TORIC TOPOLOGY AND COMPLEX COBORDISM

TARAS PANOV

ABSTRACT. We plan to discuss how the ideas and methodology of Toric Topology can be applied to one of the classical subjects of algebraic topology: finding nice representatives in complex cobordism classes. Toric and quasitoric manifolds are the key players in the emerging field of Toric Topology, and they constitute a sufficiently wide class of stably complex manifolds to additively generate the whole complex cobordism ring. In other words, every stably complex manifold is cobordant to a manifold with a nicely behaving torus action.

An informative setting for applications of toric topology to complex cobordism is provided by the combinatorial and convex-geometrical study of analogous polytopes. By way of application, we give an explicit construction of a quasitoric representative for every complex cobordism class as the quotient of a free torus action on a real quadratic complete intersection. The latter is a yet another disguise of the moment-angle manifold, another familiar object of toric topology. We suggest a systematic description for omnioriented quasitoric manifolds in terms of combinatorial data, and explain the relationship with non-singular projective toric varieties (otherwise known as toric manifolds).

Contents

1.	Polytopes	3
2.	Moment angle manifolds	4
3.	Quasitoric manifolds	8
4.	Cobordism theories	11
4.1.	General notion of cobordism	11
4.2.	Oriented cobordism	11
4.3.	Complex cobordism	12
4.4.	Generalised (co)homology theories	13
4.5.	Main results on cobordism	13
5.	(Quasi)toric representatives in complex cobordism classes	16
5.1.	Equivariant stably complex structure on quasitoric manifolds	16
5.2.	$H_{i,j}$ are not quasitoric	17
5.3.	Toric multiplicative generator set for Ω^U_*	17
5.4.	Constructing connected representatives: replacing the disjoint union	
	by the connected sum	19
Ref	References	

Main Theorem . Every complex cobordism class in dim > 2 contains quasitoric representative.

In cobordism theory, all manifolds are smooth and closed.

Complex cobordism.

complex manifolds \subset almost complex \subset stably (almost) complex manifolds

 $\tau M^n \oplus \mathbb{R}^N \xrightarrow{\text{complex bundle}} M$

Quasitoric manifolds. manifold M^{2n} with "nice" T^n -action

- locally standard action
- The orbit space M^{2n}/T^n is a simple polytope.

Examples include projective smooth toric varieties and symplectic manifolds M^{2n} with Hamiltonian action of T^n .

1. Polytopes

 \mathbb{R}^n : Euclidean vector space.

$$\begin{split} P &= \{ \boldsymbol{x} \in \mathbb{R}^n \colon \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i \geq 0 \ \text{ for } 1 \leq i \leq m \}, \ \boldsymbol{a}_i \in \mathbb{R}^n, b_i \in \mathbb{R}. \\ H_i &= \{ \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i = 0 \}, \text{ the } i \text{th bounding hyperplane.} \\ \text{Assume:} \end{split}$$

(1) dim P = n;

(2) P is bounded.

Then P is called a (convex) n-dimensional polytope.

A supporting hyperplane H is characterised by the condition that P lies within one of the halfspaces determined by H.

A proper *face* of P is the intersection with a supporting hyperplane.

0-dim faces are vertices.

1-dim faces are *edges*.

(n-1)-dim faces are *facets*.

n-dim face is P.

Also assume:

- (3) there are no redundant inequalities (cannot remove any inequality without changing P); then P has exactly m facets;
- (4) bounding hyperplanes of P intersect in general position at every vertex; then there are exactly n facets of P meeting at each vertex.

Then P is a *simple* n-dim polytope with m facets.

The faces form a poset $\mathcal{L}(P)$ with respect to the inclusion. Two polytopes are said to be *combinatorially equivalent* if their face posets are isomorphic. The corresponding equivalence classes are called *combinatorial polytopes*.

Assume $|a_i| = 1$. Then $\langle a_i, x \rangle + b_i$ is the distance from $x \in \mathbb{R}^n$ to the *i*th hyperplane H_i .

2. Moment angle manifolds

P a simple polytope given as above, $\boldsymbol{a}_i = (a_{i1}, \ldots, a_{in}), 1 \leq i \leq m$.

Set
$$A_P = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} = (a_{ij}) \ (m \times n \text{-matrix}), \ \boldsymbol{b}_P = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$
. Then can write P as
$$P = \{ \boldsymbol{x} \colon A_P \boldsymbol{x} + \boldsymbol{b}_P \ge 0 \}.$$

Define $i_P(\boldsymbol{x}) = A_P \boldsymbol{x} + \boldsymbol{b}_P, \ i_P \colon \mathbb{R}^n \to \mathbb{R}^m$, so we have

 $i_P(P)$ is the intersection of an *n*-dim affine plane in \mathbb{R}^m with \mathbb{R}^m_{\geq} . Consider the *m*-torus

$$T^m = \{(t_1, \dots, t_m) = (e^{2\pi i\varphi_1}, \dots, e^{2\pi i\varphi_m}) \in \mathbb{C}^m; \ \varphi_i \in \mathbb{R}\}.$$

Then $\mathbb{R}^m_>$ is the orbit space of the standard T^m -action on \mathbb{C}^m :

 $(t_1,\ldots,t_m)\cdot(z_1,\ldots,z_m)=(t_1z_1,\ldots,t_mz_m).$

The orbit projection is

$$\begin{array}{cccc} \mathbb{C}^m & \to & \mathbb{R}^m_{\geq}, \\ (z_1, \dots, z_m) & \mapsto & (|z_1|^2, \dots, |z_m|^2). \end{array}$$

Now define the space \mathcal{Z}_P from the pullback diagram

$$\begin{array}{cccc} \mathcal{Z}_P & \stackrel{i_{\mathcal{Z}}}{\to} & \mathbb{C}^m \\ \downarrow & & \downarrow \\ P & \stackrel{i_P}{\to} & \mathbb{R}^m_{>} \end{array} .$$

So \mathcal{Z}_P is a T^m -space and $i_{\mathcal{Z}}: \mathcal{Z}_P \to \mathbb{C}^m$ is a T^m -equivariant embedding.

Example 2.1. $P^2 = \{x_1 \ge 0, x_2 \ge 0, -x_1 - x_2 + 1 \ge 0\}$ a triangle,

Proposition 2.2. Z_P is a smooth T^m -manifold with the canonical trivialisation of the normal bundle of $i_{\mathcal{Z}} : Z_P \to \mathbb{C}^m$.

Idea of proof.

- (1) Write the image $i_P(\mathbb{R}^n) \subset \mathbb{R}^m$ as the set of common solutions of (m-n) linear equations in y_i , $1 \le i \le m$.
- (2) Replace y_i 's by $|z_i|^2$'s to get a representation of \mathcal{Z}_P as an intersection of (m-n) real quadratic hypersurfaces.
- (3) Check that (2) is a "complete" intersection, i.e. the gradients are linearly independent at each point of \mathcal{Z}_P .

In the presentation of P, let us fix a_i , $1 \le i \le m$, but allow for b_i 's to change. Let us consider "virtual polytopes" analogous to P ("analogous" here means "keep a_i 's, change b_i 's"), so

virtual polytope = arrangement of half-spaces.

Let $\mathbb{R}(P)$ be the space of virtual polytopes analogous P.

