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Abstract—In the theory of algebraic group actions on affine varieties, the concept of a Kempf–
Ness set is used to replace the categorical quotient by the quotient with respect to a maximal
compact subgroup. Using recent achievements of “toric topology,” we show that an appropriate
notion of a Kempf–Ness set exists for a class of algebraic torus actions on quasiaffine varieties
(coordinate subspace arrangement complements) arising in the Batyrev–Cox “geometric invari-
ant theory” approach to toric varieties. We proceed by studying the cohomology of these “toric”
Kempf–Ness sets. In the case of projective nonsingular toric varieties the Kempf–Ness sets can
be described as complete intersections of real quadrics in a complex space.
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1. INTRODUCTION

The concept of a Kempf–Ness set plays an important role in geometric invariant theory, as
explained, for example, in [3, § 6.12] or [17]. Given an affine variety S over C with an action of a
reductive group G, one can find a compact subset KN ⊂ S such that the categorical quotient S//G
is homeomorphic to the quotient KN/K of KN by a maximal compact subgroup K ⊂ G. Another
important property of the Kempf–Ness set KN is that it is a K-equivariant deformation retract of S.

Our aim here is to extend the notion of a Kempf–Ness set to a class of algebraic torus actions on
complex quasiaffine varieties (coordinate subspace arrangement complements) arising in the theory
of toric varieties. Although our Kempf–Ness sets cannot be defined exactly in the same way as in
the affine case, they possess the above two characteristic properties. In the case of a projective
toric variety, our Kempf–Ness set can be identified with the level surface for the moment map
corresponding to a compact torus action on the complex space [11, § 4]. The toric Kempf–Ness sets
also constitute a particular subclass of moment–angle complexes [8], which opens new links between
toric topology and geometric invariant theory.

In Section 2 we review the notion of Kempf–Ness sets for reductive groups acting on affine
varieties. In Section 3 we outline the “geometric invariant theory” approach to toric varieties as
quotients of algebraic torus actions on coordinate subspace arrangement complements, and intro-
duce a toric Kempf–Ness set using our construction of moment–angle complexes. In Section 4 we
restrict our attention to torus actions arising from normal fans of convex polytopes. In this case the
corresponding Kempf–Ness set admits a transparent geometric interpretation as a complete intersec-
tion of real quadratic hypersurfaces. The quotient toric variety is projective, and the Kempf–Ness
set represents the level surface for an appropriate moment map, thereby extending the analogy
with the affine case even further in Section 5. In the last Section 6 we give a description of the
cohomology ring of the Kempf–Ness set. As is clear from an example provided, our Kempf–Ness
sets may be quite complicated topologically; many interesting phenomena occur even for the torus
actions corresponding to simple 3-dimensional fans.
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2 T.E. PANOV

2. KEMPF–NESS SETS FOR AFFINE VARIETIES

We start by briefly reviewing quotients and Kempf–Ness sets of reductive group actions on affine
varieties. The details can be found in [3, § 6.12] and [17].

Let G be a reductive algebraic group acting on a complex affine variety X. As G is noncompact,
taking the standard (or geometric) quotient with the quotient topology may result in a badly
behaving space (e.g., it may fail to be Hausdorff). An alternative notion of a categorical quotient
remedies this difficulty and ensures that the result always lies within the category of algebraic
varieties.

Let C[X] be the algebra of regular functions on X, so that X = Spec C[X]. Denote by X//G the
complex affine variety corresponding to the subalgebra C[X]G of G-invariant polynomial functions
on X, and let � : X → X//G be the morphism dual to the inclusion C[X]G → C[X]. Then � is
surjective and establishes a bijection between closed G-orbits of X and points of X//G. Moreover,
� is universal in the class of morphisms from X that are constant on G-orbits in the category
of algebraic varieties (which explains the term “categorical quotient”). The categorical quotient
coincides with the geometric one if and only if all G-orbits are closed.

Example 2.1. Consider the standard C
∗-action on C (here C

∗ is the multiplicative group
of complex numbers). The categorical quotient C//C

∗ is a point, while C/C
∗ is a non-Hausdorff

two-point space.
Let ρ : G → GL(W ) be a representation of G, let K be a maximal compact subgroup of G, and

let 〈·, ·〉 be a K-invariant Hermitian form on W with associated norm ‖ · ‖. Given v ∈ W , consider
the function Fv : G → R sending g to 1

2‖gv‖2. It has a critical point if and only if the orbit Gv is
closed, and all critical points of Fv are minima [3, Theorem 6.18]. Define the subset KN ⊂ V by
one of the following equivalent conditions:

KN =
{
v ∈ W : (dFv)e = 0

}
(e ∈ G is the unit)

=
{
v ∈ W : TvGv ⊥ v

}
=

{
v ∈ W : 〈γv, v〉 = 0 for all γ ∈ g

}
=

{
v ∈ W : 〈κv, v〉 = 0 for all κ ∈ k

}
, (2.1)

where g (respectively, k) is the Lie algebra of G (respectively, K) and we consider k ⊂ g ⊂ End(W ).
Therefore, any point v ∈ KN is the closest point to the origin in its orbit Gv. Then KN is called
the Kempf–Ness set of V .

