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Abstract—Simplicial cell complexes are special cellular decompositions also known as vir-
tual or ideal triangulations; in combinatorics, appropriate analogues are given by simplicial
partially ordered sets. In this paper, combinatorial and topological properties of simplicial
cell complexes are studied. Namely, the properties of f -vectors and face rings of simpli-
cial cell complexes are analyzed and described, and a number of well-known results on the
combinatorics of simplicial partitions are generalized. In particular, we give an explicit ex-
pression for the operator on f - and h-vectors that is defined by a barycentric subdivision,
derive analogues of the Dehn–Sommerville relations for simplicial cellular decompositions of
spheres and manifolds, and obtain a generalization of the well-known Stanley criterion for
the existence of regular sequences in the face rings of simplicial cell complexes. As an appli-
cation, a class of manifolds with a torus action is constructed, and generalizations of some
of our previous results on the moment–angle complexes corresponding to triangulations are
proved.

1. INTRODUCTION

This paper focuses on spaces with a special cellular decomposition, simplicial cell complexes. In
combinatorics, these complexes correspond to the so-called simplicial partially ordered sets.

In topology, simplicial cell complexes have been studied virtually since the emergence of trian-
gulations and combinatorial methods. However, in combinatorics, the systematic study of simplicial
partially ordered sets started only around the mid-1980s (see [13]). Many fundamental construc-
tions of commutative and homological algebra that were developed for studying triangulations are
naturally carried over to simplicial cell complexes. For instance, in [14], an important concept of
a face ring (or a Stanley–Reisner ring) of a simplicial partially ordered set is introduced and the
main algebraic properties of these rings are described.

In [9], a group of projectivities of a triangulation is defined. The study of this group has led to
the construction of an interesting class of simplicial cell complexes, called the unfoldings of trian-
gulations. In the same work, on the basis of this construction, an explicit combinatorial description
was obtained for the Hilden–Montesinos branched covering of an arbitrary closed oriented manifold
over the 3-sphere.

In the combinatorics of simplicial complexes, the so-called bistellar subdivisions are used, which
play an important role in applications to torus actions (see [2, Ch. 7]). In this way, one naturally
encounters simplicial cellular decompositions because the application of a bistellar subdivision to a
triangulation yields, in general, only a simplicial cellular decomposition.
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Simplicial cell complexes have found important applications in the study of torus manifolds
(see [11]). A torus manifold is a 2n-dimensional smooth compact closed manifold M on which
an action of the n-dimensional compact torus T is defined which is effective and has at least one
fixed point. Torus manifolds were introduced in [8] as a far-reaching generalization of algebraic
nonsingular compact toric varieties. The fixed points of the effective action of a half-dimensional
torus lead to the rich combinatorial structure of the orbit space Q = M/T , which often allows
one to describe the torus manifold M itself. Under the additional condition that the action is
locally standard, the orbit space Q is a manifold with corners (a particular case of manifolds with
corners is given by simple polyhedra). The set of faces of a manifold with corners forms a simplicial
partially ordered set with the order given by reverse inclusion. The study of manifolds with corners
(or, equivalently, simplicial partially ordered sets) as orbit spaces of torus manifolds allows one to
interpret many important topological invariants of these manifolds in combinatorial terms. For
example, as is shown in [11], equivariant cohomology of a torus manifold M is isomorphic to the
face ring Z[Q] of the orbit space Q in a number of natural cases (for instance, when all faces in Q
are acyclic). According to another result of [11], the cohomology of a torus manifold vanishes in
odd dimensions if and only if all faces of the orbit space Q are acyclic.

Let us briefly describe the contents of the paper. In Section 2, we introduce the basic concepts,
simplicial and pseudosimplicial cell complexes, and describe the relations between them and their
properties. These cell complexes provide useful approximations to classical triangulations (simplicial
complexes); in particular, the concept of barycentric subdivision is introduced for these complexes.
The barycentric subdivision of a pseudosimplicial cell complex is a simplicial cell complex, while
the barycentric subdivision of a simplicial cell complex is a simplicial complex (Proposition 2.4).

In Section 3, we consider f - and h-vectors of cell complexes. In the case of simplicial complexes,
a transition to the barycentric subdivision yields a linear operator on the spaces of f - and h-vectors.
We present an explicit expression for the matrix of this operator (Lemmas 3.1 and 3.2). The operator
constructed can formally be applied to the f -vector of any cell complex. The application of this
operator to the f -vector of a pseudosimplicial cell complex yields an f -vector of a simplicial cell
complex, whereas its application to the f -vector of a simplicial cell complex yields an f -vector of
a simplicial complex. The main result of this section is the derivation of analogues of the Dehn–
Sommerville relations for pseudosimplicial and simplicial cell complex of manifolds (Theorems 3.4
and 3.5 and Corollary 3.6).

In Section 4, we introduce the concept of branched combinatorial covering and prove that a
space X is a simplicial cell complex if and only if there exists a branched combinatorial covering
X → K for a certain simplicial complex K (Theorem 4.1).

In Section 5, we study the properties of the face rings of simplicial cell complexes introduced
by Stanley [14]. Here, we obtain results on the functoriality of such rings with respect to simplicial
mappings (Propositions 5.3, 5.9, and 5.10) and present conditions under which these rings contain
linear systems of parameters (Theorem 5.4 and Lemma 5.5); this is important for applications to
torus actions.

In Section 6, we introduce and study a functor that assigns a space ZS with an action of
the torus Tm to any simplicial cell complex S of dimension n − 1 with m vertices; the space ZS
generalizes the concept of a moment–angle complex ZK (see [6] and [2, Ch. 7]). Like for simplicial
decompositions, ZS is a manifold for piecewise linear simplicial cellular decompositions of spheres
(Theorem 6.3). The toral rank of a space X is the maximal number k such that there exists an
almost free T k-action on X. We prove that, for any simplicial cell complex S of dimension n − 1
with m vertices, the toral rank of the space ZS is no less than m − n (Theorem 6.4). This result
leads to an interesting relation between the well-known toral rank conjecture of Halperin [7] and
the combinatorics of triangulations (Corollary 6.5).
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2. SIMPLICIAL AND PSEUDOSIMPLICIAL CELL COMPLEXES

An abstract simplicial complex on a set M is a collection K = {σ} of subsets in M such that,
for every σ ∈ K, all subsets in σ (including ∅) also belong to K. A subset σ ∈ K is called an
(abstract) simplex of the complex K. One-element subsets are called vertices. The dimension of
a simplex σ ∈ K is the number of its elements minus one: dim σ = |σ| − 1. The dimension of an
abstract simplicial complex is the maximal dimension of its simplices.

Along with abstract simplices, we consider geometric simplices, which are convex hulls of sets
of affinely independent points in Rn. A geometric simplicial complex (or a polyhedron) is a set P of
geometric simplices of arbitrary dimensions lying in a certain Rn, such that every face of a simplex
from P lies in P and the intersection of any two simplices from P is a face of each of them.