Remark 2.3. Sum in \mathbb{R}^m corresponds to Minkowski sum of polytopes in $\mathbb{R}(P)$.

Now define

 κ

$$\chi_P = \kappa \circ i_P : \mathbb{R}^n \to \mathbb{R}(P)$$

So $\chi_P(\boldsymbol{y})$ is the polytope congruent to P obtained by translating the origin to $\boldsymbol{y} \in \mathbb{R}^n$. Indeed, $i_P(\boldsymbol{y}) = A_P \boldsymbol{y} + \boldsymbol{b}_P$ and $\chi_P(\boldsymbol{y}) = P(A_P \boldsymbol{y}) = \{\boldsymbol{x} : A_P \boldsymbol{x} + \boldsymbol{b}_P + A_P \boldsymbol{y} \ge 0\} = P - \boldsymbol{y}$.

Assume that the first *n* facets of *P* meet at a vertex v_1 , called the *initial vertex*. So $H_1 \cap \cdots \cap H_n = v_1$ in *P*, and therefore $(H_1 - \mathbf{h}) \cap \cdots \cap (H_n - \mathbf{h}) = v_1(\mathbf{h})$ is the initial vertex of $P(\mathbf{h})$. Denote

 $d_i(\mathbf{h}) = \text{distance between } v_1(\mathbf{h}) \text{ and } H_i + \mathbf{h},$

so $d_i(\mathbf{h}) = 0$ for $1 \leq i \leq n$. Define $C \colon \mathbb{R}^m \to \mathbb{R}^{m-n}$ by

$$C(\boldsymbol{b}_P + \boldsymbol{h}) = (d_{n+1}(\boldsymbol{h}), \dots, d_m(\boldsymbol{h})).$$

In other words,

$$C: \quad \mathbb{R}(P) \quad \to \quad \mathbb{R}^{m-n}, \\ P(\mathbf{h}) \quad \mapsto \quad (d_{n+1}(\mathbf{h}), \dots, d_m(\mathbf{h}))$$

Claim 1. The sequence $0 \to \mathbb{R}^n \xrightarrow{A_P} \mathbb{R}^m \xrightarrow{C} \mathbb{R}^{m-n} \to 0$ is exact.

Proof. Use the fact that d_i are metric invariants, so they take the same values on congruent polytopes.

In what follows assume $a_i = e_i$ for $1 \le i \le n$; so we have

$$A_P = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \\ a_{n+1,1} & \dots & a_{n+1,n} \\ \dots & \dots & \dots & \dots \\ a_{m,1} & \dots & \dots & a_{m,n} \end{pmatrix} = (a_{ij}).$$

Example 2.4. $\kappa \colon \mathbb{R}^m \to \mathbb{R}(P)$ maps the basis vector \boldsymbol{e}_j to the virtual polytope $P(-\boldsymbol{b}_P + \boldsymbol{e}_j) =: P_j$; then

$$d_i(P_j) = \begin{cases} -a_{i,j} & \text{if } 1 \le j \le n, \\ \delta_{ij} & \text{if } n+1 \le j \le m, \end{cases} \quad \text{for } n+1 \le i \le m,$$

and C is given by the $(m-n) \times m$ matrix

$$C = (c_{ij}) = \begin{pmatrix} -a_{n+1,1} & \dots & -a_{n+1,n} & 1 & 0 & \dots & 0 \\ -a_{n+2,1} & \dots & -a_{n+2,n} & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ -a_{m,1} & \dots & -a_{m,n} & 0 & 0 & \dots & 1 \end{pmatrix}.$$

Proof of Proposition 2.2. Step (1). We can write

$$i_P(\mathbb{R}^n) = \{ \boldsymbol{y} \in \mathbb{R}^m : \boldsymbol{y} = A_P \boldsymbol{x} + \boldsymbol{b}_P \text{ for some } \boldsymbol{x} \in \mathbb{R}^n \}$$

= $\{ \boldsymbol{y} : C \boldsymbol{y} - C \boldsymbol{b}_P = 0 \}$
(m - n linear equations in $\boldsymbol{y} \in \mathbb{R}^m$).

Step (2). Then

$$\mathcal{Z}_{P} = \{ \boldsymbol{z} \in \mathbb{C}^{m} \colon \sum_{k=1}^{m} c_{jk} (|z_{k}|^{2} - b_{k}) = 0, \quad 1 \le j \le m - n \}$$

Step (3). Now we want to check that the gradients in the presentation of Z_P in Step (2) are linearly independent at each point. Write $z_k = q_k + \sqrt{-1}r_k$; then the gradients are given by

$$2(c_{j1}q_1, c_{j1}r_1, \dots, c_{jm}q_m, c_{jm}r_m), \quad 1 \le j \le m - n.$$

So the gradients form the rows of the $(m-n) \times 2m$ matrix 2CR, where

$$R = \begin{pmatrix} q_1 & r_1 & 0 & \dots & 0 \\ 0 & 0 & q_2 & r_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & 0 & q_m & r_m \end{pmatrix} \quad m \times 2m \text{ matrix}$$

Assume that $q_{j_1} = r_{j_1} = \cdots = q_{j_k} = r_{j_k} = 0$ at $\mathbf{z} \in \mathcal{Z}_P$ so that $(z_{j_1} = \cdots = z_{j_k} = 0)$. Then the corresponding facets F_{j_1}, \ldots, F_{j_k} of P intersect nontrivially. The condition $CA_P = 0$ guarantees that the submatrix obtained form C by deleting the columns $\mathbf{c}_{j_1}, \ldots, \mathbf{c}_{j_k}$ has rank m - n. Then rank of 2CR is also m - n. \Box

 \mathcal{Z}_P is called the *moment angle manifold* corresponding to P.

Remark 2.5. It can be proved that the equivariant smooth structure on Z_P depends only on the combinatorial type of P.

Summary (reminder). Given a simple polytope

$$P = \{ \boldsymbol{x} \in \mathbb{R}^n \colon \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i \ge 0 \text{ for } 1 \le i \le m \}, \ \boldsymbol{a}_i \in \mathbb{R}^n, \ b_i \in \mathbb{R}$$

with m facets

$$F_i = \{ \boldsymbol{x} \in \mathbb{R}^n \colon \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i = 0 \} \cap P, \quad 1 \le i \le m.$$

The facets are *finely ordered*, i.e.

$$F_1 \cap \cdots \cap F_n = v_1$$
 the initial vertex

May specify P by the matrix inequality $A_P \boldsymbol{x} + \boldsymbol{b}_P \geq 0$, where

 $A_P: m \times n$ matrix of row vectors \boldsymbol{a}_i ,

 $\boldsymbol{b}_P \in \mathbb{R}^m$: column vector of scalar b_i

The intersection of the affine subspace $A_P(\mathbb{R}^n) + \boldsymbol{b}_P$ with the positive cone \mathbb{R}^m_{\geq} is a copy of P in \mathbb{R}^m :

 $i_P: \mathbb{R}^n \to \mathbb{R}^m, i_P(\boldsymbol{x}) = A_P \boldsymbol{x} + \boldsymbol{b}_P$ affine, injective

moment angle manifold
$$\mathcal{Z}_P \xrightarrow{i_Z} \mathbb{C}^m$$

 $\downarrow \qquad \downarrow \rho$
 $P \xrightarrow{i_P} \mathbb{R}^m_{\geq}$
 $\rho((z_1, \dots, z_m)) = (|z_1|^2, \dots, |z_m|^2).$

