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1. Motivations and definitions.

Object of study: T™-manifolds M2" and their orbit
quotients.

Notation: T :=T", M := M?", Q := M/T.

Particular examples:

e Non-singular compact toric varieties

T-action is a part of algebraic C*"-action with a dense

orbit,

e (Quasi)toric manifolds of Davis-Januszkiewicz
“locally standard” (i.e., locally look like T™ acting on C")

and Q combinatorially is a simple polytope,

e [orus manifolds of Hattori-Masuda.



K a simplicial complex on V = {v1,...,vm} (e.9.,
K is the dual to the boundary of Q).

S(V) a symmetric algebra on V over a ring R,
degv; = 2. Given w C V, set vy = [[ie,vi- The
Stanley-Reisner algebra (or face ring) of K is

R*[K] :=S(V)/(vy: w ¢ K).
The Davis-Januszkiewicz space
DJ(K) := |J BT? C BT™ = (CP>™)™.

oceK
Properties:

e DJ(K)~ ET xp7 M for K = (0Q)*;
o H*(DJ(K); R) = H*(M; R) & R*[K].

Define

Zpe = hofibre(DJ(K) < BTm).



Thus, we have two homotopy pullback diagrams

2 — ET™ M?2"  — ET"
N
DJ(K) — BT™ DJ(K) — BT"

The map DJ(K) — BT™ is determined by a choice
of a regular sequence in the Cohen-Macaulay alge-
bra Z|K] = H*(DJ(K)).

Overal aim: Relate

e Topology of M, Zg, DJ(K) and their loop
spaces;

e Combinatorics of @, K;

e Commutative and homological algebra of Q[K]

through rational homotopy theory



2. Rational homotopy theory.

Sullivan’s framework: Piecewise polynomial dif-
ferential forms functor A*: top — cdga together
with a natural isomorphism

H(A*(X)) — H*(X,Q)

for any X € top. The algebra A*(X) may be
thought of as a commutative replacement for the
singular Q-cochains.

A space X is formal if A*(X) is a formal dga, i.e.
if there is a weak equivalence A*(X) ~ H*(X).
In particular, X is formal if there is a multiplica-
tive “choice of a representative” map H*(X,Q) —
A*(X).



Quillen’s framework: Quillen’'s approach is dual
(in the Eckmann-Hilton sense) to Sullivan’s. The
rational homotopy groups 7«(2X) ®7 Q of a space
X form a graded Lie algebra, called the rational
homotopy Lie algebra of X, with respect to the
Samelson bracket. There is a Quillen functor

Q«: top; — dglg

from pointed simply connected spaces to con-
nected differential graded Lie algebras, with a nat-
ural isomorphism

~

H(Qx(X)) — m(QX) ®7Q
for any X € top;.

A space X is called coformal if Q«(X) is a coformal
differential graded Lie algebra. In particular, X is
coformal if there is a weak equivalence Q«(X) —

T(2X) ®7 Q.



3. Cohomology of DJ(K), Zi and M.

According to a result of Notbohm-Ray, there is a
commutative diagram

H*(BT™) = S(V) — A*(BT™)

| l

H*(DJ(K)) = Q[K] — A*(DJ(K))
in which the horizontal arrows are weak equiva-
lences. In particular, DJ(K) is formal.

Applying A*( ) to the pullback square defining Zy,

we get
A (Zr) <+ A*(ET™)

T T

A*(DJ(K)) «— A*(BT™)
This may fail to be a pushout square in cdga.



Nevertheless, an Eilenberg-Moore type result im-
plies that the induced map

B(A*(DJ(K)), A*(BT™), A*(ETm)) — A*(Zg)
IS @ quism. Consider the free extension diagram
ANU)RQ[K] +— ANWU)®S(V)

| |

QK] — S(V)
where A(U) = Aluyq,...,um], degu; = 1, and the
dga structure in A(U) ® Q[K] and A(U) ® S(V) is
defined by dv;, = 0, du; = v;.

Thm 1 The free extension N(U) ® Q[K] of the
Stanley-Reisner ring Q[K] is weakly equivalent
to A*(Zx). Hence, there are isomorphisms of
(bi)graded algebras

H*(Z5; Q) 2 Tor g (QIK], Q) 2 HAV) ® QIK]).

The statement is also true with Z coefficients,
although the proof uses different techniques. It
has also been proven by M. Franz in his thesis in
a slightly different context of non-compact non-
singular toric varieties.



The following is a generalisation of an argument
due to Bousfield-Gugenheim.