A polyhedron P is called a geometric realization of an abstract simplicial complex K if there
exists a one-to-one correspondence between the vertex sets of the complex K and the polyhedron P
under which simplices of the complex K are mapped into the vertex sets of the simplices of the
polyhedron P. For every simplicial complex K, there exists a unique, up to a simplicial isomorphism,
geometric realization, which is denoted by |K|. In what follows, we will not distinguish between
abstract simplicial complexes and their geometric realizations.

Let S be an arbitrary partially ordered set. Its order complex ord(S) is the set of all chains
x1 < x2 < . . . < xk, xi ∈ S. It is obvious that ord(S) is a simplicial complex.

The barycentric subdivision K ′ of a simplicial complex K is defined as the order complex
ord(K \ ∅) of the partially ordered (with respect to inclusion) set of nonempty simplices of the
complex K.

A partially ordered set S is called simplicial if it contains the least element 0̂ and, for any σ ∈ S,
the lower segment [

0̂, σ
]

=
{
τ ∈ S : 0̂ ≤ τ ≤ σ

}
is the partially ordered (with respect to inclusion) set of faces of a certain simplex. Introduce the
rank of elements of the set S putting rk 0̂ = 0 and rkσ = k if

[
0̂, σ

]
is identified with the set of

faces of a (k − 1)-simplex. We also put dimS = maxσ∈S rkσ − 1. We call elements of rank 1 the
vertices of the set S. Then, any element of rank k contains exactly k vertices.

It is obvious that the set of all simplices of a certain simplicial complex is a simplicial partially
ordered set with respect to inclusion. However, not all simplicial partially ordered sets are obtained
in this manner.

Recall that a cell complex is a Hausdorff topological space X represented as the union
⋃

eq
i of

pairwise disjoint sets eq
i (called cells) such that, for every cell eq

i , a unique mapping of a q-dimensional
closed ball Dq into X is fixed (the characteristic mapping) whose restriction to the interior of the
ball Dq is a homeomorphism onto eq

i . (Here, as usual, we assume that the interior of a point is the
point itself.) Moreover, it is assumed that the following axioms hold:

(C) The boundary of a cell eq
i is contained in the union of a finite number of cells er

j of dimension
r < q.

(W) A subset Y ⊂ X is closed if and only if, for any cell eq
i , the intersection Y ∩ eq

i is closed.

In what follows, we will always assume that partially ordered sets and simplicial and cell com-
plexes are finite.

Let S be a simplicial partially ordered set. To each element σ ∈ S \ 0̂, we assign a simplex
with the set of faces given by

[
0̂, σ

]
and glue together all these geometric simplices according to the

order relation in S. Then, we obtain a cell complex in which the closure of each cell is identified
with a simplex, the structure of faces being preserved; moreover, all characteristic mappings are
embeddings. This complex is called a simplicial cell complex and is denoted by |S|. When S is a set
of simplices of a certain simplicial complex K, the space |S| coincides with the geometric realization
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Fig. 1. Pseudosimplicial cellular decompositions of a circle

of |K|. Henceforth, we will not distinguish between simplicial partially ordered sets and simplicial
cell complexes.

Example 2.1. A cell complex obtained by identifying two (n−1)-dimensional simplices along
their boundaries (with the structure of faces preserved) is a simplicial cell complex. The corre-
sponding simplicial partially ordered set is not a set of faces of any simplicial complex for n > 1.

This example is a particular case of the general construction of a union of simplicial cell com-
plexes along a common subcomplex. Note that simplicial cell complexes represent a minimal ex-
tension of the class of simplicial complexes that is closed with respect to the operation of taking a
union along a common subcomplex.

Recall that a continuous mapping of cell complexes is called cellular if the image of any cell lies
in a union of cells of the same or lower dimension. A cellular mapping φ : S1 → S2 of simplicial cell
complexes is called simplicial if the image of every simplex from S1 is a simplex in S2. It is clear
that a simplicial mapping is a mapping of the corresponding partially ordered sets (i.e., preserves
order). A simplicial mapping is called a simplicial isomorphism if there exists a simplicial inverse
for it. In geometrical terms, one may assume that a simplicial mapping of simplicial complexes
(polyhedra) is linear on simplices.

By analogy with simplicial complexes, we define the barycentric subdivision S ′ of a simplicial
cell complex S as the order complex ord

(
S \ 0̂

)
. It follows directly from the definition that the

barycentric subdivision S ′ is a simplicial complex. Thus, a simplicial mapping between arbitrary
simplicial cell complexes can be assumed to be linear on the simplices of the barycentric subdivision.

Remark. The identity mapping of a simplicial cell complex defines a cellular, but not simplicial,
mapping S → S ′ such that its inverse is not a cellular mapping.

A cell complex X is called pseudosimplicial if the characteristic mapping of any cell is a mapping
of the simplex ∆q into X whose restriction onto each face is the characteristic mapping for a certain
other cell.

Example 2.2. Figure 1 shows three pseudosimplicial cellular decompositions of a circle. The
first of them (a) is not a simplicial cellular decomposition. The second (b) is a simplicial cellular
decomposition but is not a simplicial complex. The third (c) is a simplicial complex.

Lemma 2.3. A pseudosimplicial cell complex X is a simplicial cell complex if and only of the
characteristic mapping of any of its cells is an embedding.

Proof. For a given pseudosimplicial cell complex X, we introduce a partially ordered set S
whose elements are closures of cells and the order relation corresponds to embedding. Let all the
characteristic mappings be embeddings. Then, it is obvious that, for every cell eq

i , the corresponding
characteristic mapping is a homeomorphism of ∆q onto eq

i , and the characteristic mapping of any cell
ep
j ⊂ eq

i is a restriction of this homeomorphism onto a certain p-face of the simplex ∆q. Therefore,
S is a simplicial partially ordered set and X is a simplicial cell complex |S|. The converse assertion
is obvious. �

Pseudosimplicial cellular decompositions of manifolds play an important role in various construc-
tions of the low-dimensional topology, where they are referred to as ideal or singular triangulations
(see, e.g., [12]).
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Let X be a pseudosimplicial cell complex. Its barycentric subdivision is a cell complex X ′ whose
cells are images of open simplices of the standard barycentric subdivision of simplices ∆q under all
possible characteristic mappings ∆q → X of the cells of the complex X. The correctness of this
definition follows immediately from the definition of a pseudosimplicial cell complex.

Remark. The above “geometrical” definition of a barycentric subdivision is consistent with the
“combinatorial” definitions, introduced above, of the barycentric subdivision of a simplicial complex
and a simplicial partially ordered set. However, simple examples show that, in the case of an
arbitrary pseudosimplicial cell complex X, the complex X ′ differs from the order complex of the
partially ordered set of the closures of the cells of the complex X.