We want to describe the isotropy subgroups of points of \mathbb{Z}_P with respect to the T^m -action. We may write

$$T^m = \prod_{i=1}^m T_i,$$

where $T_i := \{(1, \ldots, 1, t, 1, \ldots, 1)\} \subset T^m$ is the *i*-th coordinate subcircle. Given a multiindex $I = \{i_1, \ldots, i_k\} \subset [m] = \{1, 2, \ldots, m\}$, define the corresponding coordinate subgroup of T^m as

$$T_I := \prod_{i \in I} T_i \subset T^m.$$

Now take $\boldsymbol{z} \in \mathbb{C}^m$. Its *isotropy subgroup* with respect to the coordinatewise T^m -action is

$$T_{\boldsymbol{z}}^{m} = \{ \boldsymbol{t} \in T^{m} \colon \boldsymbol{t} \cdot \boldsymbol{z} = \boldsymbol{z} \} \subset T^{m}.$$

It is easy to see that

$$T_{\boldsymbol{z}}^m = T_{\omega(\boldsymbol{z})}$$

where $\omega(\mathbf{z}) = \{i \in [m] : z_i = 0\} \subset [m]$. Obviously, every coordinate subgroup of T^m arises as $T_{\omega(\mathbf{z})}$ for some $\mathbf{z} \in \mathbb{C}^m$. However not every coordinate subgroup of T^m arises as the isotropy subgroup for some $\mathbf{z} \in \mathcal{Z}_P$.

The isotropy subgroups of the T^m -action on \mathcal{Z}_P are described as follows. Given $p \in P$, set

$$F(p) := \bigcap_{p \in F_i} F_i.$$

It is the unique face of P containing p in its relative interior. Note

- if p is a vertex, then F(p) = p;
- if $p \in intP$, then F(p) = P.

Now set

$$T(p) = \prod_{p \in F_i} T_i \subset T^m.$$

Note that $0 \leq \dim T(p) \leq n$ ($: P^n$ is simple). Now if $z \in \mathcal{Z}_P$, then $\rho(z) \in P$, and

$$T_{\boldsymbol{z}}^m = T(\rho(\boldsymbol{z})).$$

TARAS PANOV

3. Quasitoric manifolds

Assume given P as above, and an $n \times m$ matrix

 $\Lambda = \begin{pmatrix} 1 & 0 & \dots & 0 & \lambda_{1,n+1} & \dots & \lambda_{1,m} \\ 0 & 1 & \dots & 0 & \lambda_{2,n+1} & \dots & \lambda_{2,m} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 & \lambda_{n,m+1} & \dots & \lambda_{n,m} \end{pmatrix} = (I_n, \Lambda_*),$

 $I_n: n \times n$ unit matrix,

 $\Lambda_*: n \times (m-n)$ matrix,

satisfying

(*) the columns $\lambda_{j_1}, \ldots, \lambda_{j_n}$ corresponding to any vertex $F_{j_1} \cap \cdots \cap F_{j_n}$ of P form a basis for \mathbb{Z}^n .

Definition 3.1. A combinatorial quasitoric pair is (P, Λ) as above.

We may view Λ as a homomorphism $T^m \to T^n$. Now set

 $K(\Lambda) = \ker(T^m \stackrel{\Lambda}{\longrightarrow} T^n) \cong T^{m-n}.$

Proposition 3.2. $K(\Lambda)$ acts freely on \mathcal{Z}_P .

Proof. The map $\Lambda: T^m \to T^n$ is injective when restricted to T(p), for all $p \in P$. Therefore, $K(\Lambda)$ meets every isotropy subgroup of the T^m -action on \mathcal{Z}_P trivially.

Definition 3.3. The quotient

 $M(P,\Lambda) := \mathcal{Z}_P/K(\Lambda)$

is the quasitoric manifold corresponding to (P, Λ) . The 2*n*-dimensional manifold $M = M(P, \Lambda)$ has a $T^n \cong T^m/K(\Lambda)$ -action which satisfies the two Davis-Januszkiewicz conditions:

- (a) the T^n -action $\alpha: T^n \times M^{2n} \to M^{2n}$ is *locally standard*, or locally isomorphic to the standard coordinatewise representation of T^n in \mathbb{C}^n . More precisely, every $\boldsymbol{x} \in M$ is contained in a T^n -invariant neighborhood $U(\boldsymbol{x}) \subset M$ for which there is a T^n -invariant subset $W \subset \mathbb{C}^n$, an automorphism $\theta: T^n \to T^n$, and a homeomorphism $f: U(\boldsymbol{x}) \to W$ satisfying $f(\boldsymbol{t}\boldsymbol{y}) = \theta(\boldsymbol{t})f(\boldsymbol{y})$ for all $\boldsymbol{t} \in T^n, \, \boldsymbol{y} \in U(\boldsymbol{x})$.
- (b) there is a projection $\pi: M \to P$ whose fibres are orbits of α .

It follows from the construction that M is canonically smooth.

Question 3.4 (open). Unlike \mathcal{Z}_P , we don't know whether the equivariant smooth structure on M is unique.

Example 3.5. Assume that the initial vertex v_1 is the origin, and the first *n* normal vectors a_1, \ldots, a_n form the *standard* basis of \mathbb{R}^n . (We can always achieve this by applying an affine transformation). Then

$$A_P^t = \begin{pmatrix} 1 & 0 & \dots & 0 & a_{n+1,1} & \dots & a_{m,1} \\ 0 & 1 & \dots & 0 & a_{n+1,2} & \dots & a_{m,2} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 & a_{n+1,n} & \dots & a_{m,n} \end{pmatrix}$$

has the same form as Λ , although with real (rather than integer) matrix elements. We can always achieve that P has integral coordinates of vertices without changing its combinatorial type. So we may assume $a_{ij} \in \mathbb{Z}$. However, condition (*) on the minors of Λ is more severe: there are combinatorial polytopes with no integral realisation satisfying (*). But if you can realise P so that A_P^t satisfies (*), then

$$M(P) = \mathcal{Z}_P / K(A_P^t)$$

is the projective toric variety corresponding to P.

Example 3.6.

1. $\Lambda = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix} = A_P^t$, and $K(\Lambda) = \langle (t, t, t) \rangle \subset T^3$, the diagonal subcircle. Then

$$M(P) = \mathcal{Z}_P/K(\Lambda) = S^5/S^1 \cong \mathbb{C}P^2.$$

The T^2 -action is given by

$$(t_1, t_2) \cdot (z_0 : z_1 : z_2) = (z_0 : t_1 z_1 : t_2 z_2)$$

2. $\Lambda = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$, and $M(P) = \overline{\mathbb{C}P^2}$ (the standard orientation is reversed). The action is

$$(t_1, t_2) \cdot (z_0 : z_1 : z_2) = (z_0 : t_1 z_1 : t_2^{-1} z_2)$$

3.
$$\Lambda = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}, \quad M \cong (S^2 \times S^2) \# (S^2 \times S^2).$$

The T^n -action on M is free over the interior $intP = P^\circ$.

$$\boldsymbol{p} \in P^{\circ}, \quad \pi^{-1}(\boldsymbol{p}) = (\boldsymbol{p}, \boldsymbol{t}), \quad \pi \colon M \to P.$$

We orient M using the decomposition

 $\tau_{(\boldsymbol{p},\boldsymbol{t})}M \cong \tau_{\boldsymbol{p}}P \oplus \tau_{\boldsymbol{t}}T^n$

by insisting that $(\xi_1, \eta_1, \ldots, \xi_n, \eta_n)$ is a positive basis of $\tau_{(p,t)}M$ whenever

$$(\xi_1,\ldots,\xi_n) > 0$$
 in $\tau_p P = \mathbb{R}^n$ and $(\eta_1,\ldots,\eta_n) > 0$ in $\tau_t T^n$

This is similar to orienting \mathbb{C}^n by the basis $(e_1, ie_1, \ldots, e_n, ie_n)$.

