TORIC TOPOLOGY AND COMPLEX COBORDISM

TARAS PANOV

Abstract

We plan to discuss how the ideas and methodology of Toric Topology can be applied to one of the classical subjects of algebraic topology: finding nice representatives in complex cobordism classes. Toric and quasitoric manifolds are the key players in the emerging field of Toric Topology, and they constitute a sufficiently wide class of stably complex manifolds to additively generate the whole complex cobordism ring. In other words, every stably complex manifold is cobordant to a manifold with a nicely behaving torus action.

An informative setting for applications of toric topology to complex cobordism is provided by the combinatorial and convex-geometrical study of analogous polytopes. By way of application, we give an explicit construction of a quasitoric representative for every complex cobordism class as the quotient of a free torus action on a real quadratic complete intersection. The latter is a yet another disguise of the moment-angle manifold, another familiar object of toric topology. We suggest a systematic description for omnioriented quasitoric manifolds in terms of combinatorial data, and explain the relationship with non-singular projective toric varieties (otherwise known as toric manifolds).

Contents

1. Polytopes 3
2. Moment angle manifolds 4
3. Quasitoric manifolds 8
4. Cobordism theories 11
4.1. General notion of cobordism 11
4.2. Oriented cobordism 11
4.3. Complex cobordism 12
4.4. Generalised (co)homology theories 13
4.5. Main results on cobordism 13
5. (Quasi)toric representatives in complex cobordism classes 16
5.1. Equivariant stably complex structure on quasitoric manifolds 16
5.2. $H_{i, j}$ are not quasitoric 17
5.3. Toric multiplicative generator set for Ω_{*}^{U} 17
5.4. Constructing connected representatives: replacing the disjoint union by the connected sum 19
References 21

Main Theorem . Every complex cobordism class in dim >2 contains quasitoric representative.

In cobordism theory, all manifolds are smooth and closed.

Complex cobordism.

complex manifolds \subset almost complex \subset stably (almost) complex manifolds $\tau M^{n} \oplus \mathbb{R}^{N} \xrightarrow{\text { complex bundle }} M$
Quasitoric manifolds. manifold $M^{2 n}$ with "nice" T^{n}-action

- locally standard action
- The orbit space $M^{2 n} / T^{n}$ is a simple polytope.

Examples include projective smooth toric varieties and symplectic manifolds $M^{2 n}$ with Hamiltonian action of T^{n}.

1. Polytopes

\mathbb{R}^{n} : Euclidean vector space.
$P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i} \geq 0\right.$ for $\left.1 \leq i \leq m\right\}, \boldsymbol{a}_{i} \in \mathbb{R}^{n}, b_{i} \in \mathbb{R}$. $H_{i}=\left\{\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i}=0\right\}$, the i th bounding hyperplane.

Assume:
(1) $\operatorname{dim} P=n$;
(2) P is bounded.

Then P is called a (convex) n-dimensional polytope.
A supporting hyperplane H is characterised by the condition that P lies within one of the halfspaces determined by H.

A proper face of P is the intersection with a supporting hyperplane.
0 -dim faces are vertices.
1-dim faces are edges.
($n-1$)-dim faces are facets.
n-dim face is P.
Also assume:
(3) there are no redundant inequalities (cannot remove any inequality without changing P); then P has exactly m facets;
(4) bounding hyperplanes of P intersect in general position at every vertex; then there are exactly n facets of P meeting at each vertex.
Then P is a simple n - dim polytope with m facets.
The faces form a poset $\mathcal{L}(P)$ with respect to the inclusion. Two polytopes are said to be combinatorially equivalent if their face posets are isomorphic. The corresponding equivalence classes are called combinatorial polytopes.

Assume $\left|\boldsymbol{a}_{i}\right|=1$. Then $\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i}$ is the distance from $\boldsymbol{x} \in \mathbb{R}^{n}$ to the i th hyperplane H_{i}.

2. Moment angle manifolds

P a simple polytope given as above, $\boldsymbol{a}_{i}=\left(a_{i 1}, \ldots, a_{i n}\right), 1 \leq i \leq m$.
Set $A_{P}=\left(\begin{array}{c}\boldsymbol{a}_{1} \\ \boldsymbol{a}_{2} \\ \vdots \\ \boldsymbol{a}_{m}\end{array}\right)=\left(a_{i j}\right)(m \times n$-matrix $), \boldsymbol{b}_{P}=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right)$. Then can write P as

$$
P=\left\{\boldsymbol{x}: \quad A_{P} \boldsymbol{x}+\boldsymbol{b}_{P} \geq 0\right\} .
$$

Define $i_{P}(\boldsymbol{x})=A_{P} \boldsymbol{x}+\boldsymbol{b}_{P}, \quad i_{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, so we have

$$
\begin{aligned}
i_{P}: & \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& \cup \\
& P \rightarrow \mathbb{R}_{\geq}^{m}=\left\{\left(y_{1}, \ldots, y_{m}\right): y_{i} \geq 0\right\}
\end{aligned}
$$

$i_{P}(P)$ is the intersection of an n-dim affine plane in \mathbb{R}^{m} with \mathbb{R}_{\geq}^{m}.
Consider the m-torus

$$
T^{m}=\left\{\left(t_{1}, \ldots, t_{m}\right)=\left(e^{2 \pi i \varphi_{1}}, \ldots, e^{2 \pi i \varphi_{m}}\right) \in \mathbb{C}^{m} ; \varphi_{i} \in \mathbb{R}\right\}
$$

Then \mathbb{R}_{\geq}^{m} is the orbit space of the standard T^{m}-action on \mathbb{C}^{m} :

$$
\left(t_{1}, \ldots, t_{m}\right) \cdot\left(z_{1}, \ldots, z_{m}\right)=\left(t_{1} z_{1}, \ldots, t_{m} z_{m}\right)
$$

The orbit projection is

$$
\begin{array}{ccc}
\mathbb{C}^{m} & \rightarrow & \mathbb{R}_{\geq}^{m} \\
\left(z_{1}, \ldots, z_{m}\right) & \mapsto & \left(\left|z_{1}\right|^{2}, \ldots,\left|z_{m}\right|^{2}\right) .
\end{array}
$$

Now define the space \mathcal{Z}_{P} from the pullback diagram

So \mathcal{Z}_{P} is a T^{m}-space and $i_{\mathcal{Z}}: \mathcal{Z}_{P} \rightarrow \mathbb{C}^{m}$ is a T^{m}-equivariant embedding.
Example 2.1. $P^{2}=\left\{x_{1} \geq 0, x_{2} \geq 0,-x_{1}-x_{2}+1 \geq 0\right\}$ a triangle,

$$
\begin{aligned}
& A_{P}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & -1
\end{array}\right) \text {, } \\
& i_{P}\left(\mathbb{R}^{2}\right)=\left\{A_{P} \boldsymbol{x}+\boldsymbol{b}_{P}\right\}=\left\{y_{1}+y_{2}+y_{3}=1\right\} \subset \mathbb{R}^{3}, \\
& \mathcal{Z}_{P} \rightarrow \mathbb{C}^{3} \\
& \stackrel{\downarrow}{\downarrow} \underset{P^{2}}{\downarrow} \underset{\mathbb{R}^{3}}{\downarrow}, \quad \mathcal{Z}_{P}=\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=1\right\} \cong S^{5} .
\end{aligned}
$$

Proposition 2.2. \mathcal{Z}_{P} is a smooth T^{m}-manifold with the canonical trivialisation of the normal bundle of $i_{\mathcal{Z}}: \mathcal{Z}_{P} \rightarrow \mathbb{C}^{m}$.

Idea of proof.
(1) Write the image $i_{P}\left(\mathbb{R}^{n}\right) \subset \mathbb{R}^{m}$ as the set of common solutions of $(m-n)$ linear equations in $y_{i}, \quad 1 \leq i \leq m$.
(2) Replace y_{i} 's by $\left|z_{i}\right|^{2}$'s to get a representation of \mathcal{Z}_{P} as an intersection of $(m-n)$ real quadratic hypersurfaces.
(3) Check that (2) is a "complete" intersection, i.e. the gradients are linearly independent at each point of \mathcal{Z}_{P}.