It follows directly from the definition that X ′ is a pseudosimplicial cell complex. Indeed, the
following more general proposition holds (which is a part of mathematical folklore; see, e.g., [12]).

Proposition 2.4. The barycentric subdivision X ′ of a pseudosimplicial cell complex X is a
simplicial cell complex, while the second barycentric subdivision X ′′ is a simplicial complex.

Proof. By Lemma 2.3, to prove the first assertion, it suffices to verify that all characteristic
mappings of the cells of the complex X ′ are embeddings. Suppose the contrary, i.e., some two points
x and y go to a single point under the characteristic mapping of a certain q-dimensional cell eq of the
complex X ′. One may assume that q is the minimal dimension of such cells. By the definition of X ′,
the characteristic mapping of its cell eq is a restriction of the characteristic mapping ∆q → X of a
certain cell of the complex X onto a certain q-dimensional simplex of the barycentric subdivision
of the standard simplex ∆q. Since q is minimal, at least one of the points x or y is contained in
the interior of the simplex ∆q. Now, using the fact that the restriction of a characteristic mapping
onto the interior of a cell is one-to-one, we arrive at a contradiction. This proves the first assertion,
which implies the second. �

3. f -VECTORS AND THE DEHN–SOMMERVILLE RELATIONS

Let X be a cell complex of dimension n− 1. Denote by fi the number of its i-dimensional cells.
An integer vector f(X) = (f0, . . . , fn−1) is called the f -vector of the complex X. It is convenient to
assume that f−1 = 1. Introduce the h-vector of the complex X as an integer vector (h0, h1, . . . , hn)
determined from the equation

h0t
n + . . . + hn−1t + hn = (t − 1)n + f0(t − 1)n−1 + . . . + fn−1. (3.1)

Note that the f -vector and the h-vector carry the same information about the cell complex and
are expressed in terms of each other by linear relations, namely,

hk =
k∑

i=0

(−1)k−i
(

n − i
n − k

)
fi−1, fn−1−k =

n∑
q=k

(
q
k

)
hn−q, k = 0, . . . , n. (3.2)

In particular, h0 = 1 and hn = (−1)n(1 − f0 + f1 + . . . + (−1)nfn−1) = (−1)n(1 − χ(X)), where
χ(X) is the Euler characteristic of the complex X.

First, we describe some properties of f -vectors in the case when X = S is a simplicial cell
complex (i.e., the closures of cells form a simplicial partially ordered set).

The join of simplicial partially ordered sets S1 and S2 is a set S1 ∗ S2 consisting of elements
σ1 ∗σ2, where σ1 ∈ S1 and σ2 ∈ S2. A partial order relation is introduced as follows: σ1 ∗σ2 ≤ τ1 ∗τ2

if σ1 ≤ τ1 and σ2 ≤ τ2. It is clear that S1 ∗ S2 is a simplicial partially ordered set. The space (cell
complex) |S1 ∗ S2| is known in topology as the join of the spaces |S1| and |S2|.

A simplicial cell complex S is called pure if all of its maximal simplices have the same dimension.
Consider two pure complexes S1 and S2 of the same dimension, select maximal simplices σ1 ∈ S1
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and σ2 ∈ S2, and fix a certain identification for them (this is done, for example, by choosing the
order of vertices in σ1 and σ2). A simplicial cell complex S1#σ1,σ2 S2 obtained by gluing together S1

and S2 along σ1 and σ2 followed by the removal of the simplex σ = σ1 = σ2 is called the connected
sum of the complexes S1 and S2. When the result is independent of the choice of the simplices σ1

and σ2 and the method of their identification, we will use an abbreviated notation S1 # S2.
Let us express the f -vector and the h-vector of the connected sum S1 # S2 in terms of the

f -vectors and h-vectors of the complexes S1 and S2. Let dimS1 = dimS2 = n − 1; then, we have

fi(S1 # S2) = fi(S1) + fi(S2) −
(

n
i + 1

)
, i = 0, 1, . . . , n − 2,

fn−1(S1 # S2) = fn−1(S1) + fn−1(S2) − 2.

Then, (3.2) implies that

h0(S1 # S2) = 1,

hi(S1 # S2) = hi(S1) + hi(S2), i = 1, 2, . . . , n − 1,

hn(S1 # S2) = hn(S1) + hn(S2) − 1.

(3.3)

Now, let dimS1 = n1 − 1 and dimS2 = n2 − 1; then, we have the following equation for the join
S1 ∗ S2:

fk(S1 ∗ S2) =
n1−1∑
i=−1

fi(S1)fk−i−1(S2), k = −1, 0, . . . , n1 + n2 − 1.

Put
h(S; t) = h0 + h1t + . . . + hntn.

Then, the preceding formula and (3.1) imply

h(S1 ∗ S2; t) = h(S1; t)h(S2; t). (3.4)

Next, we will need transformation formulas for the f - and h-vectors of simplicial cell complexes
under barycentric subdivisions. Introduce the matrix

B = (bij), 0 ≤ i, j ≤ n − 1, bij =
i∑

k=0

(−1)k
(
i + 1

k

)
(i − k + 1)j+1.

One can verify that bij = 0 for i > j (i.e., B is an upper triangular matrix) and bii = (i+1)!. Thus,
the matrix B is invertible.

Lemma 3.1. Let S ′ be the barycentric subdivision of an (n − 1)-dimensional simplicial cell
complex S. Then, the f -vectors of the complexes S and S ′ are related by the formula

fi(S ′) =
n−1∑
j=i

bijfj(S), i = 0, . . . , n − 1,

i.e.,
f(S ′) = Bf(S).

Proof. Consider the barycentric subdivision of a j-dimensional simplex ∆j and suppose that b′ij
is the number of i-simplices in (∆j)′ that do not lie in ∂∆j . Then, we have fi(K ′) =

∑n−1
j=i b′ijfj(K).

Let us prove that bij = b′ij . Indeed, it is obvious that the number b′ij satisfies the following recurrent
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relation:

b′ij = (j + 1)b′i−1,j−1 +
(
j + 1

2

)
b′i−1,j−2 + . . . +

(
j + 1

j − i + 1

)
b′i−1,i−1.

Hence, one can easily derive by induction that b′ij is defined by the same formula as bij . �
Now, let us introduce the matrix

D = (dpq), 0 ≤ p, q ≤ n, dpq =
p∑

k=0

(−1)k
(
n + 1

k

)
(p − k)q(p − k + 1)n−q

(here, we assume that 00 = 1).
Lemma 3.2. The h-vectors of the complexes S and S ′ are related by

hp(S ′) =
n∑

q=0

dpqhq(S), p = 0, . . . , n,

i.e.,
h(S ′) = Dh(S).