Corollary 3.7. *M* is canonically oriented by the orientations of P and T^n .

The facial (or characteristic) submanifolds of M are defined as

$$M_i := \pi^{-1}(F_i) = \mathcal{Z}_{F_i}/K \quad \text{for } 1 \le i \le m.$$

 \mathcal{Z}_{F_i} is the fixed point set of \mathcal{Z}_P with respect to the action of $T_i \subset T^m$. So $M_i \subset M$ is fixed by the circle subgroup $\Lambda(T_i) \subset T^n$ determined by the *i*th column of $\Lambda: T^m \to T^n$.

Let \mathbb{C}_i denote the 1-dim complex T^m -representation defined via the quotient projection $\mathbb{C}^m \to \mathbb{C}_i$ onto the *i*th factor. Define

$$\begin{aligned} \mathcal{Z}_P \times_K \mathbb{C}_i &= \{ (\boldsymbol{z}, w) \colon \boldsymbol{z} \in \mathcal{Z}_P, \, w \in \mathbb{C}_i \} \, /\!\!\sim, \\ & (\boldsymbol{z}, w) \sim (\boldsymbol{z}t^{-1}, tw) \text{ for every } t \in K. \end{aligned}$$

Then we have a complex line bundle

 $\rho_i\colon \mathcal{Z}_P\times_K \mathbb{C}_i \to M$

over M whose restriction to M_i is the normal bundle of the inclusion $M_i \hookrightarrow M$.

Definition 3.8. The *ominiorientation* of M is a choice of orientation for M and for every M_i , $1 \le i \le m$.

By the above considerations, (P,Λ) determines a canonical omniori entation for $M(P,\Lambda).$

4. Cobordism theories

4.1. General notion of cobordism. All manifolds are closed, smooth.

Definition 4.1. M_1^n and M_2^n are *(co)bordant* (notation: $M_1^n \sim M_2^n$) if there exists a manifold W^{n+1} with boundary such that $\partial W^{n+1} = M_1 \sqcup M_2$.

Proposition 4.2. \sim is an equivalence relation.

Proof.

- (1) $M \sim M$. Indeed, $W = M \times [0, 1]$;
- (2) $M_1 \sim M_2 \Rightarrow M_2 \sim M_1$ obvious;
- (3) $M_1 \sim M_2 \& M_2 \sim M_3 \Longrightarrow M_1 \sim M_3.$

Denote by [M] the cobordism equivalence class of M.

 $\Omega_n^O = \{[M^n]\}$ the set of cobordism classes of *n*-dimensional manifolds.

Proposition 4.3. Ω_n^O an abelian group with respect to $[M_1^n] + [M_2^n] = [M_1^n \sqcup M_2^n].$ *Proof.* Zero is the cobordism class of an empty set, -[M] = [M].

In particular, Ω_n^O is a 2-torsion. Set $\Omega^O_* := \bigoplus_{n \ge 0}^n \Omega^O_n$.

Proposition 4.4. Ω^O_* is a ring with respect to $[M_1] \times [M_2] = [M_1 \times M_2]$.

 Ω^{O}_{*} is called the *unoriented* (co)bordism ring (in fact, it is a $\mathbb{Z}/2$ -algebra).

4.2. Oriented cobordism. Now all manifolds are oriented.

 $M_1^n \sim M_2^n$ if there is an oriented W^{n+1} such that $\partial W = M_1 \sqcup \overline{M_2}$ where $\overline{M_2}$ denotes M_2^{I} with orientation reversed. Ω_*^{SO} is defined in the same way as Ω_*^{O} except $-[M] = [\overline{M}]$. So Ω_*^{SO} is no longer a

2-torsion! It is a Z-algebra.

Remark 4.5. $[M_1] + [M_2] = [M_1 \# M_2]$. In other words, $M_1 \sqcup M_2 \sim M_1 \# M_2$.

TARAS PANOV

Example 4.6.

- 1. $\Omega_0^O \cong \mathbb{Z}/2$ (with two cobordism classes \emptyset and $\cdot = pt$). 2. $\Omega_1^O = 0$ (every 1-manifold bounds). 3. $\Omega_2^O \cong \mathbb{Z}/2$ with generator $[\mathbb{R}P^2]$;

 $2[\mathbb{R}P^2] = [\mathbb{R}P^2 \# \mathbb{R}P^2] = [K^2] = 0.$

Here K^2 is the Klein bottle (it bounds).

- 4. Ω^O₃ ≈ 0 elementary, but hard. Established by Rohlin in 1951.
 5. Ω^O_{*} was completely calculated by Thom in 1954 using algebraic and homotopy methods.

Example 4.7.

- 1. $\Omega_0^{SO} \cong \mathbb{Z}$. The generator is [pt].
- 2. $\Omega_1^{SO} = 0.$
- 3. $\Omega_2^{SO} = 0$ (every oriented 2-manifold bounds). 4. $\Omega_3^{SO} = 0$ by Rohlin.
- 5. $\Omega_4^{SO} \cong \mathbb{Z}$ with generator $[\mathbb{C}P^2]$; hard.
- 6. $\Omega_*^{\overline{SO}}$ was completely calculated by the efforts of several people by 1960.

Exercise 4.8. $\mathbb{R}P^{2n+1}$, $\mathbb{C}P^{2n+1}$ bound.

4.3. Complex cobordism. Idea: try to work with complex manifolds. This runs into a complication as W cannot be complex. The remedy is to consider complex structures on M up to "stabilisation", i.e. assume chosen a real bundle isomorphism

$$c_{\tau} \colon \tau(M) \oplus \mathbb{R}^k \to \xi$$

where $\tau(M)$ denotes the tangent bundle, \mathbb{R}^k a trivial real k-plane bundle over M, and ξ a complex bundle over M.

Definition 4.9. A (tangentially) stably complex manifold is an equivalence class of pairs (M, c_{τ}) as above, where $(M, c_{\tau}) \sim (M, c_{\tau'})$ if there are some m, m' and a complex bundle isomorphism $\xi \oplus \mathbb{C}^m \to \xi' \oplus \mathbb{C}^{m'}$ such that the composition

$$\tau(M) \oplus \mathbb{R}^k \oplus \mathbb{C}^m \xrightarrow{c_\tau \oplus id} \xi \oplus \mathbb{C}^m$$
$$\downarrow \cong$$
$$\tau(M) \oplus \mathbb{R}^{k'} \oplus \mathbb{C}^{m'} \xrightarrow{c_{\tau'} \oplus id} \xi' \oplus \mathbb{C}_{m'}$$

is an isomorphism of real bundles.

