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ABSTRACT. In the first part of this survey we give a modernised exposition of the struc-
ture of the special unitary bordism ring, by combining the classical geometric methods of
Conner—Floyd, Wall and Stong with the Adams—Novikov spectral sequence and formal
group law techniques that emerged after the fundamental 1967 work of Novikov. In the
second part we use toric topology to describe geometric representatives in SU-bordism
classes, including toric, quasitoric and Calabi—Yau manifolds.
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Introduction

SU-bordism is the bordism theory of smooth manifolds with a special unitary structure
in the stable tangent bundle. Geometrically, an SU-structure on a manifold M is defined by
a reduction of the structure group of the stable tangent bundle of M to the group SU(N).
Homotopically, an SU-structure is the homotopy class of a lift of the map M — BO(2N)
classifying the stable tangent bundle to a map M — BSU(N). A manifold M admits an
SU-structure whenever it admits a stably complex structure with ¢; (7 M) = 0.

The theory of bordism and cobordism experienced a spectacular development in the
beginning of the 1960s. Most leading topologists of the time contributed to this develop-
ment. The idea of bordism was first explicitly formulated by Pontryagin [43] who related
the theory of framed bordism to the stable homotopy groups of spheres. In the early works
such as Rokhlin [47] bordism was called “intrinsic homology”, referring to Poincaré’s orig-
inal idea of homological cycles. The most basic of bordism theories, unoriented bordism,
was the subject of the fundamental work of Thom [51], who calculated the unoriented
bordism ring 2° completely. The description of the oriented bordism ring 2°° was com-
pleted by the end of the 1950s in the works of Novikov [38, 39] (the ring structure modulo
torsion) and Wall [53] (products of torsion elements), with important earlier contribution
made by Thom [51] (description of the ring 2°¢ ® Q), Averbuch [4] (absence of odd
torsion), Milnor [33] (the additive structure modulo torsion) and Rokhlin [47].

The theory culminated in the calculation of the complex (or unitary) bordism ring
Y in the works of Milnor [33] and Novikov [38, 39]. The ring 2V was shown to be
isomorphic to a graded integral polynomial ring Z[a;: ¢ > 1] on infinitely many generators,
with one generator in every even degree, deg a; = 2i. This result has since found numerous
applications in algebraic topology and beyond. We review the unitary bordism theory in
Section 1, since it is instrumental in the subsequent description of the structure of the
SU-bordism ring.

The study of SU-bordism in the 1960s outlined the limits of applicability of methods
of algebraic topology. The coefficient ring £2°V is considered to be known. It is not a
polynomial ring, although it becomes so after inverting 2. The main contributors here are
Novikov [39] (description of the ring 25V @ Z[}]), Conner and Floyd [22] (products of
torsion elements), Wall [54] and Stong [50] (the multiplicative structure of £2°V /Tors).
Nevertheless, as noted by Stong [50, p. 266], “an intrinsic description of 0SU /Tors is
extremely complicated”. The best known description of the ring £2°V /Tors is a subtly
embedded subring in the polynomial ring W, the coeflicient ring of Conner—Floyd’s theory
of ¢i-spherical manifolds (see the details in Section 6).

The Adams—Novikov spectral sequence and formal group law techniques brought in
topology by the fundamental work of Novikov [40] led to a new systematic approach to
earlier geometric calculations with the SU-bordism ring. In particular, the exact sequence
of Conner and Floyd (0.1) relating the graded components of the rings £2°Y and W admits
an intrinsic description in terms of nontrivial differentials in the Adams—Novikov spectral
sequence for the MSU spectrum (see Section 5). This approach was further developed
in the context of bordism of manifolds with singularities in the works of Mironov [34],
Botvinnik [9] and Vershinin [52]. The main purpose was to describe the coefficient ring
257 of the next classical bordism theory, symplectic bordism (nowadays also known as
quaternionic bordism), which still remains unknown and mysterious. See [12, §3] for an
account of results on 257 known by 1975. The AdamsNovikov spectral sequence has also
become the main computational tool for the stable homotopy groups of spheres [45].

There is also the classical problem of finding geometric representatives of bordism
classes in different bordism theories, in particular, for the unitary and special unitary
bordism rings. The importance of this problem was emphasised in the original works such
as Conner and Floyd [22].
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Over the rationals, the bordism rings are generated by projective spaces, but the
integral generators are more subtle as they involve divisibility conditions on characteristic
numbers. One of the few general results on geometric representatives for bordism classes
known from the early 1960s is that the complex bordism ring 2V, which is an integral
polynomial ring, can be generated by the so-called Milnor hypersurfaces H(n1,ns). These
are hyperplane sections of the Segre embeddings of products CP™ x CP™ of complex
projective spaces. Similar generators exist for unoriented and oriented bordism rings.

The early progress was impeded by the lack of examples of higher-dimensional (stably)
complex manifolds for which the characteristic numbers can be calculated explicitly. With
the appearance of toric varieties in the late 1970s and subsequent development of toric
topology in the beginning of this century [15], a host of explicitly constructed concrete
examples of stably complex and SU-manifolds with a large torus symmetry has been
produced. The characteristic numbers of these manifolds can be calculated effectively using
combinatorial-geometric techniques. These developments enriched bordism and cobordism
theory with new geometric methods.

In [18], Buchstaber and Ray constructed a set of generators for 2V consisting entirely
of complex projective toric manifolds B(n,n2), which are projectivisations of sums of line
bundles over the bounded flag manifolds. Another toric family {L(n,n2)} with the same
property is presented in Section 8. Characteristic numbers of toric manifolds satisfy quite
restrictive conditions (e.g. their Todd genus is always 1) which prevent the existence of
a toric representative in every bordism class; quasitoric manifolds enjoy more flexibility.
Wilfong [55] identified low-dimensional complex bordism classes which contain projective
toric manifolds (there is a full description in dimensions up to 6, and partial results in
dimension 8). Furthermore, by a result of Solomadin and Ustinovskiy [49], polynomial
generators of the ring 2V can be chosen among projective toric manifolds (a partial result
of this sort was obtained earlier in [56]). Quasitoric manifolds enjoy more flexibility: it
was shownby Buchstaber, Panov and Ray [16] that one can get a geometric representative
in every complex bordism class if toric manifolds are relaxed to quasitoric ones; the latter
still have a large torus action, but are only stably complex instead of being complex. In
part II of this survey we review similar results in the context of SU-bordism.

A renewed interest in SU-manifolds has been stimulated by the study of mirror sym-
metry and other geometric constructions motivated by theoretical physics; the notion of
a Calabi—Yau manifold plays a central role here. By a Calabi—Yau manifold one usually
understands a Kéhler SU-manifold; it has a Ricci flat metric by a theorem of Yau. The
relationship between Calabi—Yau manifolds and SU-bordism is discussed in Sections 11-13
of this survey.

Part I contains the structure results on the SU-bordism ring 2°V. We combine geomet-
ric methods of Conner—Floyd, Wall and Stong with the Adams—Novikov spectral sequence
and formal group law techniques in this description.

Section 1 is a summary of complex bordism theory. By a theorem of Milnor and
Novikov,

QY = Za;:i>1], dega; = 2i,
and two stably complex manifolds are bordant if and only if they have identical Chern

characteristic numbers. Polynomial generators are detected by a special characteristic
number s; (sometimes called the Milnor number). For any integer i > 1, set

1 if i+ 1 # p* for any prime p;
m; =
' p if i+ 1 = pF for some prime p and integer k > 0.

Then the bordism class of a stably complex manifold M 2 may be taken to be the 2i-
dimensional generator a; if and only if s;[M%] = +m,.
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SU-manifolds and SU-bordism are introduced in Section 2. By a theorem of Novikov,
25U @ Z[%] is a polynomial algebra with one generator in every even degree > 4:

VL 22y i > 2], degy; = 2i.

The bordism class of an SU-manifold M? may be taken to be the 2i-dimensional generator
y; if and only if s;[M?] = +m;m;_1 up to a power of 2. The extra divisibility in dimensions
2pF comes from the simple observation that the s;-number of an SU-manifold M?% of
dimension 2i = 2p* is divisible by p (Proposition 2.2).

The algebra of operations AY in complex cobordism and the Adams-Novikov spectral
sequence are considered in Section 3.

The AY-module structure of U*(MSU) needed for calculations with the Adams-
Novikov spectral sequence is determined in Section 4. Two geometric operations are in-
troduced. The boundary homomorphism 9: 2Y — QU , sends a bordism class [M?"] to
the bordism class [N?"~2] dual to c¢;(M) = cy(det TM). The restriction of det TM to N
is the normal bundle v(N C M). The stably complex structure on N is defined via the
isomorphism TM|y = TN @& v(N C M). Then ¢;(N) =0, so N is an SU-manifold. This
implies that 0% = 0.

Similarly, the homomorphism A: 2% — QY _, takes a bordism class [M?"] to the
bordism class of the submanifold L?"~* dual to —c?(M) = c1(det TM)eci(det TM) with
the restriction of det 7 M & det T M giving the complex structure in the normal bundle.

The AV-module U*(MSU) is then identified with the quotient AY/(AVA + AV9)
(Theorem 4.5).

The Adams—Novikov spectral sequence for the MSU spectrum is calculated in Sec-
tion 5, and the consequences are drawn for the structure of the SU-bordism ring £25V.
It is proved in Theorem 5.8 that the kernel of the forgetful homomorphism 2°V — QU
consists of torsion elements, and every torsion element in 25V has order 2.

To describe the torsion part of 25V, Conner and Floyd [22] introduced the group

Wap, = Ker(A: QQUn — an_4)

and identified it with the the subgroup of £2¥ consisting of bordism classes [M?"] such
that every Chern number of M?" of which ¢? is a factor vanishes (see Theorem 6.3). The
forgetful homomorphism decomposes as 25U — Wh, — 029 = and the restriction of the
boundary homomorphism 0: Wa,, — Way,_9 is defined. (A similar approach was previously
used by Wall [53] to identify the torsion of the oriented bordism ring £2°¢.)

The relationship between the groups 25V and W, is described by the following exact
sequence of Conner and Floyd:

(0.1) 0— 25V, 0 28U 2w, L 28U, 2 st o,

where 6 is the multiplication by the generator 6 € Qf U > 7, a is the forgetful homo-
morphism, and a8 = —9: Wa, — Wha,_o. This exact sequence has the form of an exact
couple, whose derived couple can be identified with the Es term of the Adams—Novikov
spectral sequence for M SU (see Lemma 5.9).

Homology of (Wi, ) was described by Conner and Floyd [22, Theorem 11.8] as a
polynomial algebra over Zs on the following generators:

H(W*,(?) %JZQ[LUQ,WMC: k} 2], degw2 :4, degw4k = 8k.
This leads to the following description of the free and torsion parts of 2°V (Theorem 5.11):
(a) Tors 25V = 0 unless n = 8k + 1 or 8k + 2, in which case Tors 25V is a Zy-vector
space of rank equal to the number of partitions of k.
(b) 25V / Tors is isomorphic to Ker(9: W — W) if 2i # 4 mod 8 and is isomorphic
to Im(90: W — W) if 2i =4 mod 8.
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(¢) There exist SU-bordism classes wy, € ngU , k = 1, such that every torsion
element of 29V is uniquely expressible in the form P -6 or P - 62 where P is a
polynomial in w4 with coefficients 0 or 1. An element wyy, € QSS,CU is determined
by the condition that it represents a polynomial generator wyy in Hgi (W, 0) for

k>2,and wy € Qg U represents w3.

The direct sum W = @i>0 Wh; is not a subring of 2Y: one has [CP!] € W», but

c3[CP! x CP'Y] =8 # 0, so [CP!] x [CP'] ¢ W,. However, W becomes a commutative ring
with unit with respect to the twisted product

axb=ua-b+2[V*'-da-0b,

where - denotes the product in 2V and V* = CP! x CP! — CP2. This leads to a complex-
oriented multiplicative cohomology theory introduced and studied by Buchstaber in [11].

The ring structure of W is described in Theorem 6.10: W is an integral polynomial
ring on generators in every even degree except 4:

W Zlxy, 200 >3], x=[CPY, degx; = 2i,

with s;(z;) = mym;_1 for i > 3. The boundary operator 9: W — W, 9% = 0, satisfies the
identity
d(a*b) =ax0b+ da*b— x1*dax*Jb.

and the polynomial generators of W can be chosen so as to satisfy the relations
Oxr1 =2, O0x9 = T2i—1.

The ring structure of 25V is described in Section 7. The forgetful map a: 2V — Wis
a ring homomorphism. Therefore, the ring 25V /Tors can be described as a subring of W.
We have
W ® Z[3] = Z[3][x1, 2op—1, 2%k — T122k-1: k = 2],
2

where x{ = 21 * 21 is a J-cycle, and each of the elements xo;_; and 2x9; — x1295—1 With
k > 2 is a d-cycle.

It follows from the description of the ring W that there exist indecomposable elements
Y € Q%U, i > 2, such that s;(y;) = mym;—1 if @ is odd, s2(y2) = —48, and s;(y;) =
2m;m;—1 if 7 is even and ¢ > 2. These elements are mapped as follows under the forgetful
homomorphism «: 25V — W:

2
Y2 > 2X7,  Yok—1 b Tok—1, Yok b+ 2Top — T1T2k—1, K = 2.

In particular, 25V @ Z[3] = Z[3][y;: i > 2] embeds in W ® Z[}] as the polynomial subring
generated by x%, Top—1 and 2T9 — T1XTop_1.

In Part II we describe geometric representatives for SU-bordism classes arising from
toric topology.

In Section 8 we collect the necessary facts about toric varieties and quasitoric mani-
folds, their cohomology rings and characteristic classes.

In Section 9 we provide explicitly constructed families of quasitoric manifolds that
admit an SU-structure, following Lii and Panov [31]. Quasitoric SU-manifolds can be
constructed by taking iterated complex projectivisations (which are projective toric man-
ifolds) and then modifying the stably complex structure so that the first Chern class
becomes zero. The underlying smooth manifold of the result is still toric, but the stably
complex structure is not the standard one. Nevertheless, the resulting SU-structures on
quasitoric manifolds are invariant under the torus actions. The first examples of this sort
were obtained by Lii and Wang in [32].

In Section 10 we describe quasitoric generators for the SU-bordism ring. According to
a result of [31] (which we include as Theorem 10.8), there exist quasitoric SU-manifolds
M?* of dimension 2i > 10 with s;(M%*) = m;m;_1 if i is odd and s;(M?) = 2m;m;_1
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if 7 is even. These quasitoric manifolds represent the indecomposable elements y; € 25V
which are polynomial generators of 2°V ® Z[%] In low dimensions 2i < 10, it is known
that quasitoric SU-manifolds M?* are null-bordant. It is therefore interesting to ask which
SU-bordism classes of dimension > 8 can be represented by quasitoric manifolds.

As we have seen from the description of the ring 2°Y above, characteristic numbers
of SU-manifolds satisfy intricate divisibility conditions. Ochanine’s theorem [41] asserting
that the signature of an (8k + 4)-dimensional SU-manifold is divisible by 16 is one of the
most famous examples. We therefore find it quite miraculous that polynomial generators
for the SU-bordism ring 2%V ® Z[%] occur within the most basic families of examples
that one can produce using toric methods: 2-stage complex projectivisations, and 3-stage
projectivisations with the first stage being just CP!. The proof of Theorem 10.8 involves
calculating the characteristic numbers and checking divisibility conditions. Some interest-
ing results on binomial coefficients modulo a prime are obtained as a byproduct.

In Section 11 we review Batyrev’s construction [6] of Calabi-Yau manifolds arising
from toric geometry. In its most basic form, this construction gives an algebraic hypersur-
face representing the SU-bordism class 9[V] for a smooth toric Fano variety V. A more
general construction produces (smooth) Calabi—Yau manifolds from hypersurfaces in toric
Fano varieties with Gorenstein singularities, using a special desingularisation. Gorenstein
toric Fano varieties correspond to so-called reflexive polytopes, and there are finitely many
of them in each dimension. Four-dimensional reflexive polytopes and Calabi—Yau threefolds
arising from them are completely classified [28], [1]; there are also classification results for
five-dimensional reflexive polytopes and Calabi—Yau fourfolds.

The SU-bordism classes of the Calabi—Yau hypersurfaces in smooth toric Fano varieties
generate the SU-bordism ring 2%V ® Z[%} More precisely, the indecomposable elements
y; € 129V defined above can be represented by integral linear combinations of the bordism
classes of Calabi—Yau hypersurfaces. This result, proved in [30], is reviewed in Section 12
(unlike the situation with quasitoric manifolds, there is no restriction on the dimension of
y; here).