Moreover, the matrix D is invertible.
Proof. The lemma is proved by a routine verification with the use of Lemma 3.1, formulas (3.1),

and a number of identities for binomial coefficients, which can be found, for example, in [3]. If we
add the component f−1 = 1 to the f -vector and appropriately change the matrix B, then we obtain
the relation D = C−1BC, where C is the transition matrix from the h-vector to the f -vector (the
explicit form of this matrix can easily be obtained from (3.1)). This implies the invertibility of the
matrix D. �

Thus, the barycentric subdivision induces invertible linear operators B and D on the f - and
h-vectors of simplicial cell complexes.

The following fact is a classical result of combinatorial geometry: if a simplicial complex K is a
triangulation of an (n − 1)-dimensional sphere, i.e., |K| ∼= Sn−1, then its h-vector is symmetric:

hi = hn−i, i = 0, . . . , n. (3.5)

These equations (as well as their different expressions in terms of f -vectors) are known as the
Dehn–Sommerville relations. Note that h0 = 1 for any simplicial complex and the first relation
h0 = hn is equivalent to the formula for the Euler characteristic (see (3.1)). Various proofs of the
Dehn–Sommerville relations, as well as an account of the history of the question, can be found in [2].

We will need the following result, which is due to Klee [10].
Proposition 3.3. The Dehn–Sommerville relations are the most general linear equations that

hold true for the f -vectors of all triangulations of spheres.
Proof. In [10], this proposition was proved in terms of f -vectors. However, the use of h-vec-

tors significantly simplifies the proof. It is sufficient to show that the affine hull of the h-vectors
(h0, h1, . . . , hn) of the triangulations of spheres is an

[
n
2

]
-dimensional plane (recall that h0 = 1

always). This can be done, for example, by indicating
[

n
2

]
+1 triangulations of spheres with affinely

independent h-vectors. Put Kj := ∂∆j ∗ ∂∆n−j , j = 0, 1, . . . ,
[

n
2

]
, where ∂∆j stands for the

boundary of a j-dimensional simplex. Since h(∂∆j) = 1 + t + . . . + tj, it follows from (3.4) that

h(Kj) =
1 − tj+1

1 − t

1 − tn−j+1

1 − t
.

Thus, h(Kj+1)−h(Kj) = tj+1+ higher order terms, j = 0, 1, . . . ,
[

n
2

]
−1. Hence, the vectors h(Kj),

j = 0, 1, . . . ,
[

n
2

]
, are affinely independent. �
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Theorem 3.4. If S is a simplicial cellular decomposition of an (n − 1)-dimensional sphere,
then the h-vector h(S) satisfies the Dehn–Sommerville relations (3.5).

Proof. Consider the barycentric subdivision S ′. By Lemma 3.2, h(S ′) = Dh(S), where the
vector h(S ′) is symmetric because S ′ is a triangulation of a sphere. A routine test with the use
of well-known binomial identities shows that the matrix D (and its inverse) transforms symmetric
vectors into symmetric vectors (this is equivalent to dpq = dn+1−p,n+1−q, i.e., the matrix D is
centrally symmetric). However, this can be proved without resort to computations and even without
using the explicit form of the matrix D from Lemma 3.2. Indeed, the Dehn–Sommerville relations
determine a linear subspace W of dimension k =

[
n
2

]
+ 1 (or an affine space of dimension

[
n
2

]
if

we add the relation h0 = 1) in the space Rn+1 (with coordinates h0, . . . , hn). We have to verify
that this subspace is invariant with respect to the invertible linear operator D. To this end, it
suffices to choose an arbitrary basis e1, . . . , ek in W and verify that Dei ∈ W for all i. However,
the subspace W admits a basis composed of the h-vectors of simplicial spheres (see the proof of
Proposition 3.3). Since the barycentric subdivision of a simplicial sphere is again a simplicial sphere,
the images Dei, i = 1, . . . , k, also satisfy the Dehn–Sommerville relations. Hence, the subspace W
is D-invariant. This implies that the vector h(S) = D−1h(S ′) satisfies the Dehn–Sommerville
relations. �

Remark. The proof of the Dehn–Sommerville relations for Eulerian partially ordered sets
(which include simplicial cellular decompositions of spheres as a particular case) was first obtained
by Stanley [13, (3.40)].

In [2], a generalization of the Dehn–Sommerville relations for the triangulations of arbitrary
topological manifolds was obtained. Namely, the differences between symmetric components of the
h-vector of the triangulation of an (n − 1)-dimensional manifold M are expressed in terms of its
Euler characteristic:

hn−i − hi = (−1)i
(
χ(M) − χ(Sn−1)

)(n
i

)
= (−1)i(hn − 1)

(
n
i

)
, i = 0, 1, . . . , n. (3.6)

In particular, if M = Sn−1 or n is odd, we obtain relations (3.5). Arguments analogous to those
used in the proof of Theorem 3.4 allow us to generalize this result to arbitrary simplicial cellular
decompositions of manifolds.

Theorem 3.5. Let S be a simplicial cellular decomposition of an (n − 1)-dimensional mani-
fold M . Then, the h-vector h(S) = (h0, . . . , hn) satisfies relations (3.6).

Proof. Let S ′ be the barycentric subdivision of the complex S and D be the matrix (operator)
from Lemma 3.2 such that h(S ′) = Dh(S). Let, next, A denote an affine subspace of dimension
k =

[
n
2

]
in Rn+1 (with coordinates h0, . . . , hn) defined by the relations from the text of the theorem.

Since S ′ is a simplicial complex, just as in the proof of Theorem 3.4, we have to verify that A is
invariant with respect to D. To this end, it suffices to choose a basis in A (i.e., a set of

[
n
2

]
+1 affinely

independent vectors) that consists of the h-vectors of simplicial decompositions of the manifold M .
This can be done as follows. Consider the h-vectors of

[
n
2

]
+ 1 triangulations of an (n − 1)-sphere

of the form ∂∆j ∗ ∂∆n−j, which constitute a basis in the subspace W specified by the relations
hi = hn−i (see Proposition 3.3). Then, consider the connected sums K # (∂∆j ∗ ∂∆n−j), where
K is a certain fixed triangulation of the manifold M . Then, the corresponding h-vectors form a
basis in A (this easily follows from relations (3.3)). �

Corollary 3.6. Analogues of Theorems 3.4 and 3.5 hold for pseudosimplicial cellular decom-
positions of spheres and manifolds, respectively.

Proof. The proof follows from Proposition 2.4. �
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(a)
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���

(b)

Fig. 2. Cellular decompositions of the disk D2

Example 3.7. In Fig. 2, two cellular decompositions of the disk D2 are shown. The first of
them (a) has two 0-dimensional, two 1-dimensional, and one 2-dimensional cells and is pseudosim-
plicial. This can be seen as follows. Let us realize D2 as a unit disk in C and the simplex ∆2 as
a quarter of the unit disk that is specified by the conditions Re z ≥ 0 and Im z ≥ 0. Then, the
mapping z 	→ z4 defines a characteristic mapping for the two-dimensional cell.