We may assume that the affine G-variety X is equivariantly embedded as a closed subvariety in
a representation W of G. Then the Kempf–Ness set KNX of X is defined as KN ∩ X.

The importance of Kempf–Ness sets for the study of orbit quotients is due to the following
result, whose proof can be found in [17, (4.7), (5.1)].

Theorem 2.2. (a) The composition KNX ↪→ X → X//G is proper and induces a homeomor-
phism KNX/K → X//G.

(b) There is a K-equivariant deformation retraction of X to KNX .

3. ALGEBRAIC TORUS ACTIONS

Let N ∼= Z
n be an integral lattice of rank n and NR = N ⊗Z R the ambient real vector space.

A convex subset σ ∈ NR is called a cone if there exist vectors a1, . . . , ak ∈ N such that

σ =
{
µ1a1 + . . . + µkak : µi ∈ R, µi ≥ 0

}
.

If the set {a1, . . . , ak} is minimal, then it is called the generator set of σ. A cone is called strongly
convex if it contains no line; all the cones below are assumed to be strongly convex. A cone σ is

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 263 2008



TORIC KEMPF–NESS SETS 3

called regular (respectively, simplicial) if a1, . . . , ak can be chosen to form a subset of a Z-basis of N
(respectively, an R-basis of NR). A face of a cone σ is the intersection σ ∩ H with a hyperplane H
for which the whole σ is contained in one of the two closed half-spaces determined by H; a face of
a cone is again a cone. Every generator of σ spans a one-dimensional face, and every face of σ is
spanned by a subset of the generator set.

A finite collection Σ = {σ1, . . . , σs} of cones in NR is called a fan if a face of every cone in Σ
belongs to Σ and the intersection of any two cones in Σ is a face of each. A fan Σ is called
regular (respectively, simplicial) if every cone in Σ is regular (respectively, simplicial). A fan
Σ = {σ1, . . . , σs} is called complete if NR = σ1 ∪ . . . ∪ σs.

Let C
∗ = C \ {0} be the multiplicative group of complex numbers, and S

1 be the subgroup of
complex numbers of absolute value one. The algebraic torus TC = N⊗ZC

∗ ∼= (C∗)n is a commutative
complex algebraic group with a maximal compact subgroup T = N ⊗Z S

1 ∼= (S1)n, the (compact)
torus. A toric variety is a normal algebraic variety X containing the algebraic torus TC as a Zariski
open subset in such a way that the natural action of TC on itself extends to an action on X.

There is a classical construction (see [5]) establishing a one-to-one correspondence between fans
in NR and complex n-dimensional toric varieties. Regular fans correspond to nonsingular varieties,
while complete fans give rise to compact ones. Below we review another construction of toric
varieties as certain algebraic quotients; it is due to several authors (see [6, 10]).

In the rest of this section we assume that the one-dimensional cones of Σ span NR as a vector
space (this holds, e.g., if Σ is a complete fan). Assume that Σ has m one-dimensional cones. We
order them arbitrarily and consider the map Z

m → N sending the ith generator of Z
m to the

integer primitive vector ai generating the ith one-dimensional cone. The corresponding map of the
algebraic tori fits into an exact sequence

1 → G → (C∗)m → TC → 1, (3.1)

where G is isomorphic to the product of (C∗)m−n and a finite group. If Σ is a regular fan and
has at least one n-dimensional cone, then G ∼= (C∗)m−n. We also have an exact sequence of the
corresponding maximal compact subgroups:

1 → K → T
m → T → 1 (3.2)

(here and below we denote T
m = (S1)m).

We say that a subset {i1, . . . , ik} ⊂ [m] = {1, . . . ,m} is a g-subset if {ai1 , . . . , aik} is a subset of
the generator set of a cone in Σ. The collection of g-subsets is closed with respect to the inclusion
and therefore forms an (abstract) simplicial complex on the set [m], which we denote KΣ. Note
that if Σ is a complete simplicial fan, then KΣ is a triangulation of an (n − 1)-dimensional sphere.
Given a cone σ ∈ Σ, we denote by g(σ) ⊆ [m] the set of its generators. Now set

A(Σ) =
⋃

{i1,...,ik} is not a g-subset

{
z ∈ C

m : zi1 = . . . = zik = 0
}

and
U(Σ) = C

m \ A(Σ).

Both sets depend only on the combinatorial structure of the simplicial complex KΣ; the set U(Σ)
coincides with the complement of the coordinate subspace arrangement U(KΣ) considered in [8, § 8.2]
and [2, § 9.2].

The set A(Σ) is an affine variety, while its complement U(Σ) admits a simple affine cover, as
described in the following statement.
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4 T.E. PANOV

Proposition 3.1. Given a cone σ ∈ Σ, set zσ̂ =
∏

j /∈g(σ) zj and define

V (Σ) =
{
z ∈ C

m : zσ̂ = 0 for all σ ∈ Σ
}

and
U(σ) =

{
z ∈ C

m : zj �= 0 if j /∈ g(σ)
}
.