It is interesting to ask which bordism classes in £2°Y can be represented by Calabi—
Yau manifolds. This question is an SU-analogue of the following well-known open problem
of Hirzebruch: which bordism classes in 2V contain connected (irreducible) non-singular
algebraic varieties? If one drops the connectedness assumption, then any U-bordism class
of positive dimension can be represented by an algebraic variety in view of a theorem of
Milnor (see [50, p. 130]). Since a product and a positive integral linear combination of
algebraic classes are also algebraic classes (possibly, disconnected), one only needs to find
in each dimension i algebraic varieties M and N with s;(M) = m; and s;(N) = —m,.
For SU-bordism, the situation is different: if a class a € 29V can be represented by a
Calabi—Yau manifold, then —a does not necessarily have this property.

This issue already occurs in complex dimension 2: the class yo € _Qf can be represented
by a Calabi—Yau surface (a K3-surface), while —y2 cannot be represented by a smooth
complex surface. The situation is different in dimension 3, where both generators y3 and
—ys3 can be represented by Calabi—Yau threefolds. The same holds in complex dimension 4,
as shown by Theorem 13.5.

The authors are grateful to Victor Buchstaber and Peter Landweber for their attention
to our work and for many useful comments and suggestions.
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Part I. Structure results
1. Complex bordism

We briefly summarise the basic definitions and constructions of complex bordism (also
known as unitary bordism or U-bordism). More details can be found in [22], [50], [13]
and [15].

Let 7, denote the universal (tautological) complex n-plane bundle over the infinite-
dimensional Grassmannian BU (n). Let ¢ be a real 2n-plane bundle over a cellular space
(a CW-complex) X. A complex structure on  can be defined in one of the following
equivalent ways:

(1) an equivalence class of real vector bundle isomorphism ¢ — £, where ¢ is a complex
n-plane bundle over X, and two such isomorphisms are equivalent if they differ
by composing with an isomorphism of complex vector bundles;

(2) a homotopy class of real 2n-plane bundle maps { — 7,, which are isomorphisms
on each fibre;

(3) a homotopy class of a lift of the map X — BO(2n) classifying the bundle ¢ to a
map X — BU(n).

All manifolds are smooth, compact and without boundary (unless otherwise specified).
A stably complex structure (a unitary structure, or a U-structure) on a manifold M (pos-
sibly, with boundary) is an equivalence class of complex structures on the stable tangent
bundle of M, that is, an equivalence class of bundle isomorphisms

(1.1) cr TMaRF =5 ¢,

where ¢ is complex vector bundle, and R* denotes the trivial real k-plane bundle over M.
Two such complex structures are said to be equivalent if they differ by adding trivial
complex summands and composing with isomorphisms of complex vector bundles. An
isomorphism (1.1) defines a lift of the map M — BO(2l) classifying the bundle 7M @ R*
to a map M — BU(l); here 2] = dimg £ = dim M +k. Composing ¢ with an isomorphism
of complex bundles results in a homotopy of the lift, and adding a trivial complex summand
C™ to (1.1) results in composing the lift with the canonical map BU(l) — BU(l + m).
Therefore, stably complex structures on M correspond naturally and bijectively to the
homotopy classes of lifts of the classifying map M — BO to a map M — BU.

REMARK. Instead of defining a stably complex structure as an equivalence class of iso-
morphisms (1.1), one can define it by fixing a single isomorphism for sufficiently large k.
The reason is that adding trivial complex summands induces a canonical one-to-one corre-
spondence between complex structures on the bundles 7M & R* with different & if k > 2,
see [22, Theorem 2.3].

A stably complex manifold (a unitary manifold or a U-manifold) is a pair (M, cr)
consisting of a manifold and a stably complex structure on it.

Complex (co)bordism is a generalised (co)homology theory arising from U-manifolds.
It can be defined either geometrically or homotopically.

In the geometric approach, the bordism group U, (X) is defined as the set of bordism
classes of maps M — X, where M is an n-dimensional U-manifold. The details of the
geometric approach are described in [22, §1] (see also [15, Appendix D]). We briefly recall
the key points here.

CONSTRUCTION 1.1 (geometric U-bordism). A stably complex manifold M bords (or
is null-bordant) if there is a stably complex manifold with boundary W such that OW = M
and the stably complex structure induced on the boundary of W coincides with that of M.
The induced stably complex structure on OW is defined via the isomorphism 7W|gpy =
TM ®R. This isomorphism depends on whether we choose an inward or outward pointing
normal vector to M in W as a basis for R, and whether we place this normal vector at
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the beginning or at the end of the tangent frame of M. Our choice is to use the outward
pointing normal and place it at the end. Then using the stably complex structure on W
we obtain a stably complex structure on M = W by means of the isomorphism

TM &R = TW|ow & RF 22 €.

If we choose the inward pointing normal instead of the outward pointing, then the

resulting stably complex structure on M = dW will be different. If ¢-: TM & RFF! = 3
is the stably complex structure on M described above, then it can be seen that the stably
complex structure resulting from the inward pointing is equivalent to the following:

(1.2) TMoR* ' oC T caC

where 7: C — C is the complex conjugation.

Given a stably complex manifold (M, cr), we refer to the stably complex structure
defined by (1.2) as the opposite to ¢; and denote it by —cy. When ¢ is clear from the
context, we use M instead of (M, cr) and —M instead of (M, —c7).

For a fixed topological pair (X, A) and a nonnegative integer n, consider pairs (M, f),
where M is a compact n-dimensional U-manifold with boundary and f: (M,0M) —
(X, A). Such a pair (M, f) bords (or is null-bordant) if there exists a compact (n + 1)-
dimensional U-manifold W with boundary and a map F': W — X such that

(a) M is a regularly embedded submanifold of OW, and the U-structure on M is
obtained by restricting the U-structure on OW;
(b) Flpy = f and F(OW \ M) C A.

The pairs (M, f1) and (Ma, f2) are bordant if the disjoint union (M, f1) U (—Ma, f2)
bords. Bordism is an equivalence relation: reflexivity follows by considering the stably
complex structure on M X I such that (M x I) = M U (—M), and transitivity uses the
angle straightening procedure. The resulting equivalence class is referred to as the bordism
class of (M, f).

Denote by [M, f] the bordism class of (M, f). Bordism classes [M, f] form an abelian
group with respect to the disjoint union, which we denote U/ (X, A) for a moment, and
refer to as the (geometric) unitary bordism group of (X, A). Geometric U-bordism is a
generalised homology theory, satisfying the Eilenberg—Steenrod axioms except for the di-
mension axiom.

The homotopic approach is based on the notion of MU -spectrum, which we also recall
briefly.

CONSTRUCTION 1.2 (homotopic U-bordism). The Thom space of the universal com-
plex n-plane bundle 7, over BU(n) is denoted by MU (n). The Thom spectrum MU =
{Y;, XY, — Yi—H: 1> 0} has ng = MU(k‘), Y2k+1 = 2}/2].3, the map 2)/2].3 — Y2k+1 is the
identity, and XYa541 — Yapo is defined as the map X2 MU (k) = S?°AMU (k) — MU (k+1)
of Thom spaces corresponding to the bundle map 7 & C — g1 classifying ny @ C. The
MU-spectrum defines a generalised (co)homology theory, known as (homotopic) unitary
(co)bordism, with bordism and cobordism groups of a cellular pair (X, A) given by

Un(X,A) = kli_}ngo Toktn (X/A) A MU (k)),

(13) U™(X,A) = lim (D2 (X A), MU (k)].

The bordism groups of a single space X are defined as U, (X) := U, (X, @). We shall use
the notation X for X/@, which is X with a disjoint basepoint added. When (X, A) is a
finite cellular pair, the bordism group U, (X, A) is isomorphic to mor1,((X/A) A MU (k))

for sufficiently large k, and similarly for U™ (X, A).
By definition, the homotopic bordism and cobordism groups of a point satisfy

Un(pt) = U™"(pt) = mopsn(MU(k))
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for sufficiently large k, and U, (pt) = 0 for n < 0.

The equivalence of the geometric and homotopic approaches to complex bordism is
established by the following result of Conner and Floyd.

THEOREM 1.3 ([22, (3.1)]). The generalised homology theory UL(-) is isomorphic, over
the category of cellular pairs and continuous maps, to the generalised homology theory
Ui().

SKETCH OF PROOF. The proof follows the original ideas of Thom [51] in the oriented
case (see also [21, Chapter 1]). We define a functor ¢: U} (X, A) — U,(X, A) between
homology theories and prove that it induces an isomorphism on homology of a point.

For a cellular pair (X, A), there is an isomorphism U}, (X, A) = U} (X /A, pt), so we can
restrict attention to the case A = @ and define the maps ¢: U,,(X) — U,(X) only.

Take a geometric bordism class [M, f] € U}, (X) represented by a map f: M — X
from a U-manifold M. We embed M into some R"*2¥ and denote by v the normal bundle
of this embedding. The real bundle isomorphism 7M @ v = R"*?¥ allows us to convert
stably complex structures on M to complex structures on the normal bundle v. (This can
be done in the most naive way by working with tangent and normal frames, but one needs
to check that this conversion procedure is compatible with the appropriate stabilisations,
see also [22, (2.3)].)

The Pontryagin—Thom map

Sk s Th(v)
identifies a closed tubular neighbourhood of M in R?¥*" c §2k+7 with the total space
D(v) of the disc bundle of v, and collapses the closure of the complement of the tubular
neighbourhood to the basepoint of the Thom space Th(v) = D(v)/S(v).

Now we define a map D(v) — X x D(ny) in which the first component is the composite

Dv) — M L X and the second component is the disc bundle map corresponding to
the classifying map v — n; for the above defined complex structure on v. Doing the same
for the sphere bundles, we obtain a map of pairs

(D), 5(v)) = (X x D(mx), X x S())
and therefore a map of Thom spaces
Th(v) — (X/@) AN MU (k).

Composing with the Pontryagin-Thom map, we obtain a map S?™" — (X/@) A MU (k)
representing a class in the homotopy bordism group U, (X), see (1.3). One needs to check
that the maps resulting from bordant pairs (M, f) are homotopic, therefore defining a
functor p: UL(-) — U.(+).

To show that ¢: U.(pt) — U(pt) is an isomorphism, we construct an inverse map
U.(pt) — UL(pt) as follows. Take a homotopy class of maps g: S?**" — MU (k) rep-
resenting an element in the homotopic bordism group U, (pt). By changing g within its
homotopy class we may achieve that ¢ is smooth and transverse along the zero section
BU(k) ¢ MU(k). Then M := g~'(BU(k)) is an n-dimensional submanifold in S2¥*7.
Furthermore, there is a complex bundle map from the normal bundle v of M in S+
to the normal bundle of BU (k) in MU (k), which is 7. We therefore obtain a complex
structure on v, which can be converted into a stably complex structure on M. The result
is a geometric bordism class in U}, (pt), giving an inverse map to ¢. O

Hereafter we denote both geometric and homotopic unitary bordism groups by U.(-).

CONSTRUCTION 1.4 (products). For the product bundle 7, X n,, there is the corre-
sponding classifying map BU(m) x BU(n) — BU(m+n) (unique up to a homotopy) and
the bundle map 7, X M — Nm4n. 1t induces a map of Thom spaces

MU(m) A MU(n) — MU (n +m),
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which is associative and commutative up to homotopy. The map above is used to define
product operations in complex (co)bordism, turning it into a multiplicative (co)homology
theory. Namely, there is a canonical pairing (the Kronecker product)

() U™MX)@Un(X) = 02V

the —~-product

~:U™X) @ Up(X) = Up—m(X),
and the —-product (or simply product)

—: U™X) @ U™X) = U™ (X),

defined as follows. Assume given a cobordism class x € U™(X) represented by a map
y2=mx. — MU(l) and a bordism class a € U,(X) represented by a map S%+" —
X, AMU(k). Then (z,a) € 2Y_  is represented by the composite

y2l—-m

=% y2=-mx. AMU(Kk) MU() A MU(k) — MU(I+k)

If A: X; — (X x X); = X4 A Xy is the diagonal map, then z ~ o € U,—pn(X) is
represented by the composite map

§2k+2l+n—m zAid

_ EQl—m _ E2l—mA/\-d
52k+2l+n m a; EZl mXJr/\MU(k) 1

id AzAid
—_—

X, AZH=mX A MU(K)
X, AMU(I)AMU(k) — X4 AMU(1+ k)

The —-product is defined similarly; it turns U*(X) = @,,c, U"(X) into a graded com-
mutative ring, called the complex cobordism ring of X. The direct sum

Qu = U*(pt) = P U" (1)

is often called simply the complex cobordism ring. It is graded by nonpositive integers.
We also use the notation 2V for the nonnegatively graded ring Us(pt) = €D, Un(pt), the
complez bordism ring, where Uy, (pt) = U~"(pt). Each ring U*(X) is a module over (2.

A stably complex n-manifold M has the fundamental bordism class [M] € Uy, (M),
which is defined geometrically as the bordism class of the identity map M — M. There
are the Poincaré—Atiyah duality isomorphisms [3], see also [15, Construction D.3.4]:

Dy: UN(M) =5 Up_ (M), x>z~ [M].

We have
H*(BU(n);Z) = Zlci, . .. ,cp), dege; = 2i,

where the ¢; are the universal Chern characteristic classes. Given a partition w =
(1,... i) of n = |w| = i1+~ - -+, by positive integers, define the monomial ¢, = ¢;; - - - ¢;,
of degree 2|w| and the corresponding characteristic class ¢, (£) of a complex n-plane bun-
dle £. The corresponding tangential Chern characteristic number of a stably complex
manifold M is defined by
Cw[M] = <Cw(TM), [M]>

Here [M] is the fundamental homology class of M, and T M is regarded as a complex
bundle via the isomorphism (1.1). We often write ¢, (M) instead of ¢, (T M) for a stably
complex manifold M. The number ¢, [M] is assumed to be zero when 2|w| # dim M.

One important characteristic class is s,. It is defined as the polynomial in c¢q,..., ¢,
obtained by expressing the symmetric polynomial z + - -- 4 z]! via the elementary sym-
metric functions i;(x1,...,z,) and then replacing each i; by ¢;. Define the corresponding
characteristic number as

sp[M] = (sp(TM), [M]).

It is known as the s-number or the Milnor number of M.
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For any integer ¢ > 1, set

1.4
(14) p if i +1 = p* for some prime p and integer k > 0.

{1 if i + 1 # pF for any prime p;
m; =

The structure of the U-bordism ring 2V is described by the following fundamental
result of Milnor and Novikov:

THEOREM 1.5 (Milnor, Novikov).

(a) The complex bordism ring 2V is a polynomial ring over Z with one generator in
every positive even dimension:

QY =7Z0a;:i>1], dega; = 2i.

(b) The bordism class of a stably complex manifold M? may be taken to be the 2i-
dimensional generator a; if and only if

S; [MQZ] = :I:'mz-.

(¢c) Two stably complex manifolds are bordant if and only if they have identical sets
of Chern characteristic numbers.

Part (c) of Theorem 1.5 can be restated by saying that the universal characteristic
numbers homomorphism e: 2 — Hy,(BU) is a monomorphism is each dimension. The
latter homomorphism (for the normal characteristic numbers) can be identified with the
composite

Q¥ = monion(MU(N)) — Hapyon(MU(N)) — Ha,(BU(N))

of the Hurewicz homomorphism and Thom isomorphism. By Serre’s Theorem, the
Hurewicz homorphism above is an isomorphism modulo the class of finite groups. The
injectivity of e: 25 — Ha,(BU) then follows from the absence of torsion in £2V.

The ring isomorphism 2V = Z[a;: i > 1], dega; = 2i, was proved in 1960 by
Novikov [38] using the Adams spectral sequence and the structure theory of Hopf al-
gebras. A more detailed account of this argument was given in [39]. Milnor’s work [33]
contained only the proof of the additive isomorphism (including the absence of torsion
in 2V and the ranks calculation); the ring structure of 2V was intended to be included
in the second part of [33], which was not published. Another geometric proof for the
ring isomorphism was given by Stong in 1965 and included in his monograph [50]. All
these results preceded the introduction of formal group law techniques in cobordism by
Novikov [40]. Quillen [44] used formal group laws and tom Dieck’s power operations to
prove that the classifying map from Lazard’s universal formal group law to the formal
group law in complex cobordism induces the ring isomorphism Z[a;: i > 1] = 02V,

CONSTRUCTION 1.6 (formal group law of geometric cobordisms). Let X be a cellular
space. Since CP* ~ MU (1), the cohomology group H?(X) = [X,CP>] is a subset (not a
subgroup!) of the cobordism group U?(X). That is, every element # € H2(X) determines
a cobordism class u, € U?(X). The elements of U?(X) obtained in this way are called
geometric cobordisms of X.

