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ON THE COBORDISM CLASSIFICATION OF MANIFOLDS WITH
Z/p-ACTION WHOSE FIXED-POINT SET HAS TRIVIAL NORMAL
BUNDLE

T. E. Panov UDC 515.164.24

Definition 1. An action of the group Z/p on a stably complex manifold M2n is said to be simple if the
fixed-point set consists of finitely many connected submanifolds with trivial normal bundle. A simple action
is said to be strictly simple if the weight sets of action (i.e., the sets of eigenvalues for the differential of
the action of the generator ρ ∈ Z/p at the fixed points) are identical for all fixed submanifolds of the same
dimension. Here “a stably complex manifold” stands for “a manifold with complex structure in the stable
tangent bundle.”

We obtain a complete classification of the complex cobordism classes σ ∈ ΩU containing a manifold with
simple action of Z/p. The description is given both in terms of coefficients of the universal formal group of
“geometric cobordisms” (Theorem 1) and in terms of characteristic numbers (Theorem 2 and Corollary 2).

The classification problem for strictly simple actions of Z/p was completely solved by Conner and Floyd
in [1]. (In [1], the strictly simple action from Definition 1 was simply called the “action of Z/p with fixed-point
set having a trivial normal bundle.”) Note that even in the special case of action with a finite number of
isolated fixed points the notions of simple and strictly simple action are distinct (see examples below). The
Conner–Floyd results follow from the results of our paper. At the same time, we believe that the approach
used in [1] does not allow one to obtain our more general result.

The applications of the formal group theory to problems connected with Z/p-actions were first discussed
in the pioneering article [2]. The formal group theory itself comes to topology due to the so-called formal
group of geometric cobordisms. The problem solved here was first stated in [3]. There one obtained a formula
expressing the mod p cobordism class of manifold M2n with simple action of Z/p via certain action invariants
(see (8)). Actually, the first results on the problem were obtained even earlier, in [4]. In particular, the
statement mentioned in our article as Corollary 3 was proved. In [4], as well as in our paper, the set of
cobordism classes of manifolds with simple Z/p-action is described as an ΩU -module spanned by certain
coefficients of the power system defined by the formal group of geometric cobordisms. (Here ΩU is the
complex cobordism ring of points, which is isomorphic to the polynomial ring Z[a1, a1, . . . ], deg ai = −2i as
was shown by Milnor and Novikov.) In this article, we propose a new choice of generators for the above
ΩU -module. Moreover, this choice allows us to solve the classification problem in terms of the characteristic
numbers.

Therefore, we consider an operator g of prime period p > 2 (i.e., gp = id) acting on a stably complex
manifold M2n in such a way that the fixed-point set is a union of connected submanifolds with trivial normal
bundle (e.g., is a finite number of fixed points). This means that we have a simple Z/p-action. Let the

fixed submanifolds represent the cobordism classes λj ∈ ΩU and have weights (x
(j)
k ) ∈ (Z/p)∗ (these are the

nonunit eigenvalues for the differential of g at the fixed points) in their trivial normal bundles. These data
define the cobordism class of M2n in ΩU up to elements from pΩU (see [3]). This follows from the fact that
the cobordism class of manifolds with free Z/p-action (i.e., without fixed points) belongs to pΩU , and vice
versa, in any cobordism class from pΩU , one could obviously find a manifold with free action of Z/p (e.g.,
rotating p components).

With each fixed submanifold of the cobordism class λj ∈ ΩU with weights (x
(j)
1 , . . . , x

(j)
mj), 2mj+dimλj =

2n, one could associate the so-called “Conner–Floyd invariant” α2mj−1(x
(j)
1 , . . . , x

(j)
mj) ∈ U2mj−1(BZ/p) (see [2]).
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To define it, we mention that the bordism group U∗(BZ/p) is isomorphic to the group of principal Z/p-
equivariant bordisms (see [1]). This isomorphism takes the equivariant bordism class of the manifold N with
free action of Z/p to the bordism class in U∗(BZ/p) given by the classifying map N/(Z/p) → BZ/p. Then