The cellular decomposition of a disk shown in Fig. 2b is not pseudosimplicial. Indeed, otherwise,
gluing together two such disks along the boundary, we would obtain a pseudosimplicial cellular
decomposition of the two-dimensional sphere. However, the f -vector of this cellular decomposition
is equal to (1, 1, 2), and therefore the corresponding h-vector (1,−2, 2, 1) does not satisfy the second
of the Dehn–Sommerville relations h1 = h2. The first relation h0 = h3, which is equivalent to the
formula for the Euler characteristic, is obviously valid.

The definition of a pseudosimplicial cellular decomposition implies that this decomposition must
contain cells of all dimensions. The decomposition shown in Fig. 2b gives an example of a situation
where the converse proposition does not hold.

4. BRANCHED COMBINATORIAL COVERINGS

Here, we characterize simplicial cell complexes as a special class of branched coverings over
simplicial complexes. In this section, we deal with geometric simplicial complexes (i.e., with poly-
hedra) K. An open simplex ◦

τ ∈ K is defined as the relative interior of a certain simplex τ ∈ K.
When τ is a vertex, we put ◦

τ = τ .
Let X be a compact Hausdorff topological space and K be a simplicial complex. A continu-

ous mapping p : X → K is called a branched combinatorial covering over K if the following two
conditions are fulfilled:

(1) for any open simplex ◦
τ ∈ K, the preimage p−1

(◦
τ
)

is a nonempty disjoint union of a finite
number of open sets Ui(τ):

p−1(τ) =
⊔
i

Ui(τ), i = 1, . . . , I(τ);

(2) the mapping p : Ui(τ) → ◦
τ is a homeomorphism for any i.

It follows immediately from the definition that the open sets Ui(τ) corresponding to all simplices
τ ∈ K and all i define a cellular decomposition of the space X.

Theorem 4.1. A space X is a simplicial cell complex if and only if there exists a branched
combinatorial covering of X → K for a certain simplicial complex K.

Proof. Let X be a simplicial cell complex with vertex set M. Introduce a simplicial complex
KS on the vertex set M as follows. We say that a subset τ ∈ M is a simplex in KS if there
exists a simplex σ ∈ X with the vertex set τ . Then, the mapping X → KS , which is the identity
mapping on the vertex set M, sends the simplex σ to the corresponding simplex τ and is a branched
combinatorial covering by construction.

Now, let K be a simplicial complex and p : X → K be a certain branched combinatorial covering.
Then, X is a cell complex with cells of the form Ui(τ), τ ∈ K. In order to establish that X is a
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simplicial cell complex, it is necessary to verify that the set of cells in the closure of each cell Ui(τ)
forms a partially ordered (by inclusion) set of faces of a certain simplex. This is equivalent to the
fact that the restriction of the projection p onto the closure of each cell is a homeomorphism (since
the corresponding property holds for K). Put σ = U i(τ). We have to prove that p : σ → τ is a
homeomorphism. Since σ and τ are compact and Hausdorff, it is sufficient to prove that p : σ → τ
is one-to-one. Obviously, this mapping is epimorphic; suppose that p(x1) = p(x2) = y for some two
different points x1, x2 ∈ σ. Let us connect the points x1 and x2 by a path segment γ : [0, 1] → X
such that γ(0) = x1, γ(1) = x2, and γ(s) ∈ Ui(τ) for 0 < s < 1. Then, p ◦ γ : [0, 1] → K is a
loop with the beginning and end at y, whose interior lies in ◦

τ . Since τ is a simplex, there exists a
contracting homotopy F : [0, 1]× [0, 1] → K such that F (s, 1) = p◦γ(s), F (s, 0) = y, and F (s, t) ∈ ◦

τ
for 0 < s < 1 and 0 < t < 1. Put

γi = p−1
(
F

(
[0, 1], 1

i

))
∩ σ

(note that γ1 = γ). Each subset γi ⊂ X is connected (as the closure of the connected subset
p−1(F ((0, 1), 1

i ))) and compact as the preimage of a compact subset under a proper mapping.
Consider the upper limit

Γ =
⋂
N

⋃
i≥N

γi.

Since each subset γi is connected and compact, Γ is also connected and compact. However, on the
other hand, p(Γ) = y, so that Γ consists of a finite number of points by the definition of a branched
combinatorial covering. The contradiction obtained completes the proof. �

5. FACE RINGS

The face ring of a simplicial complex is an important concept that allows one to translate
combinatorial properties into the language of commutative and homological algebra. This ring was
introduced by Stanley and Reisner (see [15]) and is often called a Stanley–Reisner ring. A gener-
alization of the face ring to arbitrary simplicial partially ordered sets was first introduces in [14],
where important algebraic properties of these rings were also described. However, in the present
account, which is intended for topological applications, we follow [11] (see also [2, Ch. 4]).

First, suppose that K is a simplicial complex and identify its vertex set M with the index set
[m] = {1, . . . ,m}.

Let Z[v1, . . . , vm] be a graded ring of polynomials with integer coefficients and with m degree-2
generators. The Stanley–Reisner ring (or the face ring) of a simplicial complex K is the graded
quotient ring

Z[K] = Z[v1, . . . , vm]/IK ,

where IK is the homogeneous ideal generated by the monomials vi1 · . . . · vik for which {i1, . . . , ik}
is not a simplex in K.

Next, we slightly modify the previous definition by extending both the set of generators of the
polynomial ring and the set of relations. In this case, the quotient ring Z[K] remains unchanged, and
the new definition thus obtained can easily be generalized to arbitrary simplicial partially ordered
sets.

For any two simplices σ, τ ∈ K, denote by σ ∧ τ their unique greatest lower bound (i.e., the
maximal simplex that is contained simultaneously in σ and τ). The greatest lower bound always
exists but may be an empty simplex ∅ ∈ K. On the other hand, the least upper bound of the
simplices σ and τ (i.e., the minimal simplex that simultaneously contains σ and τ) may not exist.
If the least upper bound exists, it is unique, and we denote it by σ ∨ τ .
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Consider a polynomial ring Z[vσ : σ ∈ K \ ∅], which has one generator per each nonempty
simplex in K. Introduce a grading by putting deg vσ = 2|σ|. In addition, identify v∅ with 1. The
following proposition gives an alternative “less economic” representation for the face ring Z[K].

Proposition 5.1. There is a canonical isomorphism of graded rings

Z[vσ : σ ∈ K \ ∅]/I ∼= Z[K],

where I is the ideal generated by all elements of the form

vσvτ − vσ∧τvσ∨τ .

