Toric Topology

Victor M. Buchstaber
Taras E. Panov

Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina Street 8, Moscow 119991 Russia
E-mail address: buchstab@mi.ras.ru

Department of Mathematics and Mechanics, Moscow State University, Leninskie Gory, Moscow 119991 Russia

Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow

Institute of Theoretical and Experimental Physics, Moscow
E-mail address: tpanov@mech.math.msu.su
URL: http://higeom.math.msu.su/people/taras
2010 Mathematics Subject Classification. 13D07, 13F55, 14M25, 32L05, 32Q55, 52B05, 52B35, 52B70, 52C35, 53D12, 55N22, 55N91, 55P35, 55P62, 55Q15, 57R17, 57R19, 57R20, 57R77, 57R85, 57R91, 57S15, 57T15

Abstract. Toric topology emerged at the end of the 1990s on the borders of equivariant topology, algebraic and symplectic geometry, combinatorics and commutative algebra. It has quickly grown into a very active area with many interdisciplinary links and applications, and continues to attract experts from different fields.

The key players in toric topology are moment-angle manifolds, a family of manifolds with torus actions defined in combinatorial terms. Their construction links to combinatorial geometry and algebraic geometry of toric varieties via the related notion of a quasitoric manifold. Discovery of remarkable geometric structures on moment-angle manifolds led to seminal connections with the classical and modern areas of symplectic, Lagrangian and non-Kähler complex geometry. A related categorical construction of moment-angle complexes and their generalisations, polyhedral products, provides a universal framework for many fundamental constructions of homotopical topology. The study of polyhedral products is now evolving into a separate area of homotopy theory.

A new perspective on torus actions has also contributed to the development of classical areas of algebraic topology, such as complex cobordism.

The book contains lots of open problems and is addressed to experts interested in new ideas linking all the subjects involved, as well as to graduate students and young researchers ready to enter into a beautiful new area.
Contents

Introduction 1
Chapter guide 2
Acknowledgements 5

Chapter 1. Geometry and Combinatorics of Polytopes 7
 1.1. Convex polytopes 7
 1.2. Gale duality and Gale diagrams 15
 1.3. Face vectors and Dehn–Sommerville relations 20
 1.4. Characterising the face vectors of polytopes 25

Polytopes: Additional Topics 33
 1.5. Nested polyhedra and graph-associated polyhedra 33
 1.6. Flagtopes and truncated cubes 46
 1.7. Differential algebra of combinatorial polytopes 52
 1.8. Families of polytopes and differential equations 56

Chapter 2. Combinatorial Structures 63
 2.1. Polyhedral fans 64
 2.2. Simplicial complexes 67
 2.3. Barycentric subdivision and flag complexes 72
 2.4. Alexander duality 74
 2.5. Classes of triangulated spheres 77
 2.6. Triangulated manifolds 83
 2.7. Stellar subdivisions and bistellar moves 86
 2.8. Simplicial posets and simplicial cell complexes 89
 2.9. Cubical complexes 91

Chapter 3. Combinatorial Algebra of Face Rings 99
 3.1. Face rings of simplicial complexes 100
 3.2. Tor-algebras and Betti numbers 105
 3.3. Cohen–Macaulay complexes 112
 3.4. Gorenstein complexes and Dehn–Sommerville relations 119
 3.5. Face rings of simplicial posets 122

Face Rings: Additional Topics 129
 3.6. Cohen–Macaulay simplicial posets 129
 3.7. Gorenstein simplicial posets 133
 3.8. Generalized Dehn–Sommerville relations 135

Chapter 4. Moment-Angle Complexes 137
 4.1. Basic definitions 139
4.2. Polyhedral products 143
4.3. Homotopical properties 147
4.4. Cell decomposition 151
4.5. Cohomology ring 152
4.6. Bigraded Betti numbers 158
4.7. Coordinate subspace arrangements 165

Moment-Angle Complexes: Additional Topics 171
4.8. Free and almost free torus actions on moment-angle complexes 171
4.9. Massey products in the cohomology of moment-angle complexes 177
4.10. Moment-angle complexes from simplicial posets 180

Chapter 5. Toric Varieties and Manifolds 187
5.1. Classical construction from rational fans 187
5.2. Projective toric varieties and polytopes 191
5.3. Cohomology of toric manifolds 193
5.4. Algebraic quotient construction 196
5.5. Hamiltonian actions and symplectic reduction 203

Chapter 6. Geometric Structures on Moment-Angle Manifolds 209
6.1. Intersections of quadrics 209
6.2. Moment-angle manifolds from polytopes 213
6.3. Symplectic reduction and moment maps revisited 217
6.4. Complex structures on intersections of quadrics 220
6.5. Moment-angle manifolds from simplicial fans 223
6.6. Complex structures on moment-angle manifolds 227
6.7. Holomorphic principal bundles and Dolbeault cohomology 232
6.8. Hamiltonian-minimal Lagrangian submanifolds 239

Chapter 7. Half-Dimensional Torus Actions 247
7.1. Locally standard actions and manifolds with corners 248
7.2. Toric manifolds and their quotients 250
7.3. Quasitoric manifolds 251
7.4. Locally standard T-manifolds and torus manifolds 265
7.5. Topological toric manifolds 286
7.6. Relationship between different classes of T-manifolds 290
7.7. Bounded flag manifolds 292
7.8. Bott towers 295
7.9. Weight graphs 310

Chapter 8. Homotopy Theory of Polyhedral Products 321
8.1. Rational homotopy theory of polyhedral products 322
8.2. Wedges of spheres and connected sums of sphere products 329
8.3. Stable decompositions of polyhedral products 334
8.4. Loop spaces, Whitehead and Samelson products 339
8.5. The case of flag complexes 347

Chapter 9. Torus Actions and Complex Cobordism 355
9.1. Toric and quasitoric representatives in complex bordism classes 355
9.2. The universal toric genus 365
CONTENTS

9.3. Equivariant genera, rigidity and fibre multiplicativity 372
9.4. Isolated fixed points: localisation formulae 375
9.5. Quasitoric manifolds and genera 384
9.6. Genera for homogeneous spaces of compact Lie groups 388
9.7. Rigid genera and functional equations 393

Appendix A. Commutative and Homological Algebra 403
 A.1. Algebras and modules 403
 A.2. Homological theory of graded rings and modules 406
 A.3. Regular sequences and Cohen-Macaulay algebras 413
 A.4. Formality and Massey products 417

Appendix B. Algebraic Topology 421
 B.1. Homotopy and homology 421
 B.2. Elements of rational homotopy theory 432
 B.3. Eilenberg-Moore spectral sequences 434
 B.4. Group actions and equivariant topology 436
 B.5. Stably complex structures 440
 B.6. Weights and signs of torus actions 441

Appendix C. Categorical Constructions 445
 C.1. Diagrams and model categories 445
 C.2. Algebraic model categories 450
 C.3. Homotopy limits and colimits 456

Appendix D. Bordism and Cobordism 459
 D.1. Bordism of manifolds 459
 D.2. Thom spaces and cobordism functors 460
 D.3. Oriented and complex bordism 463
 D.4. Characteristic classes and numbers 469
 D.5. Structure results 473
 D.6. Ring generators 474

Appendix E. Formal Group Laws and Hirzebruch Genera 479
 E.1. Elements of the theory of formal group laws 479
 E.2. Formal group law of geometric cobordisms 482
 E.3. Hirzebruch genera (complex case) 484
 E.4. Hirzebruch genera (oriented case) 491
 E.5. Krichever genus 493

Bibliography 499

Index 515
Introduction

Traditionally, the study of torus actions on topological spaces has been considered as a classical field of algebraic topology. Specific problems connected with torus actions arise in different areas of mathematics and mathematical physics, which results in permanent interest in the theory, new applications and penetration of new ideas into topology.

Since the 1970s, algebraic and symplectic viewpoints on torus actions have enriched the subject with new combinatorial ideas and methods, largely based on the convex-geometric concept of polytopes.

The study of algebraic torus actions on algebraic varieties has quickly developed into a highly successful branch of algebraic geometry, known as toric geometry. It gives a bijection between, on the one hand, toric varieties, which are complex algebraic varieties equipped with an action of an algebraic torus with a dense orbit, and on the other hand, fans, which are combinatorial objects. The fan allows one to completely translate various algebraic-geometric notions into combinatorics. Projective toric varieties correspond to fans which arise from convex polytopes. A valuable aspect of this theory is that it provides many explicit examples of algebraic varieties, leading to applications in deep subjects such as singularity theory and mirror symmetry.

In symplectic geometry, since the early 1980s there has been much activity in the field of Hamiltonian group actions on symplectic manifolds. Such an action defines the moment map from the manifold to a Euclidean space (more precisely, the dual Lie algebra of the torus) whose image is a convex polytope. If the torus has half the dimension of the manifold, the image of the moment map determines the manifold up to equivariant symplectomorphism. The class of polytopes which arise as the images of moment maps can be described explicitly, together with an effective procedure for recovering a symplectic manifold from such a polytope. In symplectic geometry, as in algebraic geometry, one translates various geometric constructions into the language of convex polytopes and combinatorics.

