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In [1] the authors introduced the class of smooth manifolds with a compact torus
action whose orbit space carries combinatorial structure of a simple polytope. Fol-
lowing [2], [3], we call these manifolds quasitoric. The name refers to the fact that
topological and combinatorial properties of quasitoric manifolds are similar to that
of non-singular algebraic toric varieties [4] (or toric manifolds). Any quasitoric
manifold is defined by combinatorial data: the lattice of faces of a simple poly-
tope and a characteristic function that assigns an integer primitive vector defined
up to sign to each facet. Despite their simple and specific definition, quasitoric
manifolds in many cases may serve as model examples (for instance, each com-
plex cobordism class contains a quasitoric manifold [5]). All these facts enable to
use quasitoric manifolds for solving topological problems by combinatorial methods
and vice versa. Some applications were obtained in [2], [6], where quasitoric mani-
folds are studied in the general context of “manifolds defined by simple polytopes”.
Unlike toric varieties, quasitoric manifolds may fail to be complex; however, they
always admit a stably (or weakly almost) complex structure. As it was shown in [3],
a stably complex structure (i.e. a complex structure in the stable tangent bundle)
on a quasitoric manifold is also defined combinatorially, namely, by specifying an
orientation of the simple polytope and choosing signs for vectors given by the char-
acteristic function. A quasitoric manifold with such additional structure was called
in [3] multioriented. Hence, a multioriented quasitoric manifold determines a com-
plex cobordism class, for which one can define characteristic numbers and complex
Hirzebruch genera. We calculate the χy-genus (in particular, the signature and the
Todd genus) in terms of the combinatorial data by applying the Atiyah–Hirzebruch
formula to one specific circle action with isolated fixed points.

A convex n-dimensional polytope Pn is called simple if the number of codimen-
sion-one faces (or facets) meeting at each vertex is n. Any simple polytope is a
manifold with corners. Let M2n be a compact 2n-dimensional manifold with an
action of the torus Tn = {(e2πiϕ1 , . . . , e2πiϕn

) ∈ Cn}, ϕi ∈ R. Then M2n is called a
quasitoric manifold if the Tn-action is locally isomorphic to the standard action of
Tn on Cn by diagonal matrices, while the orbit space is diffeomorphic, as manifold
with corners, to a simple polytope Pn (see [1], [3] for the details).

Let M2n be a quasitoric manifold with orbit space Pn, and let F = {F1, . . . , Fm}
be the set of facets of Pn, m = ]F . The interior of facet Fi consists of orbits with
the same one-dimensional isotropy subgroup GFi = {(e2πiλ1iϕ, . . . , e2πiλniϕ

) ∈ Tn},
ϕ ∈ R. In this way one defines a characteristic function λ : F → Zn that takes
facet Fi to the primitive vector λi = (λ1i, . . . , λni)> ∈ Zn (which is defined only
up to sign), and a (n×m)-matrix Λ with columns λ(Fi). Each vertex p of Pn can
be represented as the intersection of n facets: p = Fi1 ∩ · · · ∩ Fin ; we denote by
Λ(p) = Λ(i1,...,in) the minor matrix of Λ formed by the columns i1, . . . , in. Then
detΛ(p) = det(λi1 , . . . , λin) = ±1. In what follows we refer to the vectors λi = λ(Fi)
as facet vectors.
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We suppose that the torus Tn is oriented; then an orientation of M2n is specified
by orienting the polytope Pn and vice versa. The inverse image π−1(Fi) of the facet
Fi under the orbit map π : M2n → Pn is a quasitoric submanifold Mi ⊂ M2n of
codimension 2. A choice of sign for the vector λ(Fi) is equivalent to a choice of
orientation (or stably complex structure) of the normal bundle νi := ν(Mi ⊂ M2n).
This orientation in turn is uniquely determined by orientations of M2n and Mi. An
oriented quasitoric manifold M2n with fixed orientations of facial submanifolds
Mi = π−1(Fi) was called in [3] multioriented. The oriented submanifold Mi ⊂ M2n

of codimension 2 gives rise, by the standard topological construction, to a complex
line bundle σi over M2n that restricts to νi over Mi. The following theorem from [3]
shows that a multioriented quasitoric manifold can be invested with a canonical
stably complex structure.