α2mj−1(x
(j)
1 , . . . , x

(j)
mj) is the equivariant bordism class of the unit sphere in the fiber of the (trivial) normal

bundle to λj. If we consider this unit sphere as{
(z1, . . . , zmj) ∈ C

mj

∣∣∣ |z1|2 + . . .+ |zmj |
2 = 1

}
,

then the (free) action of Z/p on it is given by

g : (z1, . . . , zmj)→ (exp(2πix
(j)
1 /p)z1, . . . , exp(2πix(j)mj/p)zmj).

The complex cobordism ring of BZ/p is U∗(BZ/p) = ΩU [[u]]/[u]p = 0, where [u]p = pΨp(u) is the p-th
power in the (universal) formal group of geometric cobordisms (see [3]). We have D(αi(1, . . . , 1)) = un−i,
where D is the Poincaré–Atiyah duality operator from U∗(L

2n−1
p ) to U∗(L2n−1p ). From this we deduce that

the ΩU -module Ũ∗(BZ/p) is generated by the elements α2i−1(1, . . . , 1) with the following relations:

0 =
[u]p
u
∩ α2i−1(1, . . . , 1). (1)

Here ∩ is the cobordism ∩-product: uk ∩ α2i−1(1, . . . , 1) = α2(i−k)−1(1, . . . , 1).
It was shown in [5] that

α2k−1(x1, . . . , xk) =

(
k∏
j=1

u

[u]xj

)
∩ α2k−1(1, . . . , 1). (2)

Adding the elements α2k−1(x1, . . . , xk), xj �= 1 mod p to the set of generators for the module Ũ∗(BZ/p) and

adding relations (2) to relations (1), we come to the ΩU ⊗Z(p)-free resolution of the module Ũ∗(BZ/p) (here
Z(p) is the ring of rational numbers whose denominators are relatively prime with p, i.e., the ring of integer
p-adics):

0 −→ F1 −→ F0 −→ Ũ∗(BZ/p) −→ 0.

Here F0 is the free ΩU ⊗ Z(p)-module spanned by α2k−1(x1, . . . , xk) and F1 is the free ΩU ⊗ Z(p)-module
spanned by the relations

a(x1, . . . , xk) = α2k−1(x1, . . . , xk)− (
k∏
j=1

u

[u]xj
) ∩ α2k−1(1, . . . , 1)

and

ak =
[u]p
u
∩ α2k−1(1, . . . , 1).

Therefore, each simple action Z/p onM2n gives a certain relation between the elements α2k−1(x1, . . . , xk)

in Ũ∗(BZ/p). Since any element from Ũ∗(BZ/p) corresponds to the bordism class of a manifold with free

Z/p-action, the converse is also true: any relation in Ũ∗(BZ/p) of the form
∑
j λjα2mj−1(x

(j)
1 , . . . x

(j)
mj) = 0,

λj ∈ ΩU , 2mj + dimλj = 2n is realized on a certain manifold M2n with a simple action of Z/p whose
cobordism class in ΩU is uniquely determined up to the elements from pΩU . This manifoldM2n is constructed
as follows. The relation in Ũ∗(BZ/p) gives us the manifold with free Z/p-action whose boundary is a union
of manifolds of the form λj×S2mj−1. Then we glue “covers” of the form λj×D2mj to the boundary to get the
closed manifold M2n, which realizes the above relation. Hence, we define the “realization homomorphism”
Φ : F1 → ΩU/pΩU = ΩU⊗Z/p. It assigns to the relation between the elements α2k−1(x1, . . . , xk) ∈ Ũ∗(BZ/p)
a mod p cobordism class of the manifold that realizes this relation as described above. The Conner–Floyd
results (cf. [1]; see also [4]) give us the following values of Φ on the basic relations from F1:

Φ(a(x1, . . . , xk)) =
〈 k∏
i=1

u

[u]xi

〉
k
mod p ∈ ΩU/pΩU ,
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Φ(ak) = −
〈 [u]p
u