There is a tight relationship between the algebraic and the symplectic pictures: a projective embedding of a toric manifold determines a symplectic form and a moment map. The image of the moment map is a convex polytope that is dual to the fan. In both the smooth algebraic-geometric and the symplectic situations, the compact torus action is locally isomorphic to the standard action of $(S^1)^n$ on \mathbb{C}^n by rotation of the coordinates. Thus the quotient of the manifold by this action is naturally a manifold with corners, stratified according to the dimension of the stabilisers, and each stratum can be equipped with data that encodes the isotropy torus action along that stratum. Not only does this structure of the quotient provide a powerful means of investigating the action, but some of its subtler combinatorial properties may also be illuminated by a careful study of the equivariant topology.
of the manifold. Thus, it should come as no surprise that since the beginning of the 1990s, the ideas and methodology of toric varieties and Hamiltonian torus actions have started penetrating back into algebraic topology.

By 2000, several constructions of topological analogues of toric varieties and symplectic toric manifolds had appeared in the literature, together with different seemingly unrelated realisations of what later has become known as moment-angle manifolds. We tried to systematise both known and emerging links between torus actions and combinatorics in our 2000 paper [67] in Russian Mathematical Surveys, where the terms ‘moment-angle manifold’ and ‘moment-angle complex’ first appeared. Two years later it grew into a book ‘Torus Actions and Their Applications in Topology and Combinatorics’ [68] published by the AMS in 2002 (the extended Russian edition [69] appeared in 2004). The title ‘Toric Topology’ coined by our colleague Nigel Ray became official after the 2006 Osaka conference under the same name. Its proceedings volume [176] contained many important contributions to the subject, as well as the introductory survey ‘An invitation to toric topology: vertex four of a remarkable tetrahedron’ by Buchstaber and Ray. The vertices of the ‘toric tetrahedron’ are topology, combinatorics, algebraic and symplectic geometry, and it symbolised much strengthened links between these subjects. With many young researchers entering the subject and conferences held around the world every year, toric topology has definitely grown into a mature area. Its various aspects are presented in this monograph, with an intention to consolidate the foundations and stimulate further applications.

Chapter guide

1. Polytopes
2. Combinatorial structures
3. Face rings
4. Moment-angle complexes
5. Toric varieties
6. Moment-angle manifolds
7. Half-dim torus actions
8. Homotopy theory
9. Cobordism

Each chapter and most sections have their own introductions with more specific information about the contents. ‘Additional topics’ of Chapters 1, 2 and 4 contain more specific material which is not used in an essential way in the following chapters. The appendices at the end of the book contain material of more general nature,
not exclusively related to toric topology. A more experienced reader may refer to them only for notation and terminology.

At the heart of toric topology lies a class of torus actions whose orbit spaces are highly structured in combinatorial terms, that is, have lots of orbit types tied together in a nice combinatorial way. We use the generic terms toric space and toric object to refer to a topological space with a nice torus action, or to a space produced from a torus action via different standard topological or categorical constructions. Examples of toric spaces include toric varieties, toric and quasitoric manifolds and their generalisations, moment-angle manifolds, moment-angle complexes and their Borel constructions, polyhedral products, complements of coordinate subspace arrangements, intersections of real or Hermitian quadrics, etc.

In Chapter 1 we collect background material related to convex polytopes, including basic convex-geometric constructions and the combinatorial theory of face vectors. The famous g-theorem describing integer sequences that can be the face vectors of simple (or simplicial) polytopes is one of the most striking applications of toric geometry to combinatorics. The concepts of Gale duality and Gale diagrams are important tools for the study of moment-angle manifolds via intersections of quadrics. In the additional sections we describe several combinatorial constructions providing families of simple polytopes, including nestohedra, graph associahedra, flagtopes and truncated cubes. The classical series of permutahedra and associahedra (Stasheff polytopes) are particular examples. The construction of nestohedra takes its origin in singularity and representation theory. We develop a differential algebraic formalism which links the generating series of nestohedra to classical partial differential equations. The potential of truncated cubes in toric topology is yet to be fully exploited, as they provide an immense source of explicitly constructed toric spaces.

In Chapter 2 we describe systematically combinatorial structures that appear in the orbit spaces of toric objects. Besides convex polytopes, these include fans, simplicial and cubical complexes, and simplicial posets. All these structures are objects of independent interest for combinatorialists, and we emphasised the aspects of their combinatorial theory most relevant to subsequent topological applications.

The subject of Chapter 3 is the algebraic theory of face rings (also known as Stanley–Reisner rings) of simplicial complexes, and their generalisations to simplicial posets. With the appearance of face rings at the beginning of the 1970s in the work of Reisner and Stanley many combinatorial problems were translated into the language of commutative algebra, which paved the way for their solution using the extensive machinery of algebraic and homological methods. Algebraic tools used for attacking combinatorial problems include regular sequences, Cohen–Macaulay and Gorenstein rings, Tor-algebras, local cohomology, etc. A whole new thriving field appeared on the borders of combinatorics and algebra, which has since become known as combinatorial commutative algebra.

Chapter 4 is the first ‘toric’ chapter of the book; it links the combinatorial and algebraic constructions of the previous chapters to the world of toric spaces. The concept of the moment-angle complex Z_K is introduced as a functor from the category of simplicial complexes K to the category of topological spaces with torus actions and equivariant maps. When K is a triangulated manifold, the moment-angle complex Z_K contains a free orbit Z_ϕ consisting of singular points. Removing this orbit we obtain an open manifold $Z_K \setminus Z_\phi$, which satisfies the relative version of
Poincaré duality. Combinatorial invariants of simplicial complexes \(K \) therefore can be described in terms of topological characteristics of the corresponding moment-angle complexes \(Z_K \). In particular, the face numbers of \(K \), as well as the more subtle \textit{bigraded Betti numbers} of the face ring \(\mathbb{Z}[K] \) can be expressed in terms of the cellular cohomology groups of \(Z_K \). The integral cohomology ring \(H^*(Z_K) \) is shown to be isomorphic to the Tor-algebra \(\text{Tor}_{\mathbb{Z}[v_1, \ldots, v_n]}(\mathbb{Z}[K], \mathbb{Z}) \). The proof builds upon a construction of a ring model for \textit{cellular} cochains of \(Z_K \) and the corresponding cellular diagonal approximation, which is functorial with respect to maps of moment-angle complexes induced by simplicial maps of \(K \). This functorial property of the cellular diagonal approximation for \(Z_K \) is quite special, due to the lack of such a construction for general cell complexes. Another result of Chapter 4 is a homotopy equivalence (an equivariant deformation retraction) from the complement \(U(K) \) of the arrangement of coordinate subspaces in \(\mathbb{C}^n \) determined by \(K \) to the moment-angle complex \(Z_K \). Particular cases of this result are known in toric geometry and geometric invariant theory. It opens a new perspective on moment-angle complexes, linking them to the theory of configuration spaces and arrangements.

Toric varieties are the subject of Chapter 5. This is an extensive area with a vast literature. We outline the influence of toric geometry on the emergence of toric topology and emphasise combinatorial, topological and symplectic aspects of toric varieties. The construction of moment-angle manifolds via nondegenerate intersections of Hermitian quadrics in \(\mathbb{C}^n \), motivated by symplectic geometry, is also discussed here. Some basic knowledge of algebraic geometry may be required in Chapter 5. Appropriate references are given in the introduction to the chapter.

The material of the first five chapters of the book should be accessible for a graduate student, or a reader with a very basic knowledge of algebra and topology. These five chapters may be also used for advanced courses on the relevant aspects of topology, algebraic geometry and combinatorial algebra. The general algebraic and topological constructions required here are collected in Appendices A and B respectively. The last four chapters are more research-oriented.

Geometry of moment-angle manifolds is studied in Chapter 6. The construction of moment-angle manifolds as the level sets of toric moment maps is taken as the starting point for the systematic study of intersections of Hermitian quadrics via Gale duality. Following a remarkable discovery by Bosio and Meersseman of complex-analytic structures on moment-angle manifolds corresponding to simple polytopes, we proceed by showing that moment-angle manifolds corresponding to a more general class of complete simplicial fans can also be endowed with complex-analytic structures. The resulting family of \textit{non-Kähler} complex manifolds includes the classical series of Hopf and Calabi–Eckmann manifolds. We also describe important invariants of these complex structures, such as the Hodge numbers and Dolbenault cohomology rings, study holomorphic torus principal bundles over toric varieties, and establish collapse results for the relevant spectral sequences. We conclude by exploring the construction of A.E. Mironov providing a vast family of Lagrangian submanifolds with special minimality properties in complex space, complex projective space and other toric varieties. Like many other geometric constructions in this chapter, it builds upon the realisation of the moment-angle manifold as an intersection of quadrics.