Here, we assume that vσ∨τ = 0 if the least upper bound σ ∨ τ does not exist.
Proof. The isomorphism is established by a mapping that sends vσ into

∏
i∈σ vi. �

Now, let S be an arbitrary simplicial cell complex. Then, for any two elements σ, τ ∈ S, the
set σ ∨ τ of their least upper bounds may consist of more than one element (but may also be
empty). The set σ∧ τ of greatest lower bounds is always nonempty; moreover, it consists of a single
element provided that σ ∨ τ 
= ∅. Introduce a graded polynomial ring Z

[
vσ : σ ∈ S \ 0̂

]
, where

deg vσ = 2 rkσ. We also formally set v0̂ = 1.
The face ring of a simplicial cell complex S is the quotient ring

Z[S] := Z
[
vσ : σ ∈ S \ 0̂

]
/IS ,

where IS is the ideal generated by all elements of the form

vσvτ − vσ∧τ

∑
ρ∈σ∨τ

vρ. (5.1)

In particular, if σ ∨ τ = ∅, then vσvτ = 0 in Z[S].
The relations that generate the ideal IS allow one to express the product of the generators vσ

and vτ that correspond to incomparable elements σ, τ ∈ S as a sum of monomials each of which is
a product of ordered generators. In the algebraic literature, such relations are called straightening
relations.

Example 5.2. Consider the complex S described in Example 2.1 for n = 2. Thus, S is
obtained by gluing together two segments along their boundaries. We have two elements of rank 1
(two vertices), say, σ1 and σ2, and two elements of rank 2 (two maximal simplices), say, τ1 and τ2.
Then, the face ring is expressed as

Z[S] = Z[vσ1 , vσ2 , vτ1 , vτ2 ]/(vτ1 + vτ2 = vσ1vσ2 , vτ1vτ2 = 0),

where deg vσ1 = deg vσ2 = 2 and deg vτ1 = deg vτ2 = 4.
It was pointed out in [2, Ch. 3] that a simplicial mapping φ : K1 → K2 of simplicial complexes

induces a mapping of the face rings φ∗ : Z[K2] → Z[K1], i.e., the face ring has a contravariant
character. A similar property also holds for arbitrary simplicial cell complexes.

Proposition 5.3. Let φ : S1 → S2 be a simplicial mapping. Define a mapping of the graded
polynomial rings

φ∗ : Z
[
vτ : τ ∈ S2 \ 0̂

]
→ Z

[
vσ : σ ∈ S1 \ 0̂

]
, vτ 	→

∑
vσ,

where the sum is over all simplices σ ∈ S1 such that φ(σ) = τ and dim σ = dim τ . Then, the
mapping φ∗ induces a mapping of the face rings Z[S2] → Z[S1] (which will be denoted by the same
symbol).

Proof. One can directly verify that φ∗(IS2) ⊂ IS1 . �
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Let S be a simplicial cell complex of dimension n. By analogy with the above procedure, we
define a face ring k[S] over an arbitrary commutative ring k with unity (along with k = Z, we
are interested in the case k = Q). A sequence t1, . . . , tn of algebraically independent homogeneous
elements of the ring k[S] is called a homogeneous system of parameters if k[S] is a finitely generated
k[t1, . . . , tn]-module. Thus, the sequence of homogeneous elements t1, . . . , tk of length k ≤ n is a
part of the homogeneous system of parameters if and only if dimk[S]/(t1, . . . , tk) = n − k, where
dim denotes the Krull dimension. A system of parameters that consists of degree-2 elements is
called linear. A sequence of elements t1, . . . , tk ∈ k[S] is called regular if k[S] is a free k[t1, . . . , tk]-
module. A homogeneous regular sequence is a part of the homogeneous system of parameters;
however, the converse is not true. A ring k[S] is called a Cohen–Macaulay ring (and a complex S
is called a Cohen–Macaulay complex ) if it admits a regular sequence of length n = dimk[S] =
dimS + 1. An example of the Cohen–Macaulay ring is given by a simplicial cellular decomposition
of a sphere [14].

For every simplex σ ∈ S, define the restriction homomorphism

sσ : k[S] → k[S]/(vτ : τ 
≤ σ).

Let dimσ = k − 1 and {i1, . . . , ik} be the vertex set of the simplex σ. Then, it is obvious that
the image of the homomorphism sσ is a polynomial ring k[vi1 , . . . , vik ] of k degree-2 generators.
The following proposition gives a characterization of linear systems of parameters in the face rings
of simplicial cell complexes and generalizes the corresponding proposition [15, Lemma III.2.4] for
simplicial complexes (see also [6, Theorem 7.2]).

Theorem 5.4. A sequence t = (t1, . . . , tn) of degree-2 elements of the ring k[S] is a linear
system of parameters if and only if, for every simplex σ ∈ S, the sequence sσ(t) generates the ring
of polynomials k[vi : i ∈ σ].

Proof. First, suppose that t is a linear system of parameters. The mapping sσ induces an
epimorphism of quotient rings:

k[S]/(t) → k[vi : i ∈ σ]/sσ(t).

Since t is a system of parameters, it follows that dimk[S]/(t) = 0, i.e., dimk k[S]/(t) < ∞. There-
fore, k[vi : i ∈ σ]/sσ(t) < ∞. However, this happens only when sσ(t) multiplicatively generates a
polynomial ring over k.

Now, suppose that, for every σ ∈ S, the set sσ(t) generates the ring k[vi : i ∈ σ]. Then, we have

dimk

⊕
σ∈S

k[vi : i ∈ σ]/sσ(t) < ∞.

Moreover, the sum s : k[S] →
⊕

σ∈S k[vi : i ∈ σ] of restriction homomorphisms is a monomor-
phism [2, Theorem 4.8]. Hence, dimk k[S]/(t) < ∞ as well (see [5, Lemma 4.7.1]). Thus, t is a
linear system of parameters. �

It is clear that the theorem remains valid if we consider only restrictions sσ(t) onto maximal
simplices σ ∈ S. In particular, if S is a pure complex (all maximal simplices have dimension n− 1),
then a sequence t1, . . . , tn is a linear system of parameters if and only if its restriction onto each
(n − 1)-simplex yields a basis in the space of linear forms (over k).

Let KS be the simplicial complex constructed by the simplicial cell complex S in the proof of
Theorem 4.1. It is obvious that the ring k[KS ] coincides with a subring of the ring k[S] generated
by degree-2 elements.

Lemma 5.5. The ring Q[S] admits a linear system of parameters.
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Proof. If S is a simplicial complex, then the ring Q[S] is generated by linear elements, and the
assertion of the lemma follows from the Noether normalization lemma (see, e.g., [5, Theorem 1.5.17]).
In the general case, Theorem 5.4 implies that the linear system of parameters in the ring Q[KS ] is
also a linear system of parameters for Q[S]. �

Example 5.6. In the face ring from Example 5.2, the set vσ1 , vσ2 forms a linear system of
parameters, while the elements vτ1 and vτ2 are the roots of the algebraic equation x2−(vσ1vσ2)x = 0.