〉
k
mod p ∈ ΩU/pΩU ,

where 〈 〉k stands for the coefficient of uk. Therefore, Im Φ = Λ̃(1) ⊗ Z/p, where Λ̃(1) = Λ+(1) · ΩU is
the ΩU -module spanned by the positive part Λ+(1) of the coefficient ring Λ(1) of the power system [u]k
(here [u]k is the kth power in the formal group of geometric cobordisms). The homomorphism Φ lifts to the

homomorphism Φ : F1 → Λ̃(1) ⊗ Z(p) or to the homomorphism Φ : F1 → Λ̃p(1) ⊗ Z(p), where Λ̃p(1) is the
ΩU -module spanned by Λ+(1) and p.

Thus, the problem of description of the cobordism classes of manifolds with simple Z/p-action is equiva-

lent to the problem of description of the ΩU ⊗Z/p-module Λ̃(1)⊗Z/p or ΩU ⊗Z(p)-modules Λ̃(1)⊗Z(p) and

Λ̃p(1)⊗ Z(p). These modules are ideals in ΩU ⊗ Z/p and ΩU ⊗ Z(p), respectively.

Let [u]k = ku+
∑
n≥1 α

(k)
n un+1, and so, α

(k)
n ∈ Ω−2nU are the coefficients of the power system.

Theorem 1. One could take the following coefficients αn ∈ Ω−2nU as generators of the ΩU ⊗ Z(p)-module

Λ̃(1)⊗ Z(p):

αn =

{
α
(p1)
n if n is not divisible by p− 1,

α
(p)
n if n is divisible by p− 1.

Here p1 is any generator of the cyclic group (Z/p)∗.

Remark. It follows from the Dirichlet theorem that one could choose a prime generator p1 of the cyclic
group (Z/p)∗.

Proof of Theorem 1. First, let us consider the coefficients α
(r)
n for nonprime r. Therefore, let r = p1q with

prime p1. Since [x]r = [[x]p1 ]q, we have

rx+
∑
n α
(r)
n xn+1 = q[x]p1 +

∑
n α
(q)
n ([x]p1)

n+1

= p1qx+ q
∑
n α
(p1)
n xn+1

+
∑
n α
(q)
n (p1x+

∑
m α

(p1)
m xm+1)n+1.

Taking the coefficients of xr+1 in both sides of the above identity, we get

α(r)n = P (α
(p1)
1 , . . . , α(p1)n , α

(q)
1 , . . . , α

(q)
n ),

where P is a certain polynomial with integer coefficients (without constant term). Therefore, we can write

α
(r)
n = λ1α

(p1)
1 + . . .+ λnα

(p1)
n + µ1α

(q)
1 + . . .+ µnα

(q)
n , λi, µi ∈ ΩU . Hence the coefficients α

(r)
n , r = p1q could

be excluded from the set of generators for the ΩU ⊗ Z(p)-module Λ̃(1) ⊗ Z(p). Now, if q is still not prime,
we repeat the above procedure, and so on. Finally, we obtain the set of generators that consists of only the

coefficients α
(p1)
n with prime p1. Among all prime p1, there is one particular p1 = p (the order of the group

acting on the manifold). Now, we are going to show that the above set of generators could be restricted to
the set described in the statement of the theorem.

Note that for any (prime) generator p1 of the cyclic group (Z/p)∗, one could take the coefficient α
(p1)
1 as

a generator of Λ̃(1)⊗Z(p) in dimension 1 (i.e., in Ω−2U ). Indeed, let p2 be any prime. Then [[x]p2 ]p1 = [[x]p1 ]p2.
Hence

p1p2x+ p1
∑
n α
(p2)
n xn+1 +

∑
n α
(p1)
n (p2x+

∑
m α

(p2)
m xm+1)n+1

= p2p1x+ p2
∑
n α
(p1)
n xn+1 +

∑
n α
(p2)
n (p1x+

∑
m α

(p1)
m xm+1)n+1. (3)

Taking the coefficient of x2 in both sides of the above identity, we get p1α
(p2)
1 + p22α

(p1)
1 = p2α

(p1)
1 + p21α

(p2)
1 .