FACT 1. We can do cobordism with tangentially stably complex manifolds. The opposite element in the resulting cobordism group is given by

$$-[M, c_\tau] := [M, \overline{c}_\tau]$$

where $\overline{c}_{\tau} : \tau(M^n) \oplus \mathbb{R}^k \to \overline{\xi}$ (the *conjugate* stably complex structure).

If M is an (almost) complex manifold then it has the *canonical* tangentially stably complex structure $id = c_{\tau} : \tau(M) \to \tau(M)$.

Example 4.10. $M = \mathbb{C}P^1$. Then we have a complex bundle isomorphism

 $\alpha \colon \tau(\mathbb{C}P^1) \oplus \mathbb{C} \cong \overline{\eta} \oplus \overline{\eta}$

where η is the Hopf line bundle. So $[\mathbb{C}P^1, \alpha]$ is the canonical stably complex structure. The opposite element $-[\mathbb{C}P^1, \alpha]$ is determined by the real bundle isomorphism

$$au(\mathbb{C}P^1)\oplus\mathbb{R}^2 o\eta\oplus\eta$$

Finally, the real bundle isomorphism

$$eta: au(\mathbb{C}P^1)\oplus\mathbb{R}^2 o\eta\oplus\overline\eta\cong\mathbb{C}^2$$

gives rise to the trivial stably complex structure on $\mathbb{C}P^1$.

FACT 2. $\Omega_2^U \cong \mathbb{Z}$, genetated by $[\mathbb{C}P^1]$.

4.4. Generalised (co)homology theories.

Definition 4.11. Let X be a "good" topological space. Define $O_n(X)$ as the set cobordism classes of maps $M^n \to X$, where $(M_1 \to X) \sim (M_2 \to X)$ if there is W such that $\partial W = M_1 \sqcup M_2$ and the map $M_1 \sqcup M_2 \to X$ extends to W:

 $O_*(X)$ satisfied 3 of 4 Steenrod axioms for homology theory. It is

- homotopy invariant;
- has exact sequences of pairs;
- has the excision axiom.

But $O_*(pt) = \Omega^O_*$. The forth Steenrod axiom fails. So $O_*(X)$ gives rise to a generalised homology theory.

We can also define the "cohomology theory" $O^*(X)$, with

$$O^*(pt) = O_{-*}(pt).$$

In other words, $\Omega_O^* = \Omega_{-*}^O$.

Other (co)bordism theories $SO_*(X)$, $SO^*(X)$, $U_*(X)$, $U^*(X)$ are treated similarly. **Another common notation:** use $MO^*(X)$, $MSO^*(X)$, etc. instead of $O^*(X)$, $SO^*(X)$, etc.

4.5. Main results on cobordism.

$$O: M, \quad w(\tau M) = 1 + w_1(\tau M) + w_2(\tau M) + \dots \quad \text{total Stiefel-Whitney class}$$

$$SO: M, \quad p(\tau M) = 1 + p_1(\tau M) + p_2(\tau M) + \dots \quad \text{total Pontrjagin class}$$

$$U: (M, c_{\tau}, \xi), \quad c(\xi) = 1 + c_1(\xi) + c_2(\xi) + \dots \quad \text{total Chern class of } \xi$$

Given a sequence $\omega = (i_1, i_2, \dots, i_k)$ such that $i_1 + 2i_2 + \dots + ki_k = n$ (a partition of n), define the corresponding characteristic numbers as

$$w_{\omega}(M^{n}) = w_{1}^{i_{1}}w_{2}^{i_{2}}\dots w_{k}^{i_{k}}(\tau M)\langle M\rangle \in \mathbb{Z}/2, \qquad \dim M = n,$$

$$p_{\omega}(M^{4n}) = p_{1}^{i_{1}}p_{2}^{i_{2}}\dots p_{k}^{i_{k}}(\tau M)\langle M\rangle \in \mathbb{Z}, \qquad \dim M = 4n,$$

$$c_{\omega}(M^{2n},\xi) = c_{1}^{i_{1}}c_{2}^{i_{2}}\dots c_{k}^{i_{k}}(\xi)\langle M\rangle \in \mathbb{Z}, \qquad \dim M = 2n,$$

where $\langle M \rangle$ denotes the *fundamental homology class* of M (with $\mathbb{Z}/2$ or \mathbb{Z} coefficients).

Example 4.12. $M^4 = \mathbb{C}P^2, \xi = \tau(M), \tau(\mathbb{C}P^2) \oplus \mathbb{C} = \overline{\eta} \oplus \overline{\eta} \oplus \overline{\eta}.$ $c(\tau(M)) = (1+u)^3 = 1 + \underbrace{3u}_{c_1} + \underbrace{3u^2}_{c_2}, \text{ where } u = c_1(\overline{\eta}) \in H^2(\mathbb{C}P^2),$ $c_2(\mathbb{C}P^2) = 3, \quad c_1^2(\mathbb{C}P^2) = 9, \quad u^2 \langle \mathbb{C}P^2 \rangle = 1.$

Theorem 4.13 (Thom, Milnor).

TARAS PANOV

- 1. $M_1 \sim M_2$ unorientedly cobordant $\Leftrightarrow \forall \omega, w_\omega(M_1) = w_\omega(M_2).$
- 2. $[M_1] [M_2]$ is a torsion element in $\Omega^{SO}_* \Leftrightarrow \forall \omega, p_\omega(M_1) = p_\omega(M_2).$
- 3. $(M_1,\xi_1) \sim (M_2,\xi_2)$ complex cobordant $\Leftrightarrow \forall \omega, c_w(M_1,\xi_1) = c_w(M_2,\xi_2).$

Theorem 4.14 (Thom'1954). $\Omega^{O}_{*} \cong \mathbb{Z}/2[\{a_{i}, i \neq 2^{k} - 1\}]$ with deg $a_{i} = i$. So in small dimensions, $\Omega^O_* \cong \mathbb{Z}/2[a_2, a_4, a_5, \dots]$. Moreover, we can take $a_{2n} = [\mathbb{R}P^{2n}]$.

Theorem 4.15 (Novikov, Milnor, Averbuh, Wall, Rohlin, Thom).

$$\Omega^U_* \cong \mathbb{Z}[a_1, a_2, \dots], \qquad \deg a_i = 2i;$$

$$\Omega^{SO}_* / Tors \cong \mathbb{Z}[b_1, b_2, \dots], \qquad \deg b_i = 4i.$$

Moreover, Ω^{SO}_* has only 2-torsion, which is completely described.

Remark 4.16. Over rationals, the cobordism rings look much simpler:

$$\Omega^U_* \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}[[\mathbb{C}P^1], [\mathbb{C}P^2], \dots],$$
$$\Omega^{SO}_* \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}[[\mathbb{C}P^2], [\mathbb{C}P^4], \dots].$$

In what follows we consider only complex cobordism. Write formally the total Chern class of (M^{2n},ξ) as

 $c(\xi) = 1 + c_1(\xi) + \dots + c_n(\xi) = (1 + x_1) \dots (1 + x_n),$

so $c_i(\xi) = \sigma_i(x_1, \ldots, x_n)$ is the *i*th elementary symmetric function. Consider $P_n(x_1,\ldots,x_n) = x_1^n + \cdots + x_n^n$ and express it as a polynomial in elementary symmetric functions, $P_n(x_1, \ldots, x_n) = s_n(\sigma_1, \ldots, \sigma_n).$

Definition 4.17. $s_n(M^{2n},\xi) = s_n(c_1,...,c_n)\langle M \rangle$.