In Chapter 7 we discuss several topological constructions of even-dimensional manifolds with an effective action of a torus of half the dimension of the manifold.
They can be viewed as topological analogues and generalisations of compact
non-singular toric varieties (or toric manifolds). These include quasitoric manifolds of
Davis and Januszkiewicz, torus manifolds of Hattori and Masuda, and topological
toric manifolds of Ishida, Fukukawa and Masuda. For all these classes of toric
objects, the equivariant topology of the action and the combinatorics of the orbit
spaces interact in a harmonious way, leading to a host of results linking topology
with combinatorics. We also discuss the relationship with GKM-manifolds (named
after Goresky, Kottwitz and MacPherson), another class of toric objects having its
origin in symplectic topology.

Homotopy-theoretical aspects of toric topology are the subject of Chapter 8.
This is now a very active area. Homotopy techniques brought to bear on the study
of polyhedral products and other toric spaces include model categories, homotopy
limits and colimits, higher Whitehead and Samelson products. The required infor-
mation about categorical methods in topology is collected in Appendix C.

In the final Chapter 9 we review applications of toric methods in a classical field
of algebraic topology, complex cobordism. It is a generalised cohomology theory
that combines both geometric intuition and elaborate algebraic techniques. The
toric viewpoint brings an entirely new perspective on complex cobordism theory in
both its non-equivariant and equivariant versions.

The later chapters require more specific knowledge of algebraic topology, such
as characteristic classes and spectral sequences, for which we recommend respec-
tively the classical book of Milnor and Stasheff [271] and the excellent guide by
McCleary [258]. Basic facts and constructions from bordism and cobordism theory
are given in Appendix D, while the related techniques of formal group laws and
multiplicative genera are reviewed in Appendix E.

Acknowledgements

We wish to express our deepest thanks to

- our teacher Sergei Petrovich Novikov for encouragement and support of
our research on toric topology;
- Mikiya Masuda and Nigel Ray for long and much fruitful collaboration;
- our coauthors in toric topology;
- Peter Landweber for most helpful suggestions on improving the text;
- all our colleagues who participated in conferences on toric topology for
the insight gained from discussions following talks and presentations.

The work was supported by the Russian Science Foundation (grant no. 14-11-
00414). We also thank the Russian Foundation for Basic Research, the President of
the Russian Federation Grants Council and Dmitri Zimin’s ‘Dynasty’ Foundation
for their support of our research related to this monograph.
CHAPTER 1

Geometry and Combinatorics of Polytopes

This chapter is an introductory survey of the geometric and combinatorial theory of convex polytopes, with the emphasis on those of its aspects related to the topological applications later in the book. We do not assume any specific knowledge of the reader here. Algebraic definitions (graded rings and algebras) required at the end of this chapter are contained in Section A.1 of the Appendix.

Convex polytopes have been studied since ancient times. Nowadays both combinatorial and geometrical aspects of polytopes are presented in numerous textbooks and monographs. Among them are the classical monograph [165] by Grünbaum and Ziegler’s more recent lectures [367]. Face vectors and other combinatorial topics are discussed in books by McMullen–Shephard [264], Brandstref [49], and the survey article [218] by Klee and Klain; while Yemelichev–Kovalev–Kravtsov [360] focus on applications to linear programming and optimisation. All these sources may be recommended for the subsequent study of the theory of polytopes, and contain a host of further references.

1.1. Convex polytopes

Definitions and basic constructions. Let \(\mathbb{R}^n \) be \(n \)-dimensional Euclidean space with the scalar product \((\cdot, \cdot) \). There are two constructively different ways to define a convex polytope in \(\mathbb{R}^n \):

Definition 1.1.1. A convex polytope is the convex hull \(\text{conv}(v_1, \ldots, v_\ell) \) of a finite set of points \(v_1, \ldots, v_\ell \in \mathbb{R}^n \).

Definition 1.1.2. A convex polyhedron \(P \) is a nonempty intersection of finitely many half-spaces in some \(\mathbb{R}^n \):

\[
P = \{ x \in \mathbb{R}^n : (a_i, x) + b_i \geq 0 \text{ for } i = 1, \ldots, m \},
\]

where \(a_i \in \mathbb{R}^n \) and \(b_i \in \mathbb{R} \). A convex polytope is a bounded convex polyhedron.

All polytopes in this book will be convex. The two definitions above produce the same geometrical object, i.e. a subset of \(\mathbb{R}^n \) is the convex hull of a finite point set if and only if it is a bounded intersection of finitely many half-spaces. This classical fact is proved in many textbooks on polytopes and convex geometry, and it lies at the heart of many applications of polytope theory to linear programming and optimisation, see e.g. [367, Theorem 1.1].

The dimension of a polyhedron is the dimension of its affine hull. We often abbreviate a ‘polyhedron of dimension \(n \)’ to \(n \)-polyhedron. A supporting hyperplane of \(P \) is an affine hyperplane \(H \) which has common points with \(P \) and for which the polyhedron is contained in one of the two closed half-spaces determined by the hyperplane. The intersection \(P \cap H \) with a supporting hyperplane is called a face of the polyhedron. Denote by \(\partial P \) and \(\text{int} P = P \setminus \partial P \) the topological
boundary and interior of \(P \) respectively. In the case \(\dim P = n \) the boundary \(\partial P \) is the union of all faces of \(P \). Each face of an \(n \)-polyhedron (\(n \)-polytope) is itself a polyhedron (polytope) of dimension \(< n \). Zero-dimensional faces are called \textit{vertices}, one-dimensional faces are \textit{edges}, and faces of codimension one are \textit{facets}.

Two polytopes \(P \subset \mathbb{R}^{n_1} \) and \(Q \subset \mathbb{R}^{n_2} \) of the same dimension are said to be \textit{affinely equivalent} (or \textit{affinely isomorphic}) if there is an affine map \(\mathbb{R}^{n_1} \to \mathbb{R}^{n_2} \) establishing a bijection between the points of the two polytopes. Two polytopes are \textit{combinatorially equivalent} if there is a bijection between their faces preserving the inclusion relation. Note that two affinely isomorphic polytopes are combinatorially equivalent, but the opposite is not true.

The faces of a given polytope \(P \) form a partially ordered set (a \textit{poset}) with respect to inclusion. It is called the \textit{face poset} of \(P \). Two polytopes are combinatorially equivalent if and only if their face posets are isomorphic.

\textbf{Definition 1.1.3.} A \textit{combinatorial polytope} is a class of combinatorially equivalent polytopes.

Many topological constructions later in this book will depend only on the combinatorial equivalence class of a polytope. Nevertheless, it is always helpful, and sometimes necessary, to keep in mind a particular geometric representative \(P \) rather than thinking in terms of abstract posets. Depending on the context, we shall denote by \(P, Q, \) etc., geometric polytopes or their combinatorial equivalent classes (combinatorial polytopes). Whenever we consider both geometric and combinatorial polytopes, we shall use the notation \(P \approx Q \) for combinatorial equivalence.

We refer to (1.1) as a \textit{presentation} of the polyhedron \(P \) by inequalities. These inequalities contain more information than the polyhedron \(P \), for the following reason. It may happen that some of the inequalities \(\langle a_i, x \rangle + b_i \geq 0 \) can be removed from the presentation without changing \(P \); we refer to such inequalities as \textit{redundant}. A presentation without redundant inequalities is called \textit{irredundant}. An irredundant presentation of a given polyhedron is unique up to multiplication of pairs \((a_i, b_i) \) by positive numbers.

\textbf{Example 1.1.4 (simplex and cube).} An \(n \)-dimensional \textit{simplex} \(\Delta^n \) is the convex hull of \(n + 1 \) points in \(\mathbb{R}^n \) that do not lie on a common affine hyperplane. All faces of an \(n \)-simplex are simplices of dimension \(< n \). Any two \(n \)-simplices are affinely equivalent. Let \(e_1, \ldots, e_n \) be the standard basis in \(\mathbb{R}^n \). The n-simplex \(\text{conv}(0, e_1, \ldots, e_n) \) is called \textit{standard}. Equivalently, the standard \(n \)-simplex is specified by the \(n + 1 \) inequalities

\[
(1.2) \quad x_i \geq 0 \quad \text{for} \quad i = 1, \ldots, n, \quad \text{and} \quad -x_1 - \cdots - x_n + 1 \geq 0.
\]

The \textit{regular} \(n \)-simplex is the convex hull of the endpoints of \(e_1, \ldots, e_{n+1} \) in \(\mathbb{R}^{n+1} \).

The \textit{standard} \(n \)-\textit{cube} is given by

\[
(1.3) \quad I^n = [0, 1]^n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : 0 \leq x_i \leq 1 \quad \text{for} \quad i = 1, \ldots, n\}.
\]

Equivalently, the standard \(n \)-cube is the convex hull of \(2^n \) points \((\varepsilon_1, \ldots, \varepsilon_n) \in \mathbb{R}^n \), where \(\varepsilon_i = 0 \) or 1. Whenever we work with combinatorial polytopes, we shall refer to any polytope combinatorially equivalent to \(I^n \) as a \textit{cube}, and denote it by \(I^n \).