When X = X* is a manifold, a class 2 € H?(X) is Poincaré dual to a submanifold M C
X of codimension 2 with a fixed complex structure on the normal bundle. Furthermore,
if X is a stably complex manifold representing a bordism class [X] € Qg, then we have

[M] = Dy (us) € 24y,

where Dy : U?(X) — Ug_o(X) is the Poincaré-Atiyah duality map and e: Up_o(X) —
Qg_z is the augmentation. By definition, e Dy is the Kronecker product with [X].



12 GEORGY CHERNYKH, IVAN LIMONCHENKO, AND TARAS PANOV

Given two geometric cobordisms u,v € U?(X) corresponding to elements z,y € H?(X)
respectively, we denote by u-+,v the geometric cobordism corresponding to the cohomology
class x + y. Then following relation holds in U?(X):

(1.5) u+,v=Fy(u,v) =u+v+ Z o uF ol

k>1,1>1

where the coefficients ay; € 952(1“171) do not depend on u,v and X. The series Fy(u,v)

given by (1.5) is a (commutative one-dimensional) formal group law over the complex
cobordism ring (2y. It was introduced by Novikov in [40, §5, Appendix 1] and called the
formal group law of geometric cobordisms. More details of this construction can be found
in [13] and [15, Appendix EJ.

We have
U*(BU) = Qul[c}, ey, ....¢ .. ],
where ¢ is the ith universal Conner-Floyd characteristic class, and the identity above
is understood as an isomorphism between the graded components. For a complex vector
bundle ¢ over a cellular space X, the Conner-Floyd characteristic class ¢/ (§) € U%(X) is
defined as the pullback f*(c{’) along the map f: X — BU classifying &.

Let n be the tautological line bundle over CP> and let 7 be its conjugate (the line
bundle of a hyperplane). The class u = c{ () € U?(CP*) is the cobordism class corre-
sponding to the inclusion CP* = BU(1) — MU(1), which is a homotopy equivalence.
In other words, ¢{(7) is the geometric cobordism corresponding to the first Chern class
c1(7) € H*(CP>). Then ¢ (n) € U?(CP>) is the power series inverse to u = c{(7) in the
formal group law Fy; we denote this series by u.

Similarly, for a complex line bundle £ over a cellular space X, the first Conner—Floyd
class c¢{(¢) € U?(X) coincides with the geometric cobordism corresponding to c1(§) €
H?(X). The formal group law of geometric cobordisms gives the expression of the first
Conner—Floyd class of the tensor product & ® ¢ of line bundles over X in terms of the

classes u = ¢{ (§) and v = ¢{(():
/(€ ®¢) = Fy(u,v).

If £ is a complex vector bundle of an arbitrary dimension over X, then the geometric
cobordism corresponding to ¢;(¢) € H?(X) is ¢/ (det &) € U%(X) (it is defined by the map
X — CP* classifying the determinant line bundle det¢). In general, c{ (det&) # c{(€).
Consider the determinant homomorphism det: U — U(1) and the corresponding map
det: BU — BU(1) = CP*°. We define the universal characteristic class d¥ = det*u €
U%(BU). Then we have dY(¢) = c{(det§).

2. SU-manifolds and the SU-spectrum

A special unitary structure (an SU-structure) on a manifold M is a stably complex
structure ¢, see (1.1), with a choice of an SU-structure on the complex vector bundle &.
Equivalently, an SU-structure is the homotopy class of a lift of the map M — BU classi-
fying £ to a map M — BSU. A stably complex manifold (M, ¢7) admits an SU-structure
if and only if the first (integral) Chern class of £ vanishes: ¢;(§) = 0. Furthermore, such
an SU-structure is unique if H*(M;Z) = 0 (the latter follows by considering the homo-
topy fibration sequence corresponding to the fibration BSU — BU with fibre S'). An
SU-manifold is a stably complex manifold with a fixed SU-structure. By some abuse of
notation, we often refer to a stably complex manifold M with ¢; (M) as an SU-manifold,
meaning that such a manifold admits an SU-structure.

There is a generalised homology theory resulting from SU-structures, known as SU-
bordism. As in the case of U-bordism, it can be defined either geometrically or homotopi-
cally.
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In the geometric approach, the bordism group SU,(X) is defined as the set of bor-
dism classes of maps M — X, where M is an n-dimensional SU-manifold. The homotopic
approach is based on the notion of the MSU -spectrum. Let 7, denote the universal (tau-
tological) complex n-plane bundle over BSU(n). The Thom space of 7, is denoted by
MSU (n). The Thom spectrum MSU = {Z;, ¥Z; — Z;j+1: i > 0} has Zy, = MSU(k) and
Zokr1 = X Zok. The SU-bordism and cobordism groups of a cellular pair (X, A) are given
by

SU™(X, A) = lim [Z2R=n(X/A), MSU (K)].

These define a multiplicative generalised (co)homology theory, as in the case of U-bordism.

The SU-bordism ring is defined as 25V = SU, (pt).

Unlike 2V, the ring 25V has torsion. The first torsion element appears already in
dimension 1: the fact that MSU(k) has no cells in dimensions 2k + 1 through 2k + 3
implies that 27V = 7§ = Zy. The generator 6 of 27V is represented by a circle with a
nontrivial framing inducing a nontrivial SU-structure.

The first structure result on the ring 25V was a theorem of Novikov from 1962, showing
that £2°U becomes a polynomial ring if we invert 2 (otherwise it is not a polynomial ring,
even modulo torsion). Recall from Theorem 1.5 that a bordism class [M?%] € Q¥ is a
polynomial generator of 2V whenever s;[M?!] = +m;, where the numbers m; are defined
in (1.4). More intricate divisibility conditions on the s;-number are required to identify
polynomial generators in the ring 2°V ® Z[%]

THEOREM 2.1 (Novikov [39, Appendix 1]). 2°Y ® Z[3] is a polynomial algebra with
one generator in every even degree = 4:
PV ez) =2z i>2], degy; = 2i.
The bordism class of an SU-manifold M?* may be taken to be the 2i-dimensional generator

yi if and only if ‘
si[MQ’] = d+mym;_1 up to a power of 2.

Note that up to a power of 2 we have
1 ifi#p*, i #p* —1 for an odd prime p,
miymi;—1 = .- k . k .
p if i =p" or ¢ = p~” — 1 for an odd prime p.
The extra divisibility in dimensions 2i = 2p* comes from the following simple observation:

PROPOSITION 2.2. If M?" is an SU-manifold of dimension 2n = 2p* for a prime p,
then
$u[M?"] =0 mod p.

PROOF. For n = p* we have
Sp(MP) = a0+ a2l = (x + -4 2)" = (M*) =0 mod p O

As in the case of unitary bordism, Theorem 2.1 implies that the SU-bordism class of
an SU-manifold is determined modulo 2-primary torsion by its characteristic numbers. By
the result of Anderson, Brown and Peterson [2], K O-theory chracteristic numbers together
with the ordinary characteristic numbers determine the SU-bordism class completely.

3. Operations in complex cobordism and the Adams—Novikov spectral
sequence

A (stable) operation 6 of degree n in complex cobordism is a family of additive maps

0: UM(X, A) — UM (X, A),
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defined for all cellular pairs (X, A), which are functorial in (X, A) and commute with the
suspension isomorphisms. The set of all operations is a ring with respect to addition and
composition; furthermore, there is an algebra structure over the ring (2;;. This algebra is
denoted by AY; it was described in the works of Landweber [29] and Novikov [40, §5].

CONSTRUCTION 3.1 (operations and characteristic classes). There is an isomorphism
of 2y-modules
AY = U*(MU) = lim U*N (MU (N)).
{—

Given an element a € U"(MU) of AY represented by a map of spectra a: MU — X" MU,
we denote the corresponding operation by

a*: UN(X) — U (X),

where X is cellular space. The operation a* is described as follows. Given an element
z € U™(X) represented by a map x: X — X™MU, the element a*z € U™ (X) is
represented by the composite

X % ym U 20 .

This defines a left action of AV on the cobordism groups of X, and turns U* into a functor
to the category of graded left AY-modules.
There is a similarly defined action

ay: U(X) = Us—n(X)

of AV on the bordism groups. Given an element x € U,,(X) represented by a map
x: XS — X AN MU, the element a,z € U,,—,(X) is represented by the composite

ygmong E0 sonx a MUy 2 x A MU

There are natural Thom isomorphisms
o Uppon(MU(N)) = U (BU(N)), @i: UY(BU(N)) — U2V (MU(N)).

As Up(BU) is the direct limit of U,(BU(N)), and U™(BU) is the inverse limit of
U™(BU(N)), and similarly for MU, we also have the stable Thom isomorphisms

0ot Up(MU) — Uy(BU), ¢*: U"(BU) — U"(MU).

It follows that every universal characteristic class o € U™(BU) defines an operation a =
©*(a) € U"(MU), and vice versa.
f

If x € Up(X) is represented by a singular manifold M™ —— X, then a.z can be
interpreted geometrically as follows. Let a = (¢*)~'a be the characteristic class corre-
sponding to a. Consider a(—TM) € U"™(M™), where TM is the tangent bundle and
—T M is the stable normal bundle of M. Applying the Poincaré—Atiyah duality operator
Dy : UM(M™) = Upy—n(M™) we obtain the element Dya(—T M) € Uy,—n (M) represented
by Y, LNV Then, a,z € Uy,,—,(X) is represented by the composite Yy, ELNGVRING'G

There is an isomorphism of left {2;-modules

AV =U*(MU) = Qy ® S,
where ® is the completed tensor product, and S is the Landweber-Novikov algebra,
generated by the operations S, = ¢*(s;) corresponding to universal characteristic
classes s € U*(BU) defined by symmetrising monomials 7' - - - ¢;* indexed by partitions
w = (i1,...,i). Therefore, any element a € AY can be written uniquely as an infinite

series a = ) A,S,, where A\, € £2yy. The Hopf algebra structure of S is described in [29]
and [40, §5].

Restricting to the case X = pt, we obtain representations of AV on 2y = U*(pt) and
U = U,(pt). Unlike the situation with the ordinary (co)homology, we have
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LEMMA 3.2 (see [40, Lemma 3.1 and Lemma 5.2]). The representations of AU on
Qu = U*(pt) and 2V = U.(pt) are faithful.
REMARK. More generally, given spectra F, F' of finite type, the natural homomorphism

F*(E) — Hom™(m.(F), m(F)) is injective when m,(F') and H,.(E) do not have torsion;
see (48] for details.

Alongside with the representation of AV in the bordism U,(X) of any X, there is
another representation AV in U,(BU) defined as follows.

CONSTRUCTION 3.3 (representation of AY in U,(BU), a + a@). Let a € U(MU) be
an element of AY. We define
Q= ey, L U (BU) = Up_n(BU).

The geometrical meaning of this operation is described as follows. Let [M, ] € U,,(BU) be
a bordism class, where ¢ is the pullback of the (stable) tautological bundle over BU along
a singular manifold M — BU. The element a € U™"(MU) defines a universal characteristic
class a = (p*)"ta € U"(BU) and a class a(¢) € U™(M). Consider the Poincaré-Atiyah

dual class Dy(a(§)) = [Ya, fa] € Un—n(M), where Y, Jy Misa singular manifold of M.
Then
a[M,&] = [Ya, fo(§ + TM) = TYa] € Un—n(BU).

Applying the augmentation ¢: U,(BU) — 2V we obtain
(3.1) e(alM, €)) = [Ya] = ((¢")"'a, [M,€]) € Un-n(pt) = 25,
where (, ) denotes the Kronecker product in (co)bordism of BU.

LEMMA 3.4. The representation AV on U,(BU) given by a — @ is faithful.

PRrROOF. Setting £ = —T M in Construction 3.3, we obtain
a[M,—=TM] = [Y,, —TYal.

This implies that we can consider the representation a +— a, on U.(pt) as a subrepresen-
tation of the representation a — a on U,(BU). Since a — a, is faithful by Lemma 3.2, the
representation a — a is also faithful. O

The main properties of the cohomological Adams—Novikov spectral sequence for com-
plex cobordism are summarised next. Details can be found in [40]; see also [35], [5], [9].

THEOREM 3.5 (Adams—Novikov spectral sequence for complex cobordism). Let X be
a connective spectrum whose ordinary homology with Z-coefficients is torsion free and
finitely generated in each dimension. Then there exists a spectral sequence

{EP9,  d,: BP9 — Eprratr=l . > 9}
with the following properties:
(a) EY? = Exthi (U*(X),U*(pt)), where U* is the complex cobordism theory and
AY = U*(MU) is the algebra of operations.
(b) There exists a filtration
mn(X) = FOn S Pl S pEet2 5o (Y Forte =0
s=>0
whose adjoint bigraded module coincides with the infinity term of the spectral
sequence: ER = P4 /pprlatl
(¢c) The edge homomorphism
Tn(X) = FO" — EO" — EP™ = Hom"y, (U*(X), U* (pt))
coincides with the naturally defined map.
Furthermore, if X is a ring spectrum, then the spectral sequence is multiplicative.



16 GEORGY CHERNYKH, IVAN LIMONCHENKO, AND TARAS PANOV

REMARK. The natural map h: m,(X) — Hom'y(U*(X),U*(pt)) in Theorem 3.5 (c)
is defined as follows. Given an element a € m,(X) represented by a map f: XS — X
and an element 5 € UP(X) represented by a map g: X — YPMU, the element h(«a)(f) €
UP~"(pt) is represented by the composite

f

g X 2 5 xPMU.

4. The AY-module structure of U*(MSU)

In order to apply Theorem 3.5 to the special unitary bordism spectrum MSU we
need to describe the AY-module U*(MSU). The main result here (Theorem 4.5) is due to
Novikov. We provide a complete proof by filling in some details missing in [40].

Consider the universal characteristic class dV € U?(BU) introduced at the end of

Section 1, dV(§) = cY(det&). We also set dV = c{(det ). The spectral sequence of the

fibration BSU — BU 2% BU(1) implies that the homomorphism U*(BU) — U*(BSU) is

surjective and its kernel is the ideal I(d") generated by dV. Using the Thom isomorphisms
e U*(BSU) - U*(MSU) and ¢*: U*(BU) — U*(MU),
we obtain that the natural map MSU — MU induces an epimorphism U*(MU) —

U*(MSU) with kernel ¢*(I(d”)). As U*(MU) — U*(MSU) is an AY-module map, we
obtain

(4.1) U*(MSU) = AY Jo*(I(dV))  as an AY-module.
This is the first description of the required AY-module structure.

Next we define some important operations in AV. Recall that every characteristic class
o € U*(BU) defines an operation ¢*(a) € AV = U*(MU).

CONSTRUCTION 4.1 (operations Ay, x,)). Given positive integers ki, ko, define
A(kl,kQ) = (p*((au)kl (dU)kQ) c (AU)2k1+2k2_

The corresponding operation AN(klij): Ui(BU) = Us—9k,—2k, (BU) (see Construction 3.3)
can be described geometrically as follows. Assume given [M, ] € U, (BU). Let iy: Y7 — M
and iy: Yo < M be codimension-2 submanifolds Poincaré dual to —c;(§) and ¢;(§) re-
spectively. We have v(Y1 C M) = (det&)|y; and v(Ya € M) = (det§)|y,. The same sub-
manifolds are Poincaré-Atiyah dual to the classes c¢f(det&) = dU(¢) and ¢/ (¢) = d¥(¢),
respectively. The submanifold Poincaré-Atiyah dual to (dU(£))* (dV (€))*2 € U?k1+2k2( )

is given by the transverse intersection
Viggy =Y1--Y1- Yo V5.
—_—— ——
k1 ko

with the complex structure in the normal bundle v = v(Yi, 4, C M) = (det&)®1 @
(det £)®k2|Yk1,k2' Then we have

A(k1,k2)[M> g] = [Yk’hkzag’Ykl,kQ + l/] € UTL—2/€1—27€2 (BU)
In the case when § = —TM we obtain (A, ky))«[M] = [My, k,], where My, y, is the
submanifold dual to (det 7M)®*t @ (det T M)P*z,
CONSTRUCTION 4.2 (operations ¥, 1,y). Given nonnegative integers ki, k2, set k =
k1 + ko. Let £ be a complex line bundle over CP™. Consider the projectivisation bundle

p: CP(¢®CF) — CP" where C* denotes the trivial bundle of rank k. The tangent bundle
of CP(¢ @ CF) splits stably as

TCPE®CH aC=p*TCP" & (7@ p* (£ ® CF)) = p*TCP" @ (] ® p*¢) & 7°F,



SU-BORDISM 17

where 7 denotes the tautological line bundle over CP(¢ @ C*), see [15, Theorem D.4.1].
We change the stably complex structure on CP(§ ® Qk) to a new one, determined by the
isomorphism of real vector bundles

TCP(¢ o CH) @ R? = p*TCP" @ (7 p*€) @ 1% @ 12,
and denote the resulting stably complex manifold by P*1+2)(¢).