Theorem 4.18. $[M^{2n}]$ can be taken as a multiplicative generator of Ω^U_* in degree 2n if and only if

 $s_n(M^{2n},\xi) = \pm \mu(n+1) \text{ where } \mu(k) = \begin{cases} p & \text{if there is a prime } p \text{ such that } k = p^s, \\ 1 & \text{else.} \end{cases}$

in other words, $s_n(M^{2n}) = \pm 1$ except for $n = p^s - 1$ in which case $s_n(M^{2n}) = \pm p$. **Example 4.19.** Can we take $[\mathbb{C}P^n]$ as a generator of Ω_{2n}^U ?

1. $\mathbb{C}P^1$:

 $P_1(x_1) = x_1, s_1(\mathbb{C}P^1) = c_1 \langle \mathbb{C}P^1 \rangle = 2.$ Since $n = 1 = 2^1 - 1, [\mathbb{C}P^1]$ is a generator or Ω_2^U .

2. $\mathbb{C}P^2$:

$$P_2(x_1, x_2) = x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = c_1^2 - 2c_2, \text{ so } s_2(\mathbb{C}P^2) = (c_1^2 - 2c_2)\langle \mathbb{C}P^2 \rangle = 3. \text{ Since } n = 2 = 3^1 - 1, [\mathbb{C}P^2] \text{ is a generator of } \Omega_4^U.$$

3. $\mathbb{C}P^3$:

In general, $s_n(\mathbb{C}P^n) = n+1$ (Exercise; use the fact $\tau(\mathbb{C}P^n) \oplus \mathbb{C} = \overline{\eta} \oplus$ $\cdots \oplus \overline{\eta}$). So for n = 3, $s_3(\mathbb{C}P^3) = 4$. Since $n = 3 = 2^2 - 1$, one should have $s_3(M) = \pm 2$ for a generator, and $[\mathbb{C}P^3]$ is not a generator!

Example 4.20 (Milnor hypersurfaces). Given two integers $1 \le i \le j$, consider the following hypersurface in $\mathbb{C}P^i \times \mathbb{C}P^j$:

 $H_{i,j} = \{(z_0:\cdots:z_i) \times (w_0:\cdots:w_j) \in \mathbb{C}P^i \times \mathbb{C}P^j: z_0w_0 + \cdots + z_iw_i = 0\}$ Consider $\mathbb{C}^{i+1} \subset \mathbb{C}^{j+1}$ embedded onto first i+1 coordinates.

 $\mathbb{C}P^i = \{l \subset \mathbb{C}^{i+1}\}.$

 $E = \{(l, \alpha) : l \text{ a line in } \mathbb{C}^{i+1}, \alpha \text{ a hyperplane in } \mathbb{C}^{j+1} \text{ containing } l\}.$ So we have a fibration $\mathbb{C}P^{j+1} \to E \to \mathbb{C}P^i$.

Proposition 4.21. $E = H_{i,j}$.

Also, set $H_{0,j} = \mathbb{C}P^{j-1}$.

Exercise 4.22. $s_{i+j-1}(H_{i,j}) = {i+j \choose i+1}.$

Corollary 4.23. Ω^U_* is multiplicatively generated by the set of cobordism classes $\{[H_{i,j}], 0 \le i \le j\}.$

Proof. Use the fact that

$$\gcd_{1 \le j \le k-1} \left\{ \binom{k}{j} \right\} = \begin{cases} p & \text{if } k = p^s, \\ 1 & \text{else.} \end{cases}$$

TARAS PANOV

Theorem 5.1. In dim > 2, every complex cobordism class contains a quasitoric manifold, necessarily connected, whose stably complex structure is compatible with the action of the torus.

Plan of proof.

- 1. Identify equivariant stably complex structures on quasitoric manifolds.
- 2. Observe that $H_{i,j}$ are not quasitoric manifolds.
- 3. Replace $H_{i,j}$ by a toric manifold, denoted $B_{i,j}$, with the same characteristic number s_{i+j-1} . This provides a set of toric multiplicative generators for Ω^U_* .
- 4. Replace disjoint unions by connected sums. This is tricky because we need to keep track of both the action and the stably complex structure.

The above theorem provides a solution to a toric version of the following famous problem:

Problem 5.2 (Hirzebruch). Describe cobordism classes in Ω^U_* which have connected algebraic representatives.

Example 5.3. We have $\Omega_2^U = \langle [\mathbb{C}P^1] \rangle$. For $k \leq 1$, the class $k[\mathbb{C}P^1]$ contains a Riemanian surface of genus 1 - k. But $k[\mathbb{C}P^1]$ with k > 1 does not contain a connected algebraic representative. So the solution to the above problem in dim 2 is given by the inequality $c_1(M) \leq 2$.

In dimension 4 (complex 2), some similar inequalities for c_1^2 and c_2 are known, but the complete answer is open.

5.1. Equivariant stably complex structure on quasitoric manifolds.

Recall: $i_{\mathcal{Z}}: \mathcal{Z}_P \to \mathbb{C}^m$ the framed T^m -equivariant embedding of the moment-angle manifold, (P, Λ) a combinatorial quasitoric pair,

$$\Lambda = \begin{pmatrix} 1 & 0 & \dots & 0 & \lambda_{1,n+1} & \dots & \lambda_{1,m} \\ 0 & 1 & \dots & 0 & \lambda_{2,n+1} & \dots & \lambda_{2,m} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & \lambda_{n,n+1} & \dots & \lambda_{n,m} \end{pmatrix},$$

 $M(P,\Lambda)=\mathcal{Z}_P/K(\Lambda)$ the associated omnioriented quasitoric manifold,

 $\rho_i \colon \mathcal{Z}_P \times_K \mathbb{C}_i \to \mathcal{Z}_P / K = M$

a $T^n = T^m / K$ -equivariant \mathbb{C} -line bundle over M.

Theorem 5.4. There is a real bundle isomorphism

 $\tau(M) \oplus \mathbb{R}^{2(m-n)} \cong \rho_1 \oplus \cdots \oplus \rho_m.$

Proof. There is a T^m -invariant decomposition

 $\tau(\mathcal{Z}_P) \oplus \nu(i_{\mathcal{Z}}) \cong \mathcal{Z}_P \times \mathbb{C}^m$

obtained by restricting $\tau(\mathbb{C}^m)$ to \mathcal{Z}_P . Factoring out $K = \ker(\Lambda \colon T^m \to T^n)$ gives

$$\tau(M) \oplus (\xi/K) \oplus (\nu(i_{\mathcal{Z}})/K) \cong \mathcal{Z}_P \times_K \mathbb{C}^m,$$

where ξ denotes the (m-n)-plane bundle of tangents along the fibres of $Z_P \to M$. Both ξ and $\nu(i_Z)$ are trivial real (m-n)-plane bundles. Moreover, the matrix A_P provides a canonical framing (trivialisation) of ν_Z , as described in Section 2. Similarly, the matrix Λ provides a canonical choice of basis in $K = \ker \Lambda$, and therefore a canonical framing of ξ . It remains to note that

$$\mathcal{Z}_P \times_K \mathbb{C}^m = \rho_1 \oplus \cdots \oplus \rho_m.$$

Remark 5.5. Everything is T^m/K -invariant.