Hence, (p1−p21)α
(p2)
1 = (p2−p22)α

(p1)
1 . Since p1 is a generator of (Z/p)∗, p1−p21 is invertible in Z(p). Therefore,

α
(p2)
1 = λα

(p1)
1 with λ ∈ Z(p) ⊂ ΩU ⊗ Z(p). Thus, for any prime p2 �= p1 the coefficient α

(p2)
1 is a multiple of

α
(p1)
1 , and that is why it could be excluded from the set of generators of Λ̃(1)⊗ Z(p).

Now, consider the coefficient system α1, . . . , αk, . . . introduced in the statement of the theorem (that is,
αi is the coefficient by xi+1 in the series [x]p1 if i is not divisible by p − 1 and is the coefficient by xi+1 in
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the series [x]p if i is divisible by p− 1). Suppose that we have proved that this coefficient system is a set of

generators for Λ̃(1)⊗ Z(p) in all dimensions up to n− 1. Hence, for any q and k ≤ n− 1, one has

α
(q)
k = λ(q)1 α1 + . . .+ λ(q)k αk, (4)

where λ
(q)
i ∈ ΩU ⊗ Z(p). We are going to prove that α

(q)
n could also be decomposed in such a way. It follows

from the above argument that we can consider only prime q.

First, suppose that n is not divisible by p− 1. Hence αn = α
(p1)
n , where p1 is a generator of (Z/p)∗. Let

p2 be any prime. Taking the coefficient of xn+1 in both sides of (3), we obtain

p1α
(p2)
n + pn+12 α(p1)n + µ1α1 + . . .+ µn−1αn−1

= p2α
(p1)
n + pn+11 α(p2)n + ν1α1 + . . .+ νn−1αn−1.

Here we expressed the coefficients α
(p1)
k , α

(p2)
k , k < n, as linear combinations of generators α1, . . . , αn−1, i.e.,

µi, νi ∈ ΩU ⊗ Z(p). Therefore,

p1(1− p
n
1)α

(p2)
n = (p2 − p

n+1
2 )α(p1)n + (ν1 − µ1)α1 + . . .+ (νn−1 − µn−1)αn−1. (5)

Since p1 is a generator of (Z/p)∗ and n is not divisible by p−1, we deduce that p1(1−pn1 ) is invertible in Z(p).

Thus, from (5) we obtain that α
(p2)
n is a linear combination of α1, . . . , αn−1 and αn = α

(p1)
n with coefficients

from ΩU ⊗ Z(p).
Now, suppose that n is divisible by p − 1. Before we proceed further, let us make some preliminary

remarks. It is well known (Milnor, Novikov) that a complex cobordism coefficient ring ΩU is a polynomial
ring: ΩU = Z[a1, a2, . . . , an, . . . ], an ∈ Ω−2nU . The ring ΩU is also the coefficient ring of the (universal)
formal group of geometric cobordisms. The coefficient ring of the logarithm of this formal group is the ring

ΩU(Z) = Z[b1, b2, . . . , bn, . . . ], where bn =
CP
n

n+ 1
. (This logarithm is g(u) = u +

∑
n

CP
n

n+ 1
un+1, cf. [2].) One

could find two sets {a∗i} and {b∗i } of multiplicative generators in the rings ΩU and ΩU (Z) such that the
inclusion ι0 : ΩU → ΩU(Z) is as follows:

ι0(a
∗
i ) =

{
p · b∗i if i = pk − 1 for some k > 0,

b∗i otherwise.