In the presentation of P, let us fix $\boldsymbol{a}_{i}, 1 \leq i \leq m$, but allow for b_{i} 's to change. Let us consider "virtual polytopes" analogous to P ("analogous" here means "keep \boldsymbol{a}_{i} 's, change b_{i} 's'"), so
virtual polytope $=$ arrangement of half-spaces.
Let $\mathbb{R}(P)$ be the space of virtual polytopes analogous P.

$$
\left.\begin{aligned}
\kappa: \quad \mathbb{R}^{m} & \rightarrow \mathbb{R}(P) \quad \text { an isomorphism, } \\
& \boldsymbol{b}_{P}+\boldsymbol{h}
\end{aligned} \right\rvert\, P(\boldsymbol{h}) \quad:=\left\{\boldsymbol{x}: A_{P} \boldsymbol{x}+\boldsymbol{b}_{P}+\boldsymbol{h} \geq 0\right\}
$$

Remark 2.3. Sum in \mathbb{R}^{m} corresponds to Minkowski sum of polytopes in $\mathbb{R}(P)$.
Now define

$$
\chi_{P}=\kappa \circ i_{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}(P)
$$

So $\chi_{P}(\boldsymbol{y})$ is the polytope congruent to P obtained by translating the origin to $\boldsymbol{y} \in \mathbb{R}^{n}$. Indeed, $i_{P}(\boldsymbol{y})=A_{P} \boldsymbol{y}+\boldsymbol{b}_{P}$ and $\chi_{P}(\boldsymbol{y})=P\left(A_{P} \boldsymbol{y}\right)=\left\{\boldsymbol{x}: A_{P} \boldsymbol{x}+\boldsymbol{b}_{P}+\right.$ $\left.A_{P} \boldsymbol{y} \geq 0\right\}=P-\boldsymbol{y}$.
Assume that the first n facets of P meet at a vertex v_{1}, called the initial vertex. So $H_{1} \cap \cdots \cap H_{n}=v_{1}$ in P, and therefore $\left(H_{1}-\boldsymbol{h}\right) \cap \cdots \cap\left(H_{n}-\boldsymbol{h}\right)=v_{1}(\boldsymbol{h})$ is the initial vertex of $P(\boldsymbol{h})$. Denote

$$
d_{i}(\boldsymbol{h})=\text { distance between } v_{1}(\boldsymbol{h}) \text { and } H_{i}+\boldsymbol{h},
$$

so $d_{i}(\boldsymbol{h})=0$ for $1 \leq i \leq n$. Define $C: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m-n}$ by

$$
C\left(\boldsymbol{b}_{P}+\boldsymbol{h}\right)=\left(d_{n+1}(\boldsymbol{h}), \ldots, d_{m}(\boldsymbol{h})\right) .
$$

In other words,

$$
\begin{aligned}
C: & \mathbb{R}(P) \\
& \rightarrow \\
& P(\boldsymbol{h})
\end{aligned} \mapsto \quad\left(d_{n+1}(\boldsymbol{h}), \ldots, d_{m}^{m-n}(\boldsymbol{h})\right)
$$

Claim 1. The sequence $0 \rightarrow \mathbb{R}^{n} \xrightarrow{A_{P}} \mathbb{R}^{m} \xrightarrow{C} \mathbb{R}^{m-n} \rightarrow 0$ is exact.
Proof. Use the fact that d_{i} are metric invariants, so they take the same values on congruent polytopes.

In what follows assume $\boldsymbol{a}_{i}=\boldsymbol{e}_{i}$ for $1 \leq i \leq n$; so we have

$$
A_{P}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\ldots \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1 \\
a_{n+1,1} & \ldots & \cdots & a_{n+1, n} \\
\cdots \ldots \ldots & \ldots & \cdots & \cdots \cdots \\
a_{m, 1} & \ldots & \cdots & a_{m, n}
\end{array}\right)=\left(a_{i j}\right) .
$$

Example 2.4. $\kappa: \mathbb{R}^{m} \rightarrow \mathbb{R}(P)$ maps the basis vector \boldsymbol{e}_{j} to the virtual polytope $P\left(-\boldsymbol{b}_{P}+\boldsymbol{e}_{j}\right)=: P_{j}$; then

$$
d_{i}\left(P_{j}\right)=\left\{\begin{array}{ll}
-a_{i, j} & \text { if } 1 \leq j \leq n, \\
\delta_{i j} & \text { if } n+1 \leq j \leq m,
\end{array} \quad \text { for } n+1 \leq i \leq m,\right.
$$

and C is given by the $(m-n) \times m$ matrix

$$
C=\left(c_{i j}\right)=\left(\begin{array}{ccccccc}
-a_{n+1,1} & \ldots & -a_{n+1, n} & 1 & 0 & \ldots & 0 \\
-a_{n+2,1} & \ldots & -a_{n+2, n} & 0 & 1 & \ldots & 0 \\
\ldots \ldots \ldots \ldots & \ldots & \ldots \ldots \ldots & \ldots & \ldots & \ldots & \ldots \\
-a_{m, 1} & \ldots & -a_{m, n} & 0 & 0 & \ldots & 1
\end{array}\right) .
$$

Proof of Proposition 2.2. Step (1). We can write

$$
\begin{aligned}
i_{P}\left(\mathbb{R}^{n}\right) & =\left\{\boldsymbol{y} \in \mathbb{R}^{m}: \boldsymbol{y}=A_{P} \boldsymbol{x}+\boldsymbol{b}_{P} \text { for some } \boldsymbol{x} \in \mathbb{R}^{n}\right\} \\
& =\left\{\boldsymbol{y}: C \boldsymbol{y}-C \boldsymbol{b}_{P}=0\right\} \\
& \left(m-n \text { linear equations in } \boldsymbol{y} \in \mathbb{R}^{m}\right)
\end{aligned}
$$

Step (2). Then

$$
\mathcal{Z}_{P}=\left\{\boldsymbol{z} \in \mathbb{C}^{m}: \sum_{k=1}^{m} c_{j k}\left(\left|z_{k}\right|^{2}-b_{k}\right)=0, \quad 1 \leq j \leq m-n\right\}
$$

Step (3). Now we want to check that the gradients in the presentation of \mathcal{Z}_{P} in Step (2) are linearly independent at each point. Write $z_{k}=q_{k}+\sqrt{-1} r_{k}$; then the gradients are given by

$$
2\left(c_{j 1} q_{1}, c_{j 1} r_{1}, \ldots, c_{j m} q_{m}, c_{j m} r_{m}\right), \quad 1 \leq j \leq m-n .
$$

So the gradients form the rows of the $(m-n) \times 2 m$ matrix $2 C R$, where

$$
R=\left(\begin{array}{ccccccc}
q_{1} & r_{1} & 0 & \ldots & \ldots & \ldots & 0 \\
0 & 0 & q_{2} & r_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & 0 & q_{m} & r_{m}
\end{array}\right) \quad m \times 2 m \text { matrix }
$$

Assume that $q_{j_{1}}=r_{j_{1}}=\cdots=q_{j_{k}}=r_{j_{k}}=0$ at $\boldsymbol{z} \in \mathcal{Z}_{P}$ so that $\left(z_{j_{1}}=\cdots=z_{j_{k}}=\right.$ $0)$. Then the corresponding facets $F_{j_{1}}, \ldots, F_{j_{k}}$ of P intersect nontrivially. The condition $C A_{P}=0$ guarantees that the submatrix obtained form C by deleting the columns $\boldsymbol{c}_{j_{1}}, \ldots, \boldsymbol{c}_{j_{k}}$ has rank $m-n$. Then rank of $2 C R$ is also $m-n$.
\mathcal{Z}_{P} is called the moment angle manifold corresponding to P.
Remark 2.5. It can be proved that the equivariant smooth structure on \mathcal{Z}_{P} depends only on the combinatorial type of P.

Summary (reminder). Given a simple polytope

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i} \geq 0 \text { for } 1 \leq i \leq m\right\}, \boldsymbol{a}_{i} \in \mathbb{R}^{n}, b_{i} \in \mathbb{R}
$$

with m facets

$$
F_{i}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i}=0\right\} \cap P, \quad 1 \leq i \leq m
$$

The facets are finely ordered, i.e.

$$
F_{1} \cap \cdots \cap F_{n}=v_{1} \text { the initial vertex }
$$

May specify P by the matrix inequality $A_{P} \boldsymbol{x}+\boldsymbol{b}_{P} \geq 0$, where
$A_{P}: m \times n$ matrix of row vectors \boldsymbol{a}_{i},
$\boldsymbol{b}_{P} \in \mathbb{R}^{m}:$ column vector of scalar b_{i}

The intersection of the affine subspace $A_{P}\left(\mathbb{R}^{n}\right)+\boldsymbol{b}_{P}$ with the positive cone \mathbb{R}_{\geq}^{m} is a copy of P in \mathbb{R}^{m} :

$$
\begin{aligned}
& i_{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, i_{P}(\boldsymbol{x})=A_{P} \boldsymbol{x}+\boldsymbol{b}_{P} \text { affine, injective } \\
& \text { moment angle manifold } \mathcal{Z}_{P} \stackrel{i_{\mathcal{Z}}}{\longrightarrow} \\
& \downarrow \mathbb{C}^{m} \\
& P \xrightarrow{i_{P}} \\
& \downarrow \rho \\
& \mathbb{R}_{\geq}^{m}
\end{aligned}
$$