Then A(Σ) = V (Σ) and

U(Σ) = C
m \ V (Σ) =

⋃
σ∈Σ

U(σ).

Proof. We have

C
m \ V (Σ) =

⋃
σ∈Σ

{
z ∈ C

m : zσ̂ �= 0
}

=
⋃
σ∈Σ

U(σ).

On the other hand, given a point z ∈ C
m, denote by ω(z) ⊆ [m] the set of its zero coordinates.

Then z ∈ C
m \ A(Σ) if and only if ω(z) is a g-subset. This is equivalent to saying that z ∈ U(σ)

for some σ ∈ Σ. Therefore, C
m \ A(Σ) =

⋃
σ∈Σ U(σ), thus proving the statement. �

The complement U(Σ) is invariant with respect to the (C∗)m-action on C
m, and it is easy to see

that the subgroup G from (3.1) acts on U(Σ) with finite isotropy subgroups if Σ is simplicial (or
even freely if Σ is a regular fan). The corresponding quotient is identified with the toric variety XΣ

determined by Σ. The more precise statement is as follows.
Theorem 3.2 (see [10, Theorem 2.1]). Assume that the one-dimensional cones of Σ span NR

as a vector space.
(a) The toric variety XΣ is naturally isomorphic to the categorical quotient of U(Σ) by G.
(b) XΣ is the geometric quotient of U(Σ) by G if and only if Σ is simplicial.
Therefore, if Σ is a simplicial (in particular, regular) fan satisfying the assumption of Theo-

rem 3.2, then all the orbits of the G-action on U(Σ) are closed and the categorical quotient U(Σ)//G
can be identified with U(Σ)/G. However, the analysis of the previous section does not apply here,
as U(Σ) is not an affine variety in C

m (it is only quasiaffine in general). For example, if Σ is a
complete fan, then the G-action on the whole C

m has only one closed orbit, the origin, and the
quotient C

m//G consists of a single point. In the rest of the paper we show that an appropriate
notion of the Kempf–Ness set exists for this class of torus actions, and study some of its most
important topological properties.

Consider the unit polydisc

(D2)m =
{
z ∈ C

m : |zj | ≤ 1 for all j
}
.

Given σ ∈ Σ, define
Z(σ) =

{
z ∈ (D2)m : |zj | = 1 if j /∈ g(σ)

}
,

and
Z(Σ) =

⋃
σ∈Σ

Z(σ).

The subset Z(Σ) ⊆ (D2)m is invariant with respect to the T
m-action. (We have Z(Σ) = ZKΣ

, where
ZK is the moment–angle complex associated with a simplicial complex K in [8, § 6.2].) Note that
Z(σ) ⊂ U(σ), and therefore Z(Σ) ⊂ U(Σ) by Proposition 3.1.

Proposition 3.3. Assume that Σ is a complete simplicial fan. Then Z(Σ) is a compact
(m + n)-manifold with a T

m-action.
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Proof. As KΣ is a triangulation of an (n − 1)-dimensional sphere, the result follows from [8,
Lemma 6.13] (or [16, Lemma 3.3]). �

Theorem 3.4. Assume that Σ is a simplicial fan.
(a) If Σ is complete, then the composition Z(Σ) ↪→ U(Σ) → U(Σ)/G induces a homeomorphism

Z(Σ)/K → U(Σ)/G.
(b) There is a T

m-equivariant deformation retraction of U(Σ) to Z(Σ).
Proof. Denote by coneK′

Σ the cone over the barycentric subdivision of KΣ and by C(Σ) the
topological space |coneK′

Σ| with the dual face decomposition (see [16, § 3.1] for details). (If Σ is a
complete fan, then KΣ is a sphere triangulation, C(Σ) can be identified with the unit ball in NR,
and the face decomposition of its boundary is Poincaré dual to KΣ.) The space C(Σ) has a face
C(σ) of dimension n − g(σ) for each cone σ ∈ Σ. Set

T (σ) =
{
(t1, . . . , tm) ∈ T

m : tj = 1 for j /∈ g(σ)
}
.

This is a g(σ)-dimensional coordinate subgroup in T
m. As detailed in [12] and [16, § 3.1], the set

Z(Σ) can be described as the quotient space modulo an equivalence relation

Z(Σ) = (Tm × C(Σ))/∼,

where (t, x) ∈ T
m × C(Σ) is identified with (s, x) ∈ T

m × C(Σ) if x ∈ C(σ) and t−1s ∈ T (σ) for
some σ ∈ Σ. The homomorphism of tori T

m → T with kernel K induces a map of the quotient
spaces

(Tm × C(Σ))/∼ → (T × C(Σ))/∼.

