K$, but every proper subset of ω is a simplex. K is a flag complex if any of its missing faces has two vertices. In this case

$$R[K] = T(V) / (v_i v_j - v_j v_i = 0 \text{ for } \{i, j\} \in K,$$
$$v_i v_j = 0 \text{ for } \{i, j\} \notin K),$$

a quadratic algebra.

The fibration $DJ(K) \to BT^m$ with fibre \mathcal{Z}_K splits after looping: $\Omega \, DJ(K) \simeq \Omega \mathcal{Z}_K \times T^m$. This is not an H-space, and the exact sequence of Pontrjagin homology rings

$$0 \to H_*(\Omega \mathcal{Z}_K) \to H_*(\Omega \, DJ(K)) \to \Lambda(U) \to 0$$
 does not split in general.

Thm 4 Suppose K is flag and k a field. Then

$$H_*(\Omega DJ(K)) \cong T_{\mathbf{k}}(U) / (u_i^2 = 0,$$

 $u_i u_j + u_j u_i = 0 \text{ for } \{i, j\} \in K).$

Idea of proof. Use Adams' cobar construction on the S-R coalgebra $\mathbf{k}_*[K]$:

$$H_*(\Omega DJ(K)) \cong H(\Omega_*C_*(DJ(K))) \cong \operatorname{Ext}_{\mathbf{k}[K]}(\mathbf{k},\mathbf{k})$$

Then use a result of Fröberg calculating the latter Ext.

Cor 5 We have an isomorphism of graded Lie algebras:

$$\pi_*(\Omega DJ(K)) \otimes_{\mathbb{Z}} \mathbb{Q} \cong FL(u_1, \dots, u_m) / ([u_i, u_i] = 0,$$

$$[u_i, u_j] = 0 \text{ for } \{i, j\} \in K),$$

where FL() is a free Lie algebra and $deg u_i = 1$.

The Poincaré series of $R^*[K]$ is given by

$$F(R^*[K];t) = \sum_{i=-1}^{n-1} \frac{f_i t^{2(i+1)}}{(1-t^2)^{i+1}}$$
$$= \frac{h_0 + h_1 t^2 + \dots + h_n t^{2n}}{(1-t^2)^n},$$

where dim K=n-1, f_i is the number of i-dimensional simplices in K, $f_{-1}=1$, and the numbers h_i are defined from the second identity.

Cor 6 For any flag complex K the rational homology Poincaré series of Ω DJ(K) is given by

$$F(H_*(\Omega DJ(K));t) = \frac{(1+t)^n}{1 - h_1 t + \dots + (-1)^n h_n t^n}.$$

Proof. Since $H_*(\Omega DJ(K); \mathbb{Q})$ is the quadratic dual of the Stanley-Reisner algebra $\mathbb{Q}[K]$ (graded by deg $v_i = 1$), we have

$$F(\mathbb{Q}[K];-t)\cdot F(H_*(\Omega DJ(K));t)=1.$$

5. Diagrams and homotopy colimits.

cat(K): category of K (simplices and inclusions); mc: a model category (e.g., top or dga);

 $X \in \mathsf{mc}$

 X^K : $\mathrm{cat}(K) \to \mathrm{mc}$ exponential diagram; its value on $\sigma \subseteq \tau$ is the inclusion $X^\sigma \subseteq X^\tau$; $X^\varnothing = pt$.

Many previous constructions are colimits, e.g.,

$$DJ(K) = \operatorname{colim}^{\operatorname{top}} BT^K,$$

 $R_*[K] = \operatorname{colim}^{\operatorname{dgc}} C(v)^K, \text{ etc.},$

where C(v) is the symmetric coalgebra on v, $\deg v=2$.

Cor 7 Assume K is flag. Then

$$H_*(\Omega DJ(K), \mathbb{Q}) \cong \operatorname{colim}^{\operatorname{ga}} \Lambda[u]^K;$$

 $\pi_*(\Omega DJ(K)) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \operatorname{colim}^{\operatorname{gl}} CL(u)^K,$

where CL(u) is the commutative Lie algebra, $\deg u = 1$.

In general colimit models do not work! (Look at $K = \partial \Delta^2$.)

Thm 8 DJ(K) is coformal iff K is flag.

Proof. For flag K construct a map

$$\Omega_*C_*(\mathsf{DJ}(K)) \to H_*(\Omega \, \mathsf{DJ}(K); \mathbb{Q})$$

and show that it is a quism using the above homology calculation. For non-flag K higher Samelson and commutator brackets appear in π_* and H_* , obstructing coformality.

Thm 9 There is a htpy commutative diagram

$$\begin{array}{cccc} \Omega_* \operatorname{hocolim^{\operatorname{dgc}}} C(v)^K & \xrightarrow{\overline{\eta}_K} & \operatorname{hocolim^{\operatorname{dga}}} \Lambda[u]^K \\ & & & & & \downarrow \\ & \Omega_* \rho_K & & & & \downarrow \\ & & \Omega_*(\mathbb{Q}_*[K]) & \xrightarrow{\eta_K} & \operatorname{colim^{\operatorname{dga}}} \Lambda[u]^K \end{array}$$

in which $\Omega_*\rho_K$ and $\overline{\eta}_K$ are weak equivalences, while η_K is a weak equivalence only if K is flag.

Cor 10

$$H_*(\Omega DJ(K); \mathbb{Q}) \cong H(\operatorname{hocolim}^{\operatorname{dga}} \Lambda[u]^K)$$

 $\pi_*(\Omega DJ(K)) \otimes_{\mathbb{Z}} \mathbb{Q} \cong H(\operatorname{hocolim}^{\operatorname{dgl}} CL(u)^K).$

Compare:

Thm 11 (P.-Ray-Vogt) There is a httpy commutative diagram

in which Ωp_K and \overline{h}_K are weak equivalences, while h_K is a weak equivalence only if K is flag.