We want to describe the isotropy subgroups of points of \mathcal{Z}_{P} with respect to the T^{m}-action. We may write

$$
T^{m}=\prod_{i=1}^{m} T_{i}
$$

where $T_{i}:=\{(1, \ldots, 1, t, 1, \ldots, 1)\} \subset T^{m}$ is the i-th coordinate subcircle. Given a multiindex $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset[m]=\{1,2, \ldots, m\}$, define the corresponding coordinate subgroup of T^{m} as

$$
T_{I}:=\prod_{i \in I} T_{i} \subset T^{m}
$$

Now take $\boldsymbol{z} \in \mathbb{C}^{m}$. Its isotropy subgroup with respect to the coordinatewise $T^{m_{-}}$ action is

$$
T_{\boldsymbol{z}}^{m}=\left\{\boldsymbol{t} \in T^{m}: \boldsymbol{t} \cdot \boldsymbol{z}=\boldsymbol{z}\right\} \subset T^{m} .
$$

It is easy to see that

$$
T_{z}^{m}=T_{\omega(z)}
$$

where $\omega(\boldsymbol{z})=\left\{i \in[m]: z_{i}=0\right\} \subset[m]$. Obviously, every coordinate subgroup of T^{m} arises as $T_{\omega(\boldsymbol{z})}$ for some $\boldsymbol{z} \in \mathbb{C}^{m}$. However not every coordinate subgroup of T^{m} arises as the isotropy subgroup for some $\boldsymbol{z} \in \mathcal{Z}_{P}$.
The isotropy subgroups of the T^{m}-action on \mathcal{Z}_{P} are described as follows. Given $p \in P$, set

$$
F(p):=\bigcap_{p \in F_{i}} F_{i} .
$$

It is the unique face of P containing p in its relative interior. Note

- if p is a vertex, then $F(p)=p$;
- if $p \in \operatorname{int} P$, then $F(p)=P$.

Now set

$$
T(p)=\prod_{p \in F_{i}} T_{i} \subset T^{m}
$$

Note that $0 \leq \operatorname{dim} T(p) \leq n\left(\because P^{n}\right.$ is simple $)$.
Now if $\boldsymbol{z} \in \mathcal{Z}_{P}$, then $\rho(\boldsymbol{z}) \in P$, and

$$
T_{z}^{m}=T(\rho(\boldsymbol{z})) .
$$

3. Quasitoric manifolds

Assume given P as above, and an $n \times m$ matrix

$$
\Lambda=\left(\begin{array}{ccccccc}
1 & 0 & \ldots & 0 & \lambda_{1, n+1} & \ldots & \lambda_{1, m} \\
0 & 1 & \ldots & 0 & \lambda_{2, n+1} & \ldots & \lambda_{2, m} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right)=\left(I_{n}, \Lambda_{*}\right),
$$

$I_{n}: n \times n$ unit matrix,

$$
\Lambda_{*}: n \times(m-n) \text { matrix }
$$

satisfying
$(*)$ the columns $\lambda_{j_{1}}, \ldots, \lambda_{j_{n}}$ corresponding to any vertex $F_{j_{1}} \cap \cdots \cap F_{j_{n}}$ of P form a basis for \mathbb{Z}^{n}.

Definition 3.1. A combinatorial quasitoric pair is (P, Λ) as above.
We may view Λ as a homomorphism $T^{m} \rightarrow T^{n}$. Now set

$$
K(\Lambda)=\operatorname{ker}\left(T^{m} \xrightarrow{\Lambda} T^{n}\right) \cong T^{m-n} .
$$

Proposition 3.2. $K(\Lambda)$ acts freely on \mathcal{Z}_{P}.
Proof. The map $\Lambda: T^{m} \rightarrow T^{n}$ is injective when restricted to $T(p)$, for all $p \in P$. Therefore, $K(\Lambda)$ meets every isotropy subgroup of the T^{m}-action on \mathcal{Z}_{P} trivially.

Definition 3.3. The quotient

$$
M(P, \Lambda):=\mathcal{Z}_{P} / K(\Lambda)
$$

is the quasitoric manifold corresponding to (P, Λ). The $2 n$-dimensional manifold $M=M(P, \Lambda)$ has a $T^{n} \cong T^{m} / K(\Lambda)$-action which satisfies the two DavisJanuszkiewicz conditions:
(a) the T^{n}-action $\alpha: T^{n} \times M^{2 n} \rightarrow M^{2 n}$ is locally standard, or locally isomorphic to the standard coordinatewise representation of T^{n} in \mathbb{C}^{n}. More precisely, every $\boldsymbol{x} \in M$ is contained in a T^{n}-invariant neighborhood $U(\boldsymbol{x}) \subset M$ for which there is a T^{n}-invariant subset $W \subset \mathbb{C}^{n}$, an automorphism $\theta: T^{n} \rightarrow$ T^{n}, and a homeomorphism $f: U(\boldsymbol{x}) \rightarrow W$ satisfying $f(\boldsymbol{t y})=\theta(\boldsymbol{t}) f(\boldsymbol{y})$ for all $\boldsymbol{t} \in T^{n}, \boldsymbol{y} \in U(\boldsymbol{x})$.
(b) there is a projection $\pi: M \rightarrow P$ whose fibres are orbits of α.

It follows from the construction that M is canonically smooth.
Question 3.4 (open). Unlike \mathcal{Z}_{P}, we don't know whether the equivariant smooth structure on M is unique.

Example 3.5. Assume that the initial vertex v_{1} is the origin, and the first n normal vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ form the standard basis of \mathbb{R}^{n}. (We can always achieve this by applying an affine transformation). Then

$$
A_{P}^{t}=\left(\begin{array}{ccccccc}
1 & 0 & \ldots & 0 & a_{n+1,1} & \ldots & a_{m, 1} \\
0 & 1 & \ldots & 0 & a_{n+1,2} & \ldots & a_{m, 2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \ldots \ldots & \ldots & \ldots \ldots \\
0 & \ldots & 0 & 1 & a_{n+1, n} & \ldots & a_{m, n}
\end{array}\right)
$$

has the same form as Λ, although with real (rather than integer) matrix elements. We can always achieve that P has integral coordinates of vertices without changing its combinatorial type. So we may assume $a_{i j} \in \mathbb{Z}$. However, condition (*) on
the minors of Λ is more severe: there are combinatorial polytopes with no integral realisation satisfying (*). But if you can realise P so that A_{P}^{t} satisfies ($*$), then

$$
M(P)=\mathcal{Z}_{P} / K\left(A_{P}^{t}\right)
$$

is the projective toric variety corresponding to P.

Example 3.6.

1.
2.

3.

1. $\Lambda=\left(\begin{array}{lll}1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right)=A_{P}^{t}$, and $K(\Lambda)=\langle(t, t, t)\rangle \subset T^{3}$, the diagonal subcircle.

Then

$$
M(P)=\mathcal{Z}_{P} / K(\Lambda)=S^{5} / S^{1} \cong \mathbb{C} P^{2}
$$

The T^{2}-action is given by

$$
\left(t_{1}, t_{2}\right) \cdot\left(z_{0}: z_{1}: z_{2}\right)=\left(z_{0}: t_{1} z_{1}: t_{2} z_{2}\right)
$$

2. $\quad \Lambda=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -1\end{array}\right)$, and $M(P)=\overline{\mathbb{C} P^{2}}$ (the standard orientation is reversed).