Definition 5.6. Assume N is a G-manifold, $\alpha: G \times N \to N$ the action. A stably complex structure $c_{\tau}: \tau(N) \oplus \mathbb{R}^k \to \xi$ is said to be *G*-equivariant if

$$\xi \xrightarrow{c_{\tau}^{-1}} \tau(N) \oplus \mathbb{R}^k \xrightarrow{d\alpha(g, \cdot) \oplus id} \tau(N) \oplus \mathbb{R}^k \xrightarrow{c_{\tau}} \xi$$

is an isomorphism of complex bundles for every $g \in G$.

Corollary 5.7. The quasitoric manifold $M(P, \Lambda)$ admits a canonical T^n -equivariant stably complex structure.

Remark 5.8. Using the 1-1 correspondence

 $\begin{cases} \text{combinatorial} \\ \text{quasitoric pairs } (P, \Lambda) \end{cases} \longleftrightarrow \begin{cases} \text{omnioriented} \\ \text{quaritoric manifolds} \end{cases}$

we see that the T^n -equivariant stably complex structure is determined by the omniorientation. Changing the orientation of one M_i in the omniorientation data results in changing the corresponding ρ_i to its conjugate in the stably complex structure. This is equivalent to reversing the sign of the *i*th column in Λ .

5.2. $H_{i,j}$ are not quasitoric. Recall:

 $H_{i,j} = \{(l, \alpha) : l \subset \mathbb{C}^{i+1} \text{ a line, } \alpha \subset \mathbb{C}^{j+1} \text{ a hyperplane containing } l\}, \quad 0 \leq i \leq j,$ so $H_{i,j} = \mathbb{C}P(\zeta)$, where ζ is the complex *j*-plane bundle whose fibre over $l \in \mathbb{C}P^i$ is the *j*-plane l^{\perp} in \mathbb{C}^{j+1} :

 $\mathbb{C}P^{j-1} \to \mathbb{C}P(\zeta) \to \mathbb{C}P^i.$

Theorem 5.9 (exercise).

$$H^*(H_{i,j}) \cong \mathbb{Z}[u,w] / (u^{i+1}, v^{j-i}(u^i + u^{i-1}w + \dots + uw^{i-1} + w^i)).$$

Theorem 5.10 (Davis-Januszkiewicz).

 $H^*(M(P,\Lambda)) = \mathbb{Z}[u_1,\ldots,u_m]/\mathcal{I} + \mathcal{J},$

where $u_i = c_1(\rho_i) \in H^2(M(P, \Lambda)),$

$$\mathcal{I} = \{v_{i_1}, \dots, v_{i_k} : F_{i_1} \cap \dots \cap F_{i_k} = \emptyset\} \text{ the Stanley-Reisner ideal of } P,$$
$$\mathcal{J} = \{\lambda_{i_1} u_1 + \dots + \lambda_{i_m} u_m, \quad 1 \le i \le n\}.$$

Corollary 5.11. $H_{i,j}$ is not a quasitoric manifold for $2 \le i \le j$.

Proof. Assume the converse. Comparing H^2 , we obtain 2 = m - n. Therefore,

$$H^*(H_{i,j}) = (\mathbb{Z}[u_1, \dots, u_m]/\mathcal{J})/\mathcal{I} = \mathbb{Z}[u, w]/\mathcal{I}', \quad \deg u = \deg w = 2$$

where the ideal \mathcal{I}' has a basis consisting of elements of deg ≥ 4 decomposable into linear factors. This gives a contradiction.

5.3. Toric multiplicative generator set for Ω^U_* .

Construction 5.12 (the bounded flag manifold B_n). A bounded flag in \mathbb{C}^{n+1} is a complete flag $U = \{U_1 \subset \cdots \subset U_{n+1} = \mathbb{C}^{n+1}\}$ such that U_k contains the coordinate subspace \mathbb{C}^{k-1} generated by the first k-1 standard basis vectors, for $2 \leq k \leq n$.

 $B_n = \{ \text{set of bounded flags in } \mathbb{C}^{n+1} \}.$

There is a projection $B_n \to B_{n-1}$

$$U = (U_1 \subset U_2 \subset \cdots \subset U_{n-1} \subset U_n \subset \mathbb{C}^{n+1})$$

$$\mapsto$$

$$U' = U/\mathbb{C}^1 = (U'_1 = U_2/\mathbb{C}^1 \subset U'_2 = U_3/\mathbb{C}^1 \subset \cdots \subset U'_{n-1} = U_n/\mathbb{C}^1 \subset \mathbb{C}^n)$$

The fibre of $B_n \to B_{n-1}$ is $\mathbb{C}P^1$ (to recover U_1 we need to choose a line in $U'_1 \oplus \mathbb{C}$). Get a tower of fibrations

$$B_n \to B_{n-1} \to \dots \to B_2 \to B_1 = \mathbb{C}P^1$$

This is an example of a $Bott \ tower$ of height n.

Proposition 5.13. The action

$$T^{n} \times \mathbb{C}^{n+1} \to \mathbb{C}^{n+1},$$

(**t**, **z**) \mapsto (t₁z₁, ..., t_nz_n, z_{n+1})

induces a T^n -action on B_n making it a quasitoric manifold over I^n .

Idea of proof. $B_n = (P, \Lambda)$ where $P = I^n$ (an n-dimensional cube), and

$$\Lambda = \begin{pmatrix} & & | & -1 & 0 & \dots & 0 \\ & & 1 & -1 & \dots & 0 \\ & & \vdots & \ddots & \ddots & \vdots \\ & & & 0 & \dots & 1 & -1 \end{pmatrix}, \qquad m = 2n,$$

so $K(\Lambda) \to T^{2n}$ as

$$(t_1, \dots, t_n) \mapsto (t_1, t_1^{-1} t_2, t_2^{-1} t_3, \dots, t_{n-1}^{-1} t_n, t_1, t_2, \dots, t_n),$$

 $\mathcal{Z}_P = \{(z_1, \dots, z_{2n}) \in \mathbb{C}^{2n} \colon |z_k|^2 + |z_{n+k}|^2 = 1, \quad 1 \le k \le n\} \cong (S^3)^n.$ To identify $\mathcal{Z}_P/K(\Lambda)$ with B_n , we do the following. Given $(z_1, \dots, z_{2n}) \in \mathcal{Z}_P$, define $\boldsymbol{v}_1, \dots, \boldsymbol{v}_{n+1} \in \mathbb{C}^{n+1}$

 $oldsymbol{v}_{n+1} = oldsymbol{e}_{n+1}, \quad oldsymbol{v}_k = z_k oldsymbol{e}_k + z_{k+n} oldsymbol{v}_{k+1}, \quad k = n, \dots, 1.$ Then we get a projection

$$\mathcal{Z}_P \to B_n,$$

 $\boldsymbol{z} \mapsto U = (U_1 \subset U_2 \subset \dots \subset U_n \subset \mathbb{C}^{n+1})$
 $U_k = \langle \boldsymbol{e}_1, \dots, \boldsymbol{e}_{k-1}, \boldsymbol{v}_k \rangle.$

Now, define

$$f_i \colon B_i \to \mathbb{C}P^i,$$
$$U = \{U_1 \subset U_2 \subset \dots\} \mapsto U_1 \subset \mathbb{C}^{i+1},$$

and define $B_{i,j}$ from the pullback diagram

 $\begin{array}{rccc} B_{i,j} & \to & H_{i,j} = \mathbb{C}P(\zeta) \\ \downarrow & & \downarrow \\ B_i & \xrightarrow{f_i} & \mathbb{C}P^i \end{array}$

 So

 $B_{i,j} = \{(U, \alpha) \colon U \text{ a bounded flag in } \mathbb{C}^{i+1}, \ \alpha \text{ a hyperplane in } \mathbb{C}^{j+1} \text{ containing } U_1\}$ and there is a fibration $\mathbb{C}P^{j-1} \to B_{i,j} \to B_i$.