Now, according to [12], if Σ is a complete simplicial fan, then the latter quotient space is homeo-
morphic to the toric variety XΣ = U(Σ)/G. This proves (a). (Note that if Σ is a regular fan, then
K ∼= T

m−n and the projection ZΣ → XΣ is a principal K-bundle.)
Statement (b) is proved in [8, Theorem 8.9]. �
By comparing this result with Theorem 2.2, we see that Z(Σ) has the same properties with

respect to the G-action on U(Σ) as the set KNS with respect to a reductive group action on an
affine variety S. We therefore refer to Z(Σ) as the Kempf–Ness set of U(Σ).

Example 3.5. Let n = 2 and e1, e2 be a basis in NR.
1. Consider a complete fan Σ having the following three 2-dimensional cones: the first is spanned

by e1 and e2, the second is spanned by e2 and −e1 − e2, and the third by −e1 − e2 and e1. The
simplicial complex KΣ is a complete graph on three vertices (or the boundary of a triangle). We
have

U(Σ) = C
3 \ {z : z1 = z2 = z3 = 0} = C

3 \ {0}

and
Z(Σ) = (D2 × D

2 × S
1) ∪ (D2 × S

1 × D
2) ∪ (S1 × D

2 × D
2) = ∂((D2)3) ∼= S

5.

The subgroup G from the exact sequence (3.1) is the diagonal 1-dimensional subtorus in (C∗)3,
and K is the diagonal subcircle in T

3. Therefore, we have XΣ = U(Σ)/G = Z(Σ)/K = CP2, the
complex projective 2-plane.

2. Now consider the fan Σ consisting of three 1-dimensional cones generated by the vectors e1,
e2 and −e1 − e2. This fan is not complete, but its 1-dimensional cones span NR as a vector space.
So Theorem 3.2 applies, but Theorem 3.4(a) does not. The simplicial complex KΣ consists of three
disjoint points. The space U(Σ) is the complement of three coordinate lines in C

3:

U(Σ) = C
3 \

{
z : z1 = z2 = 0, z1 = z3 = 0, z2 = z3 = 0

}
,
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6 T.E. PANOV

and
Z(Σ) = (D2 × S

1 × S
1) ∪ (S1 × D

2 × S
1) ∪ (S1 × S

1 × D
2).

Both spaces are homotopy equivalent to S
3 ∨ S

3 ∨ S
3 ∨ S

4 ∨ S
4 (see [8, Example 8.15] and [4]).

As in the previous example, the subgroup G is the diagonal subtorus in (C∗)3. By Theorem 3.2,
XΣ = U(Σ)/G, a quasiprojective variety obtained by removing three points from CP2. This variety
is noncompact and cannot be identified with Z(Σ)/K.

4. NORMAL FANS

The next step in our study of the Kempf–Ness set for torus actions on quasiaffine varieties U(Σ)
would be to obtain an explicit description like the one given by (2.1) in the affine case. Although
we do not know of such a description in general, it does exist in the particular case when Σ is the
normal fan of a simple polytope.

Let MR = (NR)∗ be the dual vector space. Assume we are given primitive vectors a1, . . . , am ∈ N
and integer numbers b1, . . . , bm ∈ Z, and consider the set

P =
{
x ∈ MR : 〈ai, x〉 + bi ≥ 0, i = 1, . . . ,m

}
. (4.1)

We further assume that P is bounded, the affine hull of P is the whole MR, and the intersection
of P with every hyperplane determined by the equation (ai, x) + bi = 0 spans an affine subspace of
dimension n− 1 for i = 1, . . . ,m (or, equivalently, none of the inequalities can be removed without
enlarging P ). This means that P is a convex polytope with exactly m facets. (In general, the
set P is always convex, but it may be unbounded, not of full dimension, or there may be redundant
inequalities.) By introducing a Euclidean metric in NR we may think of ai as the inward pointing
normal vector to the corresponding facet Fi of P , i = 1, . . . ,m. Given a face Q ⊂ P we say that
ai is normal to Q if Q ⊂ Fi. If Q is a q-dimensional face, then the set of all its normal vectors
{ai1 , . . . , aik} spans an (n − q)-dimensional cone σQ. The collection of cones {σQ : Q a face of P}
is a complete fan in N , which we denote ΣP and refer to as the normal fan of P . The normal fan
is simplicial if and only if the polytope P is simple, that is, there are exactly n facets meeting at
each of its vertices. In this case the cones of ΣP are generated by subsets {ai1 , . . . , aik} such that
the intersection Fi1 ∩ . . . ∩ Fik of the corresponding facets is nonempty.

The Kempf–Ness sets (or the moment–angle complexes) Z(ΣP ) corresponding to normal fans of
simple polytopes admit a very transparent interpretation as complete intersections of real algebraic
quadrics, as described in [9] (these complete intersections of quadrics were also studied in [7]). We
give this construction below.