The question of the existence of a liner system of parameters in the ring Z[S] is much more
delicate even when S is a simplicial complex (in this case, the Noether normalization lemma states
only the existence of a nonlinear homogeneous system of parameters). This question is closely
related to the calculation of the rank of a freely acting torus on certain manifolds (see Section 6
below). Here, we only note that an example of a simplicial complex K for which the ring Z[K] does
not admit a linear system of parameters is given by the boundary of a cyclic polyhedron Cn(m)
with m ≥ 2n ≥ 16 vertices. This example was constructed in [6, Example 1.22] (it is also presented
in [2, Example 6.33]).

Lemma 5.7. Let v1, . . . , vm be degree-2 elements in the ring Z[S] that correspond to the vertices
of the complex S. Then, the following identity holds in the ring Z[S]:

(1 + v1) · . . . · (1 + vm) =
∑
σ∈S

vσ. (5.2)

Proof. Let ver σ denote the vertex set of the element σ ∈ S. Relations (5.1) in the ring Z[S]
imply the relations

vi1 · . . . · vik =
∑

σ : ver σ={i1,...,ik}
vσ. (5.3)

Summing up these relations over all σ ∈ S, we obtain the required identity. �
The ring Z[S] admits a canonical Nm-grading defined as mdeg vσ = 2

∑
i∈ver σ ei, where

ei ∈ Nm is the ith basis vector. In particular, mdeg vi = 2ei. If all the rings are assumed to
be multigraded, then formula (5.2) is equivalent to the set of relations (5.3). It follows from Propo-
sition 5.1 that relations (5.3) generate the ideal IS in the case when S is a simplicial complex.
However, the following example shows that, for an arbitrary simplicial partially ordered set S,
the face ring Z[S] may not be isomorphic to the quotient ring of the Nm-graded polynomial ring
Z[vσ : σ ∈ S] by relation (5.2).

Example 5.8. Consider a simplicial cell complex S obtained by identifying two 2-simplices τ1

and τ2 at three their vertices. Consider two edges ε1 ⊂ τ1 and ε2 ⊂ τ2 that have common vertices,
and let π be the opposite vertex of the complex S. Then, the following relations hold in the ring
Z[S]: vε1vπ = vτ1 and vε2vπ = vτ2 ; however, relation (5.2) only implies vε1vπ + vε2vπ = vτ1 + vτ2 .

The polynomial PS =
∑

σ∈S vσ was considered by Alexander in [4] (1930) in relation to the
formalization of the concept of simplicial complex in combinatorial topology (however, as we pointed
out in the introduction, the concept of face ring appeared much later).

A natural question arises: To what extent a simplicial partially ordered set S is determined by
its face ring Z[S]? In the case of simplicial complexes, the following simple proposition holds.

Proposition 5.9. The ring homomorphism F : Z[K2] → Z[K1] is a homogeneous degree-0
isomorphism of Nm-graded face rings of two simplicial complexes if and only if F is induced by a
simplicial isomorphism K1 → K2.

Proof. Let F be a homogeneous degree-0 isomorphism of Nm-graded rings. Then, it establishes
a bijection between the vertex sets of the complexes K1 and K2. Therefore, F (PK1) = PK2 , and
the assertion follows from relation (5.2). The converse is obvious. �
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Even the simplest example of a simplex (when the face ring is a polynomial ring) shows that one
cannot replace “isomorphism of Nm-graded rings” by “isomorphism of graded rings” in the above
proposition. In order that the isomorphism F : Z[K2] → Z[K1] of graded rings be induced by a
simplicial isomorphism, one should additionally require that F (PK1) = PK2 . At the same time, we
do not know whether there exist nonisomorphic simplicial partially ordered sets with isomorphic
face rings.

A simplicial mapping is called nondegenerate if its restriction onto each simplex is a simplicial
isomorphism. The following proposition is obvious.

Proposition 5.10. If φ : S1 → S2 is a nondegenerate simplicial mapping, then we have
φ∗(PS2) = PS1 .

Simple examples show that the relation φ∗(PS2) = PS1 does not hold for arbitrary simplicial
mappings.

6. TORUS ACTIONS

Let K be a simplicial complex with m vertices. In [2, § 5.2], we described a cubic decomposition
cc(K) of a cone cone K ′ over the barycentric subdivision of the simplicial complex K. This cubic
decomposition is obtained by identifying the cone cone(∆m−1)′ over the barycentric subdivision
of an (m − 1)-dimensional simplex with the standard triangulation of a cube Im and considering
the embedding cone K ′ ⊂ cone(∆m−1)′. (This embedding is induced by the canonical embedding
K ⊂ ∆m−1.) Next, in [2, § 7.2], we constructed a moment–angle complex ZK as the pullback that
closes the commutative diagram

ZK −−−−→ (D2)m� �
cc(K) −−−−→ Im

where the right arrow is a projection onto the orbit space of the standard action of an m-dimensional
torus on a polydisk. Thus, if dim K = n − 1, then ZK is an (m + n)-dimensional space with
a Tm-action. This space was first introduced by Davis and Januszkiewicz in [6] in relation to the
construction of topological analogues of algebraic toric varieties. In [2], we devoted Chapters 7 and 8
to the study of various topological properties of ZK and their relations to the combinatorics of the
complex K. For instance, it is easy to prove that if K is a triangulation of an (n − 1)-dimensional
sphere, then ZK is an (m + n)-dimensional manifold (see, for example, [2, Lemma 7.13]). Further
in the present paper, using Theorem 4.1, we generalize some of the constructions related to the
space ZK to the case of arbitrary simplicial cell complexes.

Let S be an arbitrary simplicial cell complex with m vertices. Consider the composition
coneS ′ → cone K ′ → Im of the mapping induced by the branched combinatorial covering p : S → K
from Theorem 4.1 and the above-described embedding into a cube. Define a space ZS with a
Tm-action that is induced by this composition:

ZS −−−−→ ZK −−−−→ (D2)m

ρ

� � �
coneS ′ −−−−→ cone K ′ −−−−→ Im

Example 6.1. Let S be a simplicial cell complex obtained by the identification of two (n−1)-
dimensional simplices along their boundaries (see Example 2.1). Then, ZS is obtained by the
identification of two polydisks (D2)n along their boundaries. Hence, ZS ∼= S2n. In another aspect,
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this manifold with a T n-action was considered in [11] as the first example of a torus manifold that
is not a quasitoric variety in the sense of [6].

The following proposition follows obviously from the construction of the space ZS .
Proposition 6.2. The isotropy subgroups (stabilizers) of the Tm-action on ZS are coordinate

subtori of the form T ver σ ⊂ Tm, where σ is a certain simplex in S.
Let X be a space and K1 and K2 be two triangulations of X, i.e., two simplicial complexes such

that |K1| ∼= |K2| ∼= X. Two such triangulations are called combinatorially equivalent (or piecewise
linearly isomorphic) if there exists a simplicial complex K that is a subdivision of both complexes
K1 and K2. A triangulation of an (n − 1)-dimensional sphere Sn−1 is called piecewise linear (or,
shortly, a PL-sphere) if it is combinatorially equivalent to the boundary of the simplex ∂∆n. The
concepts of combinatorial equivalence and PL-sphere are directly carried over to the simplicial cell
complexes S by passing to the barycentric subdivision S ′.