We obtain a bordism class [P*1F2)(€), p] € Uyppon(CP™). TIts dual cobordism class
X(ki,ke) (§) = (Dy)~HP%,k2) (€, p] € U~28(CP™) defines a universal cobordism charac-
teristic class of line bundles, which we denote x4, 1) € U—2k(CP>).

Now we can extend the definition of X, x,) to complex vector bundles of arbitrary rank
by setting X(k, ks)(§) = X(ki,ke)(det§). As a result, we obtain a universal characteristic
class Xk, ko) €U —2k(BU) and the corresponding operation

Vg ko) = w*x(kl,kz) c U72(k1+k2)(MU) — (AU)fQ(lirl@)‘

Geometrically, (¥, ,))«[M?"] is the (2n + 2k; + 2kz)-manifold [CP(det TM & CkiHh2)]

with the stably complex structure p*(7M) @ (7 ® p*(det TM)) @ 71 @ n®kz,
We use the following notation for particular operations:

(4.2) 0= A(I,O)v A= A(1,1), X = ![’(1,0), U= W(Ll)-

Geometrically, 0.[M] is represented by a submanifold dual to ¢;(det TM) = ¢;(M), and
X«|M] is represented by the manifold CP(det 7 M @ C) with the standard stably complex
structure. The operations d, and A, were studied in detail by Conner and Floyd [22],
they denoted them simply by 0 and A.

The operations introduced above satisfy algebraic relations described next.
LEMMA 4.3. We have
P?=A0=0, A¥=id, 0¥ =0, xd=[CPYd, ox0=20.

PROOF. By Lemma 3.2, it suffices to check the relations on £2Y, the bordism of point.
Recall that 0,[M] is represented by a submanifold dual to ¢; (M), which is an SU-manifold.
Therefore, (A(lcl,k2))*a* = 0. In particular 83 = A0, =0.

The identity A%, = id is proved in [22, Theorem 8.1]. The identity 0%, = 0 is
stated in [22, Theorem 8.2], but its proof contains an inaccuracy in the calculation of
characteristic classes. We give a correct argument below.

Take [M?"] € Y . Then ¥,[M?"] is represented by the manifold CP(det 7 M & C?)
with the stably complex structure given by the isomorphism

TCP(det TM & C*) o R* = p*TM & (1@ p*det TM) & & 1.

We denote this stably complex manifold by P?"*4. Now, 0,W.[M?"] = 9,[P*"*4] is rep-
resented by a submanifold N2"+2 ¢ P?"*4 qual to c1(P?"*%) = ¢1(77). We can take as
N?"+2 the submanifold CP(det 7 M @ C) with the stably complex structure given by the
isomorphism

TCP(detTM ® C) ®R* = p*TM & (7@ p*det TM) @ 1.

Note that [N?"*2] is precisely (¥(q1))«[M?"]. To see that N?"*2 is null-bordant, we cal-
culate its total Chern class. We denote ¢; = ¢;(M), d = ¢1(7), then we have a relation
d?> = p*c; - d. Now we calculate

C(N2”+2) =14+paa+-+pcn)l+d—pc1)(1—d)
=(l+pcr+---+pcy)(1 —prer)
=14p(ca—c)+p(es—crca) + -+ p*(cn — c16n-1)
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(this calculation was performed incorrectly in [22, pp. 36-37]). Hence, c,(N?""2) =
p*c,,(M®"), where ¢, = ¢; — ci¢;—1, and all characteristic numbers ¢, [N?"*?] vanish for
dimensional reasons.

The identity O¥ = ¥, 1 = 0 can also be obtained geometrically, by observing that the
stably complex structure on N2"*+2 restricts to a trivial stably complex structure on each
fibre CP! = S? of the projectivisation, so it extends over the associated 3-disk bundle.

To verify the identity y.0x = [CP1]0,, observe that 0,[M?"] = [Y?"~2] where Y22 is
an SU-manifold, so that det 7Y is trivial. Then y.0.[M?"] is represented by CP(det TY &
C) = CP! x Y, which implies the required identity.

The last identity is obtained by applying d. to the both sides of y.0, = [CP!]0..
In the notation of the previous paragraph, we need to verify that 9,(CP! x Y) = 2V,
which follows by observing that 2Y € CP! x Y represents the homology class dual to
c1(CP'xY) =¢;(CPH®1. O

REMARK. In [40, §5], the identity [0, x] = 2 is asserted instead of dxd = 20. However,
[0, x] = 2 cannot hold. Indeed, applying O from the right we get 9x0 = 20, and applying
O from the left we get —9xd = 20, which implies @ = 0. On the other hand, 9[CP!] = 2.

COROLLARY 4.4. If a relation ad + bA = 0 holds for some a,b € AV, then b= 0.
PrOOF. Applying ¥ from the right to the relation, we get b = 0. 0

Now we can formulate the key result about U*(MSU), which will be used in the
calculation of the corresponding Adams—Novikov spectral sequence.

THEOREM 4.5 ([40, Theorem 6.1]).

(a) The left AY-module U*(MSU) is isomorphic to AV /(AU A + AV9). The kernel
of the natural homomorphism AY = U*(MU) — U*(MSU) is identified with
AYA + AY).

(b) The left annihilator of O is equal to AV A + AV0.

PROOF. The original proof in [40] is quite sketchy. Filling in the details required lots
of technical work. The proof consists of three parts.

I. We show that d(U,(BU)) = U.(BSU). In other words, a bordism class [X,¢] €

Un(BU) lies in the image of 0 if and only if represented by a pair (X, ) where £ is an
SU-bundle, i.e. ¢1(§) = 0.

To prove the inclusion d(U, (BU)) D U,(BSU), take [X, €] € Un(BU) with ¢1(£) = 0.
Consider the bordism class [X x CP1, & x 5] € U,,12(BU), where 7 is the tautological line
bundle over CP!. By the definition of & (Construction 3.3), d[X x CP ¢ x n] = [V, (],
where Y C X x CP! is a codimension-2 submanifold dual to ¢1(¢ x 1) = 1 ® ¢1(n), so we
can take Y = X, and

C=Exnx +T(X xCPYH|x —TX =¢

as stable bundles. Therefore, [X,{] = 9[X x CPY, ¢ x n). B
To prove the inclusion O(U.(BU)) C U.(BSU), take Y, (] = 0[X,£]. We need to show
that ( is represented by an SU-bundle. By Construction 3.3,

I[X, €] =Y,y + TX|y — TY] € Upo(BU),

where Y C X is a codimension-2 submanifold with the normal bundle v(Y C X)) = det{|y.
Then

ci(Q) =callly +TXly = TY) = ci(ély) +a1(v) = ci(det &]y) + cr(det &]y) =0,
so ( is an SU-bundle.

II. We show that Ann;d = ¢*(I(dV)), where Ann;, denotes the left annihilator of 0
in AV, Let a0 = 0 for some a € AY. Then @0 = 0, which is equivalent by part I to
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aly, (gsuy = 0. In other words, a[X, ] = [Ya, fi (§+TX) —TY,] = 0 for any SU-bundle &.
In particular [Y,] = 0 in £2;7. On the other hand, [Y,] = {(¢*)"ta, [X, &]) by (3.1). It follows
that (¢*)~la € U*(BU) = Homgu (U.(BU), 2Y) lies in the 1deal I(d"), because the latter
consists precisely of homomorphisms U, (BU) — 2V vanishing on bordism classes of SU-
bundles. Thus, a € ¢*(I(d")) and Annr,(9) C ¢*(I(d")). For the opposite inclusion, note
that a € ¢*(I(d"”)) implies that a|y, gy = 0. By Part I, a8 = 0. Now, Lemma 3.4 gives
a0 =0, so a € Anng,(0).

ITI. We show that ¢*(I(dV)) = AVA + AY9.

Corollary 4.4 implies that AY A 4+ AY9 is a direct sum, so we write it as AYA@® AV9.

Lemma 4.3 and Part II give the inclusion AY A® AV C Annz0 = ¢*(1(d)). Consider
the short exact sequence

(43) 0— AVA® AV -5 o*(I(dV)) — " (I(d))/(AVA @ AV9) — 0
of graded {2y-modules. Denote
N =¢*(I(d"))/(A"A® AY0)

We need to show that N = 0.

First, we show that N has no {2y-torsion. Suppose An = 0 for a nonzero A € 2y
and n = x + (AYA + AY9) € N, x € ¢*(I(dV)). That is, Az = aA + b0 for some
a,be AU Multiplying by ¥ from the right and using Proposition 4.3 we obtain a = Az¥
and b0 = Az — A \zW A = \y. Therefore, bo = )\y Now, for a bordism class [Y, (] € U.(BSU)
we have

()"0, [Vi¢]) = (") "0, 0[X, €]) = (T [X, €]) = Ae(F X, €)),
where the first identity follows from part I, and the second from (3.1). Consider the natural
projection p: U*(BU) — U*(BSU), which is Kronecker dual to the natural inclusion
U.(BSU) < U,(BU). Then the above identity implies that p((¢*)~'b) = Aw for some
w € U*(BSU). We have w = p(t) for some t € U*(BU), hence, p((¢*)~1b — \t) =
and we obtain that (¢*)7'b — M\t € Kerp = I(dV). Hence, b — Ap*(t) € ©*(I(dV)) and
bd = \p*(t)0 by part IL. Tt follows that Az = aA + b0 = A(aWA + ©*(t)d). Since AV has
no {2y-torsion, we conclude that x = zWA + ¢*(t)0 € AYA @ AV and therefore n = 0.
Now consider the following AY-linear maps:

py: AUV — AV A, po: AV — AY9,
a— 2a¥ A, a—a(l —¥A)x0.
These maps behave like mutually orthogonal projections. Namely, they satisfy the
identities
Palava =2idgua,  Palava =0,  polavg =2idgug,  Polava = 0.
This is a direct calculation using Proposition 4.3:
py(ad) = 26APA =2aA, P, (b0) =200WA =0,
po(ad) = aA(l =V A)x0 = (aA —aAVA)x0 =0,
pa(b0) = bO(1 — WA)xD = (b0 — bOWA)xO = bdx0 = 2b0.

We therefore have an AY-linear map p = p, + po: AV — AVA @ AV satisfying
Plavagavs = 2id qupag avy- We use the following algebraic fact.

LEMMA 4.6. Let 0 = A5 B 5 C — 0 be an ezact sequence of abelian groups. Assume
A does not have n-torsion for a fivred n € Z and there exists a homomorphism p: B — A
satisfying poi = mnida. Then there exists an injective homomorphism s: nC — B.

If we start with a short exact sequence of R-modules for a commutative ring R, then
s 18 also an R-module map.
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PROOF. Let nc € nC. If nc = w(nb) then nc = w(nb — i(p(b))) and p(nb — i(p(b))) =
np(b) — np(b) = 0. Hence, there is an element = := nb — i(p(b)) € B satisfying n(z) = nc
and p(z) = 0. If 2’ is another such element, then w(x — 2’) = 0 so z — 2’ = i(y) and
0 = p(x —2') = p(i(y)) = ny. Since A has no n-torsion, y = 0 and = = z’. Hence, x is
defined uniquely and there is a well defined homomorphism s: nC — B, nc — z, satisfying
pos=0and mos =1id,c. The latter identity implies that s is injective. O

Applying Lemma 4.6 to the short exact sequence (4.3) and p = p, + ps restricted to
©*I(dV), we conclude that 2N injects into ¢*I(d”) c AY. Since N has no 2-torsion, N
itself also injects into ¢*I(d”) C AY. Furthermore, applying ®g,Z to (4.3), we obtain a
short exact sequence of graded abelian groups

i®0y,Z
(44) 0= (AYA)®g, Z) @ (AV0) ®0, Z) —5 o*(I(d")) ®ay, Z — N ®g, Z — 0.
The injectivity of the second map follows from the identity (p ®q, Z)(i ®¢, Z) = 2id and
the absence of torsion in ((AYA) ®g, Z) & ((AY0) ®gq, Z) (the latter group is described
below). Note that M ®g¢,, Z = M/(§2}; M) for any £2y-module M, where £2/; denotes the
ideal of nonzero (negatively) graded elements in 2.

Next, we show that N ®g, Z is finite in each degree using a dimension counting
argument.

As A has the right inverse ¥, the AV-module AV A is free on a single 4-dimensional
generator. That is, (AY A)?¢ = U2=4(MU). Hence,

(AV4) 90, Z)™ = (U (MU) @q, 2)* = H*{(MU; ) = 7742,

where p(k) denotes the number of integer partitions of k. Furthermore,

(AUa)Qk _ (AU)Zkz—Qa ~ (AU)Qk—Q/(AnnL 8)2k—2
— (AU)Qk_Q/((p*I(dU))mC_Q — U2k_2(MSU),

where the third identity follows from part II of this proof, and the last one is (4.1). It
follows that

(AY0) ®q, Z)* = H*2(MSU,; Z) = 27* Y,
where p(k) is a number of integer partitions of k£ without 1. Finally, (¢*I(d")) ®gn, Z =
oy l(c1), where 32 H*(BU;Z) — H*(MU;Z) is the Thom isomorphism in ordinary
cohomology and I(c;) is the ideal in H*(BU;Z) generated by the universal first Chern
class ¢1. Therefore,

("1(d") ®ay Z)** = (Pl (en)™ =777,
Plugging the identities above into the (2k)th homogeneous part of (4.4) we obtain

0— Zp(k—Q)""ﬁ(k—l) N Zp(k—l) N (N @0y Z)Qk 0.

Now the identity p(k — 1) = p(k — 2) + p(k — 1) implies that (N ®g,, Z)?* is a finite group.

We therefore have a graded (2y-submodule N of AU such that (N ®gq, Z)% is a
finite group for any k. We need to show that N = 0. Consider the {2y -linear projection
po: AV — 0y which maps a € AY to its coefficient )\, in the power series expansion
a =), Sy, where S, € AU are the Landweber-Novikov operations. As N ®qy L =
N/(£2{iN) is finite in each dimension, we obtain that p,,(N)/(£2{/p,(N)) is also finite in
each dimension. We claim that p,,(N) = 0. The general algebraic setting is as follows. Let
R be a nonnegatively (or nonpositively) graded ring without torsion, and let I C R be
an ideal such that I/(R*I) is finite in each dimension. Then I = 0. Indeed, let = € I be
an element of minimal degree. Then nx € R™I for some nonzero integer n. As degx is
minimal in I, every nonzero element of R™I has degree greater then deg x. Hence, nz = 0.
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As R has no torsion, we conclude that z = 0 and I = 0. Returning to our situation, we
obtain that p,(N) = 0 for any w. Thus, N = 0 as claimed.

We have therefore proved that ¢*(I(dV)) = AYA + AV9. Combining this identity
with (4.1) we obtain statement (a) of the theorem, and combining it with the identity of
part IT of the proof, we obtain that Annz,d = AY A 4 AY9, proving statement (b). O

5. Calculation with the spectral sequence

Here we apply the Adams—Novikov spectral sequence (Theorem 3.5) to the SU-bordism
spectrum X = MSU. As a result, we obtain a multiplicative spectral sequence with the
FEs-term

EPT = Exti’g(U*(MSU), U*(pt)),
converging to m,(MSU) = 25U,
Theorem 4.5 implies that there is a free resolution of left AV-modules:

0 ¢— U*(MSU) = AV /(AV0 + AV A)e— AV L2 AU g AU J1 AU g AV 2

where AV — AV /(AV0 4 AY) is the quotient projection, fo(a,b) = ad+bA and fi(a,b) =
(ad + bA,0) for i > 1. We rewrite it more formally as follows:

PROPOSITION 5.1. There is a free resolution of left AV -modules:
0« US(MSU)«—R® > Rt L g2 2
where R = AU (ug) is a free module on a single generator of degree 0, R* = AY (u;,v;) is

a free module on two generators, degu; = 2i, degv; = 2i+2, 1 > 1, and fi—1(u;) = Ou;—1,
fic1(vi) = Au;—q.