In the rest of this section we assume that P is a simple polytope and, therefore, ΣP is a simplicial
fan. We may specify P by a matrix inequality AP x + bP ≥ 0, where AP is the m× n matrix of the
row vectors ai and bP is the column vector of the scalars bi. The linear transformation MR → R

m

defined by the matrix AP is exactly the one obtained from the map T
m → T in (3.2) by applying

HomZ(·, S1)⊗Z R. Since the points of P are specified by the constraint AP x + bP ≥ 0, the formula
iP (x) = AP x + bP defines an affine injection

iP : MR → R
m, (4.2)

which embeds P in the positive cone R
m
≥ = {y ∈ R

m : yi ≥ 0}.
Now define the space ZP by a pullback diagram

ZP
iZ−−−−→ C

m

�P

⏐⏐� ⏐⏐��

P
iP−−−−→ R

m

(4.3)
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where �(z1, . . . , zm) is given by (|z1|2, . . . , |zm|2). The vertical maps above are projections onto the
quotients by the T

m-actions, and iZ is a T
m-equivariant embedding.

Proposition 4.1. (a) We have ZP ⊂ U(ΣP ).
(b) There is a T

m-equivariant homeomorphism ZP
∼= Z(ΣP ).

Proof. Assume z ∈ ZP ⊂ C
m and let ω(z) be the set of zero coordinates of z. Since the

facet Fi of P is the intersection of P with the hyperplane (ai, x)+bi = 0, the point �P (z) belongs to
the intersection

⋂
i∈ω(z) Fi, which is thereby nonempty. Therefore, the vectors {ai : i ∈ ω(z)} span

a cone of ΣP . Thus, ω(z) is a g-subset and z ∈ U(ΣP ), which proves (a).
To prove (b) we look more closely at the construction of the quotient space from the proof of

Theorem 3.4 in the case when Σ is a normal fan. Then the space C(ΣP ) may be identified with P ,
and C(σ) is the face

⋂
i∈g(σ) Fi of P . The Kempf–Ness set Z(ΣP ) is therefore identified with

(Tm × P )/∼. (4.4)

Now we notice that if we replace P by the positive cone R
m
≥ (with the obvious face structure) in the

above quotient space, we obtain (Tm × R
m
≥ )/∼ = C

m. Since the map iP from (4.3) respects facial
codimension, the pullback space ZP can also be identified with (4.4), thus proving (b). �

Choosing a basis for coker AP , we obtain an (m − n) × m matrix C so that the resulting short
exact sequence

0 → MR

AP−−→ R
m C−→ R

m−n → 0 (4.5)

is the one obtained from (3.2) by applying HomZ(·, S1) ⊗Z R.
We may assume that the first n normal vectors a1, . . . , an span a cone of ΣP (equivalently, the

corresponding facets of P meet at a vertex), and take these vectors as a basis of MR. In this basis,
the first n rows of the matrix (aij) of AP form a unit n × n matrix, and we may take

C =

⎛
⎜⎜⎜⎝
−an+1,1 . . . −an+1,n 1 0 . . . 0
−an+2,1 . . . −an+2,n 0 1 . . . 0

...
. . .

...
...

...
. . .

...
−am,1 . . . −am,n 0 0 . . . 1

⎞
⎟⎟⎟⎠ . (4.6)

Then the diagram (4.3) implies that iZ embeds ZP in C
m as the set of solutions of the m − n real

quadratic equations
m∑

k=1

cjk(|zk|2 − bk) = 0 for 1 ≤ j ≤ m − n, (4.7)

where C = (cjk) is given by (4.6). This intersection of real quadrics is nondegenerate [9, Lemma 3.2]
(the normal vectors are linearly independent at each point), and therefore ZP ⊂ R

2m is a smooth
submanifold with trivial normal bundle.

5. PROJECTIVE TORIC VARIETIES AND MOMENT MAPS

In the notation of Section 2, let fv = (dFv)e : g → R. This map takes γ ∈ g to Re〈γv, v〉
(see (2.1)). We may consider fv as an element of the dual Lie algebra g∗. As G is reductive, we
have g = k ⊕ ik. Since K is norm-preserving, fv vanishes on k; so we consider fv as an element of
ik∗ ∼= k∗. Varying v ∈ V we get the moment map µ : V → k∗, which sends v ∈ V , κ ∈ k to 〈iκv, v〉.
The Kempf–Ness set is the set of zeroes of µ:

KN = µ−1(0). (5.1)
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This description does not apply to the case of algebraic torus actions on U(Σ) considered in the
two previous sections: as is seen from simple examples below, the set µ−1(0) = {z ∈ C

m : 〈κz, z〉 = 0
for all κ ∈ k} consists only of the origin in this case. Nevertheless, in this section we show that a
description of the toric Kempf–Ness set Z(Σ) similar to (5.1) exists in the case when Σ is a normal
fan, thereby extending the analogy with Kempf–Ness sets for affine varieties even further.

As explained in [5] or [8, § 5.1], the toric variety XΣ is projective exactly when Σ arises as the
normal fan of a convex polytope. In fact, the set of integers {b1, . . . , bm} from (4.1) determines
an ample divisor on XΣP

, thereby providing a projective embedding. Note that the vertices of P
are not necessarily lattice points in M (as they may have rational coordinates), but this can be
remedied by simultaneously multiplying b1, . . . , bm by an integer number; this corresponds to the
passage from an ample divisor to a very ample one.