Proposition 5.14. $B_{i,j}$ has a T^{i+j-1} -action turning it into a quasitoric manifold over $I^i \times \Delta^{j-1}$.

Idea of proof. Like always with "flag" manifolds, pulling back ζ along f_i splits it into a sum of line bundles. So $B_{i,j}$ is a projectivisation of a sum of line bundles over a toric manifold B_i . Under these circumstances, the torus action can be extended from the base to the total space.

Remark 5.15. Both B_i and $B_{i,j}$ are toric manifolds, or Bott and generalised Bott towers respectively.

Lemma 5.16. Assume $f: N_1^{2i} \to N_2^{2i}$ is a degree 1 map of stably complex manifolds, and $\zeta \to N_2^{2i}$ a *j*-plane complex bundle. Then

$$s_{i+j-1}(\mathbb{C}P(f^*(\zeta))) = s_{i+j-1}(\mathbb{C}P(\zeta))$$

Theorem 5.17 (Buchstaber-Ray '98). $\{B_{i,j}\}$ is the set of multiplicative generators of Ω^U_* consisting of toric manifolds.

Proof. Indeed, $s_{i+j-1}(B_{i,j}) = s_{i+j-1}(H_{i,j})$ by the above Lemma.

5.4. Constructing connected representatives: replacing the disjoint union by the connected sum.

Remark 5.18. We cannot find a toric representative in every cobordism class because e.g. Td(M) = 1 and $c_n(M) = \chi(M) > 0$ for every toric manifold M.

Construction 5.19 (connected sum of polytopes). P', P'' simple polytopes, finely ordered, of dim n:

$$v'_0 = F'_1 \cap \dots \cap F'_n, \quad v''_0 = F''_1 \cap \dots \cap F''_n$$
: initial vertices.

Construction 5.20 (equivariant connected sum of quasitoric pairs and quasitoric manifolds).

$$\begin{split} \Lambda' &= \begin{pmatrix} 1 & 0 & \dots & \lambda'_{1,n+1} & \dots & \lambda'_{1,m'} \\ 0 & 1 & \dots & \lambda'_{2,n+1} & \dots & \lambda'_{2,m'} \\ \vdots & \dots & \ddots & \dots & \dots \\ 0 & \dots & 1 & \lambda'_{n,n+1} & \dots & \lambda''_{n,m'} \end{pmatrix} \\ \Lambda'' &= \begin{pmatrix} 1 & 0 & \dots & \lambda''_{1,n+1} & \dots & \lambda''_{1,m''} \\ 0 & 1 & \dots & \lambda''_{2,n+1} & \dots & \lambda''_{2,m''} \\ \vdots & \dots & \ddots & \dots & \dots \\ 0 & \dots & 1 & \lambda''_{n,n+1} & \dots & \lambda''_{n,m''} \end{pmatrix} \\ \Lambda' \# \Lambda'' &= \begin{pmatrix} 1 & 0 & \dots & \lambda'_{1,n+1} & \dots & \lambda''_{1,n+1} & \dots & \lambda''_{1,m''} \\ 0 & 1 & \dots & \lambda'_{2,n+1} & \dots & \lambda'_{2,m'} & \lambda''_{2,n+1} & \dots & \lambda''_{2,m''} \\ \vdots & \dots & \ddots & \dots & \dots & \dots \\ 0 & \dots & 1 & \lambda'_{n,n+1} & \dots & \lambda'_{n,m'} & \lambda''_{n,n+1} & \dots & \lambda''_{n,m''} \end{pmatrix} \\ M' &= M(P', \Lambda'), \quad M'' = M(P'', \Lambda''), \end{split}$$

$$M := M(P' \# P'', \Lambda' \# \Lambda'').$$

Proposition 5.21. *M* is the equivariant connected sum of M' and M'' at $\pi^{-1}(v'_1)$ and $\pi^{-1}(v''_1)$.

Difficulty: Both M' and M'' are oriented. The only possible obstruction to get the omniorientation of M' # M'' right involves the associated orientations of M' and M'': the orientations must be preserved under the collapse maps

 $p': M' \# M'' \to M'$ and $p'': M' \# M'' \to M''$.

Definition 5.22. Let $w \in P$ be a vertex, $w = F_{i_1} \cap \cdots \cap F_{i_n}$. The sign $\sigma(w)$ is ± 1 : it measures the difference between the orientations induced on $T_w M$ by $\rho_{i_1} \oplus \cdots \oplus \rho_{i_n}$ and by the orientation of M. It can be calculated by

$$\sigma(w) = u_{i_1}, \dots, u_{i_n} \langle M \rangle$$

where $u_i = c_1(\rho_i) \in H^2(M)$, and $\langle M \rangle \in H_{2n}(M)$ the fundamental class.

Proposition 5.23. $M' #_{v'_1,v''_1} M''$ admits an orientation compatible with those of M' and M'' if and only if $-\sigma(v'_1) = \sigma(v''_1)$. In this case, [M'#M''] = [M'] + [M''] in Ω^{U}_* .

Lemma 5.24. Let M be an omnioriented quasitoric manifold of dimension > 2 over P. Then there exists an omnioriented M' over P' such that [M'] = [M] in Ω^U_* and P' has at least two vertices of opposite signs.

Corollary 5.25. The main theorem.

Example 5.26. How to find a quasitoric representative in $2[\mathbb{C}P^2] \in \Omega_4^U$? We have

 $c_2([\mathbb{C}P^2]) = 3 =$ number of vertices in a triangle Δ ,

and $c_2(2[\mathbb{C}P^2]) = 6$. So there is no quasitoric manifold over $\Delta \# \Delta = \Box$ representing $2[\mathbb{C}P^2]$, because \Box has only 4 vertices. But it is possible to do over a hexagon:

References

- M. Davis T. Januszkiewcz, Convex polytopes, Coyeter orbifolds and torus actions Duke Math. J. 62(2), 1991
- [2] V. M. Buchstaber and T. Panov, Torus acitons and their applications in topology and combinatorics University Lecture Ser., v24, AMS, 2002
- [3] P. E. Conner and E. E. Floyd, On the relationships between the cobordism and K-theory ~1964
- [4] P. E. Conner and E. E. Floyd, Differentiable periodec maps ~1964
- [5] R. E. Strong, Notes on cobordism theory ~1968
- [6] V. M. Buchstaber and N. Ray, Tangential structures on toric manifolds and connected sum of polytopes IMRN 4, 2001; arxiv:math AT/0010025
- [7] V. M. Buchstaber, T. Panov and N. Ray, Spaces of polytopes and cobordism of quasitoric manifolds arxiv:math AT/0609346