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Let P be the class of combinatorial 3-dimensional simple polytopes P , different
from a tetrahedron, without 3- and 4-belts of facets. By the results of Pogorelov [1]
and Andreev [2], a polytope P admits a realisation in Lobachevsky space L3 with
right dihedral angles if and only if P ∈ P. We consider two families of smooth
manifolds defined by regular 4-colourings of polytopes P ∈ P: six-dimensional
quasitoric manifolds over P and three-dimensional small covers of P ; the latter are
also known as three-dimensional hyperbolic manifolds of Löbell type [3]. We prove
that two manifolds from either of the families are diffeomorphic if and only if the
corresponding 4-colourings are equivalent.

A quasitoric manifold (respectively, a small over) over a simple n-polytope P
is a 2n-dimensional (n-dimensional) smooth manifold M with a locally standard
action of the torus Tn (the group Zn2 ) and a projection M → P whose fibres are
the orbits of the action, see [4], [5].

Let F = {F1, . . . , Fm} be the set of facets of a simple 3-polytope P . A char-
acteristic function over Z (over Z2) is a map λ : F → Zn (λ : F → Zn2 ) satisfying
the condition: if Fi1 ∩ Fi2 ∩ Fi3 is a vertex, then λ(Fi1), λ(Fi2), λ(Fi3) is a basis of
the lattice Zn (of the space Zn2 ). Characteristic functions λ and λ′ are equivalent
(λ ∼ λ′) if one is obtained from the other by a change of basis in Zn and changing
the direction of some of the vectors λ(Fi) to the opposite (by a change of basis
in Zn2 ). Characteristic pairs (P, λ) and (P ′, λ′) are equivalent ((P, λ) ∼ (P ′, λ′)) if
P and P ′ are combinatorially equivalent (P ' P ′) and λ ∼ λ′.

Every quasitoric manifold (small cover) M over P is defined by a character-
istic pair (P, λ); with two such manifolds M = M(P, λ) and M ′ = M ′(P ′, λ′)
being equivariantly homeomorphic if and only if (P, λ) ∼ (P ′, λ′) (see [4], [5,
Prop. 7.3.11]). In general, there exist non-equivalent pairs (P, λ) and (P ′, λ′) whose
corresponding manifolds M and M ′ are (non-equivariantly) diffeomorphic.

A (regular) 4-colouring of a simple polytope P is a map χ : F → {1, 2, 3, 4} such
that χ(Fi) 6= χ(Fj) whenever Fi ∩ Fj 6= ∅. Such a 4-colouring always exists by
the Four Colour Theorem. Two 4-colourings χ and χ′ are equivalent (χ ∼ χ′) if
χ′ = σχ for a permutation σ ∈ S4.

Let χ be a 4-colouring, a1,a2,a3 a basis in Z3, and εi = ±1, i = 1, 2, 3. These
data define a characteristic function λ = λ(χ,a1,a2,a3, ε1, ε2, ε3) given by

λ(F ) =

{
a i if χ(F ) = i, i = 1, 2, 3,

ε1a1 + ε2a2 + ε3a3 if χ(F ) = 4.
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Denote by e1, e2, e3 the standard basis (1, 0, 0), (0, 1, 0), (0, 0, 1) in Z3 or Z3
2.

Proposition 1. We have λ(χ,a1,a2,a3, ε1, ε2, ε3) ∼ λ(χ, e1, e2, e3, 1, 1, 1).

Proof. We have λ(χ,a1,a2,a3, ε1, ε2, ε3) ∼ λ(χ, e1, e2, e3, ε1, ε2, ε3) ∼
λ(χ, ε1e1, ε2e2, ε3e3, 1, 1, 1) ∼ λ(χ, e1, e2, e3, 1, 1, 1), where the first and third
equivalences come from a change of basis in Z3, while the second equivalence comes
from a change of the direction of vectors. �

Note that the equivalence classes of characteristic functions are the orbits of the
group GL3(Z) or GL3(Z2), while the equivalence classes of 4-colourings are the
orbits of the symmetric group S4. Nevertheless, we have

Proposition 2. χ ∼ χ′ ⇔ λχ ∼ λχ′ , where λχ := λ(χ, e1, e2, e3, 1, 1, 1)

Proof. Assume that χ′ = σχ, σ ∈ S4. Denote e4 := e1 + e2 + e3. We have eσ(4) =
ε1eσ(1) + ε2eσ(2) + ε3eσ(3) for some εi = ±1. Then λχ′ = λ(χ′, e1, e2, e3, 1, 1, 1) =
λ(χ, eσ(1), eσ(2), eσ(3), ε1, ε2, ε3) ∼ λχ, where the equivalence follows from Propo-
sition 1.