Let B+ be the set of elements of degree >0 in the ring B = ΩU(Z). Then (B+)2 consists of elements in ΩU (Z)
that can be decomposed into the product of two nontrivial factors. The map ι0 : ΩU → ΩU (Z) sends the

coefficients α
(p)
n of the series [x]p to the element of the form (p−pn+1)bn+((B+)2). Therefore, the coefficients

α
(p)

pk−1 could be taken as multiplicative generators of ΩU ⊗ Z(p) in dimensions pk − 1. In other dimensions

l �= pk − 1, we have α
(p)
l ∈ pΩU , i.e., α

(p)
l is divisible by p in ΩU .

Now let us return to the proof of Theorem 1. We rewrite identity (3), replacing p1 by p:

pp2x+ p
∑
m α

(p2)
m xm+1 +

∑
m α

(p)
m (p2x+ α

(p2)
1 x2 + α

(p2)
2 x3 + . . . )m+1

= p2px+ p2
∑
m α

(p)
m xm+1 +

∑
m α

(p2)
m (px+ α

(p)
1 x

2 + α
(p)
2 x

3 + . . . )m+1. (6)

Taking the coefficient of xn+1 in both sides, we get

pα
(p2)
n + pn+12 α

(p)
n +

〈∑
m<n α

(p)
m (p2x+ α

(p2)
1 x2 + α

(p2)
2 x3 + . . . )m+1

〉
n+1

= p2α
(p)
n + pn+1α

(p2)
n +

〈∑
m<n α

(p2)
m (px+ α

(p)
1 x

2 + α
(p)
2 x

3 + . . . )m+1
〉
n+1

,

where 〈 · 〉n+1 stands for the coefficient of xn+1. Let us again write the coefficients α
(p2)
m for m < n as linear

combinations of generators α1, . . . , αm. Since α
(p)
m ∈ pΩU for m �= pk − 1, we could rewrite the last identity
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as

p(1− pn)α(p2)n = p2(1− p
n
2 )α

(p)
n + p(µ1α1 + . . . µnαn)

−

〈 ∑
k:pk−1<n

α
(p)

pk−1

(
p2x+ α

(p2)
1 x2 + α

(p2)
2 x3 + . . .

)pk〉
n+1

(7)

+

〈∑
m<n

α(p2)m

(
α
(p)
p−1x

p + α
(p)

p2−1x
p2 + . . .+ α

(p)

pk−1x
pk + . . .

)m+1〉
n+1

.

The last two summands in the above formula can be rewritten as α
(p)
p−1ν1 + α

(p)

p2−1ν2 + . . . + α
(p)

pk−1νk, where

pk − 1 < n, νi ∈ ΩU . The other terms in the above identity belong to pΩU ⊗ Z(p) (i.e., are divisible by p).

The coefficients α
(p)

pi−1 are the multiplicative generators of ΩU ⊗ Z(p) in the dimensions pi − 1. Therefore, we
also have νi ∈ pΩU ⊗ Z(p), i.e., νi is divisible by p in ΩU ⊗ Z(p). Let νi = pκi with κi ∈ ΩU ⊗ Z(p). Then
from (7), we get

p(1− pn)α(p2)n = p2(1− pn2 )α
(p)
n + p(µ1α1 + . . .+ µnαn)

+p(α(p)p−1κ1 + α(p)
p2−1κ2 + . . .+ α(p)

pk−1
κk),

where pk − 1 < n, µi, κi ∈ ΩU ⊗Z(p). Since n is divisible by p− 1, we obtain that 1− pn2 is divisible by p (for
p2 �= p). Hence the entire identity above is divisible by p. Dividing it by p and noting that 1−pn is invertible in

ΩU⊗Z(p), we obtain that α
(p2)
n =

p2(1−pn2 )
p(1−pn) α

(p)
n +λ1α1+ . . .+λn−1αn−1. Thus, setting λn =

p2(1−pn2 )
p(1−pn) ΩU⊗Z(p), we

obtain the decomposition of type (4) for α
(p2)
n (since now αn = α

(p)
n ), which completes the proof of Theorem 1.