Assume now that ΣP is a regular fan; therefore, XΣP
is a smooth projective variety. This implies

that XΣP
is Kähler and, therefore, a symplectic manifold. There is the following symplectic version

of the construction from Section 3.
Let (W,ω) be a symplectic manifold with a K-action that preserves the symplectic form ω. For

every κ ∈ k we denote by ξκ the corresponding K-invariant vector field on W . The K-action is
said to be Hamiltonian if the 1-form ω(·, ξκ) is exact for every κ ∈ k, that is, there is a function Hκ

on W such that
ω(ξ, ξκ) = dHκ(ξ) = ξ(Hκ)

for every vector field ξ on W . Under this assumption, the moment map

µ : W → k
∗, (x, κ) �→ Hκ(x)

is defined.
Example 5.1. 1. A basic example is given by W = C

m with the symplectic form ω =
2
∑m

k=1 dxk ∧ dyk, where zk = xk + iyk. The coordinatewise action of T
m is Hamiltonian with the

moment map µ : C
m → R

m given by µ(z1, . . . , zm) = (|z1|2, . . . , |zm|2) (we identify the dual Lie
algebra of T

m with R
m).

2. Now let Σ be a regular fan and K be the subgroup of T
m defined by (3.2). We can restrict

the previous example to the K-action on the invariant subvariety U(Σ) ⊂ C
m. The corresponding

moment map is then defined by the composition

µΣ : C
m → R

m → k∗. (5.2)

A choice of an isomorphism k ∼= R
m−n allows one to identify the map R

m → k∗ with the linear
transformation given by the matrix (4.6) (see (4.5)).

A direct comparison with (5.1) prompts us to relate the level set µ−1
Σ (0) of the moment map (5.2)

to the toric Kempf–Ness set Z(ΣP ) for the G-action on U(ΣP ). However, this analogy is not that
straightforward: the set µ−1

Σ (0) = {z ∈ C
m : 〈κz, z〉 = 0 for all κ ∈ k} is given by the equations∑m

k=1 cjk|zk|2 = 0, 1 ≤ j ≤ m − n, which have only the zero solution. (Indeed, as the intersection
of R

m
≥ with the affine n-plane iP (MR) = AP (MR) + bP is bounded, its intersection with the plane

AP (MR) consists only of the origin.) On the other hand, by comparing (5.2) with (4.7), we obtain
Proposition 5.2. Let ΣP be the normal fan of a simple polytope given by (4.1), and (5.2) be

the corresponding moment map. Then the toric Kempf–Ness set Z(ΣP ) for the G-action on U(ΣP )
is given by

Z(ΣP ) ∼= µ−1
ΣP

(CbP ).

In other words, the difference between our situation and the affine one is that we have to take
CbP instead of 0 as the value of the moment map. The reason is that CbP is a regular value of µ,
unlike 0.
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By making a perturbation bi �→ bi + εi of the values bi in (4.1) while keeping the vectors ai

unchanged for 1 ≤ i ≤ m, we obtain another convex set P (ε) determined by (4.1). Provided that
the perturbation is small, the set P (ε) is still a simple convex polytope of the same combinatorial
type as P . Then the normal fans of P and P (ε) are the same, and the manifolds ZP and ZP (ε)

defined by (4.7) are T
m-equivariantly homeomorphic. Moreover, CbP (ε), considered as an element of

k∗ = HomZ(K, S1)⊗ZR ∼= H2(XΣP
; R), belongs to the Kähler cone of the toric variety XΣP

[11, § 4].
In the case of normal fans the following version of our Theorem 3.4(a) is known in toric geometry:

Theorem 5.3 (see [11, Theorem 4.1]). Let XΣ be a projective simplicial toric variety and
assume that c ∈ H2(XΣ; R) is in the Kähler cone. Then µ−1

Σ (c) ⊂ U(Σ), and the natural map

µ−1
Σ (c)/K → U(Σ)/G = XΣ

is a diffeomorphism.
This statement is the essence of the construction of smooth projective toric varieties via sym-

plectic reduction. The submanifold µ−1
Σ (c) ⊂ C

m may fail to be symplectic because the restriction
of the standard symplectic form ω on C

m to µ−1
Σ (c) may be degenerate. However, the restriction

of ω descends to the quotient µ−1
Σ (c)/K as a symplectic form.

Example 5.4. Let P = ∆n be the standard simplex defined by n + 1 inequalities 〈ei, x〉 ≥ 0,
i = 1, . . . , n, and 〈−e1 − . . . − en, x〉 + 1 ≥ 0 in MR (here e1, . . . , en is a chosen basis which we use
to identify NR with R

n). The cones of the corresponding normal fan Σ are generated by the proper
subsets of the set of vectors {e1, . . . , en,−e1 − . . . − en}. The groups G ∼= C

∗ and K ∼= S
1 are the

diagonal subgroups in (C∗)n+1 and T
n+1, respectively, while U(Σ) = C

n+1 \ {0}. The (n + 1) × n
matrix AP = (aij) has aij = δij for 1 ≤ i, j ≤ n and an+1,j = −1 for 1 ≤ j ≤ n. The matrix C (4.6)
is just a row of units. The moment map (5.2) is given by µΣ(z1, . . . , zn+1) = |z1|2 + . . . + |zn+1|2.
Since CbP = 1, the Kempf–Ness set ZP = µ−1