Theorem 6.3. Let S be a piecewise linear simplicial cellular decomposition of a sphere Sn−1

with m vertices. Then, ZS is an (m + n)-dimensional manifold.

Proof. Consider the complex dual to the simplicial complex S ′. This complex has one hyperface
(a face of codimension 1) Fv per each vertex v of the complex S ′, where

Fv := starS′ v = {σ ∈ S ′ : v ∪ σ ∈ S ′}.

Faces of codimension k are defined as nonempty intersections of the sets of k hyperfaces. Since S ′ is
a PL-sphere, each i-dimensional face is piecewise linearly homeomorphic to an i-dimensional ball.
For each vertex v ∈ S ′, denote by Uv an open subset in cone(S ′) obtained by removing from S ′ all
the faces that do not contain v. Then, {Uv} is an open covering of the space cone(S ′); moreover,
each Uv is homeomorphic to an open subset in Rn

+ while preserving the codimension of faces. Thus,
cone(S ′) acquires the structure of a manifold with corners (see [2, Definition 6.13]). At the same
time, every point of ZS = ρ−1(cone(S ′)) lies in one of the subsets {ρ−1(Uv)}, which is an open
subset in R2n × Tm−n. Since the latter is a manifold, so is ZS . �

A T k-action on the space X is called almost free if all the isotropy subgroups are finite. The
toral rank of the space X is the greatest number k for which there exists an almost free T k-action
on X. Denote the toral rank by trk(X).

The following theorem was proved in [6, § 7.1] in the case of a simplicial complex S; however,
the arguments also apply to the general case.

Theorem 6.4. Let S be a simplicial cell complex of dimension n − 1 with m vertices. Then,
trkZS ≥ m − n.

Proof. Let us choose a linear system of parameters t1, . . . , tn in the ring Q[S] according to
Lemma 5.5. Write ti = λi1v1 + . . . + λimvm, i = 1, . . . , n; then, the matrix (λij) defines a linear
mapping λ : Qm → Qn. Replacing, if necessary, λ by kλ with a sufficiently large k, we can assume
that the mapping λ is induced by the mapping Zm → Zn, which we will also denote by λ. It
follows from Theorem 5.4 that, for any simplex σ ∈ S, the restriction λ|Zver σ : Zver σ → Zn of the
mapping λ onto the coordinate subspace Zver σ ⊂ Zm is injective. Denote by N a subgroup in
Tm that corresponds to the kernel of the mapping λ : Zm → Zn. Then, N is a product of an
(m − n)-dimensional torus and a finite group, and N intersects coordinate subgroups of the form
T ver σ ⊂ Tm along finite subgroups. Proposition 6.2 implies that N acts on ZS almost freely; this
completes the proof. �

The following toral rank conjecture is well-known (Halperin [7]): the inequality

dimH∗(X; Q) ≥ 2trk(X)
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holds for any finite-dimensional space X. This conjecture has been proved in many particular cases.
Our approach provides a rich class of torus actions. Theorem 6.4 implies that if the toral rank
conjecture holds, then

dim H∗(ZS ; Q) ≥ 2m−n.

In the case of a simplicial complex K, we proved in [1] that

H∗(ZK ; Q) ∼=
⊕

ω⊆[m]

H̃∗(Kω; Q),

where Kω is a full subcomplex in K spanned over the vertex subset ω ⊆ [m]. (A stronger result
was obtained [2, Corollary 8.8].)

Corollary 6.5. Under the toral rank conjecture, the following inequality holds for any simplicial
complex K:

dim
⊕

ω⊆[m]

H̃∗(Kω; Q) ≥ 2m−n.

This assertion, concerning the combinatorial structure of simplicial complexes, has been con-
firmed in a number of cases.

For free torus actions, the arguments used in the proof of Theorem 6.4 lead to the following
proposition.

Theorem 6.6. In the torus Tm, a toral subgroup of dimension m − n that acts freely on ZS
exists if and only if the ring Z[S] admits a linear system of parameters.

The maximal number k for which there exists a toral subgroup of dimension k in Tm that acts
freely on ZS is denoted by s(S) and is an important combinatorial invariant of a simplicial cell
complex S (for the case of simplicial complexes, see the discussion in [2, § 7.1]). Note that, for
simplicial complexes, the diagonal circle subgroup in Tm acts on ZK freely (indeed, we have m > n,
and therefore the diagonal subgroup intersects each isotropy subgroup T ver σ only at unity). Thus,
s(K) ≥ 1, and the Euler characteristic of the space ZK is equal to zero. Example 6.1 shows that
this is not the case for simplicial cell complexes S.

ACKNOWLEDGMENTS

We are grateful to G. Lupton, who turned our attention to the toral rank conjecture, and to
E.V. Shchepin for a helpful suggestion that was used in the proof of Theorem 4.1.

This work was supported by the grant of the President of the Russian Federation (project
no. NSh-2185.2003.1) and by the Russian Foundation for Basic Research (project nos. 02-01-00659
and 04-01-00702).

REFERENCES

1. V. M. Buchstaber and T. E. Panov, “Torus Actions, Combinatorial Topology, and Homological Algebra,” Usp.
Mat. Nauk 55 (5), 3–106 (2000) [Russ. Math. Surv. 55, 825–921 (2000)].

2. V. M. Buchstaber and T. E. Panov, Torus Actions in Topology and Combinatorics (MTsNMO, Moscow, 2004)
[in Russian].

3. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Nauka, Moscow, 1981) [in Russian].
4. J. W. Alexander, “The Combinatorial Theory of Complexes,” Ann. Math. 31, 292–320 (1930).
5. W. Bruns and J. Herzog, Cohen–Macaulay Rings (Cambridge Univ. Press, Cambridge, 1998), Cambridge Stud.

Adv. Math. 39.
6. M. W. Davis and T. Januszkiewicz, “Convex Polytopes, Coxeter Orbifolds and Torus Actions,” Duke Math. J.

62, 417–451 (1991).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 247 2004



COMBINATORICS OF SIMPLICIAL CELL COMPLEXES 17

7. S. Halperin, “Rational Homotopy and Torus Actions,” in Aspects of Topology (Cambridge Univ. Press, Cambridge,
1985), London Math. Soc. Lect. Note Ser. 93, pp. 293–306.

8. A. Hattori and M. Masuda, “Theory of Multi-Fans,” Osaka J. Math. 40, 1–68 (2003).
9. I. Izmestiev and M. Joswig, “Branched Covering, Triangulations, and 3-Manifolds,” math.GT/0108202.
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