Corollary 1. Let p1 be a generator of the cyclic group (Z/p)∗. The following set could be taken as a set of

generators of the ΩU ⊗ Z(p)-module Λ̃p(1)⊗ Z(p):
α0 = p;

αn = α
(p1)
n if n is not divisible by p− 1;

αpk−1 = α
(p)

pk−1, k = 1, 2, . . .

(and no generators in other dimensions).

The following set could be taken as a set of generators of the ΩU ⊗ Z/p-module Λ̃(1)⊗ Z/p:

αn = α
(p1)
n if n is not divisible by p− 1;

αpk−1 = α
(p)

pk−1, k = 1, 2, . . .

(and no generators in other dimensions).

Proof. Let us consider the set of generators of Λ̃(1) ⊗ Z(p) constructed in Theorem 1. If n is divisible by
p− 1 and n �= pk− 1, then the elements αn are divisible by p, i.e., belong to pΩU . All other αn do not belong
to pΩU . Therefore, one could take the sets described in the corollary as generators of the corresponding
modules. The corollary is proved.

Below we are going to use the description of the ΩU ⊗Z(p)-module Λ̃p(1)⊗Z(p) in order to prove a result
similar to the well-known Stong–Hattori theorem [1]. Namely, we are going to describe the set of cobordism
classes of manifolds with a simple Z/p-action in terms of characteristic numbers.

As was mentioned in [3], the homomorphism Φ : F1 → Λ̃p(1)⊗ Z(p) can be extended up to a homomor-
phism γp : F0 → ΩU(Z)⊗ Z(p). For this γp one has

γp(x1, x2, . . . , xk) =

〈(
k∏
j=1

u

[u]xj

)
pu

[u]p

〉
k

,

where γp(x1, x2, . . . , xk) := γp(α2k−1(x1, x2, . . . , xk)), α2k−1(x1, x2, . . . , xk) ∈ F0. In particular, γp(1, . . . , 1) =〈 pu
[u]p

〉
k
.
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Thus, for any (simple) action of Z/p on M2n, the mod p cobordism class of M2n is expressed in terms of

cobordism classes λj ∈ ΩU of fixed submanifolds and weights (x
(j)
k ) ∈ (Z/p)∗ in the corresponding (trivial)

normal bundles as follows:

[M2n] ≡
∑
j

λjγp(x
(j)
1 , . . . , x

(j)
mj

) mod pΩU (8)

Now, the following question arises: which elements of the form
∑
j λjγp(x

(j)
1 , . . . , x

(j)
mj) ∈ ΩU(Z)⊗Z(p) represent

cobordism classes of manifolds with simple Z/p-action? This question was first posed in [3] and is analogous
to the Milnor–Hirzebruch problem of describing the set of elements in ΩU (Z) representing the cobordism
classes of (stably complex) manifolds. While the Milnor–Hirzebruch problem is solved in the Stong–Hattori
theorem, the answer to the above question is given in our Theorem 2. We will need the following definition.

Definition 2. Let ω =
∑
i ki · (i), i, ki ∈ Z, i > 0, ki ≥ 0, be a partitioning of n = ‖ω‖ =

∑
i ki · i (i.e., n

is decomposed into a sum of positive integers, and the number i enters this sum ki times). We say that the
partitioning ω is divisible by p− 1 if all i such that ki �= 0 are divisible by p− 1 (i.e., all the summands are
divisible by p − 1; obviously, such partitionings exist only for those n divisible by p − 1). We say that the
partitioning ω is non-p-adic if, for any j > 0, one has kpj−1 = 0 (i.e., there are no summands of the form
pj − 1).

Theorem 2. The element σ ∈ ΩU (Z)−2n⊗Z(p) belongs to the ΩU ⊗Z(p)-module Λ̃p(1)⊗Z(p) and, therefore,
represents the cobordism class of the manifold with simple Z/p-action if and only if all its K-theory charac-
teristic numbers sω(σ), ω =

∑
i ki · (i), ‖ω‖ =

∑
i ki · i ≤ n belong to Z(p), and for all partitionings ω divisible

by p− 1 the cohomological characteristic numbers sω(σ), ‖ω‖ = n are zero mod p.