The cube \(I^n \) has \(2n \) facets. We denote by \(F^0_k \) the facet specified by the equation \(x_k = 0 \), and by \(F^1_k \) that specified by the equation \(x_k = 1 \), for \(1 \leq k \leq n \).
Simple and simplicial polytopes. Polarity. The notion of a generic polytope depends on the choice of definition. Below we describe the two possibilities.

A set of $q > n$ points in \mathbb{R}^n is in general position if no $n+1$ of them lie on a common affine hyperplane. Now, assuming Definition 1.1.1, we may say that a polytope is generic if it is the convex hull of a set of generally positioned points. This implies that all faces of the polytope are simplices, i.e. every facet has the smallest possible number of vertices (namely, n). Polytopes with this property are called simplicial.

Assuming Definition 1.1.2, a presentation (1.1) is said to be generic if P is nonempty and the hyperplanes defined by the equations $\langle a_i, x \rangle + b_i = 0$ are in general position at any point of P (that is, for any $x \in P$ the normal vectors a_i of the hyperplanes containing x are linearly independent). If presentation (1.1) is generic, then P is n-dimensional. If P is a polytope, then the existence of a generic presentation implies that P is simple, that is, exactly n facets meet at each vertex of P. Each face of a simple polytope is again a simple polytope. Every vertex of a simple polytope has a neighbourhood affinely equivalent to a neighbourhood of 0 in the positive orthant \mathbb{R}^n_+. It follows that every vertex is contained in exactly n edges, and each subset of k edges with a common vertex belongs to a k-face.

A generic presentation may contain redundant inequalities, but, for any such inequality, the intersection of the corresponding hyperplane with P is empty (i.e., the inequality is strict at any $x \in P$). We set

$$F_i = \{ x \in P : \langle a_i, x \rangle + b_i = 0 \}.$$

If presentation (1.1) is generic, then each F_i is either a facet of P or is empty.

The polar set of a polyhedron $P \subset \mathbb{R}^n$ is defined as

$$P^* = \{ u \in \mathbb{R}^n : \langle u, x \rangle + 1 \geq 0 \text{ for all } x \in P \}.$$

The set P^* is a convex polyhedron with $0 \in P^*$.

Remark. P^* is naturally a subset in the dual space $(\mathbb{R}^n)^*$, but we shall not make this distinction until later on, assuming \mathbb{R}^n to be Euclidean. Also, in convex geometry the inequality $\langle u, x \rangle \leq 1$ is usually used in the definition of polarity, but the definition above is better suited for applications in toric geometry. These two ways of defining the polar set are taken into each other by the central symmetry.

The following properties are well known in convex geometry:

Theorem 1.1.5 (see [49, §2.9] or [367, Theorem 2.11]).

(a) P^* is bounded if and only if $0 \in \text{int } P$;

(b) $(P^*)^* = \text{conv}(P, 0)$, so that $P \subset (P^*)^*$ and $(P^*)^* = P$ when $0 \in P$;

(c) if a polytope Q is given as a convex hull, $Q = \text{conv}(a_1, \ldots, a_m)$, then Q^* is given by inequalities (1.1) with $b_i = 1$ for $1 \leq i \leq m$; in particular, Q^* is a convex polyhedron, but not necessarily bounded;

(d) if a polyhedron P is given by inequalities (1.1) with $b_i = 1$ for all i, then $P^* = \text{conv}(a_1, \ldots, a_m)$; furthermore, $\langle a_i, x \rangle + 1 \geq 0$ is a redundant inequality if and only if $a_i \in \text{conv}(a_j : j \neq i)$.

Remark. A polyhedron P admits a presentation (1.1) with $b_i = 1$ if and only if $0 \in \text{int } P$.
Example 1.1.6. The difference between the situations $0 \in P$ and $0 \in \text{int} P$ may be illustrated by the following example. Let $Q = \text{conv}(0, e_1, e_2)$ be the standard 2-simplex in \mathbb{R}^2. By Theorem 1.1.5 (c), Q^* is specified by the three inequalities
\[
(0, x) + 1 \geq 0, \quad (e_1, x) + 1 \geq 0, \quad (e_2, x) + 1 \geq 0,
\]
of which the first is satisfied for all x, so we obtain an unbounded polyhedron. Its dual is $\text{conv}(0, e_1, e_2)$ by Theorem 1.1.5 (d), giving back the standard 2-simplex.

Any combinatorial polytope P has a presentation (1.1) with $b_i = 1$ (take the origin to the interior of P by a parallel transform, and then divide each of the inequalities in (1.1) by the corresponding b_i). Then P^* is also a polytope with $0 \in P^*$, and $(P^*)^* = P$. We refer to the combinatorial polytope P^* as the dual of the combinatorial polytope P. (We shall not introduce a new notation for the dual of a polytope, keeping in mind that polarity is a convex-geometric notion, while duality of polytopes is combinatorial.)

Theorem 1.1.7 (see [49, §2.10]). If P and P^* are dual polytopes, then the face poset of P^* is obtained from the face poset of P by reversing the inclusion relation.

As a corollary, we obtain that P is simple if and only if its dual polytope P^* is simplicial. Any polygon is both simple and simplicial.

Proposition 1.1.8. In dimensions $n \geq 3$ a simplex is the only polytope which is both simple and simplicial.

Proof. Let be P be a polytope which is both simple and simplicial. Choose a vertex $v \in P$. Since P is simple, v is connected by edges to exactly n other vertices, say v_1, \ldots, v_n. We claim that there are no other vertices in P. To prove this it is enough to show that all vertices v_1, \ldots, v_n are pairwise connected by edges, as then every vertex from v, v_1, \ldots, v_n will be connected to the remaining n vertices. Indeed, take a pair v_i, v_j. Since P is simple and v is connected to both v_i and v_j, all these three vertices belong to a 2-face. Since P is simplicial and $n \geq 3$, this face is a 2-simplex, in which v_i and v_j are connected by an edge. We conclude that P has $n + 1$ vertices, so it is an n-simplex. \qed

The proof above also shows that if all 2-faces of a simple polytope are triangular, then P is a simplex. A similar property is valid for a cube: if all 2-faces of a simple polytope P are quadrangular, then P is a cube (an exercise).

Example 1.1.9. The dual of a simplex is again a simplex. To describe the dual of a cube, we consider the cube $[-1, 1]^n$ (the standard cube (1.3) is not good as 0 is not in its interior). Then the polar set is the convex hull of the endpoints of $2n$ vectors $\pm e_k$, $1 \leq k \leq n$. It is called the cross-polytope. The 3-dimensional cross-polytope is the octahedron.

A combinatorial polytope P is called self-dual if P^* is combinatorially equivalent to P. There are many examples of self-dual non-simple polytopes; an infinite family of them is given by k-gonal pyramids for $k \geq 4$. Here is a more interesting regular example:

Example 1.1.10 (24-cell). Let Q be the 4-polytope obtained by taking the convex hull of the following 24 points in \mathbb{R}^4: endpoints of 8 vectors $\pm e_i$, $1 \leq i \leq 4$,
and 16 points of the form \((±\frac{1}{2}, ±\frac{1}{2}, ±\frac{1}{2}, ±\frac{1}{2})\). By Theorem 1.1.5 (c), the polar polytope \(Q^*\) is given by the following 24 inequalities:

\[
(1.5) \quad ± x_i + 1 \geq 0 \text{ for } i = 1, \ldots, 4, \quad \text{and} \quad \frac{1}{5}(± x_1 ± x_2 ± x_3 ± x_4) + 1 \geq 0.
\]

Each of these inequalities turns into equality in exactly one of the specified 24 points, so it defines a supporting hyperplane whose intersection with \(Q\) is only one point. This implies that \(Q\) has exactly 24 vertices. The vertices of \(Q^*\) may be determined by applying the ‘elimination process’ to (1.5) (see [367, §1.2]), and as a result we obtain 24 points of the form \(± e_i ± e_j\) for \(1 \leq i < j \leq 4\). Each supporting hyperplane defined by (1.5) contains exactly 6 vertices of \(Q^*\), which form an octahedron. So both \(Q\) and \(Q^*\) have 24-vertices and 24 octahedral facets. In fact, both \(Q\) and \(Q^*\) provide examples of a regular 4-polytope called a 24-cell. It is the only regular self-dual polytope different from a simplex. For more details on the 24-cell and other regular polytopes see [106].

Products, truncations and connected sums.

Construction 1.1.11 (Product). The product \(P_1 \times P_2\) of two simple polytopes \(P_1\) and \(P_2\) is again a simple polytope. The dual operation on simplicial polytopes can be described as follows. Let \(S_1 \subseteq \mathbb{R}^{n_1}\) and \(S_2 \subseteq \mathbb{R}^{n_2}\) be two simplicial polytopes. Assume that both \(S_1\) and \(S_2\) contain 0 in their interiors. Now define

\[S_1 \circ S_2 = \text{conv} \left(S_1 \times 0 \cup 0 \times S_2 \right) \subseteq \mathbb{R}^{n_1+n_2}.
\]

Then \(S_1 \circ S_2\) is again a simplicial polytope. For any two simple polytopes \(P_1, P_2\) containing 0 in their interiors the following identity holds:

\[P_1^* \circ P_2^* = (P_1 \times P_2)^*.
\]

Both operations \(\times\) and \(\circ\) are also defined on combinatorial polytopes; in this case the above formula holds without any restrictions.