Σ (1) is the unit sphere S
2n+1 ⊂ C

n+1, and XΣ =
(Cn+1 \ {0})/G = S

2n+1/K is the complex projective space CPn.
In the next section we consider a more complicated example, while here we conclude with an

open question.
Problem 5.5. As is known (see, e.g., [8, Ch. 5]), there are many complete regular fans Σ

which cannot be realised as normal fans of convex polytopes. The corresponding toric varieties XΣ

are not projective (although being nonsingular). In this case the toric Kempf–Ness set Z(Σ) is still
defined (see Section 3). However, the rest of the analysis of the last two sections does not apply
here; in particular, we do not have a description of Z(Σ) as in (4.7). Can one still describe Z(Σ)
as a complete intersection of real quadratic (or higher order) hypersurfaces?

6. COHOMOLOGY OF TORIC KEMPF–NESS SETS

Here we use the results of [8] and [16] on moment–angle complexes to describe the integer
cohomology rings of toric Kempf–Ness sets. As we shall see from an example below, the topology
of Z(Σ) may be quite complicated even for simple fans.

Given an abstract simplicial complex K on the set [m] = {1, . . . ,m}, the face ring (or the
Stanley–Reisner ring) Z[K] is defined as the following quotient of the polynomial ring on m gener-
ators:

Z[K] = Z[v1, . . . , vm]/(vi1 . . . vik : {i1, . . . , ik} is not a simplex of K).

We introduce a grading by setting deg vi = 2, i = 1, . . . ,m. As Z[K] may be thought of as a
Z[v1, . . . , vm]-module via the projection map, the bigraded Tor-modules

Tor−i,2j
Z[v1,...,vm](Z[K], Z)
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are defined (see [18]). They can be calculated, for example, using the Koszul resolution of the trivial
Z[v1, . . . , vm]-module Z. This also endows Tor∗

Z[v1,...,vm](Z[K], Z) with a graded commutative algebra
structure (the grading is by the total degree); see details in [8, Ch. 7].

Theorem 6.1 (see [8, Theorems 7.6, 7.7; 16, Theorem 4.7]). For every simplicial fan Σ there
are algebra isomorphisms

H∗(Z(Σ); Z
) ∼= Tor∗

Z[v1,...,vm]

(
Z[KΣ], Z

) ∼= H
[
Λ[u1, . . . , um] ⊗ Z[KΣ], d

]
,

where the latter denotes the cohomology of a differential graded algebra with deg ui = 1, deg vi = 2,
dui = vi, and dvi = 0 for 1 ≤ i ≤ m.

Given a subset I ⊆ [m], denote by K(I) the corresponding full subcomplex of K, or the restriction
of K to I. We also denote by H̃ i(K(I)) the ith reduced simplicial cohomology group of K(I) with
integer coefficients. A theorem due to Hochster [14] expresses the Tor-modules Tor−i,2j

Z[v1,...,vm](Z[K], Z)
in terms of full subcomplexes of K, which leads to the following description of the cohomology
of Z(Σ).

Theorem 6.2 (see [16, Corollary 5.2]). We have

Hk(Z(Σ)) ∼=
⊕

I⊆[m]

H̃k−|I|−1(KΣ(I)).

There is also a description of the product in H∗(Z(Σ)) in terms of full subcomplexes of KΣ

(see [16, Theorem 5.1]).
Example 6.3. Let P be a simple polytope obtained by cutting two nonadjacent edges of a

cube in MR
∼= R

3, as shown in the figure. We may specify such a polytope by eight inequalities

x ≥ 0, y ≥ 0, z ≥ 0, −x + 3 ≥ 0, −y + 3 ≥ 0, −z + 3 ≥ 0,

−x + y + 2 ≥ 0, −y − z + 5 ≥ 0,

and it has eight facets F1, . . . , F8, numbered as in the figure.
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The 1-dimensional cones of the corresponding normal fan ΣP are spanned by the following
primitive vectors:

a1 = e1, a2 = e2, a3 = e3, a4 = −e1, a5 = −e2, a6 = −e3,

a7 = −e1 + e2, a8 = −e2 − e3.

The toric variety XΣP
is obtained by blowing up the product CP1 × CP1 × CP1 (corresponding to

the cube) in two complex 1-dimensional subvarieties {∞}×{0}×CP1 and CP1×{∞}×{∞}. The
matrix (4.6) is given by

C =

⎛
⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0
1 −1 0 0 0 0 1 0
0 1 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

Its transpose determines the inclusion G ↪→ (C∗)8 (or K ↪→ T 8), and we have XΣP
= U(ΣP )/G =

Z(ΣP )/K by Theorem 3.4. The toric Kempf–Ness set Z(ΣP ) ∼= ZP (4.7) is defined by five real
quadratic equations:

|z1|2 + |z4|2 − 3 = 0, |z2|2 + |z5|2 − 3 = 0, |z3|2 + |z6|2 − 3 = 0,

|z1|2 − |z2|2 + |z7|2 − 2 = 0, |z2|2 + |z3|2 + |z8|2 − 5 = 0.