Theorem 1. The following isomorphism of real oriented 2m-bundles holds for any
quasitoric manifold M2n:

τ(M2n)⊕ R2(m−n) ' σ1 ⊕ · · · ⊕ σm.

Here τ(M2n) is the tangent bundle and R2(m−n) denotes the trivial 2(m−n)-bundle
over M2n.

Thus, an oriented simple polytope Pn and characteristic matrix Λ not only define
a (multioriented) quasitoric manifold, but also specify its cobordism class in the
complex cobordism ring ΩU .

The interior of an edge (one-dimensional face) of Pn consists of orbits with
the same (n − 1)-dimensional isotropy subgroup GEj = {(e2πiϕ1 , . . . , e2πiϕn

) ∈
Tn : µ1jϕ1 + . . . + µnjϕn = 0}. This subgroup is defined by a primitive vector
µj = (µ1j , . . . , µnj)>. We refer to this µj as edge vector; again it is defined only up
to sign. If Ej1 , . . . , Ejn are edges that meet at a vertex p and M(p) is the matrix
with columns µj1 , . . . , µjn , then det M(p) = det(µj1 , . . . , µjn) = ±1.

The next lemma enables to choose signs of edge vectors for a multioriented
quasitoric manifold unambiguously “locally” at each vertex.

Lemma 2. Signs for the edge vectors µj1 , . . . , µjn meeting at p can be chosen in
such a way that M>

(p) · Λ(p) = E (unit matrix).

The orientation of Pn defines an ordering of edges at each vertex, which in turn
fixes an ordering of the corresponding edge vectors.

Definition 3. The sign of a vertex p ∈ Pn is

σ(p) = detM(p) = det(µi1 , . . . , µin),

where µi1 , . . . , µin are canonically ordered edge vectors meeting at p.

Theorem 4. Suppose that ν ∈ Zn is an integer primitive vector such that 〈µi, ν〉 6=
0 for all edge vectors µi. Then the circle subgroup S1 ⊂ Tn defined by ν acts on
M2n with isolated fixed points corresponding to vertices of Pn. In the tangent space
TpM

2n at fixed point corresponding to the vertex p = Fi1 ∩ · · · ∩ Fin this action
induces the representation of S1 with weights 〈µi1 , ν〉, . . . , 〈µin , ν〉.
Definition 5. Given the S1-action on M2n defined by a primitive vector ν, the
index of the vertex p = Fi1 ∩ · · · ∩ Fin is

indν(p) = {]k : 〈µik
, ν〉 < 0},

i.e. indν(p) equals the number of negative weights at p.
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Theorem 6. Let M2n be a multioriented quasitoric manifold, and let ν be a vector
described in Theorem 4. Then

χy(M2n) =
∑

p∈P n

(−y)indν(p)σ(p),

where the sum is taken over all vertices of Pn.

The idea of proof of this theorem is to apply the Atiyah–Hirzebruch formula [7] for
the χy-genus to S1-action on M2n from Theorem 4.

As particular cases of χy-genus one obtains the nth Chern number cn[M2n]
(y = −1), the signature (y = 1), and the Todd genus (y = 0). In the case of nth
Chern number Theorem 6 gives

cn[M2n] =
∑

p∈P n

σ(p).

If M2n is a complex manifold (e.g., M2n is a smooth toric variety) one has σ(p) = 1
for all vertices p ∈ Pn and cn[M2n] equals the Euler number e(M2n). In the general
case the Euler number is also equal to the number of vertices of Pn, however this
number may be different from cn[M2n].

The formula for the signature that is obtained from Theorem 6 can be rewritten
in a form that is independent of a stably complex structure (i.e. of a multiorienta-
tion) and is determined only by an orientation of M2n. This reflects the fact that
the signature is a homotopy invariant of an oriented manifold.

For the Todd genus, the formula from Theorem 6 is undefined. Additional analy-
sis shows that the following theorem holds.

Theorem 7. The Todd genus of a multioriented quasitoric manifold can be calcu-
lated as

td(M2n) =
∑

p∈P n: indν(p)=0

σ(p)

(the sum is taken over all vertices of index 0).

The author is grateful to Professor V. M. Buchstaber for stimulating discussions
and useful recommendations.
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