Construction 1.1.12 (Hyperplane cuts and face truncations). Assume given a simple \(n\)-polytope (1.1) and a hyperplane \(H = \{x \in \mathbb{R}^n : \langle a, x \rangle + b = 0\}\) that does not contain any vertex of \(P\). Then the intersections \(P \cap H_{\ge}\) and \(P \cap H_{\le}\) of \(P\) with either of the halfspaces determined by \(H\) are simple polytopes; we refer to them as *hyperplane cuts of \(P\).* To see that \(P \cap H_{\ge}\) and \(P \cap H_{\le}\) are simple we note that their new vertices are transverse intersections of \(H\) with the edges of \(P\). Since \(P\) is simple, each of those edges is contained in \(n - 1\) facets, so each new vertex of \(P \cap H_{\ge}\) or \(P \cap H_{\le}\) is contained in exactly \(n\) facets.

If \(H\) separates all vertices of a certain \(i\)-face \(G \subseteq P\) from the other vertices of \(P\) and \(G \subseteq H_{\ge}\), then \(P \cap H_{\ge}\) is combinatorially equivalent to \(G \times \Delta^{n-i}\) (an exercise), and we say that the polytope \(P \cap H_{\le}\) is obtained from \(P\) by a *face truncation*.

In particular, if the cut off face \(G\) is a vertex, the result is a *vertex truncation* of \(P\). When the choice of the cut off vertex is clear or irrelevant we use the notation \(\text{vt}(P)\). We also use the notation \(\text{vt}^k(P)\) for a polytope obtained from \(P\) by a \(k\)-fold iteration of the vertex truncation.

We can describe the face poset of the simple polytope \(\bar{P}\) obtained by truncating \(P\) at a face \(G \subseteq P\) as follows. Let \(F_1, \ldots, F_m\) be the facets of \(P\), and assume that \(G = F_i \cap \cdots \cap F_k\). The polytope \(\bar{P}\) has \(m\) facets corresponding to \(F_1, \ldots, F_m\) (and obtained from them by truncation), which we denote by the same letters for
simplicity, and a new facet \(F = P \cap H \). Then we have
\[
F_{j_1} \cap \cdots \cap F_{j_t} \neq \emptyset \quad \text{in } \bar{P}
\]
\[
\iff F_{j_1} \cap \cdots \cap F_{j_t} \neq \emptyset \quad \text{in } P, \quad \text{and } F_{j_1} \cap \cdots \cap F_{j_t} \not\subseteq G,
\]
\[
F \cap F_{j_1} \cap \cdots \cap F_{j_t} \neq \emptyset \quad \text{in } \bar{P}
\]
\[
\iff G \cap F_{j_1} \cap \cdots \cap F_{j_t} \neq \emptyset \quad \text{in } P, \quad \text{and } F_{j_1} \cap \cdots \cap F_{j_t} \not\subseteq G.
\]

Note that \(F_{j_1} \cap \cdots \cap F_{j_t} \not\subseteq G \) if and only if \(\{i_1, \ldots, i_k\} \not\subseteq \{j_1, \ldots, j_t\} \).

The two previous constructions worked for geometric polytopes. Here is an example of a construction which is more suitable for combinatorial ones.

Construction 1.1.13 (Connected sum of polytopes). Suppose we are given two simple polytopes \(P \) and \(Q \), both of dimension \(n \), with distinguished vertices \(v \) and \(w \) respectively. An informal way to obtain the connected sum \(P \#_{v, w} Q \) of \(P \) at \(v \) and \(Q \) at \(w \) is as follows. We cut off \(v \) from \(P \) and \(w \) from \(Q \); then, after a projective transformation, we can glue the rest of \(P \) to the rest of \(Q \) along the new simplex facets to obtain \(P \#_{v, w} Q \), see Figure 1.1. A more formal definition is given below, following [74, §6].

First, we introduce an \(n \)-dimensional polyhedron \(\Gamma \), which will be used as a template for the construction; it arises by considering the standard \((n - 1)\)-simplex \(\Delta^{n-1} \) in the subspace \(\{x: x_1 = 0\} \subset \mathbb{R}^n \), and taking its cartesian product with the first coordinate axis. The facets \(G_r \) of \(\Gamma \) therefore have the form \(\mathbb{R} \times D_r \), where \(D_r, 1 \leq r \leq n \), are the facets of \(\Delta^{n-1} \). Both \(\Gamma \) and the \(G_r \) are divided into positive and negative halves, determined by the sign of the coordinate \(x_1 \).

We order the facets of \(P \) meeting in \(v \) as \(E_1, \ldots, E_n \), and the facets of \(Q \) meeting in \(w \) as \(F_1, \ldots, F_n \). Denote the complementary sets of facets by \(C_v \) and \(C_w \); those in \(C_v \) avoid \(v \), and those in \(C_w \) avoid \(w \).
We now choose projective transformations φ_P and φ_Q of \mathbb{R}^n, whose purpose is to map v and w to the infinity of the x_1 axis. We insist that φ_P embeds P in Γ so as to satisfy two conditions; firstly, that the hyperplane defining E_r is identified with the hyperplane defining G_r, for each $1 \leq r \leq n$, and secondly, that the images of the hyperplanes defining C_v meet Γ in its negative half. Similarly, φ_Q identifies the hyperplane defining F_r with that defining G_r, for each $1 \leq r \leq n$, but the images of the hyperplanes defining C_w meet Γ in its positive half. We define the connected sum $P \#_w Q$ of P at v and Q at w to be the simple n-polytope determined by the images of the hyperplanes defining C_v and C_w and hyperplanes defining G_r, $1 \leq r \leq n$. It is defined only up to combinatorial equivalence; moreover, different choices for either of v and w, or either of the orderings for E_r and F_r, are likely to affect the combinatorial type. When the choices are clear, or their effect on the result irrelevant, we use the abbreviation $P \# Q$.

The related construction of connected sum $P \# S$ of a simple polytope P and a simplicial polytope S is described in [367, Example 8.41].

Example 1.1.14.
1. If P is an m_1-gon and Q is an m_2-gon then $P \# Q$ is an $(m_1 + m_2 - 2)$-gon.
2. If P is an n-simplex, then $P \# Q \approx \text{vt}(Q)$.
3. If both P and Q are n-simplices, then $P \# Q \approx \text{vt}(\Delta^n) \approx \Delta^{n-1} \times \Delta^1$. The combinatorial type of $\text{vt}(\Delta^n)$ does not depend on the choice of the cut off vertex. All the vertices of the resulting polytope $\Delta^{n-1} \times \Delta^1$ are equivalent, therefore, the combinatorial type of $\text{vt}^2(\Delta^n) \approx \Delta^n \# \Delta^n \# \Delta^n$ is still independent of the choices. The choice of the cut off vertex becomes significant from the next step, i.e. for $\text{vt}^3(\Delta^n)$, see Exercise 1.1.25.

Neighbourly polytopes.

Definition 1.1.15. A polytope is called k-neighbourly if any set of its k or fewer vertices spans a face. According to Exercise 1.1.26, the only n-polytope which is more than $\left[\frac{n}{2}\right]$-neighbourly is a simplex. An n-polytope which is $\left[\frac{n}{2}\right]$-neighbourly is called simply neighbourly.

Example 1.1.16 (neighbourly 4-polytope). Let $P = \Delta^2 \times \Delta^2$, the product of two triangles. Then P is simple, and it is easy to see that any two facets of P share a common 2-face. Therefore, any two vertices of P^* are connected by an edge, so P^* is a neighbourly simplicial 4-polytope.

More generally, if P_1^* is k_1-neighbourly and P_2^* is k_2-neighbourly, then $(P_1 \times P_2)^*$ is $\min(k_1, k_2)$-neighbourly. It follows that $(\Delta^n \times \Delta^n)^*$ and $(\Delta^n \times \Delta^{n+1})^*$ are neighbourly $2n$- and $(2n + 1)$-polytopes respectively. The next example gives a neighbourly polytope with an arbitrary number of vertices.

Example 1.1.17 (cyclic polytopes). The moment curve in \mathbb{R}^n is given by

$$x : \mathbb{R} \to \mathbb{R}^n, \quad t \mapsto x(t) = (t, t^2, \ldots, t^n) \in \mathbb{R}^n.$$

For any $m > n$ define the cyclic polytope $C^m(t_1, \ldots, t_m)$ as the convex hull of m distinct points $x(t_i), t_1 < t_2 < \cdots < t_m$, on the moment curve.

Theorem 1.1.18.
(a) $C^m(t_1, \ldots, t_m)$ is a simplicial n-polytope;
(b) $C^m(t_1, \ldots, t_m)$ has exactly m vertices $x(t_i), 1 \leq i \leq m$;
(c) the combinatorial type of $C^n(t_1, \ldots, t_m)$ does not depend on the specific choice of parameters t_1, \ldots, t_m;
(d) $C^n(t_1, \ldots, t_m)$ is a neighbourly polytope.