Conversely, assume λχ ∼ λχ′ . By the definition of characteristic functions,
we have λχ′ = λ(χ,a1,a2,a3, ε1, ε2, ε3) for some basis a1,a2,a3 and εi = ±1.
The image of λχ′ is the set {e1, e2, e3, e1 + e2 + e3}, while the image of
λ(χ,a1,a2,a3, ε1, ε2, ε3) is the set {a1,a2,a3, ε1a1 + ε2a2 + ε3a3}. Therefore,
these two sets of 4 vectors coincide, that is, a1 = eσ(1), a2 = eσ(2), a3 = eσ(3) and
ε1a1 + ε2a2 + ε3a3 = eσ(4) for some σ ∈ S4. Thus, χ′ = σχ and χ ∼ χ′. �

Theorem 1 ([6]). Let M = M(P, λ) and M ′ = M ′(P ′, λ′) be quasitoric manifolds
(or small covers), an assume that P belongs to the class P. Then M and M ′ are
diffeomorphic if and only if the characteristic pairs (P, λ) and (P ′, λ′) are equivalent.

Theorem 2 (main result). Assume given a polytope P ∈ P with a 4-colouring χ,
and let P ′ be another simple 3-polytope with a 4-colouring χ′. Then the 6-dimen-
sional quasitoric manifolds (or 3-dimensional hyperbolic manifolds of Löbell type)
M = M(P, λχ) and M ′ = M ′(P ′, λχ′) are diffeomorphic if and only if P ' P ′ and
χ ∼ χ′.

Proof. If P ' P ′ and χ ∼ χ′, then λχ ∼ λχ′ , by Proposition 2. Then the pairs
(P, λχ) and (P ′, λχ′) are equivalent, so M and M ′ are diffeomorphic.

Conversely, if M and M ′ are diffeomorphic, then P ' P ′ and λχ ∼ λχ′ , by
Theorem 1. Therefore, χ ∼ χ′, by Proposition 2. �

We say that a characteristic function λ : F → Z3 is defined by a 4-colouring χ if
λ(F ) = λ(F ′) whenever χ(F ) = χ(F ′). The image of such a characteristic function
consists of 4 vectors. Examples are λ(χ,a1,a2,a3, ε1, ε2, ε3) and λχ. A regular 4-
colouring of a simple 3-polytope is complete if for any set of three different colours
there exists a vertex whose incident facets have these colours.

Proposition 3. Let χ be a complete 4-colouring. Then any characteristic function
λ : F → Z3 defined by χ is equivalent to λχ.

Note that it is necessary that the 4-colouring is complete. For example, assume
that there is no vertex with the combination of colours {1, 2, 4} for the incident
facets. Then for each k ∈ Z consider the characteristic function λχ,k given by

λχ,k(F ) =

{
e i if χ(F ) = i, i = 1, 2, 3,

e1 + e2 + ke3 if χ(F ) = 4.
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Then λχ,k 6∼ λχ for k 6= ±1 (and λχ,0 6∼ λχ,1 = λχ over Z2).
The class P contains all fullerenes, that is, simple 3-polytopes with only pentago-

nal and hexagonal facets [7]. If a fullerene has two adjacent pentagons, then all four
combinations of three colours are realised in the vertices of these two pentagons,
so any 4-colouring of such a fullerene is complete. For fullerenes without adjacent
pentagons (IPR-fullerenes) there exist non-complete 4-colourings χ. It is easy to
see that the corresponding hyperbolic 3-manifolds M(P, λχ,0) are non-orientable,
unlike M(P, λχ).
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