MOMENT-ANGLE COMPLEXES AND COMBINATORICS OF SIMPLICIAL MANIFOLDS

VICTOR M. BUCHSTABER AND TARAS E. PANOV

Let $\rho:(D^2)^m\to I^m$ be the orbit map for the diagonal action of torus T^m on the unit poly-disk $(D^2)^m\subset\mathbb{C}^m$. Each face of the cube $I^m=[0,1]^m$ (viewed as a cubical complex) has the form

$$F_{I \subset J} = \{ (y_1, \dots, y_m) \in I^m : y_i = 0 \text{ if } i \in I, y_j = 1 \text{ if } j \notin J \},$$

where $I \subset J$ are two subsets of the index set $[m] = \{1, \ldots, m\}$. For each face $F_{I \subset J}$ put $B_{I \subset J} := \rho^{-1}(F_{I \subset J})$. If #I = i, #J = j, then $B_{I \subset J} \cong (D^2)^{j-i} \times T^{m-j}$.

Definition 1. Let C be a cubical subcomplex of I^m . The moment-angle complex $\operatorname{ma}(C)$ is the T^m -invariant decomposition of the subset $\rho^{-1}(|C|) \subset (D^2)^m$ into blocks $B_{I \subset J}$ corresponding to the faces $F_{I \subset J}$ of complex C.

Many combinatorial problems concerning cubical complexes may be treated by studying the equivariant topology of moment-angle complexes. In the present paper we realize this approach in the case of cubical complexes determined by simplicial complexes. Let K^{n-1} be an (n-1)-dimensional simplicial complex with m vertices, and |K| the corresponding polyhedron. If $I = \{i_1, \ldots, i_k\} \subset [m]$ is a simplex of K, then we would write $I \in K$. Define the following two cubical subcomplexes of I^m :

$$\operatorname{cub}(K) = \{ F_{I \subset J} : J \in K, I \neq \emptyset \}, \quad \operatorname{cc}(K) = \{ F_{I \subset J} : J \in K \}.$$

Lemma 2. As a topological space, the complex cub(K) is homeomorphic to |K|, while cc(K) is homeomorphic to the cone |cone(K)|.

The cubical complex cc(K) was introduced in [1] and then studied in [2]. The cubical complex cub(K) appeared in [3].

Denote the moment-angle complexes corresponding to $\operatorname{cub}(K)$ and $\operatorname{cc}(K)$ by \mathcal{W}_K and \mathcal{Z}_K respectively. Consider the cellular decomposition of the poly-disk $(D^2)^m$ that is obtained by subdividing each factor D^2 into 0-dimensional cell 1, 1-dimensional cell T, and 2-dimensional cell D, see Fig. a). Each cell of $(D^2)^m$ is a product of cells D_i , T_i , 1_i , $i=1,\ldots,m$, i.e., can be written as $D_IT_J1_{[m]\setminus I\cup J}$, where I,J are disjoint subsets of [m]. Set $D_IT_J:=D_IT_J1_{[m]\setminus I\cup J}$. Now it can be easily seen that \mathcal{Z}_K is cellular subcomplex of $(D^2)^m$ consisting of all cells D_IT_J such that $I\in K$.

Lemma 3. The embedding $T^m = \rho^{-1}(1, ..., 1) \hookrightarrow \mathcal{Z}_K$ is a cellular map homotopic to the map to a point.

As it was shown in [2], for any field k there is the following isomorphism of algebras:

(1)
$$H^*(\mathcal{Z}_K) \cong \operatorname{Tor}_{\mathbf{k}[v_1,\dots,v_m]} \mathbf{k}(K), \mathbf{k} = H^* \mathbf{k}(K) \otimes \Lambda[u_1,\dots,u_m], d,$$

Partially supported by the Russian Foundation for Fundamental Research grant no. 99-01-00090.

1

where $\mathbf{k}(K)$ is the Stanley-Raisner ring of complex K, and the differential d is defined by $d(v_i) = 0$, $d(u_i) = v_i$, i = 1, ..., m. The Tor-algebra from (1) is naturally a bigraded algebra with bideg $(v_i) = (0, 2)$, bideg $(u_i) = (-1, 2)$. The calculation of the ring $H^*(\mathcal{Z}_K)$ allowed to describe the multiplicative structure in the cohomology of the complement of a coordinate subspace arrangement in \mathbb{C}^m [2].

In [1] there was introduced the subcomplex $C^*(K) \subset \mathbf{k}(K) \otimes \Lambda[u_1, \dots, u_m]$ spanned by monomials u_J and $v_I u_J$ such that $I \cap J = \emptyset$, $I \in K$. It was also shown there that the cohomology of $C^*(K)$ is also isomorphic to that of \mathcal{Z}_K . Denote by $C_*(\mathcal{Z}_K)$ and $C^*(\mathcal{Z}_K)$ the chain and the cochain complex for type a) cellular decomposition of \mathcal{Z}_K respectively.

Theorem 4. Let $(D_I T_J)^* \in \mathcal{C}^*(\mathcal{Z}_K)$ denote the cellular cochain dual to the cell $D_I T_J \in \mathcal{Z}_K$. The correspondence $v_I u_J \mapsto (D_I T_J)^*$ defines a canonical isomorphism of complexes $\mathcal{C}^*(K)$ and $\mathcal{C}^*(\mathcal{Z}_K)$, each of which calculates $H^*(\mathcal{Z}_K)$.