The action is

$$
\begin{aligned}
& \left(t_{1}, t_{2}\right) \cdot\left(z_{0}: z_{1}: z_{2}\right)=\left(z_{0}: t_{1} z_{1}: t_{2}^{-1} z_{2}\right) \\
\text { 3. } \Lambda= & \left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right), \quad M \cong\left(S^{2} \times S^{2}\right) \#\left(S^{2} \times S^{2}\right) .
\end{aligned}
$$

The T^{n}-action on M is free over the interior $\operatorname{int} P=P^{\circ}$.

$$
\boldsymbol{p} \in P^{\circ}, \quad \pi^{-1}(\boldsymbol{p})=(\boldsymbol{p}, \boldsymbol{t}), \quad \pi: M \rightarrow P
$$

We orient M using the decomposition

$$
\tau_{(p, t)} M \cong \tau_{\boldsymbol{p}} P \oplus \tau_{t} T^{n}
$$

by insisting that $\left(\xi_{1}, \eta_{1}, \ldots, \xi_{n}, \eta_{n}\right)$ is a positive basis of $\tau_{(\boldsymbol{p}, \boldsymbol{t})} M$ whenever

$$
\left(\xi_{1}, \ldots, \xi_{n}\right)>0 \text { in } \tau_{\boldsymbol{p}} P=\mathbb{R}^{n} \text { and }\left(\eta_{1}, \ldots, \eta_{n}\right)>0 \text { in } \tau_{\boldsymbol{t}} T^{n}
$$

This is similar to orienting \mathbb{C}^{n} by the basis $\left(\boldsymbol{e}_{1}, i \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}, i \boldsymbol{e}_{n}\right)$.
Corollary 3.7. M is canonically oriented by the orientations of P and T^{n}.
The facial (or characteristic) submanifolds of M are defined as

$$
M_{i}:=\pi^{-1}\left(F_{i}\right)=\mathcal{Z}_{F_{i}} / K \quad \text { for } 1 \leq i \leq m .
$$

$\mathcal{Z}_{F_{i}}$ is the fixed point set of \mathcal{Z}_{P} with respect to the action of $T_{i} \subset T^{m}$. So $M_{i} \subset$ M is fixed by the circle subgroup $\Lambda\left(T_{i}\right) \subset T^{n}$ determined by the i th column of $\Lambda: T^{m} \rightarrow T^{n}$.
Let \mathbb{C}_{i} denote the 1-dim complex T^{m}-representation defined via the quotient projection $\mathbb{C}^{m} \rightarrow \mathbb{C}_{i}$ onto the i th factor. Define

$$
\begin{aligned}
\mathcal{Z}_{P} \times_{K} \mathbb{C}_{i}=\{ & \left.(\boldsymbol{z}, w): \boldsymbol{z} \in \mathcal{Z}_{P}, w \in \mathbb{C}_{i}\right\} / \sim \\
& (\boldsymbol{z}, w) \sim\left(\boldsymbol{z} t^{-1}, t w\right) \text { for every } t \in K .
\end{aligned}
$$

Then we have a complex line bundle

$$
\rho_{i}: \mathcal{Z}_{P} \times_{K} \mathbb{C}_{i} \rightarrow M
$$

over M whose restriction to M_{i} is the normal bundle of the inclusion $M_{i} \hookrightarrow M$.

Definition 3.8. The ominiorientation of M is a choice of orientation for M and for every $M_{i}, \quad 1 \leq i \leq m$.
By the above considerations, (P, Λ) determines a canonical omniorientation for $M(P, \Lambda)$.

4. Cobordism theories

4.1. General notion of cobordism. All manifolds are closed, smooth.

Definition 4.1. M_{1}^{n} and M_{2}^{n} are (co)bordant (notation: $M_{1}^{n} \sim M_{2}^{n}$) if there exists a manifold W^{n+1} with boundary such that $\partial W^{n+1}=M_{1} \sqcup M_{2}$.

Proposition 4.2. \sim is an equivalence relation.
Proof.
(1) $M \sim M$. Indeed, $W=M \times[0,1]$;
(2) $M_{1} \sim M_{2} \Rightarrow M_{2} \sim M_{1}$ obvious;
(3) $M_{1} \sim M_{2} \& M_{2} \sim M_{3} \Longrightarrow M_{1} \sim M_{3}$.

Denote by $[M]$ the cobordism equivalence class of M. $\Omega_{n}^{O}=\left\{\left[M^{n}\right]\right\}$ the set of cobordism classes of n-dimensional manifolds.
Proposition 4.3. Ω_{n}^{O} an abelian group with respect to $\left[M_{1}^{n}\right]+\left[M_{2}^{n}\right]=\left[M_{1}^{n} \sqcup M_{2}^{n}\right]$.
Proof. Zero is the cobordism class of an empty set, $-[M]=[M]$.
In particular, Ω_{n}^{O} is a 2-torsion.
Set $\Omega_{*}^{O}:=\bigoplus_{n \geq 0} \Omega_{n}^{O}$.
Proposition 4.4. Ω_{*}^{O} is a ring with respect to $\left[M_{1}\right] \times\left[M_{2}\right]=\left[M_{1} \times M_{2}\right]$.
Ω_{*}^{O} is called the unoriented (co)bordism ring (in fact, it is a $\mathbb{Z} / 2$-algebra).
4.2. Oriented cobordism. Now all manifolds are oriented.
$M_{1}^{n} \sim M_{2}^{n}$ if there is an oriented W^{n+1} such that $\partial W=M_{1} \sqcup \overline{M_{2}}$ where $\overline{M_{2}}$ denotes M_{2} with orientation reversed.
$\Omega_{*}^{S O}$ is defined in the same way as Ω_{*}^{O} except $-[M]=[\bar{M}]$. So $\Omega_{*}^{S O}$ is no longer a 2 -torsion! It is a \mathbb{Z}-algebra.
Remark 4.5. $\left[M_{1}\right]+\left[M_{2}\right]=\left[M_{1} \# M_{2}\right]$. In other words, $M_{1} \sqcup M_{2} \sim M_{1} \# M_{2}$.

Example 4.6.

1. $\Omega_{0}^{O} \cong \mathbb{Z} / 2$ (with two cobordism classes \emptyset and $\cdot=p t$).
2. $\Omega_{1}^{O}=0$ (every 1-manifold bounds).
3. $\Omega_{2}^{O} \cong \mathbb{Z} / 2$ with generator $\left[\mathbb{R} P^{2}\right]$;
$2\left[\mathbb{R} P^{2}\right]=\left[\mathbb{R} P^{2} \# \mathbb{R} P^{2}\right]=\left[K^{2}\right]=0$.
Here K^{2} is the Klein bottle (it bounds).
4. $\Omega_{3}^{O} \cong 0$ elementary, but hard. Established by Rohlin in 1951.
5. Ω_{*}^{O} was completely calculated by Thom in 1954 using algebraic and homotopy methods.

Example 4.7.

1. $\Omega_{0}^{S O} \cong \mathbb{Z}$. The generator is $[p t]$.
2. $\Omega_{1}^{S O}=0$.
3. $\Omega_{2}^{S O}=0$ (every oriented 2-manifold bounds).
4. $\Omega_{3}^{S O}=0$ by Rohlin.
5. $\Omega_{4}^{S O} \cong \mathbb{Z}$ with generator [$\mathbb{C} P^{2}$]; hard.
6. $\Omega_{*}^{S O}$ was completely calculated by the efforts of several people by 1960 .

Exercise 4.8. $\mathbb{R} P^{2 n+1}, \mathbb{C} P^{2 n+1}$ bound.
4.3. Complex cobordism. Idea: try to work with complex manifolds. This runs into a complication as W cannot be complex. The remedy is to consider complex structures on M up to "stabilisation", i.e. assume chosen a real bundle isomorphism

$$
c_{\tau}: \tau(M) \oplus \mathbb{R}^{k} \rightarrow \xi
$$

where $\tau(M)$ denotes the tangent bundle, \mathbb{R}^{k} a trivial real k-plane bundle over M, and ξ a complex bundle over M.

Definition 4.9. A (tangentially) stably complex manifold is an equivalence class of pairs $\left(M, c_{\tau}\right)$ as above, where $\left(M, c_{\tau}\right) \sim\left(M, c_{\tau^{\prime}}\right)$ if there are some m, m^{\prime} and a complex bundle isomorphism $\xi \oplus \mathbb{C}^{m} \rightarrow \xi^{\prime} \oplus \mathbb{C}^{m^{\prime}}$ such that the composition

$$
\begin{array}{cc}
\tau(M) \oplus \mathbb{R}^{k} \oplus \mathbb{C}^{m} \xrightarrow{c_{\tau} \oplus i d} & \xi \oplus \mathbb{C}^{m} \\
\tau(M) \oplus \mathbb{R}^{k^{\prime}} \oplus \mathbb{C}^{m^{\prime}} \xrightarrow{c_{\tau^{\prime}} \oplus i d} & \downarrow \cong
\end{array} \quad \xi^{\prime} \oplus \mathbb{C}_{m^{\prime}} .
$$

is an isomorphism of real bundles.
FACT 1. We can do cobordism with tangentially stably complex manifolds. The opposite element in the resulting cobordism group is given by

$$
-\left[M, c_{\tau}\right]:=\left[M, \bar{c}_{\tau}\right]
$$

where $\bar{c}_{\tau}: \tau\left(M^{n}\right) \oplus \mathbb{R}^{k} \rightarrow \bar{\xi}$ (the conjugate stably complex structure).
If M is an (almost) complex manifold then it has the canonical tangentially stably complex structure $i d=c_{\tau}: \tau(M) \rightarrow \tau(M)$.
Example 4.10. $M=\mathbb{C} P^{1}$. Then we have a complex bundle isomorphism

$$
\alpha: \tau\left(\mathbb{C} P^{1}\right) \oplus \mathbb{C} \cong \bar{\eta} \oplus \bar{\eta}
$$

where η is the Hopf line bundle. So $\left[\mathbb{C} P^{1}, \alpha\right]$ is the canonical stably complex structure. The opposite element $-\left[\mathbb{C} P^{1}, \alpha\right]$ is determined by the real bundle isomorphism

$$
\tau\left(\mathbb{C} P^{1}\right) \oplus \mathbb{R}^{2} \rightarrow \eta \oplus \eta
$$

Finally, the real bundle isomorphism

$$
\beta: \tau\left(\mathbb{C} P^{1}\right) \oplus \mathbb{R}^{2} \rightarrow \eta \oplus \bar{\eta} \cong \mathbb{C}^{2}
$$

gives rise to the trivial stably complex structure on $\mathbb{C} P^{1}$.

