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Let ρ : (D2)m → Im be the orbit map for the diagonal action of torus T m on the unit
poly-disk (D2)m ⊂ Cm. Each face of the cube Im = [0, 1]m (viewed as a cubical complex)
has the form

FI⊂J = {(y1, . . . , ym) ∈ Im : yi = 0 if i ∈ I, yj = 1 if j /∈ J},
where I ⊂ J are two subsets of the index set [m] = {1, . . . , m}. For each face FI⊂J put
BI⊂J := ρ−1(FI⊂J). If #I = i, #J = j, then BI⊂J

∼= (D2)j−i × T m−j .

Definition 1. Let C be a cubical subcomplex of Im. The moment-angle complex ma(C)
is the T m-invariant decomposition of the subset ρ−1(|C|) ⊂ (D2)m into blocks BI⊂J

corresponding to the faces FI⊂J of complex C.

Many combinatorial problems concerning cubical complexes may be treated by studying
the equivariant topology of moment-angle complexes. In the present paper we realize this
approach in the case of cubical complexes determined by simplicial complexes. Let Kn−1

be an (n− 1)-dimensional simplicial complex with m vertices, and |K| the corresponding
polyhedron. If I = {i1, . . . , ik} ⊂ [m] is a simplex of K, then we would write I ∈ K.
Define the following two cubical subcomplexes of Im:

cub(K) = {FI⊂J : J ∈ K, I 6= ∅}, cc(K) = {FI⊂J : J ∈ K}.
Lemma 2. As a topological space, the complex cub(K) is homeomorphic to |K|, while
cc(K) is homeomorphic to the cone | cone(K)|.

The cubical complex cc(K) was introduced in [1] and then studied in [2]. The cubical
complex cub(K) appeared in [3].'

&

$

%

r
T 1

D

a)

'

&

$

%

rr
T 10

I
D

b)

Denote the moment-angle complexes corresponding to cub(K) and cc(K) by WK and
ZK respectively. Consider the cellular decomposition of the poly-disk (D2)m that is
obtained by subdividing each factor D2 into 0-dimensional cell 1, 1-dimensional cell T ,
and 2-dimensional cell D, see Fig. a). Each cell of (D2)m is a product of cells Di, Ti, 1i,
i = 1, . . . , m, i.e., can be written as DITJ1[m]\I∪J , where I, J are disjoint subsets of [m].
Set DITJ := DITJ1[m]\I∪J . Now it can be easily seen that ZK is cellular subcomplex of

(D2)m consisting of all cells DITJ such that I ∈ K.

Lemma 3. The embedding T m = ρ−1(1, . . . , 1) ↪→ ZK is a cellular map homotopic to the
map to a point.

As it was shown in [2], for any field k there is the following isomorphism of algebras:

(1) H∗(ZK) ∼= Tork[v1,...,vm]

�
k(K),k

�
= H∗�k(K)⊗ Λ[u1, . . . , um], d

�
,
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where k(K) is the Stanley–Raisner ring of complex K, and the differential d is defined
by d(vi) = 0, d(ui) = vi, i = 1, . . . , m. The Tor-algebra from (1) is naturally a bigraded
algebra with bideg(vi) = (0, 2), bideg(ui) = (−1, 2). The calculation of the ring H∗(ZK)
allowed to describe the multiplicative structure in the cohomology of the complement of
a coordinate subspace arrangement in Cm [2].

In [1] there was introduced the subcomplex C∗(K) ⊂ k(K)⊗Λ[u1, . . . , um] spanned by
monomials uJ and vIuJ such that I ∩ J = ∅, I ∈ K. It was also shown there that the
cohomology of C∗(K) is also isomorphic to that of ZK . Denote by C∗(ZK) and C∗(ZK)
the chain and the cochain complex for type a) cellular decomposition of ZK respectively.

Theorem 4. Let (DITJ)∗ ∈ C∗(ZK) denote the cellular cochain dual to the cell DITJ ∈
ZK . The correspondence vIuJ 7→ (DITJ)∗ defines a canonical isomorphism of complexes
C∗(K) and C∗(ZK), each of which calculates H∗(ZK).

The pair (ZK , T m) acquires a bigraded cellular structure by setting bideg(Di) = (0, 2),
bideg(Ti) = (−1, 2), bideg(1i) = (0, 0). Put b−q,2p(ZK , T m) = dim H−q,2p[C∗(ZK , T m)].
Consider the new cellular decomposition of the poly-disc (D2)m that is obtained by subdi-
viding each factor D2 into 5 cells D, T , I, 1, 0, see Fig. b). This allows to introduce a bi-
graded cellular structure on WK and define the numbers bq,2p(WK) = dim Hq,2p[C∗(WK)].
Put

χ(ZK , T m; t) =
X
p,q

(−1)qb−q,2p(ZK , T m)t2p, χ(WK ; t) =
X
p,q

(−1)qbq,2p(WK)t2p.

Let fi be the number of i-simplices of K, and (h0, . . . , hn) the h-vector of K determined
from the equation h0t

n + . . . + hn−1t + hn = (t− 1)n + f0(t− 1)n−1 + . . . + fn−1.

Theorem 5. Put h(t) = h0 + h1t + · · ·+ hntn. Then

χ(ZK , T m; t) = (1− t2)m−nh(t2)− (1− t2)m,

χ(WK ; t) = (1− t2)m−nh(t2) + (−1)n−1hn(1− t2)m.

Lemma 6. If |K| ∼= Sn−1 (i.e., K is a simplicial sphere), then ZK is a closed manifold.

Suppose now that Kn−1 is a simplicial manifold. Then the complex ZK generally
fails to be a manifold. However, removing from ZK a small neighbourhood Uε(T

m) of
the orbit ρ−1(1, . . . , 1) ∼= T m we obtain manifold WK = ZK \ Uε(T

m) with boundary
∂WK = |K| × T m.

Theorem 7. The manifold (with boundary) WK is equivariantly homotopy equivalent to
the complex WK . There is a canonical homeomorphism of pairs (WK , ∂WK) → (ZK , T m).

The relative Poincaré duality isomorphisms for WK imply

χ(WK ; t) = (−1)m−nt2mχ(ZK , T m; 1
t
).

Taking into account Theorem 5 we obtain

Corollary 8. Let Kn−1 be a simplicial manifold. Then

hn−i − hi = (−1)i(hn − 1)
�

n
i

�
= (−1)i�χ(Kn−1)− χ(Sn−1)

��
n
i

�
, i = 0, 1, . . . , n,

where χ(·) denotes the Euler number.

Rewriting the equation (8) in terms of the f -vector we come to more complicated
equations, which were deduced in [4], [5]. For |K| = Sn−1 Corollary 8 gives the classical
Dehn–Sommerville equations. In the particular case of PL-manifolds the topological in-
variance of numbers hn−i−hi (which follows directly from Corollary 8) was firstly observed
by Pachner in [6, (7.11)].

The extended version of this article is http://xxx.lanl.gov/abs/math.AT/0005199.
The authors wish to express special thanks to Oleg Musin for stimulating discussions and
helpful comments, in particular, for drawing our attention to the results of [4] and [6].
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