Proof. (a) Necessity. Let σ ∈ Λ̃p(1) ⊗ Z(p). Note that the set of generators for the ΩU ⊗ Z(p)-module

Λ̃p(1)⊗ Z(p) described in Corollary 1 has the following property: each of its elements αi ∈ Λ̃p(1)⊗ Z(p) is at
the same time a multiplicative generator of ΩU ⊗Z(p) in dimension −2i. However, the above set of generators

of Λ̃p(1)⊗Z(p) has no elements in dimensions −2i such that i is divisible by p− 1 and i �= pk − 1. Therefore,
we add the missing generators αi in these dimensions to get the whole set of multiplicative generators for
ΩU ⊗ Z(p). Now, we have ΩU ⊗ Z(p) = Z(p)[α1, α2, . . . ].

Since σ ∈ Λ̃p(1)⊗ Z(p) ⊂ ΩU ⊗ Z(p), we see that all K-characteristic numbers sω(σ) are in Z(p).
If n is not divisible by p− 1, then there are no partitionings ω divisible by p− 1.
Now, let n = m(p− 1). One could write σ as a homogeneous polynomial of degree −2m(p− 1) in αi:

σ =
∑

‖ω‖=m(p−1)

rωαω = rm(p−1)αm(p−1) + . . . , (9)

where ω =
∑
i ki · (i), αω = αk11 · α

k2
2 · . . . . Now, it follows from the description of Λ̃p(1) ⊗ Z(p) given in

Corollary 1 that σ ∈ Λ̃p(1)⊗ Z(p) if and only if for all non-p-adic and divisible by p− 1 partitionings ω the
coefficients rω in decomposition (9) are zero modulo p.

Consider the Chern–Dold character chU in cobordisms [3]: chU(u) = t+
∑
i≥1 βit

i+1. Here u = cU1 (ζ) ∈
U2(CP∞) is the first cobordism Chern class of the universal line bundle, t = cH1 (ζ) ∈ H2(CP∞) is that in
cohomologies, and the coefficients βi are from ΩU (Z). Then, for any σ ∈ Ω−2nU , σ =

∑
‖ω‖=n

sω(σ)βω holds and

B = ΩU (Z) = Z[β1, β2, . . . ] (i.e., the coefficient ring of the Chern–Dold character coincides with ΩU (Z)).
Moreover, αi = ei · βi + ((B+)2) if i �= pk − 1 and αi = pei · βi + ((B+)2) if i = pk − 1 with invertible
ei ∈ Z(p). Now, let us write σ as a homogeneous polynomial in βi. Since all βi have integer homological
characteristic numbers, to prove the necessity of the theorem it suffices to show that the coefficient of βω in
the decomposition of σ is zero modulo p for all partitionings ω =

∑
i ki · (i) divisible by p−1. This coefficient

is the corresponding homological characteristic number sω(σ), which could be decomposed as follows:

sω(σ) =
∑
ω′:ω′⊃ω

rω′sω(αω′), (10)
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where ω′ ⊃ ω means that ω refines ω′. This coefficient is divisible by p. Indeed, if the partitioning ω′ =∑
i k
′
i · (i) is divisible by p−1 and is non-p-adic, then rω′ is zero modulo p, since σ ∈ Λ̃p(1)⊗Z(p) (see above).

If summands of the form pk − 1 enter the partitioning ω′, then αω′ ∈ pΩU(Z)⊗ Z(p), i.e., sω(αω′) is divisible
by p. The necessity of the theorem is proved.

(b) Sufficiency.
Since all K-characteristic numbers of σ are in Z(p), one could deduce from the Stong–Hattori theorem [6]

that σ ∈ ΩU ⊗ Z(p). Suppose, moreover, that the characteristic number sω(σ) is zero modulo p for any
divisible by p− 1 partitioning ω =

∑
i ki · (i), ‖ω‖ = n.