FACT 2. $\Omega_{2}^{U} \cong \mathbb{Z}$, genetated by [$\left.\mathbb{C} P^{1}\right]$.

4.4. Generalised (co)homology theories.

Definition 4.11. Let X be a "good" topological space. Define $O_{n}(X)$ as the set cobordism classes of maps $M^{n} \rightarrow X$, where $\left(M_{1} \rightarrow X\right) \sim\left(M_{2} \rightarrow X\right)$ if there is W such that $\partial W=M_{1} \sqcup M_{2}$ and the map $M_{1} \sqcup M_{2} \rightarrow X$ extends to W :

$O_{*}(X)$ satisfied 3 of 4 Steenrod axioms for homology theory. It is

- homotopy invariant;
- has exact sequences of pairs;
- has the excision axiom.

But $O_{*}(p t)=\Omega_{*}^{O}$. The forth Steenrod axiom fails. So $O_{*}(X)$ gives rise to a generalised homology theory.
We can also define the "cohomology theory" $O^{*}(X)$, with

$$
O^{*}(p t)=O_{-*}(p t)
$$

In other words, $\Omega_{O}^{*}=\Omega_{-*}^{O}$.
Other (co)bordism theories $S O_{*}(X), S O^{*}(X), U_{*}(X), U^{*}(X)$ are treated similarly.
Another common notation: use $M O^{*}(X), M S O^{*}(X)$, etc. instead of $O^{*}(X)$, $S O^{*}(X)$, etc.

4.5. Main results on cobordism.

$O: M, \quad w(\tau M)=1+w_{1}(\tau M)+w_{2}(\tau M)+\ldots \quad$ total Stiefel-Whitney class
$S O: M, \quad p(\tau M)=1+p_{1}(\tau M)+p_{2}(\tau M)+\ldots \quad$ total Pontrjagin class
$U:\left(M, c_{\tau}, \xi\right), \quad c(\xi)=1+c_{1}(\xi)+c_{2}(\xi)+\ldots \quad$ total Chern class of ξ
Given a sequence $\omega=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ such that $i_{1}+2 i_{2}+\cdots+k i_{k}=n$ (a partition of n), define the corresponding characteristic numbers as

$$
\begin{aligned}
w_{\omega}\left(M^{n}\right) & =w_{1}^{i_{1}} w_{2}^{i_{2}} \ldots w_{k}^{i_{k}}(\tau M)\langle M\rangle \in \mathbb{Z} / 2, & & \operatorname{dim} M=n, \\
p_{\omega}\left(M^{4 n}\right) & =p_{1}^{i_{1}} p_{2}^{i_{2}} \ldots p_{k}^{i_{k}}(\tau M)\langle M\rangle \in \mathbb{Z}, & & \operatorname{dim} M=4 n, \\
c_{\omega}\left(M^{2 n}, \xi\right) & =c_{1}^{i_{1}} c_{2}^{i_{2}} \ldots c_{k}^{i_{k}}(\xi)\langle M\rangle \in \mathbb{Z}, & & \operatorname{dim} M=2 n,
\end{aligned}
$$

where $\langle M\rangle$ denotes the fundamental homology class of M (with $\mathbb{Z} / 2$ or \mathbb{Z} coefficients).
Example 4.12. $M^{4}=\mathbb{C} P^{2}, \xi=\tau(M), \tau\left(\mathbb{C} P^{2}\right) \oplus \mathbb{C}=\bar{\eta} \oplus \bar{\eta} \oplus \bar{\eta}$.

$$
\begin{aligned}
& c(\tau(M))=(1+u)^{3}=1+\underbrace{3 u}_{c_{1}}+\underbrace{3 u^{2}}_{c_{2}}, \text { where } u=c_{1}(\bar{\eta}) \in H^{2}\left(\mathbb{C} P^{2}\right), \\
& c_{2}\left(\mathbb{C} P^{2}\right)=3, \quad c_{1}^{2}\left(\mathbb{C} P^{2}\right)=9, \quad u^{2}\left\langle\mathbb{C} P^{2}\right\rangle=1 .
\end{aligned}
$$

Theorem 4.13 (Thom, Milnor).

1. $M_{1} \sim M_{2}$ unorientedly cobordant $\Leftrightarrow \forall \omega, w_{\omega}\left(M_{1}\right)=w_{\omega}\left(M_{2}\right)$.
2. $\left[M_{1}\right]-\left[M_{2}\right]$ is a torsion element in $\Omega_{*}^{S O} \Leftrightarrow \forall \omega, p_{\omega}\left(M_{1}\right)=p_{\omega}\left(M_{2}\right)$.
3. $\left(M_{1}, \xi_{1}\right) \sim\left(M_{2}, \xi_{2}\right)$ complex cobordant $\Leftrightarrow \forall \omega, c_{w}\left(M_{1}, \xi_{1}\right)=c_{w}\left(M_{2}, \xi_{2}\right)$.

Theorem 4.14 (Thom'1954). $\Omega_{*}^{O} \cong \mathbb{Z} / 2\left[\left\{a_{i}, i \neq 2^{k}-1\right\}\right]$ with $\operatorname{deg} a_{i}=i$. So in small dimensions, $\Omega_{*}^{O} \cong \mathbb{Z} / 2\left[a_{2}, a_{4}, a_{5}, \ldots\right]$.. Moreover, we can take $a_{2 n}=\left[\mathbb{R} P^{2 n}\right]$.
Theorem 4.15 (Novikov, Milnor, Averbuh, Wall, Rohlin, Thom).

$$
\begin{aligned}
\Omega_{*}^{U} & \cong \mathbb{Z}\left[a_{1}, a_{2}, \ldots\right], & \operatorname{deg} a_{i} & =2 i \\
\Omega_{*}^{S O} / \text { Tors } & \cong \mathbb{Z}\left[b_{1}, b_{2}, \ldots\right], & \operatorname{deg} b_{i} & =4 i
\end{aligned}
$$

Moreover, $\Omega_{*}^{S O}$ has only 2-torsion, which is completely described.
Remark 4.16. Over rationals, the cobordism rings look much simpler:

$$
\begin{aligned}
\Omega_{*}^{U} \otimes_{\mathbb{Z}} \mathbb{Q} & =\mathbb{Q}\left[\left[\mathbb{C} P^{1}\right],\left[\mathbb{C} P^{2}\right], \ldots\right] \\
\Omega_{*}^{S O} \otimes_{\mathbb{Z}} \mathbb{Q} & =\mathbb{Q}\left[\left[\mathbb{C} P^{2}\right],\left[\mathbb{C} P^{4}\right], \ldots\right]
\end{aligned}
$$

In what follows we consider only complex cobordism. Write formally the total Chern class of $\left(M^{2 n}, \xi\right)$ as

$$
c(\xi)=1+c_{1}(\xi)+\cdots+c_{n}(\xi)=\left(1+x_{1}\right) \ldots\left(1+x_{n}\right),
$$

so $c_{i}(\xi)=\sigma_{i}\left(x_{1}, \ldots, x_{n}\right)$ is the i th elementary symmetric function. Consider $P_{n}\left(x_{1}, \ldots x_{n}\right)=x_{1}^{n}+\cdots+x_{n}^{n}$ and express it as a polynomial in elementary symmetric functions, $P_{n}\left(x_{1}, \ldots, x_{n}\right)=s_{n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$.
Definition 4.17. $s_{n}\left(M^{2 n}, \xi\right)=s_{n}\left(c_{1}, \ldots, c_{n}\right)\langle M\rangle$.
Theorem 4.18. $\left[M^{2 n}\right]$ can be taken as a multiplicative generator of Ω_{*}^{U} in degree $2 n$ if and only if
$s_{n}\left(M^{2 n}, \xi\right)= \pm \mu(n+1)$ where $\mu(k)= \begin{cases}p & \text { if there is a prime } p \text { such that } k=p^{s}, \\ 1 & \text { else. }\end{cases}$ in other words, $s_{n}\left(M^{2 n}\right)= \pm 1$ except for $n=p^{s}-1$ in which case $s_{n}\left(M^{2 n}\right)= \pm p$.
Example 4.19. Can we take $\left[\mathbb{C} P^{n}\right]$ as a generator of $\Omega_{2 n}^{U}$?