PRrOOF. We have f;_1fi = 0 because 0> = A = 0. The exactness at R? is The-
orem 4.5. To prove the exactness at R’ with 4 > 1, suppose 0 = f;_1(au; + bv;) =
(a0+bA)u;—1. Then a0+bA = 0, which implies b = 0 and ad = 0 by Corollary 4.4. Hence,
a € Anny0, so a = a’0+b A by Theorem 4.5 (b). Thus, au;+bv; = au; = fi(a'uj1+bvi41),
as needed. O

Applying HomiU (—,U*(pt)) to the resolution of Proposition 5.1 and using the isomor-

phism 2,7 = Qg , we obtain a complex whose homology is the terms E3'? of the spectral
sequence:

0 1 2
(5.1) 0— 2 Lal,enl, L ole0l 5.

The differentials are given by d°(a) = (9a, Aa) and d'(a,b) = (da, Aa), i > 1. Here we
denote by 9 and A the action of the corresponding operations on 2V, and continue using
this notation below.

Conner and Floyd [22] defined the groups

W,y = Ker(A: Qg — QqU,4).

The identities 9> = AJ = 0 imply that the restriction of the differential 9: W;, — Wy_s
is defined.

PROPOSITION 5.2. The complex (5.1) is quasi-isomorphic to its subcomplex
0— W, LW, 0D W, 0L

PROOF. Let i: Wy, — 2 & 2V, be the inclusion w — (w,0), where w € Ker A. It is
a map of chain complexes, because i(Ow) = (Qw,0) = (Ow, Aw) = d(w,0) = di(w). The
induced map in homology is injective, because i(w) = d(a,b) implies (w,0) = (da, Aa),
hence w = da with a € Ker A = W,. To prove the surjectivity, take a cycle (a,b) €
2V @ 2V ,. Then 0 = d(a,b) = (Ja, Aa). Since A: Q,g+2 — U, is surjective (it has a
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right inverse ¥), there is b’ € Qg+2 such that A = b. Then a — OV’ € Ker A is a d-cycle,
and (a,b) —i(a — V') = (a,b) — (a — 9V',0) = (OV',b) = d(V,0), so i(a — V') represents
the same homology class as (a, b). O

PROPOSITION 5.3. The Es-term of the spectral sequence satisfies

(a) Eg? = Ker(d: W, = W,_2) = (Kerd) N (Ker A) C Y,

(b) EY? = Hy_9,(Ws,d) for p > 0.

(c) the edge homomorphism h: QgU — Eg’q coincides with the forgetful homomor-

phism _QqSU — Wy

Therefore, the spectral sequence is concentrated in the first quadrant (i.e., EP? = 0 for
p<0orq<0) EPf =0 for odd q and for ¢ < 2p, and the differentials d,: EF? —
E;T«’M’qwfl are trivial for even r.

PROOF. Statements (a) and (b) follow from Proposition 5.2. To prove (c), recall that
the edge homomorphism

h: 5V — By = Hom’,,,(U*(MSU), Q)

is defined as follows. Given an element o € QqSU represented by a map f: S? — MSU and
an element 3 € UP(MSU) represented by a map g: MSU — XP MU, the element h(«)(8) €
ngq is represented by the composite g o f: S9 — YPMU. Through the identification of
Eg’q with Ker(9: Wy — Wy—2), an AV-homomorphism ¢: U*(MSU) — £2;; ? is mapped
to ¢(1), where « € UY(MSU) is the class represented by the canonical map of spectra
MSU — MU. The edge homomorphism therefore becomes _QfU — QqU, a — h(a)(t),
which is precisely the forgetful homomorphism, proving (c). The rest follows from the fact
that W, is concentrated in nonnegative even degrees. O

In particular, ds = 0 and E9 = E3. We shall denote this term simply by F.

We have EY2 = Hy(W, 8) = Za, because Wy = Qf = Z, Wa = QY = Z generated by
[CP!], and O[CP!] = 2. Let § € E'? be the generator. By dimensional reasons, it is an
infinite cycle, because it lies on the ‘border line’ g = 2p.

PROPOSITION 5.4. The multiplication by 0 defines an isomorphism EP4 — EPTLat+2
for p > 0 and an epimorphism E% — EY42 with kernel Im 0.

Proor. For p > 0, the map EP4 ¥y Ertlat? g the identity isomorphism
H,_2,(W.) — Hy_2,(W). For p = 0, the homomorphism E%? — FEL™2 maps
Ker(9: Wy = Wy—2) to Hy(W), so its kernel is Im 0. O

This implies that EP? = §FEP~5472 for p > 1. In particular, E¥?* = Z, generated
by 6%, so the only nontrivial elements on the border line ¢ = 2p are 1,6,62%,63, ...
Now consider E%* = Ker(9: Wy — Wh). Note that a|9}{ = 0, because ¢; is the only

Chern number in Y. Hence, E%* = Wj. Furthermore, W, = Z is generated by
K = 9[CP')*> — 8[CP?

(this bordism class has characteristic numbers ¢ = 0 and ¢y = 12). Therefore, K represents
a generator of E%* = Z.
We have a potentially nontrivial differential d3: E%* — E3%, see Figure 1.

PROPOSITION 5.5. We have d3(K) = 63.

PROOF. Suppose that d3(K) = 0. We also have d;(K) = 0 for ¢ > 3, because d;(K) €
gl

is below the border line p = 2¢. This implies that K is an infinite cycle, so it
represents an element in E%'. We obtain that ESA = ng, which implies that the edge
homomorphism QfU — Eg’4 is surjective. It coincides with the forgetful homomorphism
27V — Wy by Proposition 5.3 (c). On the other hand, the forgetful homomorphism is not
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FIGURE 1. The term Fy; = E3 of the Adams—Novikov spectral sequence
for SU-bordism.

surjective, as td(K) = 1, while the Todd genus of a 4-dimensional SU-manifold is even
(this follows from Rokhlin’s signature theorem [46]). A contradiction. O

PROPOSITION 5.6. We have E{"* =0 for p > 3 and E4 = Ew.

PROOF. Take a ds-cycle x € EP4 with p > 3. We have x = 03y for some y € EP~3476
and 0 = dsz = #3dsy. Now, dzy € EP9~*, and the multiplication by 6 is an isomorphism
in this dimension by Proposition 5.4, hence, dgy = 0. This implies that = = 83y = d3(Ky).
Hence, z is a boundary, and E}'? = 0 for p > 3. For dimensional reasons, this implies
d; =0fori >4 and Ey, = Ej4. O

It follows that the infinite term of the spectral sequence consists of three columns
only, and Eéo* = GE&*, Ego* = HEég*. Furthermore, in the first three columns we have
E., = Kerds, for dimensional reasons, and the multiplication by @ is injective on E;o* In
particular, E&Qk = Ek2k s 74 with generator 0% for 0 < k < 2, and Efg)% =0 for k > 3.

Proposition 5.6 implies that the Adams-Novikov filtration in 25V satisfies FP? = 0
for p > 3, that is, the filtration consists of three terms only:

SU __ 70n 1,n+1 2n+2 _ p2n+2
2,7 =F"" DO F OF =B

If n = 2k + 1 is odd, then FO2+1/F12k+2 = AL —  and F22443 = B2 = 0
by Proposition 5.3. Therefore

(5.2) 05, = EL2H.

If n = 2k is even, then F1,2k+1/F2,2k+2 = Eéc’)%Jrl = 0, so we obtain a short exact
sequence

(5.3) 0— EX2+2 5 5V 5 EO2k .
ExXAMPLE 5.7. In low dimensions we have:

QgU = ES;,O = FO0 o~ 7, because Eﬁg? =0.

QfU = Eéf = B2 = 7, with generator .

stU = Ec2,54 > Zo with generator 62, because 0 = E%2 = Ker 9 Cc W, (recall that
W is generated by [CP!] and 9[CP?] = 2).

25V = BL = 0ES? = 0.
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o 25U = EY%' =~ 7 with generator 2K. The identity 25U = E%' follows from (5.3),

because Eoé = 92E802 = 0. A generator of E204 = Kerds is 2K, because
d3(K) = 93
QSU 6E804 = 0 because 6 - 2K = 0.

THEOREM 5.8.

(a) The kernel of the forgetful homomorphism 25V — U consists of torsion ele-
ments.
(b) Ewvery torsion element in 25V has order 2. More precisely,

D5ider = 00257, Tors Q5 = 020257,

Proor. We have Q2k+1 — EY 2k+2 _ = OEY 2k 9(2% , because kaU — E&?’“ is sur-

jective. This also implies that 257, ', consists of 2-torsion, proving (a) and (b) in odd
dimensions.

In even dimensions, we use the exact sequence (5.3). Since ESH c E%%F cw, c U
is torsion-free and F2 2h+2 = 2B k=2 s a 2-torsion, we obtain Tors ngU = Ei’?’““ =
92ES 2 = = 02057 ,, proving (b). To finish the proof of (a), it remains to note that the
kernel of 25V — QU coincides with the kernel of ngU — B9 by Proposition 5.3 (c),
and the latter kernel is the torsion of ngU by the above. O

The next lemma gives a short exact sequence, originally due to Conner and Floyd [22],
which is the key ingredient in the calculation of the torsion in 25V,

LEMMA 5.9. There is a short exact sequence of Zg-modules

PRrOOF. Consider the commutative diagram

1 Qk dl 2k d4 2k+2
1,2k 4,2k+2 7,2k+4
0—= U = gtk B pa2ks2 B g
%T.QS = T .93
1 2k—4
0 Q El 2k—4 E4 2k—2

2k—5

The rows are exact by Proposition 5.6 and (5.2). By the commutativity of the diagram,
Im cl1 2k — Ker d4 242 o Kop d1 2k—d QQSkU 5. We obtain a short exact sequence

0— 2V, - EY* 5 25U o 0.
It remains to note that EV2F = Hyp_o (W, 0). O

REMARK. The exact sequence of Lemma 5.9 is the derived exact sequence of the 5-term
exact sequence (0.1) from the Introduction.

Homology of (W, d) was described by Conner and Floyd. For the relation of this
calculation to the Adams—Novikov spectral sequence, see [8, §5].

THEOREM 5.10 ([22, Theorem 11.8]). H (W, ) is the following polynomial algebra
over Zsg:

H(W,,0) = Zolwa,wyi: k > 2], degws =4, degwyy = 8k.

REMARK. The multiplication in H(W,,d) is induced by the multiplication in Y,
see Section 6. It coincides with the multiplication in the Es term of the Adams—Novikov
spectral sequence.

We finally obtain the following information about the free and torsion parts of 25V:

THEOREM b5.11.
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(a) Tors 25V = 0 unless n = 8k +1 or 8k +2, in which case Tors 25V is a Zy-vector
space of rank equal to the number of partitions of k.

(b) 25Y ) Tors is isomorphic to the image of the forgetful homomorphism o: 25U
QY which is Ker(0: Wa; — Wa;_2) if 20 4 mod 8 and Im(0: Wa; — Wa;_2)
if 2i =4 mod 8.

(¢) There exist SU-bordism classes wyy € ngU, k > 1, such that every torsion el-
ement of 25V is uniquely expressible in the form P -0 or P - 6% where P is a
polynomial in wa with coefficients 0 or 1. An element wyy, € ngU s determined

by the condition that it represents a polynomial generator way in Hgp (Wi, d) for

k>2, and wy € 25V represents w3.

REMARK. The only indeterminacy in the deﬁnition of wyy is the choice of a d-cycle
in Wy, representing a polynomial generator wyy or w5 from Theorem 5.10. Once we fixed
w4 € Wig, it lifts uniquely to wyy, € ng , since the forgetful homomorphism «: QSk
Wiy is injective onto Ker 9 in dimension 8k, by statements (a) and (b).

PrROOF OF THEOREM 5.11. We prove (a). Theorem 5.10 gives that H,_o,(W,) = 0
unless ¢ — 2p = 8k or ¢ — 2p = 8k + 4. First consider the case of odd n. Lemma 5.9 gives
an exact sequence

0— QggkU_l — Hgi_o(Wy) — Qgg,g_g) — 0,

which implies Qg,g_ 1= Qéqu_ 5 = 0. We also have an exact sequence
0— 2591 — HegpeOW.) — 25V 5 — 0,

which splits because H (W) is a Zg-module. Hence, _stUJrl @ ngU_?) >~ Hg (W) =
HgjoreaWs) =2 25V - © 0250 . Hence, 25V o = 28U .. As this is valid for all k, we obtain
Qégkﬂ5 = 0. Therefore, the only nontrivial 25V with odd n is ng ‘1, and Lemma 5.9 gives

an isomorphism ng ‘1 = Hgp(Ws). Now it follows from Theorem 5.10 that _ng L1 s a
Zo-vector space of rank equal to the number of partltlons of k.

For even n = 2m, Theorem 5.8 gives Tors 257 = 0025V | which is nonzero only for
2m = 8k + 2 by the previous paragraph. The multiplication by 6 defines a homomorphism

1,8k+2 2,8k+4 _ SU
“QSkJrl By — B = Tors {251,

which is an isomorphism by Proposition 5.4. This finishes the proof of (a).

To prove (b), recall that Tors (2;? U is the kernel of forgetful homomorphism Qg U= w,
by Theorem 5.8 (a), and the forgetful homomorphism coincides with the edge homomor-
phism h: (Z?U — Eg’q by Proposition 5.3 (c). Hence, 29V /Tors = Im h. Furthermore,
Im h = Ker(dz: ES* — E**t2) by Proposition 5.6.

Now, if 2i # 8k, 8k + 4, then we have

d3(EO,2i) — 0—1d3(9E0,2i) — 0—1d3(E1,2i+2) -0

because EY242 = Hy(W.) = 0 by Theorem 5.10. Therefore, 25" /Tors = Kerds =
E%% = Ker 9 in this case.
For 2i = 8k, we observe that

0= 025" 3 = EL? = Kerdy®* ¢ B2,
This implies that
(5.4) 0= Ker(dé’gk_Qe—Q) — Ker(0—2d§,8kz+2) — Ker d§,8k+2'

Hence, Im dy®" € Ker d3®*? = 0 and 025U /Tors = Ker dy*" = E08F = Ker .
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It remains to consider the case 2i = 8k + 4. The exact sequence (5.3) gives nglg_Q =
E%3H because EXEFT0 ¢ E28KH6 — Hgp 5 (W,) = 0. Consider the commutative diagram
with exact rows:

0,8k-+4
0 0SU EO8k+4 F0.8k+4 d3 F3.8k+6

8k+4 —
l.@S %i.@S
38k+10

0— s> E3,8k+10 3B E6,8k+12

The lower row is exact by (5.4). The diagram implies that

.93 .0
Qggr4 ~ Ker dg78k+4 _ Ker(E0,8k+4 AN E3,8k+10) _ Ker(E0,8k+4 9, E1,8k+6) — Tm 8,

where the last two identities follow from Proposition 5.4. This finishes the proof of (b).
It remains to prove (c). Using statement (b) and Theorem 5.8 (b) we identify the
homomorphism 25 N Qg,grl with the projection Kerd — Kerd/Imo = Hgp(Ws).
Take an element o € Qégk(il and write it as a polynomial P(wyx) in wy with Zs-coefficients
using Theorem 5.10. (To simplify the notation, we use w3 for the missing generator wy in
this argument.) Choose lifts wy; € QégkU = Kerd C Wy of wyy; then a = P(wyy) maps
to a. In other words, @ = P(wy) - 0, where P is now considered as a polynomial with
coefficients 0 and 1. If o = Q(wyy) - 0 for another such @, then P(wy;) = Q(wyy), which
implies P = @) because wyy are polynomial generators and both P and () have coefficients
0 and 1. Therefore, any element of Qg,grl is uniquely represented as P - #, as needed. For

the elements of Tors Qégkﬂw recall that ng(frl % Tors Qégquz is an isomorphism. This
finishes the proof. O

6. The ring W

Theorem 5.11 (b) relates the group £2°V/ Tors to the subgroup Ker(9: W — W) =
(Ker 9) N (Ker A) in 2Y. Although W = Ker A is not a subring of 2V, there is a product
structure in W such that 25V / Tors C W is a subring. This leads to a description of the
ring structure in £2°Y/ Tors. We review this approach here, following [22], [54] and [50].