The pair (\mathcal{Z}_K, T^m) acquires a bigraded cellular structure by setting $\operatorname{bideg}(D_i) = (0, 2)$, $\operatorname{bideg}(T_i) = (-1, 2)$, $\operatorname{bideg}(1_i) = (0, 0)$. Put $b_{-q,2p}(\mathcal{Z}_K, T^m) = \dim H_{-q,2p}[\mathcal{C}_*(\mathcal{Z}_K, T^m)]$. Consider the new cellular decomposition of the poly-disc $(D^2)^m$ that is obtained by subdividing each factor D^2 into 5 cells D, T, I, 1, 0, see Fig. b). This allows to introduce a bigraded cellular structure on \mathcal{W}_K and define the numbers $b_{q,2p}(\mathcal{W}_K) = \dim H_{q,2p}[\mathcal{C}_*(\mathcal{W}_K)]$. Put

$$\chi(\mathcal{Z}_{K}, T^{m}; t) = \sum_{p,q} (-1)^{q} b_{-q,2p}(\mathcal{Z}_{K}, T^{m}) t^{2p}, \quad \chi(\mathcal{W}_{K}; t) = \sum_{p,q} (-1)^{q} b_{q,2p}(\mathcal{W}_{K}) t^{2p}.$$

Let f_i be the number of *i*-simplices of K, and (h_0, \ldots, h_n) the h-vector of K determined from the equation $h_0t^n + \ldots + h_{n-1}t + h_n = (t-1)^n + f_0(t-1)^{n-1} + \ldots + f_{n-1}$.

Theorem 5. Put $h(t) = h_0 + h_1 t + \cdots + h_n t^n$. Then

$$\chi(\mathcal{Z}_K, T^m; t) = (1 - t^2)^{m-n} h(t^2) - (1 - t^2)^m,$$

$$\chi(\mathcal{W}_K; t) = (1 - t^2)^{m-n} h(t^2) + (-1)^{n-1} h_n (1 - t^2)^m.$$

Lemma 6. If $|K| \cong S^{n-1}$ (i.e., K is a simplicial sphere), then \mathcal{Z}_K is a closed manifold.

Suppose now that K^{n-1} is a simplicial manifold. Then the complex \mathcal{Z}_K generally fails to be a manifold. However, removing from \mathcal{Z}_K a small neighbourhood $U_{\varepsilon}(T^m)$ of the orbit $\rho^{-1}(1,\ldots,1) \cong T^m$ we obtain manifold $W_K = \mathcal{Z}_K \setminus U_{\varepsilon}(T^m)$ with boundary $\partial W_K = |K| \times T^m$.

Theorem 7. The manifold (with boundary) W_K is equivariantly homotopy equivalent to the complex W_K . There is a canonical homeomorphism of pairs $(W_K, \partial W_K) \to (\mathcal{Z}_K, T^m)$.

The relative Poincaré duality isomorphisms for W_K imply

$$\chi(W_K;t) = (-1)^{m-n} t^{2m} \chi(\mathcal{Z}_K, T^m; \frac{1}{t}).$$

Taking into account Theorem 5 we obtain

Corollary 8. Let K^{n-1} be a simplicial manifold. Then

$$h_{n-i} - h_i = (-1)^i (h_n - 1)^n_i = (-1)^i \chi(K^{n-1}) - \chi(S^{n-1})^n_i, \quad i = 0, 1, \dots, n,$$

where $\chi(\cdot)$ denotes the Euler number.

Rewriting the equation (8) in terms of the f-vector we come to more complicated equations, which were deduced in [4], [5]. For $|K| = S^{n-1}$ Corollary 8 gives the classical Dehn–Sommerville equations. In the particular case of PL-manifolds the topological invariance of numbers $h_{n-i}-h_i$ (which follows directly from Corollary 8) was firstly observed by Pachner in [6, (7.11)].

The extended version of this article is http://xxx.lanl.gov/abs/math.AT/0005199. The authors wish to express special thanks to Oleg Musin for stimulating discussions and helpful comments, in particular, for drawing our attention to the results of [4] and [6].

References

- [1] V.M. Buchstaber and T.E. Panov. Proceedings of the Steklov Institute of Mathematics 225 V. M. Buchstaber and T. E. Panov. Proceedings of the Steklov Institute of Mathematics 2 (1999), 87-120.
 V. M. Buchstaber and T. E. Panov. (Russian), Zap. Nauchn. Semin. POMI 266 (2000), 29-50.
 M. A. Shtan'ko and M. I. Shtogrin. Russian Math. Surveys 47 (1992), no. 1, 267-268.
 B. Chen, M. Yan. Proceedings of the Steklov Institute of Mathematics 221 (1998), 305-319.
 V. Klee. Canadian J. Math. 16 (1964), 517-531.
 U. Pachner. European J. Combinatorics 12 (1991), 129-145.

DEPARTMENT OF MATHEMATICS AND MECHANICS, MOSCOW STATE UNIVERSITY, 119899 MOSCOW, RUSSIA $E\text{-}mail\ address$: buchstab@mech.math.msu.su tpanov@mech.math.msu.su