1. $\mathbb{C} P^{1}$:
$P_{1}\left(x_{1}\right)=x_{1}, s_{1}\left(\mathbb{C} P^{1}\right)=c_{1}\left\langle\mathbb{C} P^{1}\right\rangle=2$. Since $n=1=2^{1}-1,\left[\mathbb{C} P^{1}\right]$ is a generator or Ω_{2}^{U}.
2. $\mathbb{C} P^{2}$:

$$
P_{2}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}=c_{1}^{2}-2 c_{2}, \text { so } s_{2}\left(\mathbb{C} P^{2}\right)=
$$ $\left(c_{1}^{2}-2 c_{2}\right)\left\langle\mathbb{C} P^{2}\right\rangle=3$. Since $n=2=3^{1}-1,\left[\mathbb{C} P^{2}\right]$ is a generator of Ω_{4}^{U}.

3. $\mathbb{C} P^{3}$:

In general, $s_{n}\left(\mathbb{C} P^{n}\right)=n+1\left(\right.$ Exercise; use the fact $\tau\left(\mathbb{C} P^{n}\right) \oplus \mathbb{C}=\bar{\eta} \oplus$ $\cdots \oplus \bar{\eta})$. So for $n=3, s_{3}\left(\mathbb{C} P^{3}\right)=4$. Since $n=3=2^{2}-1$, one should have $s_{3}(M)= \pm 2$ for a generator, and $\left[\mathbb{C} P^{3}\right]$ is not a generator!

Example 4.20 (Milnor hypersurfaces). Given two integers $1 \leq i \leq j$, consider the following hypersurface in $\mathbb{C} P^{i} \times \mathbb{C} P^{j}$:

$$
H_{i, j}=\left\{\left(z_{0}: \cdots: z_{i}\right) \times\left(w_{0}: \cdots: w_{j}\right) \in \mathbb{C} P^{i} \times \mathbb{C} P^{j}: z_{0} w_{0}+\cdots+z_{i} w_{i}=0\right\}
$$

Consider $\mathbb{C}^{i+1} \subset \mathbb{C}^{j+1}$ embedded onto first $i+1$ coordinates.

$$
\begin{aligned}
\mathbb{C} P^{i} & =\left\{l \subset \mathbb{C}^{i+1}\right\} \\
E & =\left\{(l, \alpha): l \text { a line in } \mathbb{C}^{i+1}, \alpha \text { a hyperplane in } \mathbb{C}^{j+1} \text { containing } l\right\} .
\end{aligned}
$$

So we have a fibration $\mathbb{C} P^{j+1} \rightarrow E \rightarrow \mathbb{C} P^{i}$.

Proposition 4.21. $E=H_{i, j}$.
Also, set $H_{0, j}=\mathbb{C} P^{j-1}$.
Exercise 4.22. $s_{i+j-1}\left(H_{i, j}\right)=\binom{i+j}{i+1}$.
Corollary 4.23. Ω_{*}^{U} is multiplicatively generated by the set of cobordism classes $\left\{\left[H_{i, j}\right], 0 \leq i \leq j\right\}$.

Proof. Use the fact that

$$
\underset{1 \leq j \leq k-1}{\operatorname{gcd}}\left\{\binom{k}{j}\right\}= \begin{cases}p & \text { if } k=p^{s} \\ 1 & \text { else }\end{cases}
$$

5. (Quasi)toric representatives in complex cobordism classes

Theorem 5.1. In dim >2, every complex cobordism class contains a quasitoric manifold, necessarily connected, whose stably complex structure is compatible with the action of the torus.

Plan of proof.

1. Identify equivariant stably complex structures on quasitoric manifolds.
2. Observe that $H_{i, j}$ are not quasitoric manifolds.
3. Replace $H_{i, j}$ by a toric manifold, denoted $B_{i, j}$, with the same characteristic number s_{i+j-1}. This provides a set of toric multiplicative generators for Ω_{*}^{U}.
4. Replace disjoint unions by connected sums. This is tricky because we need to keep track of both the action and the stably complex structure.
The above theorem provides a solution to a toric version of the following famous problem:
Problem 5.2 (Hirzebruch). Describe cobordism classes in Ω_{*}^{U} which have connected algebraic representatives.
Example 5.3. We have $\Omega_{2}^{U}=\left\langle\left[\mathbb{C} P^{1}\right]\right\rangle$. For $k \leq 1$, the class $k\left[\mathbb{C} P^{1}\right]$ contains a Riemanian surface of genus $1-k$. But $k\left[\mathbb{C} P^{1}\right]$ with $k>1$ does not contain a connected algebraic representative. So the solution to the above problem in dim 2 is given by the inequality $c_{1}(M) \leq 2$.
In dimension 4 (complex 2), some similar inequalities for c_{1}^{2} and c_{2} are known, but the complete answer is open.

5.1. Equivariant stably complex structure on quasitoric manifolds.

Recall: $i_{\mathcal{Z}}: \mathcal{Z}_{P} \rightarrow \mathbb{C}^{m}$ the framed T^{m}-equivariant embedding of the moment-angle manifold, (P, Λ) a combinatorial quasitoric pair,

$$
\Lambda=\left(\begin{array}{ccccccc}
1 & 0 & \ldots & 0 & \lambda_{1, n+1} & \ldots & \lambda_{1, m} \\
0 & 1 & \ldots & 0 & \lambda_{2, n+1} & \ldots & \lambda_{2, m} \\
\ldots & \ldots & \ldots & \ldots & \ldots \ldots \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1 & \lambda_{n, n+1} & \ldots & \lambda_{n, m}
\end{array}\right),
$$

$M(P, \Lambda)=\mathcal{Z}_{P} / K(\Lambda)$ the associated omnioriented quasitoric manifold,

$$
\rho_{i}: \mathcal{Z}_{P} \times_{K} \mathbb{C}_{i} \rightarrow \mathcal{Z}_{P} / K=M
$$

a $T^{n}=T^{m} / K$-equivariant \mathbb{C}-line bundle over M.
Theorem 5.4. There is a real bundle isomorphism

$$
\tau(M) \oplus \mathbb{R}^{2(m-n)} \cong \rho_{1} \oplus \cdots \oplus \rho_{m}
$$

Proof. There is a T^{m}-invariant decomposition

$$
\tau\left(\mathcal{Z}_{P}\right) \oplus \nu\left(i_{\mathcal{Z}}\right) \cong \mathcal{Z}_{P} \times \mathbb{C}^{m}
$$

obtained by restricting $\tau\left(\mathbb{C}^{m}\right)$ to \mathcal{Z}_{P}. Factoring out $K=\operatorname{ker}\left(\Lambda: T^{m} \rightarrow T^{n}\right)$ gives

$$
\tau(M) \oplus(\xi / K) \oplus\left(\nu\left(i_{\mathcal{Z}}\right) / K\right) \cong \mathcal{Z}_{P} \times_{K} \mathbb{C}^{m}
$$

where ξ denotes the $(m-n)$-plane bundle of tangents along the fibres of $\mathcal{Z}_{P} \rightarrow M$. Both ξ and $\nu\left(i_{\mathcal{Z}}\right)$ are trivial real $(m-n)$-plane bundles. Moreover, the matrix A_{P} provides a canonical framing (trivialisation) of $\nu_{\mathcal{Z}}$, as described in Section 2. Similarly, the matrix Λ provides a canonical choice of basis in $K=\operatorname{ker} \Lambda$, and therefore a canonical framing of ξ. It remains to note that

$$
\mathcal{Z}_{P} \times_{K} \mathbb{C}^{m}=\rho_{1} \oplus \cdots \oplus \rho_{m}
$$

Remark 5.5. Everything is T^{m} / K-invariant.
Definition 5.6. Assume N is a G-manifold, $\alpha: G \times N \rightarrow N$ the action. A stably complex structure $c_{\tau}: \tau(N) \oplus \mathbb{R}^{k} \rightarrow \xi$ is said to be G-equivariant if

$$
\xi \xrightarrow{c_{\tau}^{-1}} \tau(N) \oplus \mathbb{R}^{k} \xrightarrow{d \alpha(g, \cdot) \oplus i d} \tau(N) \oplus \mathbb{R}^{k} \xrightarrow{c_{\tau}} \xi
$$

is an isomorphism of complex bundles for every $g \in G$.
Corollary 5.7. The quasitoric manifold $M(P, \Lambda)$ admits a canonical T^{n}-equivariant stably complex structure.
Remark 5.8. Using the $1-1$ correspondence

$$
\left\{\begin{array}{c}
\text { combinatorial } \\
\text { quasitoric pairs }(P, \Lambda)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { omnioriented } \\
\text { quaritoric manifolds }
\end{array}\right\}
$$

we see that the T^{n}-equivariant stably complex structure is determined by the omniorientation. Changing the orientation of one M_{i} in the omniorientation data results in changing the corresponding ρ_{i} to its conjugate in the stably complex structure. This is equivalent to reversing the sign of the i th column in Λ.