We recall the geometric operations 9: 28 — QY and A: QY — QU . see (4.2).

CONSTRUCTION 6.1 (0 and A revisited). Consider a stably complex manifold M =
M?" with the fundamental class [M?"] € Hs,(M;Z). Let N = N?"~2 be a stably complex
submanifold dual to the cohomology class ¢1(M) = ci(det TM). That is, we have an
inclusion

it N*"2 < M*" such that i.([N]) = c1(M) ~ [M] in H,(M;Z).

The restriction of det 7M to N is the normal bundle ¥(N C M). The stably complex
structure on N is defined via the isomorphism 7M |y =2 TN@v(N C M). Then ¢;(N) =0,
so N is an SU-manifold.

The homomorphism 0 = A gy: 25, — 25, _, sends a bordism class [M] to the
bordism class [N] dual to ¢1(M) as described above. This operation is well defined on
bordism classes, as [N] = eDy(c{(det TM)), where Dy: U3(M) — Us,—2(M) is the
Poincaré-Atiyah duality homomorphism, and e: Us,,—2(M) — 2% _, is the augmentation.
We have 0% = 0 because N is an SU-manifold.

Similarly, the homomorphism A = A yy: ¥ — U, takes a bordism class [M] to
the bordism class of the submanifold L = L?"~* dual to det TM & det 7 M. That is, we
have

j: L2 s M such that  j.([L]) = —c3(M) ~ [M] in H.(M;Z).
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We also introduce the homomorphism 0y = A g : o — an_% taking a bordism

class [M] to the bordism class of the submanifold [P] dual to (det7M)®*. We have
[P] = eDy(u), where u = c{ (det TM).

LEMMA 6.2. Let [M] € 2V be a bordism class such that every Chern number of M of
which ¢} is a factor vanishes. Then Ox[M] = 0.
PrROOF. We have 0y[M] = [P], where j: P <— M is a submanifold such that
TP & j*(det TM)®* = j*(TM).

Assume that cfc,[M] = 0 for any w. We need to prove that c,[P] = 0. Calculating the
Chern classes for the bundles above we get

c(P)(L+ j er(M))* = j*e(M)

or
. c(M) e~
Py = (—220 ) = ra
(P =5 (g ) =97 200
where ¢(M) is a polynomial in Chern classes of M. Then for any w = (i1, ...,%,) we have

(co(P), [P]) = (j* Co(M), [P]) = (Cu(M), i (M) ~ [M]) = (¢} &(M),[M]) =0. O
The group Wh,, was defined as
Wa, = Ker(A: 2 — 028 ).
The same group can also be defined in terms of characteristic numbers and geometrically,
as described next. A cohomology class # € H?(M) is spherical if x = f*(u) for a map
f: M — CP!, where u = ¢1(7]) and 7 is the tautological line bundle over CP!.
THEOREM 6.3. The following three groups are identical:
(a) the group W = Ker A;
(b) the subgroup of 2V consisting of bordism classes [M] such that every Chern num-
ber of M of which c2 is a factor vanishes;
(c) the subgroup of 2V consisting of bordism classes [M] for which c1(M) is a spher-
ical class.

PROOF. The equivalence of (a) and (b) was proved in [22, (6.4)]. We give a more direct
argument below. By definition, A[M] = [L], where j: L < M is a submanifold such that

TL®j* (det TM @& det TM) = j*(TM).
Calculating the Chern classes, we get
c(L)(1+ 5 cr(M))(1 = j er(M)) = j" (M),
ci(L) — ci_o(L) - j*c3 (M) = j*ci(M).
In particular, for i = 1 we obtain ¢; (L) = j*¢1(M), so we can rewrite the formula above as
(e — cleima)(L) = jei(M).

Given a partition w = (i,...,4,) and the corresponding Chern class ¢, = ¢;; ---¢;,, we
obtain the following relation on the characteristic numbers:

((ciy = cieiy—a) - (ci, — ey, —2) (L), [L]) = (§*cu(M), [L]) = (—cieu(M), [M])
Now if A[M] = [L] = 0, then the left hand side above vanishes, and we obtain from the
right hand side that every Chern number of M of which ¢? is a factor vanishes.

For the opposite direction, assume that —c%cw [M] = 0 for any w. We need to prove
that ¢,[L] = 0. This is done in the same way as in the proof of Lemma 6.2.

The equivalence of (a) and (c) is proved in [50, Chapter VIII]. O
COROLLARY 6.4. If [M] € W, then Ox[M] =0 for any k > 2.
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PROOF. By Theorem 6.3, [M] € W implies that every Chern number of M of which
c? is a factor vanishes. Then every Chern number of M of which ¢} is a factor vanishes
(as k > 2). Thus, 0x[M] = 0 by Lemma 6.2. O

REMARK. For the operation d = 0j, there is no analogue of equivalence between (a)
and (b) in Theorem 6.3. More precisely, by Lemma 6.2, the group Kerd contains the
subgroup of 2V consisting of bordism classes [M] such that every Chern number of M
of which ¢; is a factor vanishes. However, there is no opposite inclusion. For example,
any element of 2¥ is contained in Kerd, but ¢?[CP?] # 0. In fact, the subgroup of £2Y
consisting of bordism classes [M] such that every Chern number of M of which ¢; is a
factor vanishes coincides with the intersection Ker 9 N Ker A.

It follows from either of the descriptions of the group W, that we have forgetful
homomorphisms 257 — Ws,, — QY and the restriction of the boundary homomorphism
0: Way, — Wap_o is defined.

LEMMA 6.5. For any elements a,b € W, we have
d(a-b)=a-0b+da-b—[CP']-da- b,
Aa - b) = —20a - Ob,
where a - b denotes the product in 2Y.

PROOF. Let a = [M?™] and b = [N?"] for some stably complex manifolds M and N.
Then d(a-b) € 25, ,,,_, is represented by a submanifold X C M x N dual to ¢;(M xN) =
x +y, where x = pici (M), y = psci(M) and p1: M x N — M, pa: M x N — N are the
projection maps. Let u,v € U2(M x N) be the geometric cobordisms corresponding to
x,y, respectively (see Construction 1.6). Then we have

d(a-b) = [X] =¢eDy(u+,v).
On the other hand,

u+,v=Fy(u,v) =u+v+ Z g uFot.

k>1,1>1

To identify d(a-b) = [X], we apply eDy to both sides of this identity. We have e Dy (u) =
da - b (the submanifold dual to pjc1(M) in M x N is the product of the submanifold dual
to c1(M) in M with N). Similarly, eDy(v) = a-9b and e Dy (uv) = da - Ob. We claim that
eDy(uFv!) = 0if k > 2 or I > 2. Indeed, e Dy (uFv!) is the bordism class of the submanifold
in M x N dual to pj(det TM)®* @ pi(det TN)®'. This bordism class is dya - 9;b. Since
a,b € W, Corollary 6.4 implies that dya = 0 or 9;b = 0.

The first identity of the lemma follows by noting that a1; = —[CP!] (see [15, Theo-
rem E.2.3], for example).

For the second identity, A(a-b) € 25, _, is represented by a submanifold L C M xN
dual to —c}(M x N) = (z + y)(—z — y). Similarly to the previous argument,

A(a-b) = [L] = eDy (Fy(u,v) Fy(u,v)) = eDy(—2uv) = —20a - b. O

The direct sum W = @i>0 Wha; is not a subring of 2Y: one has [CP'] € W», but
cA[CP' x CP'] =8 #0, so [CP!] x [CP'] ¢ Wj.

The ring structure in W will be defined using a projection operator p: 2V — 2V which
is described next. Recall the operation W: 25 — 25 ., defined in Construction 4.2.

PROPOSITION 6.6. The homomorphism p = id —WA: 2V — QY is a projection oper-
ator such that Imp =W, Ker p = ¥(2Y) and dp = p0 = 0.

PROOF. The relation A¥ = id from Lemma 4.3 implies (id —¥A)? = id —¥A, so p
is a projection. The same relation implies that Ap = 0, so Imp C Ker A = W. The
inclusion Im p D Ker A is obvious. The identity Ker p = Im ¥ is proved similarly. Finally,
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J(id —PA) = 0 — OPA = 0 because 0¥ = 0, and (id —¥A)) = J — PAI = 0 because
Ad = 0. O

COROLLARY 6.7. rank Wy, = rank (22% — rank Q2Un_4.

PROOF. The previous proposition implies 2V = Ker p@Im p. We have (Im p)2, = Wa,
and (Ker p)o, = ¥(2Y ) = QY , because ¥ is injective. O

Using the projection p = id —¥ A, define the twisted product of elements a,b € W as
axb=p(a-b),
where - denotes the product in 2V. A geometric description is given next.
PROPOSITION 6.8. We have
axb=a-b+2[V*'-0a- b,

where V* is the manifold CP? with the stably complex structure defined by the isomorphism
TCPPoR*=qoq®n.

PROOF. We need to verify that WA(a - b) = —2[V* - da - 9b. By Lemma 6.5,
A(a - b) = —20a - 0b. Recall from Construction 4.2 that ¥[M] is represented by the mani-
fold CP(det T M @ C?) with the stably complex structure p*T M @ (7@ p*det TM) ® 7D 1.
In our case, [M] = —20a - 9b, so det T M is a trivial bundle. We obtain that the bordism
class WA(a - b) = W[M] is represented by the total space of a trivial bundle over M whose
fibre is CP? with the stably complex structure 7 @ 7 @ 7. The latter bordism class is
[V4] - [M] = —2[V*] - da - b, as claimed. O

REMARK. We may also take V4 = CP! x CP' — CP? with the standard complex
structure, as this manifold is bordant to the one described in Proposition 6.8.

THEOREM 6.9. The direct sum W = @5, Wa; is a commutative associative unital
ring with respect to the product *.

PRrROOF. We need to verify that the product * is associative. This is a direct calculation
using the formula from Proposition 6.8. O

The projection p = id =¥ A was defined by Conner and Floyd in [22, (8.4)] and used
by Novikov [40, Remark 5.3]. Stong [50, Chapter VIII] introduced another projection
7: QU — QU with image W, defined geometrically as follows. Take [M] € 02V. Then
7[M] is the bordism class [N] of the submanifold N C CP! x M dual to 7] ® det TM. Tt
follows easily from this geometric definition that ¢;(7w[M]) is a spherical class; in this way
the equivalence of (a) and (c¢) in Theorem 6.3 is proved.

Buchstaber [11] used Stong’s projection 7: 2V — W (under the name “projection of
Conner—Floyd type”) to define a complex-oriented cohomology theory with the coefficient
ring W and studied the corresponding formal group law. A general algebraic theory of
projections of Conner—Floyd type was developed in [10]; it was then used to classify
stable associative multiplications in complex cobordism.

Both projection operators p and 7 have the same image W and coincide on the elements
of the form a - b where a,b € W. Therefore, they define the same product in WW. However
the projections p and 7 are different, as they have different kernels. Indeed, take [M%] =
W[CP!]. Then p[M®] = 0 because [M®] € Im¥. On the other hand, 7[M%] # 0, because
one can check that c}[M%] = —2, c3[M%] = 2 and c3(7[M®]) = (=} + ¢3)[M®] = 4, which
is nonzero. Also, c3(p[CP3]) = 68, while c3(7[CP3]) = —60.

Recall from Theorem 1.5 that a bordism class [M?] € 02U represents a polynomial
generator of 2V whenever s;[M?] = +m;, where the numbers m; are defined in (1.4). A
similar description for the ring W is given next.
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THEOREM 6.10. W s a polynomial ring on generators in every even degree except 4:
W Zxy, a0 >3], x1=[CP'Y, degx;=2i.

Polynomial generators x; are specified by the condition s;(x;) = +m;m;—q for i = 3. The
boundary operator 8: W — W, 0% = 0, satisfies the identity

(6.1) O0(axb) =ax0b+ 0ax*b— x1 * Oa* Ob.
and the polynomial generators of VW can be chosen so as to satisfy
O0r1 =2, O0Oxo; = Toj_1.
PROOF. We start by checking the identity (6.1):
d(a * b) = dp(ab) = A(ab) = adb + bda — [CPY|dadb = a * Ob + b * da — [CP] x da * Ob.

Here the second identity is by Proposition 6.6, the third idenity is Lemma 6.5, and the
last identity also follows from Lemma 6.5, as the identity A(ab) = —20a0b for a,b € W
implies that a * b = ab whenever a € Im0 or b € Im 0.

In the rest of this proof we denote the product of elements in W by a * b only when it
differs from the product in 2V; otherwise we denote it by a - b or simply ab.

We start by defining bordism classes b; € Wey; for each ¢ > 1 except i = 2. Set
[CPY ifi =1,
T[CP? x CP?™'] ifi=2P(2q+1), p>1, ¢ > 1,
7[CP¥ x CP%| if i =2rtl p>1,
0biy1 if 4 is odd and 7 > 3,

where 7: 2V — W is Stong’s projection defined above. One can check that
si(b)) =1 mod 2 ifi#2F—1, 42k

si(b)) =2 mod 4 ifi=2F_—1,

si(b;) =2 mod 4 ifi=2PFL

$(2p72p) (b2p+l) =1 mOd 2.

(6.2)

Consider the inclusion t: W ® Zy — 2V ® Zy. The formula for the product in W from
Proposition 6.8 implies that ¢ is a ring homomorphism. Relations (6.2) imply that there
are polynomial generators a; of the ring 2V ® Zy = Zs[a;: i > 1] such that «(b;) =
a; for i # 2P and i(bypi1) = (age)? + ---, where --- denotes decomposable elements
corresponding to partitions strictly less than (2P, 2P) in the lexicographic order. It follows
that the elements t(b;) are algebraically independent in the polynomial ring 2V ® Zy =
Zsla;: i > 1]. Therefore, W ® Zy contains the polynomial subring Zsa[b1,b;: i > 3]. By
comparing the ranks using Corollary 6.7 we conclude that

W ® Zo = Zg[bl,bit 1> 3}
Next we observe that s;(b;) is an odd multiple of m;m;_; for ¢ > 3, that is,
(63) Sl(bl) = (26]1' + 1)mimi_1, 1= 3.
For even ¢ this follows from (6.2) and the fact that s;(b;) is a multiple of m;, see Theo-
rem 1.5 (b). For odd i we have b; = 9b; 11, so b; is represented by an SU-manifold, and (6.3)

follows from (6.2) and Proposition 2.2.
By Theorem 2.1, there exist elements y; € inU, 1 > 2, such that

(6.4) si(yi) = 2% mimi_1, ki > 0.
For the integers ¢; from (6.3) and k; from (6.4) we find integers f3; and ~; such that
Bi2MH 4 yi(2¢i +1) = 1.
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Then ~; is odd, so we have v; = 2a; + 1 for an integer «;. Now we set x1 = [(CPl] and
37; = (20éi + l)bi + Qﬁiyi, 7 2 3.
Then the identities above imply that sz(:cfb) = mym;_1. The required elements x; are
obtained by modifying the 2/ as follows:
T2i—1 = :LJQi—lv L2 = 33,2, - 301((0421' —ai—1)b2i1 — /821'713/21‘71)-
Then we have
si(wi) = mim;_q
because z; — z, is decomposable. The new element x9; still belongs to W; to verify this we
use the second identity of Lemma 6.5:

Azg; = Az + 20210 ((0v2i — 2i—1)b2i—1 — Bai—1y2i—1) =0

because a:'QZ €W =Ker A, Obgy;_1 = 0%by; = 0 and Jyo;—1 = 0 because yoi_1 € 09Y,
To verify the identity dxo; = x9;_1 we use the first identity of Lemma 6.5:

Oxo; = Oaly; — 0wy - (((v2i — v2i—1)baim1 — Pai—1y2i—1) = (2a; + 1)9by;
— 2((0v2i — a2i—1)b2i—1 — Bai—1y2i—1) = (202i-1 + 1)b2i—1 + 2B2i—1y2i—1 = T2i—1.
Now we define a homomorphism
o: R="Zxy,x;: 1> 3] = W,

which sends the polynomial generator x; to the corresponding element of VW, defined
above. Obseve that ¢ ® Zs sends z; to b; modulo decomposable elements. As we have seen,
W ® Zg = Zsa[b1,b;: i > 3], which implies that ¢ ® Zg is an isomorphism. Since R and
W are torsion free, ¢ is injective and ¢(R,) C W, is a subgroup of odd index in each
dimension.

We will show that ¢: R — W becomes surjective after tensoring with Z[3]. This will
imply that ¢ is an isomorphism.