Prop 2 Let B be a simply connected space and

t1,...,tn @ sequence of elements in H2(B;Z). Then
we have a pullback diagram of fibre bundles

EFE — ET™

B — BT"
Assume that B is formal and H*(B;Q) is free as a
S(t1,...,tn)-module. Then E is also formal and

H*(E;,Q) = H*(B;Q)/(t1,...,tn).
Cor 3 All toric manifolds are formal.

The same argument works also in a more gen-
eral case of torus manifolds over homology poly-
topes. Even more generally, torus manifolds M
with H?()Af) = 0 are also formal. In this case
the face ring Z[K] has to be replaced by the face
ring Z[S] of an appropriate simplicial poset S de-
termined by M. This face ring still admits an Isop
t1,...tp and is free as a Z[tq,...,tp]-module.



4. Flag complexes and loop spaces

A missing face of K is a subset w CV s.t. w ¢ K,
but every proper subset of w is a simplex. K is
a flag complex if any of its missing faces has two
vertices. In this case

R[K] = T(V)/(vz-vj —wjv; = 0 for {i,5} € K,
vw; = 0 for {i,5} ¢ K),

a quadratic algebra.

The fibration DJ(K) — BT™ with fibre Zj splits
after looping: QDJ(K) ~ QZx x T™. This is not
an H-space, and the exact sequence of Pontrjagin
homology rings

0 — Hi(QZy) - H(QDJ(K)) - ANU) -0

does not split in general.
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Thm 4 Suppose K is flag and k a field. Then

H. (2 DJ(K)) = Ti(U) / (uf =0,
Ui Uy + UjU; = 0 for {i,j} € K)

Idea of proof. Use Adams’ cobar construction on
the S-R coalgebra k«[K]:

Then use a result of Froberg calculating the latter
Ext.

Cor 5 We have an isomorphism of graded Lie al-
gebras:

(2 DI(K)) ®7,Q = FL(u, ..., um) / ([us,u] =0,
[uz,u]] = 0 for {’L,]} c K),

where FL( ) is a free Lie algebra and degu; = 1.

11



The Poincaré series of R*[K] is given by

n—1 thQ(z—l-l)

F(R'[K];t) = Z:Z_l (1 — ¢2)it1

 ho+ hit? 4+ ...+ hpt?"

B (1 —¢2)n ’
where dimK = n — 1, f; is the number of i-
dimensional simplices in K, f_1 =1, and the num-
bers h; are defined from the second identity.

Cor 6 For any flag complex K the rational homol-
ogy Poincaré series of Q2 DJ(K) is given by

(1+t)"
1 —hit+...4+ (=1)"Phpt™

F(H(QDJ(K));t) =

Proof. Since H.(Q2 DJ(K); Q) is the quadratic dual
of the Stanley-Reisner algebra Q[K] (graded by
degv; = 1), we have

F(@[K]; —t) -F(H*(Q DJ(K));t) — 1.
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5. Diagrams and homotopy colimits.

cat(K): category of K (simplices and inclusions);
mc: a model category (e.g., top or dga);

X € mc
XK cat(K) — mc exponential diagram; its value
on o C 7 is the inclusion X7 C X7; X9 = pt.

Many previous constructions are colimits, e.dg.,
DJ(K) = colim™P BTH,
R«[K] = colim99¢ c(v) ¥, etc.,

where C(v) is the symmetric coalgebra on v,
degv = 2.

Cor 7 Assume K is flag. Then
H.(Q DJ(K),Q) = colim9 Alu]®;
(2 DJ(K)) ®7 Q & colim9' CL(u)",

where CL(u) is the commutative Lie algebra,
degu = 1.
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In general colimit models do not work! (Look at
K = 0A2)

Thm 8 DJ(K) is coformal iff K is flag.

Proof. For flag K construct a map

QCx(DJ(K)) = H«(Q DJ(K); Q)

and show that it is a quism using the above homol-
ogy calculation. For non-flag K higher Samelson
and commutator brackets appear in m« and Hy, ob-
structing coformality.
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Thm 9 There is a htpy commutative diagram

Q. hocolimd9¢ C(v)K X, hocolimd9a A[u] X

(o |

Q.(Q«[K]) K, colimd92 A[y] K
in which Q2«pgr and ng are weak equivalences, while
N IS a weak equivalence only if K is flag.

Cor 10
Ho(Q DJ(K); Q) = H(hoconmdga /\[u]K)
(2 DJ(K)) @7 Q = H(hoconmdg' CL(u)K).

Compare:

Thm 11 (P.-Ray-Vogt) There is a htpy commu-
tative diagram

) h )
Q hocolimtoP BTK Ky nocolimt9P 7K

Lo |

h
Q DJ(K) & colimt9rP TK

in which Qpy and hy are weak equivalences, while
hyg is a weak equivalence only if K is flag.
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