Proof. This proof is taken from [367, Theorem 0.7]. Recall the well-known Vandermonde determinant identity

$$
\det \begin{pmatrix}
1 & 1 & \cdots & 1 \\
\mathbf{x}(t_0) & \mathbf{x}(t_1) & \cdots & \mathbf{x}(t_n)
\end{pmatrix} = \begin{vmatrix}
1 & 1 & \cdots & 1 \\
t_0 & t_1 & \cdots & t_n \\
\vdots & \vdots & \ddots & \vdots \\
t_0^n & t_1^n & \cdots & t_n^n
\end{vmatrix} = \prod_{0 \leq i < j \leq n} (t_j - t_i).
$$

This implies that no $n + 1$ points on the moment curve belong to a common affine hyperplane, proving (a). Denote $[m] = \{1, \ldots, m\}$. Properties (b) and (c) follow from the following statement: an n-element subset $I \subseteq [m]$ corresponds to the vertex set of a facet of $C^n(t_1, \ldots, t_m)$ if and only if the following 'Gale's evenness condition' is satisfied:

If elements $i < j$ are not in I, then the number of elements $k \in I$ between i and j is even.

To prove this we write $I = \{i_1, \ldots, i_n\}$ and consider the hyperplane H_I through the corresponding points $\mathbf{x}(t_{i_s}), 1 \leq s \leq n$, on the moment curve. We have

$$
H_I = \{ \mathbf{x} \in \mathbb{R}^n : F_I(\mathbf{x}) = 0 \},
$$

where

$$
F_I(\mathbf{x}) = \det \begin{pmatrix}
1 & 1 & \cdots & 1 \\
\mathbf{x} & \mathbf{x}(t_{i_1}) & \cdots & \mathbf{x}(t_{i_n})
\end{pmatrix}.
$$

(The latter is exactly the linear function vanishing on the prescribed points.) Now let the point $\mathbf{x}(t)$ move on the moment curve. Then $F_I(\mathbf{x}(t))$ is a polynomial in t of degree n. It has n different roots t_{i_1}, \ldots, t_{i_n}, and changes sign at each of them. Now I corresponds to the vertex set of a facet if and only if $F_I(\mathbf{x}(t_i))$ has the same sign for all the points $\mathbf{x}(t_i)$ with $i \notin I$; that is, if $F_I(\mathbf{x}(t))$ has an even number of sign changes between $t = t_i$ and $t = t_j$, for $i < j$ and $i, j \notin I$. This proves Gale's condition, and statements (b) and (c).

It remains to prove (d). We need to check that any subset $J = \{i_1, \ldots, i_k\} \subseteq [m]$ of cardinality $k \leq \left[\frac{m}{2} \right]$ corresponds to the vertex set of a face. Choose some $\varepsilon > 0$ so that $t_i < t_i + \varepsilon < t_{i+1}$ for all $i < m$, and some $N > t_m + \varepsilon$. Define a linear function $F_J(\mathbf{x})$ as

$$
\det(\mathbf{x}, \mathbf{x}(t_{i_1}), \mathbf{x}(t_{i_1} + \varepsilon), \ldots, \mathbf{x}(t_{i_k}), \mathbf{x}(t_{i_k} + \varepsilon), \mathbf{x}(N + 1), \ldots, \mathbf{x}(N + n - 2k)).
$$

It vanishes on $\mathbf{x}(t_i)$ with $i \in J$. Now $F_J(\mathbf{x}(t))$ is a polynomial in t of degree n, and it has n different roots

$$
t_{i_1}, t_{i_1} + \varepsilon, \ldots, t_{i_k}, t_{i_k} + \varepsilon, N + 1, \ldots, N + n - 2k.
$$

If $i, j \notin J$, then there is an even number of roots between $t = t_i$ and $t = t_j$, because a root $t = t_i$ always come in a pair with the root $t = t_i + \varepsilon$. Thus, the linear function $F_J(\mathbf{x})$ has the same sign at all the points $\mathbf{x}(t_i)$ with $i \notin J$. This linear function defines a supporting hyperplane, so J corresponds to the vertex set of a face. □

We shall denote the combinatorial cyclic n-polytope with m vertices by $C^n(m)$.
The vertices and edges of a polytope \(P \) determine a graph, which is called the graph of the polytope and denoted \(\Gamma(P) \). This graph is simple, that is, it has no loops and multiple edges. The following theorem is due to Blind and Mani, see also [367, §3.4] for a simpler proof given by Kalai.

Theorem 1.1.19. The combinatorial type of a simple polytope \(P \) is determined by its graph \(\Gamma(P) \). In other words, two simple polytopes are combinatorially equivalent if their graphs are isomorphic.

This theorem fails for general polytopes: the graph of a neighbourly polytope is isomorphic to that of a simplex with the same number of vertices. In general, simplicial \(n \)-polytopes are determined by their \([n] \)-skeleta. General \(n \)-polytopes are determined by their \((n-2) \)-skeleta. See [367, §3.4] for more history and references.

Exercises.

1.1.20. Show that if \(P \) and \(Q \) are \(n \)-polytopes, and the face poset of \(P \) is a subposet of the face poset of \(Q \), then \(P \) and \(Q \) are combinatorially equivalent.

1.1.21. The polyhedron \(P \) defined by (1.1) has a vertex if and only if the vectors \(a_1, \ldots, a_m \) span the whole \(\mathbb{R}^n \).

1.1.22. Show that a simple \(n \)-polytope all of whose 2-faces are quadrangular is combinatorially equivalent to an \(n \)-cube.

1.1.23. Show that any hyperplane cut of \(\Delta^n \) is combinatorially equivalent to a product of two simplices. Conclude that any combinatorial simple \(n \)-polytope with \(n+2 \) facets is combinatorially equivalent (in fact, projectively equivalent) to a product of two simplices.

1.1.24. Let \(P \) be a simple \(n \)-polytope. Show that if a hyperplane \(H \) separates all vertices of a certain \(i \)-face \(G \subset P \) from the other vertices of \(P \) and \(G \subset H_\geq \), then \(P \cap H_\geq \approx G \times \Delta^{n-i} \).

1.1.25. How many combinatorially different polytopes may be obtained as \(v \Delta^n \)?

1.1.26. Show that if a polytope is \(k \)-neighbourly, then every \((2k-1) \)-face is a simplex. Conclude that if an \(n \)-polytope is \(\left[\frac{n}{k} \right]+1 \)-neighbourly, then it is a simplex. Conclude also that a neighbourly \(2k \)-polytope is simplicial. Are there neighbourly non-simplicial polytopes of odd dimension?

1.1.27. Are the polytopes \((\Delta^n \times \Delta^n)^* \) and \((\Delta^n \times \Delta^{n+1})^* \) combinatorially equivalent to cyclic polytopes?

1.2. Gale duality and Gale diagrams

We give basics of these fundamental concepts of convex geometry. For more information the reader should refer to the standard sources [30], [165] and [367].

The following construction realises any polytope (1.1) of dimension \(n \) by the intersection of the positive orthant

\[
R^n_\geq = \{ (y_1, \ldots, y_m) \in \mathbb{R}^m : y_i \geq 0 \} \quad \text{for} \quad i = 1, \ldots, m \}
\]

with an affine \(n \)-plane.
CONSTRUCTION 1.2.1. Let (1.1) be a presentation of a polyhedron. Consider the linear map $A: \mathbb{R}^m \rightarrow \mathbb{R}^n$ sending the ith basis vector e_i to a_i. It is given by the $n \times m$-matrix (which we also denote by A) whose columns are the vectors a_i, written in the standard basis of \mathbb{R}^n. The dual map $A^*: \mathbb{R}^n \rightarrow \mathbb{R}^m$ is given by $x \mapsto (\langle a_1, x \rangle, \ldots, \langle a_m, x \rangle)$. Note that A is of rank n if and only if the polyhedron P has a vertex (e.g., when P is a polytope, see Exercise 1.1.21). Also, let $b = (b_1, \ldots, b_m)^t \in \mathbb{R}^m$ be the column vector of bs. Then we can write (1.1) as

$$P = P(A, b) = \{ x \in \mathbb{R}^n : (A^* x + b)_i \geq 0 \text{ for } i = 1, \ldots, m \},$$

where $x = (x_1, \ldots, x_n)^t$ is the column of coordinates. Consider the affine map

$$i_{A, b}: \mathbb{R}^n \rightarrow \mathbb{R}^m, \quad i_{A, b}(x) = A^* x + b = (\langle a_1, x \rangle + b_1, \ldots, \langle a_m, x \rangle + b_m)^t.$$

If P has a vertex, then the image of \mathbb{R}^n under $i_{A, b}$ is an n-dimensional affine plane in \mathbb{R}^m, which we can specify by $m - n$ linear equations:

$$i_{A, b}(\mathbb{R}^n) = \{ y \in \mathbb{R}^m : y = A^* x + b \text{ for some } x \in \mathbb{R}^n \}$$

(1.7)

$$= \{ y \in \mathbb{R}^m : \Gamma y = \Gamma b \},$$

where $\Gamma = (\gamma_{jk})$ is an $(m - n) \times m$-matrix whose rows form a basis of linear relations between the vectors a_i. That is, Γ is of full rank and satisfies the identity $\Gamma A^* = 0$.