Note that for any @ € W we have

O(x1*xa) =0z - a4z - 0 — 21 - 021 - Qv = 20 — w1 0.

Hence, a = 30(z1 * @) + 3210 in W @ Z[3]. It follows that W ® Z[3] is generated by 1
and z; as a module over 29V ® Z[3] C W ® Z[3] (note that 25V ® Z[1] is a subring of
W ® Z[1], by the formula from Proposition 6.8). Furthermore, this module is free because
0 = a+ x1b with a,b € 25V ® Z[}] implies 0 = d(a + 21b) = dz1 - b = 2b and therefore
b =0 and a = 0. Hence,
WeZ[i] = 25V @ Z[3)(1, x1).
Now we define new elements in p(R) C W:
Y2 = 2x1 *x1 = O0(z1 * 21 * 21),
(6.5) Y2i = O(x1 * T;) = 2T9; — T1X2i—1, 12> 2,

2
Y2i—1 = T2i—1 = OTa, 1= 2.
These elements actually lie in 25V, because they belong to Im 9. Then
so(1yo) = 2s9(x1 - 21 + 8[V?]) = —1652(CP?) = —48 = —8maomy,
(6.6) 52i(y2i) = 282;(w2:) = 2maima;—1, i

32i—1<y2i—1) = 321’—1(«7321'—1) = M2;—1M2;-2, i

WV

2,
2,

WV

and therefore the y; are polynomial generators of £2°V ® Z[%] by Theorem 2.1. It follows
that W@ Z[5] = 29V @ Z[1](1,21) C (R @ Z[3]). Thus, ¢ ® Z[}] is epimorphism, which
completes the proof. O
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7. The ring structure of 25V

The forgetful map a: 25U — W is a ring homomorphism; this follows from Propo-
sition 6.8 because da(x) = 0 for any = € 25V, Therefore, the ring 25V /Tors can be
described as a subring in W.

Note that we have

(7.1) W Z[%] = Z[%][wl, Tok_1,2Lok — T1Tok_1: k = 2],

where :L'% = x1 * 21 is a 0-cycle, and each of the elements xop_1 and 2xop, — £1x95_1 With
k > 21is a d-cycle.
For any integer n > 3 define

2My_1Mp_o if n > 3 is odd;
(7.2) g(n) =< my_1my,_o if n > 3is even;
—48 if n = 3.

These numbers appear in (6.6). For example, g(4) = 6, g(5) = 20. For n > 3, the number
g(n) can take the following values: 1, 2, 4, p, 2p, 4p, where p is an odd prime.

THEOREM 7.1. There exist indecomposable elements y; € Q%U, i > 2, with minimal
s-numbers given by s;(y;) = g(i + 1). These elements are mapped as follows under the
forgetful homomorphism a: 25V — W:

2
Y2 = 2X7,  Yog—1 > Tok—1, Yok F 2X9p — T1Top—1, Kk =2,

where the x; are polynomial generators of W. In particular, 25V ® Z[3) = Z[5][y;: i > 2]
embeds into (7.1) as the polynomial subring generated by :c%, Top—1 and 2x9p — T1Tok—_1-

PROOF. The elements y; € 25" were defined in (6.5), and their s-numbers were given
by (6.6). We only need to check that the s-number of y; is minimal possible in Q%U.

For yor_1, the number mor_1mok_o is minimal possible for all elements in Wyi_o by
Theorem 6.10, and therefore it is also minimal possible in kaU_z C Wig—o. (Note that
indecomposability in W with respect to the product * is the same as indecomposability
in 2V in dimensions > 4; this follows from Proposition 6.8.)

For yo = 227, we have 27V = Imd = Z(ys), where y» = 2K in the notation of
Example 5.7.

Now consider yo with k > 2. We have sop(yar) = 2mogpmok—1. Take any element a €
25V C (Ker 0) 4. It follows from (7.1) that Ker(0: W — W) consists of Z[%]-polynomials
in :1:%, To;—1, 2xo; — T1x2;—1 which have integral coefficients in the x;’s. Write

a = N2z, — x12T2k—1) + b,

where )\ € Z[%] and b is a decomposable element in Z[%][m%, x9i—1,2x9; — 1T2;—1]. Then b
does not contain xjzor_1, hence A € Z. Therefore, soi(a) = 2Asox(xor) = A - 2mogpmok_1,
S0 2mapmop_1 is the minimal possible s-number in Qf,g . O

Recall that the image of the forgetful homomorphism a: 25V — W is 29V /Tors
by Theorem 5.8 (a). Furthermore, by Theorem 5.11 (b), £25Y/Tors is isomorphic to
Ker(0: W — W) if 2i # 4 mod 8 and is isomorphic to Im(d: W — W) if 2i = 4
mod 8. Combining this with Theorem 7.1, we obtain a description of 25V / Tors as a sub-
ring in W. Finally, the multiplicative structure of the torsion elements is described by
Theorem 5.11 (c). Collecting these pieces of information together we obtain, in principle,
a full description of the ring 2°Y. However, as noted by Stong at the end of Chapter X
in [50], an intrinsic description of this ring is extremely complicated. For example, the
nontrivial graded components of £2°U of dimension < 10 are described in terms of the
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elements x; and y; from Theorem 7.1 as follows:
‘QgU = Za QigU = Z2<9>7 'QgU = ZQ<02>’
BV =Zya), yo =223, QFV =Zlys), ys = a3, 25V = Z(1v3, ), ya = 224 — 2123,

QY = Zy(02t), QY = Z(hyoys, ys) @ Zo(0%2), ys5 = 5.
We have
yo = 227 = 2(9[CP'] x [CP"] - 8[CP?))
as a U-bordism class. In dimension 8 we have
1y3 = 2f = (9[CP'] x [CP'] - 8[CP?)) x (9[CP'] x [CP'] - 8[CP?])

as a U-bordism class, because 27 = 9[CP!] x [CP'] — 8[CP? is a d-cycle. Also, 1y3 = ]
can be chosen as wy in Theorem 5.11 (c). We see that 8 is the first dimension where
29V /Tors differs from a polynomial ring, as the square of the 4-dimensional generator

yo is divisible by 4. Furthermore, the product of the 4- and 6- dimensional generators is
divisible by 2.

Part II. Geometric representatives
8. Toric varieties and quasitoric manifolds

Here we collect the necessary information about toric varieties and quasitoric mani-
folds. Standard references on toric geometry include Danilov’s survey [24] and books by
Oda [42], Fulton [26] and Cox, Little and Schenck [23]. More information about quasitoric
manifolds can be found in [15, Chapter 6].

A toric variety is a normal complex algebraic variety V containing an algebraic torus
(C*)™ as a Zariski open subset in such a way that the natural action of (C*)™ on itself
extends to an action on V. A nonsingular complete (compact in the usual topology) toric
variety is called a toric manifold.

There is the fundamental correspondence of toric geometry between the isomorphism
classes of complex n-dimensional toric varieties and rational fans in R™. Under this corre-
spondence,

cones <— affine toric varieties
complete fans <— complete (compact) toric varieties
normal fans of polytopes «<— projective toric varieties
nonsingular fans +— nonsingular toric varieties

simplicial fans <— toric orbifolds

A fan is a finite collection ¥ = {o7y,..., 05} of strongly convex cones ¢; in R" such that
every face of a cone in ¥ belongs to ¥ and the intersection of any two cones in ¥ is a face
of each. A fan is rational (with respect to the standard integer lattice Z"™ C R™) if each of
its cones is generated by rational (or lattice) vectors. In particular, each one-dimensional
cone of a rational fan ¥ is generated by a primitive vector a; € Z". A fan ¥ is simplicial
if each of its cones o; is generated by part of a basis of R (such a cone is also called
simplicial). A fan ¥ is nonsingular if each of its cones o; is generated by part of a basis
of the lattice Z™. A fan X is complete if the union of its cones is the whole R™.

Projective toric varieties are particularly important. A projective toric variety V is
defined by a lattice polytope, that is, a convex n-dimensional polytope P with vertices
in Z™. The normal fan Y p is the fan whose n-dimensional cones o, correspond to the
vertices v of P, and o, is generated by the primitive inside-pointing normals to the facets
of P meeting at v. The fan Xp defines a projective toric variety Vp. Different lattice
polytopes with the same normal fan produce different projective embeddings of the same
toric variety.
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A polytope P is called nonsingular or Delzant when its normal fan X p is nonsingu-
lar. Projective toric manifolds correspond to nonsingular lattice polytopes. Note that a
nonsingular n-dimensional polytope P is necessarily simple, that is, there are precisely n
facets meeting at every vertex of P.

Irreducible torus-invariant divisors on V' are the toric subvarieties of complex codi-
mension 1 corresponding to the one-dimensional cones of Y. When V is projective, they
also correspond to the facets of P. We assume that there are m one-dimensional cones
(or facets), denote the corresponding primitive vectors by ai,..., @, and denote the
corresponding codimension-1 subvarieties (irreducible divisors) by Dy, ..., Dy,.

THEOREM 8.1 (Danilov—Jurkiewicz). Let V' be a toric manifold of complex dimen-
sion n, with the corresponding complete nonsingular fan . The cohomology ring H*(V;Z)
is generated by the degree-two classes v; dual to the invariant submanifolds D;, and is
given by

H*(V;Z) 2 Zvy, ..., o] /Z, degv; = 2,
where I is the ideal generated by elements of the following two types:
(a) v, - v;, such that a;,, ..., a; do not span a cone of ¥;

(b) Z(a,-, x)v;, for any vector x € Z".
i=1

There is the same description of the cohomology ring for complete toric orbifolds with
coefficients in Q.
It is convenient to consider the integer n X m-matrix

air - Qim
(8.1) A=
Gpl - Qpm

whose columns are the vectors a; written in the standard basis of Z". Then part (b) of the
ideal Z in Theorem 8.1 is generated by the n linear forms a;1v1+- - - +ajmvp, corresponding
to the rows of A.

THEOREM 8.2. For a toric manifold V', there is the following isomorphism of complex
vector bundles:
TVeC" " =p1 @ @ pm,
where TV is the tangent bundle, C™™" is the trivial (m — n)-plane bundle, and p; is the
line bundle corresponding to D;, with ci(p;) = v;. In particular, the total Chern class of V'
s given by
c(V)y=(0Q+wv1) (14 vp).

ExAMPLE 8.3. A basic example of a toric manifold is the complex projective space
CP". The cones of the corresponding fan are generated by proper subsets of the set of

m = n + 1 vectors eq,...,e,,—e; —--- — ey, where e; € Z" is the ith standard basis
vector. It is the normal fan of the lattice simplex A™ with the vertices at 0 and ey, ..., e,.
The matrix (8.1) is given by
1 0 0 -1
o . 0
0 0 1 -1
Theorem 8.1 gives the cohomology of CP™ as
H*(CP™) 2 Zvy, ..., Uns1]/ (V1 Uni1s U1 — Vpits .- sUn — Unp1) = Z[0]/(0™T1),

where v is any of the v;. Theorem 8.2 gives the standard decomposition
TCP"®C=n®---®n  (n+1 summands),

where n = O(—1) is the tautological (Hopf) line bundle over CP™, and 7 = O(1) is its
conjugate, or the line bundle corresponding to a hyperplane CP*~! ¢ CP™.
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ExXaMPLE 8.4. The complex projectivisation of a sum of line bundles over a projective
space is a toric manifold. This example will feature in several subsequent constructions.

Given two positive integers ni, ng and a sequence of integers (iy, ..., i, ), consider the
projectivisation V = CP(n®" @ .- @ n®n2 @ C), where n%* denotes the ith tensor power
of n over CP™ when i > 0 and the ith tensor power of 77 otherwise. The manifold V is the
total space of a bundle over CP™ with fibre CP™2. It is also a projective toric manifold
with the corresponding matrix (8.1) given by

/—’i—\
1 0 0 —1
0 .0 0
0 0 1 —1
i1 0 0 -1
O S0 .0 ¢
b 00 1 -1
——
n2

The polytope P here is combinatorially equivalent to a product A™ x A™2 of two simplices.
Theorem 8.1 describes the cohomology of V' as

*
H (V) = Z[’Ul, <oy Ung+1,Ung+25 - - - 7vn1+n2+2]/z7
where 7 is generated by the elements
U1 Uny+1s Unq+2° " Ung4ngo+25 U1 — Ung+1y-- -5 Ung — Uny+1,
1Un; 41+ Uny42 = Ungtno+2; - - 5 inoUni+1 + Unjfma1 — Ungtno+2-

In other words,

(8.2) H*(V) = Z|u, v]/(u"1+1, v(v —igu) - (V= ipyu)),
where u = v; = -+ = vp, 41 and v = Up, 4n,42. Theorem 8.2 gives

(8.3) (V)= (1 4+u)" M1 +v—igu) - (1+v—inu)(l+wv).
Ifiy =--- =1y, =0, we obtain V= CP" x CP"2.

The same information can be retrieved from the following well-known description of
the tangent bundle and the cohomology ring of a complex projectivisation.

THEOREM 8.5 (Borel and Hirzebruch [7, §15]). Let p: CP(§) — X be the projectivisa-
tion of a complex n-plane bundle & over a complex manifold X , and let v be the tautological
line bundle over CP(§). Then there is an isomorphism of vector bundles

TCP(E) o C=p"'TX & (7 ® p*f).

Furthermore, the integral cohomology ring of CP(§) is the quotient of the polynomial ring
H*(X)[v] on one generator v = ¢1 (%) with coefficients in H*(X) by the single relation

(8.4) o™ el (€U - ca(€) = 0.

The relation above is just ¢, (¥ ® p*§) = 0.

In Example 8.4 we have £ = ¥t @ ... @ n®n2 @ C over X = CP™. We have H*(X) =
Z[u)/(u™+1) where u = ¢ (%), so that (8.4) becomes v(v — i1u) - -+ (v — in,u) = 0 and the
ring H*(CP(§)) given by Theorem 8.5 is precisely (8.2). Moreover, the total Chern class
of p*TX @ (7 ® p*€) is given by (8.3).

The quotient of the projective toric manifold Vp by the action of the compact torus
T™ C (C*)™ is the simple polytope P. Davis and Januszkiewicz [25] introduced the fol-
lowing topological generalisation of projective toric manifolds.

A quasitoric manifold over a simple n-dimensional polytope P is a smooth manifold M
of dimension 2n with a locally standard action of the torus 7™ and a continuous projection
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72 M — P whose fibres are T™-orbits. (An action of T™ on M?" is locally standard if every
point x € M?" is contained in a T™-invariant neighbourhood equivariantly homeomorphic
to an open subset in C" with the standard coordinatewise action of T™ twisted by an
automorphism of the torus.) The orbit space of a locally standard action is a manifold
with corners. The quotient of a quasitoric manifold M /T™ is homeomorphic, as a manifold
with corners, to P.

Not every simple polytope can be the quotient of a quasitoric manifold. Nevertheless,
quasitoric manifolds constitute a much larger family than projective toric manifolds, and
enjoy more flexibility for topological applications.

If F1,..., F,, are the facets of P, then each M; = w_l(Fi) is a quasitoric submanifold of
M of codimension 2, called a characteristic submanifold. The characteristic submanifolds
M; C M are analogues of the invariant divisors D; on a toric manifold V. Each M; is
fixed pointwise by a closed 1-dimensional subgroup (a subcircle) 7; C T™ and therefore
corresponds to a primitive vector \; € Z" defined up to a sign. Choosing a direction of \;
is equivalent to choosing an orientation for the normal bundle v(M; C M) or, equivalently,
choosing an orientation for M;, provided that M itself is oriented. An omniorientation of
a quasitoric manifold M consists of a choice of orientation for M and each characteristic
submanifold M;, 1 <17 < m.

The vectors \; play the role of the generators a; of the one-dimensional cones of the
fan corresponding to a toric manifold V' (or the normal vectors to the facets of P when
V' is projective). However, the A; need not be the normal vectors to the facets of P in
general.