Consider again the generator set α1, α2, . . . for ΩU ⊗ Z(p) constructed above. In order to prove that

σ ∈ Λ̃p(1)⊗Z(p), one needs to show that for every divisible by p−1 and non-p-adic partitioning ω =
∑
i ki ·(i),

the coefficient rω in decomposition (9) is zero modulo p. Let ω be such a partitioning. We can rewrite
identity (10) as follows:

sω(σ) = rωsω(αω) +
∑

ω′⊃ω,ω′ �=ω

rω′sω(αω′). (11)

One can assume by induction that if a partitioning ω′ such that ω′ ⊃ ω, ω′ �= ω, ‖ω′‖ = m(p−1) is non-p-adic,
then the coefficient rω′ is divisible by p. If the partitioning ω′ =

∑
i k
′
i · (i) is not non-p-adic (i.e., there are

some summands of the form pk − 1), then sω(αω′) is divisible by p. In any case, the second summand on the
right-hand side of (11) is zero modulo p. The left-hand side of (11) is zero modulo p by assumption. Since
ω is non-p-adic, we have αω = e · βω + . . . with invertible e ∈ Z(p). Therefore, sω(αω) is not divisible by p.
Thus, it follows from (11) that rω is zero modulo p. The theorem is proved.

Corollary 2. The element σ ∈ ΩU represents the cobordism class of manifolds with Z/p-action whose fixed-
point set has trivial normal bundle if and only if for all divisible by p− 1 partitionings ω, the cohomological
characteristic numbers sω(σ), ‖ω‖ = n, are zero modulo p.

Corollary 3. Each cobordism class of dimension n ≤ 4p− 6 contains a manifold Mn with simple action of
Z/p.

In dimension n = 4p− 4, there exist manifolds (e.g., CP2p−2) whose cobordism class does not contain a
manifold with a simple action of Z/p.

In [1], it was shown by means of methods not involving the formal group theory that a cobordism class
σ ∈ ΩU contains a manifold with strictly simple action of Z/p if and only if all the characteristic numbers
σω(σ) are zero modulo p. More precisely, it was shown in [1] that the set of cobordism classes of manifolds
with strictly simple Z/p-action coincides with the ΩU -module spanned by the set Y 0 = p, Y 1, Y 2, . . . , where

Y i ∈ Ωp
i−1
U are the so-called “Milnor manifolds.” The manifold Y i is uniquely determined by the following

conditions: s(pi−1)(Y
i) = p and sω(Y

i) is divisible by p for every ω. For the purposes of description of the set
of cobordism classes in terms of characteristic numbers, one could consider ΩU ⊗Z(p)-modules instead of ΩU -

modules. Hence one could take the elements α
(p)

pi−1 from Corollary 1 as the representatives of the cobordism

classes of Y i. Now we see that the ΩU ⊗ Z(p)-module ΩU [p, Y 1, Y 2, . . . ]⊗ Z(p) studied by Conner and Floyd

is included in our ΩU ⊗Z(p)-module Λ̃p(1)⊗Z(p). Indeed, the set of generators for the Conner–Floyd module

is a subset of the generator set for Λ̃p(1)⊗ Z(p).
Finally, we note that if a certain cobordism class σ ∈ ΩU contains a representative M with strictly

simple action of Z/p, then any simple action of Z/p on M need not be strictly simple. Indeed, let us consider
M1 = CPp−1 on which the generator ρ ∈ Z/p acts as follows: ρ(z1 : . . . : zp) = (z1 : ρz2 : . . . : ρp−1zp) (this
simple action with p fixed points is strictly simple as well), and M2 = CP1, ρ(z1 : z2) = (z1 : ρz2) (this simple
action with 2 fixed points is not strictly simple). Then one has two simple actions of Z/p on M = M1 ×M2:
ρ(a, b) = (ρa, b) and ρ(a, b) = (a, ρb), a ∈ CPp−1, b ∈ CP1. The first one is strictly simple, while the second
one is not.

The author is grateful to Prof. V. M. Buchstaber for useful recommendations, stimulating discussions,
and attention to this research.
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