The dual triangulation KΣ is obtained from the boundary of an octahedron by applying two
stellar subdivisions at nonadjacent edges [15]. The face ring is

Z[KΣ] = Z[v1, . . . , v8]/
(
v1v4, v1v7, v2v4, v2v5, v2v8, v3v6, v3v8, v5v6, v5v7, v7v8

)
.

According to Theorem 6.2, the group H3(ZP ) has a generator for every pair of vertices of KΣ that
are not joined by an edge (equivalently, for every pair of nonadjacent facets of P ). Therefore,
H3(ZP ) ∼= Z

10, and the generators are represented by the following 3-cocycles in the differential
graded algebra from Theorem 6.1:

u1v4, u1v7, u2v4, u2v5, u2v8, u3v6, u3v8, u5v6, u5v7, u7v8.

Using Theorem 6.2 again, we see that only the reduced 0-cohomology of three-vertex full subcom-
plexes of KΣ may contribute to H4(ZP ). There are two types of disconnected simplicial complexes
on three vertices: “three disjoint points” and “an edge and a point.” KΣ contains no full subcom-
plexes of the first type and 16 subcomplexes of the second type. The corresponding 4-cocycles in
the differential graded algebra Λ[u1, . . . , um] ⊗ Z[KΣ] are

u4u7v1, u4u5v2, u4u8v2, u5u8v2, u6u8v3, u1u2v4, u2u6v5, u2u7v5,

u6u7v5, u3u5v6, u1u5v7, u1u8v7, u5u8v7, u2u3v8, u2u7v8, u3u7v8.

Therefore, H4(ZP ) ∼= Z
16.

The fifth cohomology group of ZP is the sum of the first cohomology of three-vertex full subcom-
plexes of KΣ and the reduced 0-cohomology of four-vertex full subcomplexes. A three-vertex full
subcomplex of KΣ may have nonzero first cohomology group only if the corresponding three facets
of P form a “belt,” that is, are pairwise adjacent but do not share a common vertex. As there are no
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such three-facet belts in P , only the reduced 0-cohomology of four-vertex subcomplexes contributes
to H5(ZP ). The corresponding 5-cocycles are

u1u5u8v7, u2u3u7v8, u4u5u8v2, u2u6u7v5, u2u7u5v8 − u2u7u8v5

(note that the last cocycle cannot be represented by a monomial). Therefore, H5(ZP ) ∼= Z
5. Due

to Poincaré duality, this completely determines the Betti vector (1, 0, 0, 10, 16, 5, 5, 16, 10, 0, 0, 1) of
the 11-dimensional manifold ZP . The generators of the sixth cohomology group, H6(ZP ) ∼= Z

5,
correspond to the four-facet belts in P , and the corresponding 6-cocycles are

u2u3v4v6, u1u5v4v6, u1u3v6v7, u1u3v4v8, u1u3v4v6.

These are the Poincaré duals to the 5-cocycles. The fundamental class of ZP is represented (up to
a sign) by the cocycle u4u5u6u7u8v1v2v3, or by any cocycle of the form

uσ(4)uσ(5)uσ(6)uσ(7)uσ(8)vσ(1)vσ(2)vσ(3),

where σ ∈ S8 is a permutation such that the facets Fσ(1), Fσ(2) and Fσ(3) share a common vertex.
The multiplicative structure in H∗(ZP ) can be easily retrieved from this description. For exam-

ple, we have the identities

[u1v4] · [u1v7] = 0, [u1v7] · [u2v4] = 0, [u1v4] · [u3v6] = [u1u3v4v6],

[u2v4] · [u3v6] · [u1u5u8v7] = [u1u2u3u5u8v4v6v7], etc.

Yet another interesting feature of the manifold ZP of this example is the existence of nontrivial
Massey products in H∗(ZP ) [1]. Consider three cocycles a = u1v4, b = u2v5, and c = u3v6

representing cohomology classes α, β, γ ∈ H3(ZP ). Since αβ = 0 and βγ = 0, a triple Massey
product 〈α, β, γ〉 is defined. It consists of the cohomology classes in H8(ZP ) represented by the
cocycles of the form af + ec for all choices of e and f such that ab = de and bc = df (here
d denotes the differential; as there may be many choices of e and f , the Massey product is a
multivalued operation in general). The Massey product is said to be trivial if it contains zero. In
our case we may take e = u1u2u5v4 and f = 0, so 〈α, β, γ〉 contains a nonzero cohomology class
[u1u2u5u3v4v6] ∈ H8(ZP ). Moreover, 〈α, β, γ〉 is nontrivial (see [16, Example 5.7]). This implies
that ZP is a nonformal manifold. A detailed study of Massey products in the cohomology of
moment–angle complexes is undertaken in [13].
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