The polytopes P and $i_{A, b}(P)$ are affinely equivalent.

EXAMPLE 1.2.2. Consider the standard n-simplex $\Delta^n \subset \mathbb{R}^n$, see (1.2). It is given by (1.1) with $a_i = e_i$ (the ith standard basis vector) for $i = 1, \ldots, n$ and $a_{n+1} = -e_1 - \cdots - e_n$; $b_1 = \cdots = b_n = 0$ and $b_{n+1} = 1$. We may take $\Gamma = (1, \ldots, 1)$ in Construction 1.2.1. Then $\Gamma y = y_1 + \cdots + y_m$, $\Gamma b = 1$, and we have

$$i_{A, b}(\Delta^n) = \{ y \in \mathbb{R}^{n+1} : y_1 + \cdots + y_{n+1} = 1, y_i \geq 0 \text{ for } i = 1, \ldots, n \}.$$

This is the regular n-simplex in \mathbb{R}^{n+1}.

CONSTRUCTION 1.2.3 (Gale duality). Let a_1, \ldots, a_m be a configuration of vectors that span the whole \mathbb{R}^n. Form an $(m - n) \times m$-matrix $\Gamma = (\gamma_{jk})$ whose rows form a basis in the space of linear relations between the vectors a_i. The set of columns $\gamma_1, \ldots, \gamma_m$ of Γ is called a Gale dual configuration of a_1, \ldots, a_m. The transition from the configuration of vectors a_1, \ldots, a_m in \mathbb{R}^n to the configuration of vectors $\gamma_1, \ldots, \gamma_m$ in \mathbb{R}^{m-n} is called the (linear) Gale transform. Each configuration determines the other uniquely up to isomorphism of its ambient space. In other words, each of the matrices A and Γ determines the other uniquely up to multiplication by an invertible matrix from the left.

Using the coordinate-free notation, we may think of a_1, \ldots, a_m as a set of linear functions on an n-dimensional space W. Then we have an exact sequence

$$0 \rightarrow W \xrightarrow{A^*} \mathbb{R}^m \xrightarrow{\Gamma} L \rightarrow 0,$$

where A^* is given by $x \mapsto (\langle a_1, x \rangle, \ldots, \langle a_m, x \rangle)$, and the map Γ takes e_i to $\gamma_i \in L \cong \mathbb{R}^{m-n}$. Similarly, in the dual exact sequence

$$0 \rightarrow L^* \xrightarrow{\Gamma^*} \mathbb{R}^m \xrightarrow{A} W^* \rightarrow 0,$$

the map A takes e_i to $a_i \in W^* \cong \mathbb{R}^n$. Therefore, two configurations a_1, \ldots, a_m and $\gamma_1, \ldots, \gamma_m$ are Gale dual if they are obtained as the images of the standard basis of \mathbb{R}^m under the maps A and Γ in a pair of dual short exact sequences.

Here is an important property of Gale dual configurations:
Theorem 1.2.4. Let \(\alpha_1, \ldots, \alpha_m \) and \(\gamma_1, \ldots, \gamma_m \) be Gale dual configurations of vectors in \(\mathbb{R}^n \) and \(\mathbb{R}^{m-n} \) respectively, and let \(I = \{i_1, \ldots, i_k \} \subset [m] \). Then the subset \(\{\alpha_i : i \in I\} \) is linearly independent if and only if the subset \(\{\gamma_j : j \notin I\} \) spans the whole \(\mathbb{R}^{m-n} \).

The proof uses an algebraic lemma:

Lemma 1.2.5. Let \(k \) be a field or \(\mathbb{Z} \), and assume given a diagram

\[
\begin{array}{ccccccc}
0 & \downarrow & U & \downarrow & i_1 & \downarrow i_2 & \downarrow p_1 & \downarrow p_2 & T & \downarrow \gamma & 0 \\
\end{array}
\]

in which both vertical and horizontal lines are short exact sequences of \(k \)-vector spaces or free abelian groups. Then \(p_1 i_2 \) is surjective (respectively, injective or split injective) if and only if \(p_2 i_2 \) is surjective (respectively, injective or split injective).

Proof. This is a simple diagram chase. Assume first that \(p_1 i_2 \) is surjective. Take \(\alpha \in T \); we need to cover it by an element in \(U \). There is \(\beta \in S \) such that \(p_2(\beta) = \alpha \). If \(\beta \in i_1(U) \), then we are done. Otherwise set \(\gamma = p_1(\beta) \neq 0 \). Since \(p_1 i_2 \) is surjective, we can choose \(\delta \in R \) such that \(p_1 i_2(\delta) = \gamma \). Set \(\eta = i_2(\delta) \neq 0 \). Hence, \(p_1(\eta) = p_1(\delta) = \gamma \) and there is \(\xi \in U \) such that \(i_1(\xi) = \beta - \eta \). Then \(p_2 i_1(\xi) = p_2(\beta - \eta) = \alpha - p_2 i_2(\delta) = \alpha \). Thus, \(p_2 i_1 \) is surjective.

Now assume that \(p_1 i_2 \) is injective. Suppose \(p_2 i_1(\alpha) = 0 \) for a nonzero \(\alpha \in U \). Set \(\beta = i_1(\alpha) \neq 0 \). Since \(p_2(\beta) = 0 \), there is a nonzero \(\gamma \in R \) such that \(i_2(\gamma) = \beta \). Then \(p_1 i_2(\gamma) = p_1(\beta) = p_1 i_1(\alpha) = 0 \). This contradicts the assumption that \(p_1 i_2 \) is injective. Thus, \(p_2 i_1 \) is injective.

Finally, if \(p_1 i_2 \) is split injective, then its dual map \(i_2^* p_1^* : V^* \to U^* \) is surjective. Then \(i_1^* p_2^* : T^* \to U^* \) is also surjective. Thus, \(p_2 i_1 \) is split injective.

Proof of Theorem 1.2.4. Let \(A \) be the \(n \times m \)-matrix with column vectors \(\alpha_1, \ldots, \alpha_m \), and let \(\Gamma \) be the \((m-n) \times m \)-matrix with columns \(\gamma_1, \ldots, \gamma_m \). Denote by \(A_I \) the \(n \times k \)-submatrix formed by the columns \(\{\alpha_i : i \in I\} \) and denote by \(\Gamma_I \) the \((m-n) \times (m-k) \)-submatrix formed by the columns \(\{\gamma_j : j \notin I\} \). We also consider the corresponding maps \(A_I : \mathbb{R}^k \to \mathbb{R}^n \) and \(\Gamma_I : \mathbb{R}^{m-k} \to \mathbb{R}^{m-n} \).

Let \(i : \mathbb{R}^k \to \mathbb{R}^m \) be the inclusion of the coordinate subspace spanned by the vectors \(e_i, i \in I \), and let \(p : \mathbb{R}^m \to \mathbb{R}^{m-k} \) be the projection sending every such \(e_i \) to zero. Then \(A_I = A \cdot i \) and \(\Gamma_I = p \cdot \Gamma^* \). The vectors \(\{\alpha_i : i \in I\} \) are linearly independent if and only if \(A_I = A \cdot i \) is injective, and the vectors \(\{\gamma_j : j \notin I\} \) span \(\mathbb{R}^{m-n} \) if and only if \(\Gamma_I = p \cdot \Gamma^* \) is injective. These two conditions are equivalent by Lemma 1.2.5.

Construction 1.2.6 (Gale diagram). Let \(P \) be a polytope (1.1) with \(b_i = 1 \) and let \(P^* = \text{conv}(\alpha_1, \ldots, \alpha_m) \) be the polar polytope. Let \(\hat{A}^* = (A^* \cdot 1) \) be the
$m \times (n + 1)$-matrix obtained by appending a column of units to A^*. The matrix \tilde{A}^* has full rank $n + 1$ (indeed, otherwise there is $x \in \mathbb{R}^n$ such that $\langle a_i, x \rangle = 1$ for all i, and then λx is in P for any $\lambda \geq 1$, so that P is unbounded). A configuration of vectors $G = (g_1, \ldots, g_m)$ in \mathbb{R}^{m-n-1} which is Gale dual to \tilde{A} is called a Gale diagram of P^*. A Gale diagram $G = (g_1, \ldots, g_m)$ of P^* is therefore determined by the conditions

$$GA^* = 0, \quad \text{rank } G = m - n - 1, \quad \text{and} \quad \sum_{i=1}^{m} g_i = 0.$$

The rows of the matrix G from a basis of affine dependencies between the vectors a_1, \ldots, a_m, i.e. a basis in the space of $y = (y_1, \ldots, y_m)^t$ satisfying

$$y_1 a_1 + \cdots + y_m a_m = 0, \quad y_1 + \cdots + y_m = 0.$$

Proposition 1.2.7. The polyhedron $P = P(A, b)$ is bounded if and only if the matrix $\Gamma = (\gamma_{jk})$ can be chosen so that the affine plane $i_{A,b}(\mathbb{R}^n)$ is given by

$$i_{A,b}(\mathbb{R}^n) = \left\{ y \in \mathbb{R}^m : \begin{array}{c} \gamma_{11}y_1 + \cdots + \gamma_{1m}y_m = c, \\
\gamma_{j1}y_1 + \cdots + \gamma_{jm}y_m = 0, \quad 2 \leq j \leq m - n. \end{array} \right\},$$

where $c > 0$ and $\gamma_{1k} > 0$ for all k.