5.2. $H_{i, j}$ are not quasitoric.

Recall:

$$
H_{i, j}=\left\{(l, \alpha): l \subset \mathbb{C}^{i+1} \text { a line, } \alpha \subset \mathbb{C}^{j+1} \text { a hyperplane containing } l\right\}, \quad 0 \leq i \leq j
$$ so $H_{i, j}=\mathbb{C} P(\zeta)$, where ζ is the complex j-plane bundle whose fibre over $l \in \mathbb{C} P^{i}$ is the j-plane l^{\perp} in \mathbb{C}^{j+1} :

$$
\mathbb{C} P^{j-1} \rightarrow \mathbb{C} P(\zeta) \rightarrow \mathbb{C} P^{i}
$$

Theorem 5.9 (exercise).

$$
H^{*}\left(H_{i, j}\right) \cong \mathbb{Z}[u, w] /\left(u^{i+1}, v^{j-i}\left(u^{i}+u^{i-1} w+\cdots+u w^{i-1}+w^{i}\right)\right)
$$

Theorem 5.10 (Davis-Januszkiewicz).

$$
H^{*}(M(P, \Lambda))=\mathbb{Z}\left[u_{1}, \ldots, u_{m}\right] / \mathcal{I}+\mathcal{J}
$$

where $u_{i}=c_{1}\left(\rho_{i}\right) \in H^{2}(M(P, \Lambda))$,

$$
\begin{aligned}
& \mathcal{I}=\left\{v_{i_{1}}, \ldots, v_{i_{k}}: F_{i_{1}} \cap \cdots \cap F_{i_{k}}=\varnothing\right\} \text { the Stanley-Reisner ideal of } P, \\
& \mathcal{J}=\left\{\lambda_{i, 1} u_{1}+\cdots+\lambda_{i, m} u_{m}, \quad 1 \leq i \leq n\right\} .
\end{aligned}
$$

Corollary 5.11. $H_{i, j}$ is not a quasitoric manifold for $2 \leq i \leq j$.
Proof. Assume the converse. Comparing H^{2}, we obtain $2=m-n$. Therefore,

$$
H^{*}\left(H_{i, j}\right)=\left(\mathbb{Z}\left[u_{1}, \ldots, u_{m}\right] / \mathcal{J}\right) / \mathcal{I}=\mathbb{Z}[u, w] / \mathcal{I}^{\prime}, \quad \operatorname{deg} u=\operatorname{deg} w=2
$$

where the ideal \mathcal{I}^{\prime} has a basis consisting of elements of $\operatorname{deg} \geq 4$ decomposable into linear factors. This gives a contradiction.

5.3. Toric multiplicative generator set for Ω_{*}^{U}.

Construction 5.12 (the bounded flag manifold B_{n}). A bounded flag in \mathbb{C}^{n+1} is a complete flag $U=\left\{U_{1} \subset \cdots \subset U_{n+1}=\mathbb{C}^{n+1}\right\}$ such that U_{k} contains the coordinate subspace \mathbb{C}^{k-1} generated by the first $k-1$ standard basis vectors, for $2 \leq k \leq n$.

$$
B_{n}=\left\{\text { set of bounded flags in } \mathbb{C}^{n+1}\right\} .
$$

There is a projection $B_{n} \rightarrow B_{n-1}$

$$
\begin{aligned}
U= & \left(U_{1} \subset U_{2} \subset \cdots \subset U_{n-1} \subset U_{n} \subset \mathbb{C}^{n+1}\right) \\
& \mapsto \\
U^{\prime}= & U / \mathbb{C}^{1}=\left(U_{1}^{\prime}=U_{2} / \mathbb{C}^{1} \subset U_{2}^{\prime}=U_{3} / \mathbb{C}^{1} \subset \cdots \subset U_{n-1}^{\prime}=U_{n} / \mathbb{C}^{1} \subset \mathbb{C}^{n}\right)
\end{aligned}
$$

The fibre of $B_{n} \rightarrow B_{n-1}$ is $\mathbb{C} P^{1}$ (to recover U_{1} we need to choose a line in $U_{1}^{\prime} \oplus \mathbb{C}$). Get a tower of fibrations

$$
B_{n} \rightarrow B_{n-1} \rightarrow \cdots \rightarrow B_{2} \rightarrow B_{1}=\mathbb{C} P^{1}
$$

This is an example of a Bott tower of height n.
Proposition 5.13. The action

$$
\begin{aligned}
T^{n} \times \mathbb{C}^{n+1} & \rightarrow \mathbb{C}^{n+1} \\
(\boldsymbol{t}, \boldsymbol{z}) & \mapsto\left(t_{1} z_{1}, \ldots, t_{n} z_{n}, z_{n+1}\right)
\end{aligned}
$$

induces a T^{n}-action on B_{n} making it a quasitoric manifold over I^{n}.
Idea of proof. $B_{n}=(P, \Lambda)$ where $P=I^{n}$ (an n-dimensional cube), and

$$
\Lambda=\left(\begin{array}{c|cccc}
I_{n} & \left\lvert\, \begin{array}{ccc}
-1 & 0 & \ldots \\
0 \\
1 & -1 & \ldots \\
0 \\
\vdots & \ddots & \ddots
\end{array}\right. & \vdots \\
0 & \ldots & 1 & -1
\end{array}\right), \quad m=2 n
$$

so $K(\Lambda) \rightarrow T^{2 n}$ as

$$
\begin{aligned}
& \left(t_{1}, \ldots, t_{n}\right) \mapsto\left(t_{1}, t_{1}^{-1} t_{2}, t_{2}^{-1} t_{3}, \ldots, t_{n-1}^{-1} t_{n}, t_{1}, t_{2}, \ldots, t_{n}\right) \\
& \mathcal{Z}_{P}=\left\{\left(z_{1}, \ldots z_{2 n}\right) \in \mathbb{C}^{2 n}:\left|z_{k}\right|^{2}+\left|z_{n+k}\right|^{2}=1, \quad 1 \leq k \leq n\right\} \cong\left(S^{3}\right)^{n}
\end{aligned}
$$

To identify $\mathcal{Z}_{P} / K(\Lambda)$ with B_{n}, we do the following. Given $\left(z_{1}, \ldots, z_{2 n}\right) \in \mathcal{Z}_{P}$, define $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n+1} \in \mathbb{C}^{n+1}$

$$
\boldsymbol{v}_{n+1}=\boldsymbol{e}_{n+1}, \quad \boldsymbol{v}_{k}=z_{k} \boldsymbol{e}_{k}+z_{k+n} \boldsymbol{v}_{k+1}, \quad k=n, \ldots, 1 .
$$

Then we get a projection

$$
\begin{aligned}
\mathcal{Z}_{P} & \rightarrow B_{n} \\
\boldsymbol{z} & \mapsto U=\left(U_{1} \subset U_{2} \subset \cdots \subset U_{n} \subset \mathbb{C}^{n+1}\right), \\
& U_{k}=\left\langle\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{k-1}, \boldsymbol{v}_{k}\right\rangle
\end{aligned}
$$

Now, define

$$
\begin{aligned}
f_{i}: B_{i} & \rightarrow \mathbb{C} P^{i} \\
U=\left\{U_{1} \subset U_{2} \subset \ldots\right\} & \mapsto U_{1} \subset \mathbb{C}^{i+1}
\end{aligned}
$$

and define $B_{i, j}$ from the pullback diagram

$$
\begin{array}{rll}
B_{i, j} & \rightarrow & H_{i, j}=\mathbb{C} P(\zeta) \\
\downarrow & & \downarrow \\
B_{i} & \xrightarrow{f_{i}} & \mathbb{C} P^{i}
\end{array}
$$

So
$B_{i, j}=\left\{(U, \alpha): U\right.$ a bounded flag in \mathbb{C}^{i+1}, α a hyperplane in \mathbb{C}^{j+1} containing $\left.U_{1}\right\}$ and there is a fibration $\mathbb{C} P^{j-1} \rightarrow B_{i, j} \rightarrow B_{i}$.