There is an analogue of Theorem 8.1 for quasitoric manifolds:

THEOREM 8.6. Let M be an omnioriented quasitoric manifold of dimension 2n over a
polytope P. The cohomology ring H*(M;7Z) is generated by the degree-two classes v; dual
to the oriented characteristic submanifolds M;, and is given by

H*(M;Z) = Z[v1, . ..,vn]/Z, degv; = 2,
where I is the ideal generated by elements of the following two types:
(a) v, - -v;, such that F;, N---NEF;, =& in P;
m
(b) Z()\i, x)v;, for any vector x € 7.
=1
By analogy with (8.1), we consider the integer n X m-matrix

A1 Aim
(8.5) A=
>\n1 to )\nm

whose columns are the vectors \; written in the standard basis of Z™. Changing a basis in
the lattice results in multiplying A from the left by a matrix from GL (n,Z). The ideal (b)
of Theorem 8.6 is generated by the n linear forms Ajiv1 + -+ + Aj;, vy, corresponding to

the rows of A. Also, A has the property that det(\;,,...,A;,) = £1 whenever the facets
Fi, ..., F;, intersect at a vertex of P.

in

There is also an analogue of Theorem 8.2:

THEOREM 8.7. For a quasitoric manifold M of dimension 2n, there is an isomorphism
of real vector bundles:

(8.6) TMORM ™™ 2 p @ @ py,

where p; is the real 2-plane bundle corresponding to the orientable characteristic subman-
ifold M; C M, so that pi|p, = v(M; C M).
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Buchstaber and Ray [18] introduced a family of projective toric manifolds { B(ny, n2)}
that multiplicatively generates the unitary bordism ring £2V. The details of this construc-
tion can be found in [15, §9.1]. We proceed to describe another family of toric generators

for U,

CONSTRUCTION 8.8. Given two positive integers ni, no, we define the manifold
L(ni1,n9) as the projectivisation CP(n @ C"?), where 7 is the tautological line bundle
over CP™. This L(nj,ng) is a particular case of manifolds from Example 8.4, so it is a
projective toric manifold with the corresponding matrix (8.1) given by

n
—
10 0 -1
0 . 0 0
(8.7) 0 0 1 -1
1 1 0 0 -1
O 0 0 0
0 0 0 1 -1
——
n2
The cohomology ring is given by
(8.8) H*(L(n1,m2)) = Z[u,v]/ (w1 0" — yo™)
with «™v"2(L(n1,n2)) = 1. There is an isomorphism of complex bundles
(8.9) TL(n,np) &@C* =p'i& - @p'ie(Fepn) ey &7
\_Vl_z —_——
ni+ n2

where v is the tautological line bundle over L(ni,n2) = CP(n & C"). The total Chern
class is

(8.10) c(L(ni,ng)) = (1 + )1+ v —u)(1 4 )™

with u = ¢1(p*7) and v = ¢1(%). We also set L(n;,0) = CP™ and L(0,n2) = CP™2, then
the identities (8.8)—(8.10) still hold.

THEOREM 8.9 ([31, Theorem 3.8]). The bordism classes [L(n1,n2)] € {2

erate multiplicatively the unitary bordism ring 02V

U _
2(n1+n2) gen

Theorem 8.9 implies that every unitary bordism class can be represented by a disjoint
union of products of projective toric manifolds. Products of toric manifolds are toric,
but disjoint unions are not, as toric manifolds are connected. In bordism theory, a disjoint
union may be replaced by a connected sum, representing the same bordism class. However,
connected sum is not an algebraic operation, and a connected sum of two algebraic varieties
is rarely algebraic. This can be remedied by appealing to quasitoric manifolds, as explained
next. Recall that an omnioriented quasitoric manifold has an intrinsic stably complex
structure, arising from the isomorphism of Theorem 8.7. One can form the equivariant
connected sum of quasitoric manifolds, as explained in Davis and Januszkiewicz [25], but
the resulting invariant stably complex structure does not represent the bordism sum of the
two original manifolds. A more intricate connected sum construction is needed, as outlined
below. The details can be found in [16] or [15, §9.1].

CONSTRUCTION 8.10. The construction applies to two omnioriented 2n-dimensional
quasitoric manifolds M and M’ over n-polytopes P and P’ respectively. The connected
sum will be taken at the fixed points of M and M’ corresponding to vertices v € P
and v' € P’. We need to assume that v is the intersection of the first n facets of P, i.e.
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v=FiN---NF,, and the corresponding characteristic matrix (8.5) of M is in the refined
form, i.e.

1 0 0 >\1,n+1 )\1,m
A=(I|A) =10 . 0 S
0 0 1 Xppt1 - Aum

where [ is the unit matrix and A, is an n x (m — n)-matrix. The same assumptions are
made for M’, P, v' and A'.

The next step depends on the signs of the fixed points, w(v) and w(v’). The sign of v
is determined by the omniorientation data; it is +1 when the orientation of 7, M induced
from the global orientation of M coincides with the orientation arising from p; @« - - @ pp |y,
and is —1 otherwise.

If w(v) = —w(v'), then we take the connected sum M # M’ at v and v'. It is a quasitoric
manifold over P # P’ with the characteristic matrix (A4 | I | A%).

If w(v) = w(v'), then we need an additional connected summand. Consider the qua-
sitoric manifold S = 52 x --- x 82 over the n-cube I, where each S? is the quasitoric
manifold over the segment [ with the characteristic matrix (1 1). It represents zero in
2V, and may be thought of as CP! with the stably complex structure given by the iso-
morphism TCP! @ R? = 77 @ n. The characteristic matrix of S is therefore (I | I). Now
consider the connected sum M # S # M'. It is a quasitoric manifold over P # I" # P’ with
the characteristic matrix (A, | I | T | A)).

In either case, the resulting omnioriented quasitoric manifold M # M’ or M # S # M’
with the canonical stably complex structure represents the sum of bordism classes [M] +
[M'] € QY.

The conclusion, which can be derived from the above construction and any of the toric
generating sets {B(ny,n2)} or {L(n1,n9)} for NV, is as follows:

THEOREM 8.11 ([16]). In dimensions > 2, every unitary bordism class contains a
quasitoric manifold, necessarily connected, whose stably complexr structure is induced by
an ommniorientation, and is therefore compatible with the torus action.

9. Quasitoric SU-manifolds

Omnioriented quasitoric manifolds whose stably complex structures are SU can be
detected using the following simple criterion:

PROPOSITION 9.1 ([17]). An omnioriented quasitoric manifold M has c1(M) = 0 if
and only if there exists a linear function p: 2" — Z such that p(N\;) =1 fori=1,...,m.
Here the \; are the columns of matriz (8.5).

In particular, if some n vectors of A1, ..., Am form the standard basis ey, ..., e,, then
M is SU if and only if the column sums of A are all equal to 1.

Proor. By Theorem 8.7, ¢1(M) = v1 +- - -+ vy,. By Theorem 8.6, v1 + - - - + vy, is zero
in H2(M) if and only if vy + - 4+ vy, = Y, (Ni)v; for some linear function ¢: Z" — Z,
whence the result follows. O

PROPOSITION 9.2. A toric manifold V' cannot be SU.

PROOF. If p(A;) =1 for all ¢, then the vectors \; lie in the positive halfspace of ¢, so
they cannot span a complete fan. O

A more subtle result also rules out low-dimensional quasitoric manifolds:

THEOREM 9.3 ([17, Theorem 6.13]). A quasitoric SU-manifold M>" represents 0 in
QY whenever n < 5.
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The reason for this is that the Krichever genus oy : 2V — Rk (see [15, §E.5]) vanishes
on quasitoric SU-manifolds, but ¢k is an isomorphism in dimensions < 10.

First examples of quasitoric SU-manifolds representing nonzero bordism classes in an
for all n > 5, except n = 6, were constructed in [32]. Subsequently, in [31] there were
constructed two general series of quasitoric SU-manifolds representing nonzero bordism
classes in £2Y (and therefore in 25U) for all n > 5, including n = 6. These series are
presented next. They will be used below to provide geometric representatives for multi-
plicative generators in the SU-bordism ring.

CONSTRUCTION 9.4. Assume now that n; = 2k; is positive even and ny = 2kg + 1 is
positive odd. We change the stably complex structure (8.9) to the following:

T L(ny,n9) ® R
Ep'NOp e - OPNOPNOP NS (VRPN DYRYD - DYDY Dy

~~ ~~

2k1 2k2

and denote the resulting stably complex manifold by L(ni,n2). Its cohomology ring is
given by the same formula (8.8), but

(9.1) c(L(n1,m2)) = (1 —u®) (1 +u)(1 +v —u)(1 —v?)*2(1 - v),

so L(ny,ns) is an SU-manifold of dimension 2(ny + ng) = 4(ky + ks) + 2.

Viewing L(ni,n2) as a quasitoric manifold with the omniorientation coming from the
complex structure, we see that changing a line bundle p; in (8.6) to its conjugate results
in changing \; to —)\; in (8.5). By applying this operation to the corresponding columns
of (8.7) and then multiplying from the left by an appropriate matrix from GL (n,Z), we
obtain that Z(nl, ng) is the omnioriented quasitoric manifold over A™ x A™2 correspond-
ing to the matrix

n1=2k1

1 1 0 0 1
0 1 0 -1
0 o T 0
0 0 0 1 1
—_——
no=2ko+1

The column sums of this matrix are 1 by inspection.

CONSTRUCTION 9.5. The previous construction can be iterated by considering projec-
tivisations of sums of line bundles over L(n1,n2). We shall need just one particular family
of this sort.

Given positivg even ni; = 2k and odd ny = 2ke + 1, consider the omnioriented qua-
sitoric manifold N (n1,n2) over A! x A™ x A" with the characteristic matrix
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-1 n1=2k1 0 1 00 0 1
1 0 010 0 -1
0 1 0 01 0 1

000 O 1 1

no=2ko+1
The column sums are 1 by inspection, so N (n1,n2) is a quasitoric SU-manifold of dimen-
sion 2(1 +n1 + ng) = 4(]{1 + ]{2) + 4.
It can be seen that N(n1,ng2) is a projectivisation of a sum of ng + 1 line bundles over

CP! x CP™ with an amended stably complex structure.
The cohomology ring given by Theorem 8.6 is

(9.2) H*(N(ny,n2)) = Zlu, v, w]/(u?, 0™t (w — u)? (v + w)w™?)
with uv™w™ (N (ny,ns)) = 1. The total Chern class is

(9.3)  ¢(N(ni,n2))=1=v>)"1+0)1 = (w—u)?)1—v—w)(l-w)1+w).
10. Quasitoric generators for the SU-bordism ring

As shown in [31], the elements y; € 25U described in Theorem 7.1 can be represented
by quasitoric SU-manifolds when ¢ > 5. We outline the proof here, emphasising some
interesting divisibility conditions for binomial coefficients. These divisibility properties
arise from analysing the characteristic numbers of the quasitoric SU-manifolds E(nl, ng)
and N (ni,n3) introduced in the previous section.

LEMMA 10.1. For ny = 2k1 > 0 and ng = 2ko + 1 > 0, we have

Sni+ng [E(nl,ng)] — _(n1-{-n2) 4 (n1-5n2) L (%l—i-_nlz) + (N17—:_1n2)‘

PrOOF. Using (9.1) and (8.8) we calculate

Sz (L1, m2)) = (0= )" 472 4 (kg - 1) (1) 7202

— (U _ u)nl—i—nz _ vm-i—m
_ (_(nl-{nz) + (nl-gnQ) L (7;114-_7112) 4 (7111;1-1712))un1vnQ7
and the result follows by evaluating at the fundamental class of E(nl, ng). O

Note that s3(L(2,1)) = 0 in accordance with Theorem 9.3. On the other hand,

S24my (L(2,m2)) # 0 for ny > 1, providing an example of a non-bounding quasitoric SU-
manifold in each dimension 4k + 2 with k > 1.

LEMMA 10.2. For k > 1, there is a linear combination ysgr1 of SU-bordism classes
[L(n1,n2)] with ny + ny = 2k + 1 such that sopt1(Y2k+1) = Mogr1mok-

ProoOF. By the previous lemma,

Snytns [Z(nth) N Z(nl o 2,77,2 + 2)] _ (n1+n2) . (n1+n2)_

ni ny—1

The result follows from the next lemma. O
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LEMMA 10.3 ([31, Lemma 4.14]). For any integer k > 1, we have
ged{ (") — (3%1), 0 <i <k} = marpamar.

Lemma 10.3 also follows from the results of Buchstaber and Ustinov on the coefficient
rings of universal formal group laws [19, §9].

Now we turn our attention to the manifolds N (ny, ny) from Construction 9.5.

LNEMMA 10.4. For ny = 2k1 > 0 and no = 2ko+1 >0, set n = ny + ny + 1, so that
dim N (ny,n2) = 2n =4(k1 + k2 +1). Then
snN(mi,n2)] =2(=(1) + (5) =+~ = (") + () =)
ProoOF. Using (9.3) and (9.2) we calculate

(10.1) s, (N(n1,n2)) = 2(w — )" + (v +w)" + (2ky — V)"
= 20" = 2nuw™ !+ w" + (Now™ 4+ 4 (221)112]“102’“2” + (2k2 — Dw"
= —2nuw™ ! + (n — ny)w" + (T)vw"il + -+ (gl)v"lw”*m.

Now we have to express each monomial above via uv™ w"? using the identities in (9.2),
namely

(10.2) w? =0, ovmTl=0, w2 =2uw™ - vw™ + 2uvw™ L

We have

(10.3) ww" ! = ww™ 1wt = 4™ 7 (2uw™ — vw™? + 2uvw™ )

= —wow" 2= = (=D udw" I = = w™ ™,
Also, we show that
(10.4) V" = (1) 2u0™w™,  0< 5 < ny,
by verifying the identity successively for j = nj,n; — 1,...,0. Indeed, v™"w"™™ =

vzt = 2up™iwn2 by (10.2). Now, we have
vl Tl I = Tyt =dgne Tl — i ey T (92 — ™ 4 2uow™ 1)
= 2uv?! Tt — 0w 4 2und T =l
where the last identity holds because of (10.3). The identity (10.4) is therefore verified
completely. Plugging (10.3) and (10.4) into (10.1) we obtain
sn(ﬁ(nl,ng)) =(-2n+2(n—m)-2(}) +2() - —2(," )+ 2(:1))111)"110”2.

ni—1

The result follows by evaluating at (N (nj,n2)). O

Note that s4(N(2,1)) = 0 in accordance with Theorem 9.3. On the other hand,

sn(N(2,n2)) = n2 —3n —4 > 0 for n > 4, providing an example of a non-bounding
quasitoric SU-manifold in each dimension 4k with k > 2. This includes a 12-dimensional
quasitoric SU-manifold N(2,3), which was missing in [32].

LeEmMMA 10.5. For k > 2, there is a linear combination yor of SU-bordism classes

[N (n1,n2)] with nqy + ne + 1 = 2k such that sox(yo2r) = 2mogpmog_1.
ProOOF. The result follows from Lemma 10.4 and Lemmata 10.6, 10.7 below. U

LEMMA 10.6 ([31, Lemma 4.17]). For k > 2, the largest power of 2 which divides each
number

ai=—(F)+ Q) - = G5)+ (G) -2, 0<i<h
is 2 if 2k = 2° and is 1 otherwise.



42 GEORGY CHERNYKH, IVAN LIMONCHENKO, AND TARAS PANOV

LEMMA 10.7 ([31, Lemma 4.18]). For k > 2, the largest power of odd prime p which
divides each

2k 2k 2k 2k . .
ai=—(7)+ %)+ = (o) + (5) — 2, 0<i<k,
is p if 2k + 1 = p® and is 1 otherwise.
We now obtain the following result about quasitoric representatives in SU-bordism:

THEOREM 10.8. There exist quasitoric SU-manifolds M?%, i > 5, with s;(M?*) =
m;m;—1 if © is odd and si(MQZ) = 2m;m;—1 if © is even. These quasitoric SU-manifolds
have minimal possible s; numbers and represent polynomial generators of 25V @ Z[%}

Proor. It follows from Lemmata 10.2 and 10.5 that there exist linear combinations
of SU-bordism classes represented by quasitoric SU-manifolds with the required prop-
erties. We observe that application of Construction 8.10 to two quasitoric SU-manifolds
M and M’ produces a quasitoric SU-manifold representing their bordism sum. Also, the
SU-bordism class —[M] can be represented by the omnioriented quasitoric SU-manifold
obtained by reversing the global orientation of M. Therefore, we can replace the lin-
ear combinations obtained using Lemmata 10.2 and 10.5 by appropriate connected sums,
which are quasitoric SU-manifolds. U

By analogy with Theorem 8.11, we may ask the following:

QUESTION 10.9. Which SU-bordism classes of dimension > 8 can be represented by
quasitoric SU-manifolds?

11. SU-manifolds arising in toric geometry

We refer to a compact Kéhler manifold M with ¢;(M) = 0 as a Calabi-Yau manifold.
(Apparently, this is the most stan