Proposition 5.14. $B_{i, j}$ has a T^{i+j-1}-action turning it into a quasitoric manifold over $I^{i} \times \Delta^{j-1}$.

Idea of proof. Like always with "flag" manifolds, pulling back ζ along f_{i} splits it into a sum of line bundles. So $B_{i, j}$ is a projectivisation of a sum of line bundles over a toric manifold B_{i}. Under these circumstances, the torus action can be extended from the base to the total space.

Remark 5.15. Both B_{i} and $B_{i, j}$ are toric manifolds, or Bott and generalised Bott towers respectively.

Lemma 5.16. Assume $f: N_{1}^{2 i} \rightarrow N_{2}^{2 i}$ is a degree 1 map of stably complex manifolds, and $\zeta \rightarrow N_{2}^{2 i}$ a j-plane complex bundle. Then

$$
s_{i+j-1}\left(\mathbb{C} P\left(f^{*}(\zeta)\right)\right)=s_{i+j-1}(\mathbb{C} P(\zeta))
$$

Theorem 5.17 (Buchstaber-Ray '98). $\left\{B_{i, j}\right\}$ is the set of multiplicative generators of Ω_{*}^{U} consisting of toric manifolds.
Proof. Indeed, $s_{i+j-1}\left(B_{i, j}\right)=s_{i+j-1}\left(H_{i, j}\right)$ by the above Lemma.
5.4. Constructing connected representatives: replacing the disjoint union by the connected sum.

Remark 5.18. We cannot find a toric representative in every cobordism class because e.g. $T d(M)=1$ and $c_{n}(M)=\chi(M)>0$ for every toric manifold M.
Construction 5.19 (connected sum of polytopes).
$P^{\prime}, P^{\prime \prime}$ simple polytopes, finely ordered, of $\operatorname{dim} n$:

$$
v_{0}^{\prime}=F_{1}^{\prime} \cap \cdots \cap F_{n}^{\prime}, \quad v_{0}^{\prime \prime}=F_{1}^{\prime \prime} \cap \cdots \cap F_{n}^{\prime \prime}: \text { initial vertices. }
$$

P'\#P"

Construction 5.20 (equivariant connected sum of quasitoric pairs and quasitoric manifolds).

$$
\begin{aligned}
& \Lambda^{\prime}=\left(\begin{array}{cccccc}
1 & 0 & \ldots & \ldots & \lambda_{1, n+1}^{\prime} & \ldots \\
0 & 1 & \ldots & \lambda_{1, m^{\prime}}^{\prime} & \lambda_{2, n+1}^{\prime} & \ldots \\
\lambda_{2, m^{\prime}}^{\prime} \\
\vdots & \ldots & \ddots & \ldots & \ldots \ldots & \ldots
\end{array}\right] \ldots \ldots . \\
& \Lambda^{\prime \prime}=\left(\begin{array}{cccccc}
1 & 0 & \ldots & \ldots & \lambda_{1, n+1}^{\prime \prime} & \ldots \\
0 & 1 & \ldots & \lambda_{1, m^{\prime \prime}}^{\prime \prime} & \lambda_{2, n+1}^{\prime \prime} & \ldots \\
\lambda_{2, m^{\prime \prime}}^{\prime \prime} \\
\vdots & \ldots & \ddots & \ldots & \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
0 & \ldots & \ldots & 1 & \lambda_{n, n+1}^{\prime \prime} & \ldots
\end{array} \lambda_{n, m^{\prime \prime}}^{\prime \prime} . \ldots\right. \\
& \Lambda^{\prime} \# \Lambda^{\prime \prime}=\left(\begin{array}{ccccccccc}
1 & 0 & \ldots & \ldots & \lambda_{1, n+1}^{\prime} & \ldots & \lambda_{1, m^{\prime}}^{\prime} & \lambda_{1, n+1}^{\prime \prime} & \ldots \\
0 & 1 & \ldots & \ldots & \lambda_{2, n+1}^{\prime} & \ldots & \lambda_{2, m^{\prime}}^{\prime \prime} & \lambda_{2, n+1}^{\prime \prime} & \ldots \\
\lambda_{2, m^{\prime \prime}}^{\prime \prime} \\
\vdots & \ldots & \ddots & \ldots & \ldots \\
0 & \ldots \ldots \ldots & 1 & \lambda_{n, n+1}^{\prime} & \ldots & \lambda_{n, m^{\prime}}^{\prime} & \lambda_{n, n+1}^{\prime \prime} & \ldots & \lambda_{n, m^{\prime \prime}}^{\prime \prime}
\end{array}\right) \\
& M^{\prime}=M\left(P^{\prime}, \Lambda^{\prime}\right), \quad M^{\prime \prime}=M\left(P^{\prime \prime}, \Lambda^{\prime \prime}\right),
\end{aligned}
$$

$$
M:=M\left(P^{\prime} \# P^{\prime \prime}, \Lambda^{\prime} \# \Lambda^{\prime \prime}\right)
$$

Proposition 5.21. M is the equivariant connected sum of M^{\prime} and $M^{\prime \prime}$ at $\pi^{-1}\left(v_{1}^{\prime}\right)$ and $\pi^{-1}\left(v_{1}^{\prime \prime}\right)$.

Difficulty: Both M^{\prime} and $M^{\prime \prime}$ are oriented. The only possible obstruction to get the omniorientation of $M^{\prime} \# M^{\prime \prime}$ right involves the associated orientations of M^{\prime} and $M^{\prime \prime}$: the orientations must be preserved under the collapse maps

$$
p^{\prime}: M^{\prime} \# M^{\prime \prime} \rightarrow M^{\prime} \quad \text { and } \quad p^{\prime \prime}: M^{\prime} \# M^{\prime \prime} \rightarrow M^{\prime \prime}
$$

Definition 5.22. Let $w \in P$ be a vertex, $w=F_{i_{1}} \cap \cdots \cap F_{i_{n}}$. The $\operatorname{sign} \sigma(w)$ is ± 1 : it measures the difference between the orientations induced on $T_{w} M$ by $\rho_{i_{1}} \oplus \cdots \oplus \rho_{i_{n}}$ and by the orientation of M. It can be calculated by

$$
\sigma(w)=u_{i_{1}}, \ldots, u_{i_{n}}\langle M\rangle
$$

where $u_{i}=c_{1}\left(\rho_{i}\right) \in H^{2}(M)$, and $\langle M\rangle \in H_{2 n}(M)$ the fundamental class.
Proposition 5.23. $M^{\prime} \#_{v_{1}^{\prime}, v_{1}^{\prime \prime}} M^{\prime \prime}$ admits an orientation compatible with those of M^{\prime} and $M^{\prime \prime}$ if and only if $-\sigma\left(v_{1}^{\prime}\right)=\sigma\left(v_{1}^{\prime \prime}\right)$. In this case, $\left[M^{\prime} \# M^{\prime \prime}\right]=\left[M^{\prime}\right]+\left[M^{\prime \prime}\right]$ in Ω_{*}^{U}.

Lemma 5.24. Let M be an omnioriented quasitoric manifold of dimension >2 over P. Then there exists an ominioriented M^{\prime} over P^{\prime} such that $\left[M^{\prime}\right]=[M]$ in Ω_{*}^{U} and P^{\prime} has at least two vertices of opposite signs.
Corollary 5.25. The main theorem.
Example 5.26. How to find a quasitoric representative in $2\left[\mathbb{C} P^{2}\right] \in \Omega_{4}^{U}$? We have $c_{2}\left(\left[\mathbb{C} P^{2}\right]\right)=3=$ number of vertices in a triangle Δ,
and $c_{2}\left(2\left[\mathbb{C} P^{2}\right]\right)=6$. So there is no quasitoric manifold over $\Delta \# \Delta=\square$ representing $2\left[\mathbb{C} P^{2}\right]$, because \square has only 4 vertices. But it is possible to do over a hexagon:

References

[1] M. Davis T. Januszkiewcz, Convex polytopes, Coyeter orbifolds and torus actions Duke Math. J. $62(2), 1991$
[2] V. M. Buchstaber and T. Panov, Torus acitons and their applications in topology and combinatorics University Lecture Ser., v24, AMS, 2002
[3] P. E. Conner and E. E. Floyd, On the relationships between the cobordism and K-theory ~1964
[4] P. E. Conner and E. E. Floyd, Differentiable periodec maps ~1964
[5] R. E. Strong, Notes on cobordism theory ~1968
[6] V. M. Buchstaber and N. Ray, Tangential structures on toric manifolds and connected sum of polytopes IMRN 4, 2001; arxiv:math AT/0010025
[7] V. M. Buchstaber, T. Panov and N. Ray, Spaces of polytopes and cobordism of quasitoric manifolds arxiv:math AT/0609346