Furthermore, if $b_i = 1$ in (1.1), then the vectors $g_i = (\gamma_{2i}, \ldots, \gamma_{m-n,i})^t$, $i = 1, \ldots, m$, form a Gale diagram of the polar polytope $P^* = \text{conv}(a_1, \ldots, a_m)$. \hfill \Box

Proof. The image $i_{A,b}(P)$ is the intersection of the n-plane $L = i_{A,b}(\mathbb{R}^n)$ with \mathbb{R}_+^m. It is bounded if and only if $L_0 \cap \mathbb{R}_+^m = \{0\}$, where L_0 is the n-plane through 0 parallel to L. Choose a hyperplane H_0 through 0 such that $L_0 \subset H_0$ and $H_0 \cap \mathbb{R}_+^m = \{0\}$. Let H be the affine hyperplane parallel to H_0 and containing L. Since $L \subset H$, we may take the equation defining H as the first equation in the system $\Gamma y = \Gamma b$ defining L. The conditions on H_0 imply that $H \cap \mathbb{R}_+^m$ is nonempty and bounded, that is, $c > 0$ and $\gamma_{1k} > 0$ for all k. Now, subtracting the first equation from the other equations of the system $\Gamma y = \Gamma b$ with appropriate coefficients, we achieve that the right hand sides of the other $m - n - 1$ equations become zero.

To prove the last statement, we observe that in our case

$$\Gamma = \begin{pmatrix} \gamma_{11} & \cdots & \gamma_{1m} \\
y_1 & \cdots & y_m \end{pmatrix}.$$

The conditions $\Gamma A^t = 0$ and rank $\Gamma = m - n$ imply that $GA^t = 0$ and rank $G = m - n - 1$. Finally, by comparing (1.7) with (1.8) we obtain $\Gamma b = \left(\begin{array}{c} c \\
o \end{array} \right)$. Since $b_i = 1$, we get $\sum_{i=1}^{m} g_i = 0$. Thus, $G = (g_1, \ldots, g_m)$ is a Gale diagram of P^*. \hfill \Box

Corollary 1.2.8. A polyhedron $P = P(A, b)$ is bounded if and only if the vectors a_1, \ldots, a_m satisfy $\alpha_1 a_1 + \cdots + \alpha_m a_m = 0$ for some positive numbers α_k.

Proof. If a_1, \ldots, a_m satisfy $\sum_{k=1}^{m} \alpha_k a_k = 0$ with positive α_k, then we can take $\sum_{k=1}^{m} \alpha_k y_k = \sum_{k=1}^{m} \alpha_k b_k$ as the first equation defining the n-plane $i_{A,b}(\mathbb{R}^n)$ in \mathbb{R}^m. It follows that $i_{A,b}(P)$ is contained in the intersection of the hyperplane $\sum_{k=1}^{m} \alpha_k y_k = \sum_{k=1}^{m} \alpha_k b_k$ with \mathbb{R}_+^m, which is bounded since all α_k are positive. Therefore, P is bounded.

Conversely, if P is bounded, then it follows from Proposition 1.2.7 and Gale duality that a_1, \ldots, a_m satisfy $\gamma_{11} a_1 + \cdots + \gamma_{1m} a_m = 0$ with $\gamma_{1k} > 0$. \hfill \Box
A Gale diagram of P^* encodes its combinatorics (and the combinatorics of P) completely. We give the corresponding statement in the generic case only:

Proposition 1.2.9. Assume that (1.1) is a generic presentation with $b_i = 1$. Let $P^* = \text{conv}(a_1, \ldots, a_m)$ be the polar simplicial polytope and $G = (g_1, \ldots, g_m)$ be its Gale diagram. Then the following conditions are equivalent:

1. $F_{i_1} \cap \cdots \cap F_{i_k} \neq \emptyset$ in $P = P(A, 1)$;
2. $\text{conv}(a_{i_1}, \ldots, a_{i_k})$ is a face of P^*;
3. $0 \in \text{conv}(g_j : j \notin \{i_1, \ldots, i_k\})$.

Proof. The equivalence (a)\Leftrightarrow(b) follows from Theorems 1.1.5 and 1.1.7.

(b)\Rightarrow(c). Let $\text{conv}(a_{i_1}, \ldots, a_{i_k})$ be a face of P^*. We first observe that each of a_{i_1}, \ldots, a_{i_k} is a vertex of this face, as otherwise presentation (1.1) is not generic. By definition of a face, there exists a linear function ξ such that $\xi(a_j) = 0$ for $j \in \{i_1, \ldots, i_k\}$ and $\xi(a_j) > 0$ otherwise. We have $0 \in \text{int} P^*$, which implies that $\xi(0) > 0$, and we may assume that ξ has the form $\xi(u) = \langle u, x \rangle + 1$ for some $x \in \mathbb{R}^n$. Set $y_j = \xi(a_j) - \langle a_j, x \rangle + 1$, i.e. $y = A^*x + 1$. We have

$$\sum_{j \notin \{i_1, \ldots, i_k\}} g_j y_j = \sum_{j=1}^{m} g_j y_j = Gy = G(A^*x + 1) = G1 = \sum_{j=1}^{m} g_j = 0,$$

where $y_j > 0$ for $j \notin \{i_1, \ldots, i_k\}$. It follows that $0 \in \text{conv}(g_j : j \notin \{i_1, \ldots, i_k\})$.

(c)\Rightarrow(b). Let $\sum_{j \notin \{i_1, \ldots, i_k\}} g_j y_j = 0$ with $y_j \geq 0$ and at least one y_j nonzero. This is a linear relation between the vectors g_j. The space of such linear relations has basis formed by the columns of the matrix A^*. Hence, there exists $x \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $y_j = \langle a_j, x \rangle + b$. The linear function $\xi(u) = \langle u, x \rangle + b$ takes zero values on a_j with $j \in \{i_1, \ldots, i_k\}$ and takes nonnegative values on the other a_j. Hence, a_{i_1}, \ldots, a_{i_k} is a subset of the vertex set of a face. Since P^* is simplicial, a_{i_1}, \ldots, a_{i_k} is the vertex set of a face. \hfill \square

Remark. We allow redundant inequalities in Proposition (1.2.9). In this case we obtain the equivalences

$$F_i = \emptyset \iff a_i \in \text{conv}(a_j : j \neq i) \iff 0 \notin \text{conv}(g_j : j \neq i).$$

A configuration of vectors $G = (g_1, \ldots, g_m)$ in \mathbb{R}^{m-n-1} with the property

$$0 \in \text{conv}(g_j : j \notin \{i_1, \ldots, i_k\}) \iff \text{conv}(a_{i_1}, \ldots, a_{i_k})$$

is called a combinatorial Gale diagram of $P^* = \text{conv}(a_1, \ldots, a_m)$. For example, a configuration obtained by multiplying each vector in a Gale diagram by a positive number is a combinatorial Gale diagram. Also, the vectors of a combinatorial Gale diagram can be moved as long as the origin does not cross the 'walls', i.e. affine hyperplanes spanned by subsets of g_1, \ldots, g_m. A combinatorial Gale diagram of P^* is a Gale diagram of a polytope which is combinatorially equivalent to P^*.

Example 1.2.10.

1. The Gale diagram of Δ^n (when $m = n + 1$) consists of $n + 1$ points 0 in \mathbb{R}^n, i.e. $g_i = 0$, $i = 1, \ldots, m$.

2. Let $P = \Delta^{p-1} \times \Delta^{q-1}$ with $p + q = m$, i.e. $m = n + 2$. Then P^* is a hyperplane cut of a simplex Δ^{m-2} by a hyperplane that separates some $p - 1$ of its vertices from the other $q - 1$. A combinatorial Gale diagram of P^* consists of
\(p \) points \(1 \in \mathbb{R}^1 \) and \(q \) points \(-1 \in \mathbb{R}^1 \). The cases \(p = 1 \) or \(q = 1 \) correspond to a presentation of \(\Delta^{m-2} \) with one redundant inequality.

3. A combinatorial Gale diagram of a pentagon \((m = n + 3)\) is shown in Figure 1.2. The property that \(\text{conv}(a_1, a_2) \) is a face translates to \(0 \in \text{conv}(g_3, g_4, g_5) \).

Gale diagrams provide an efficient tool for studying the combinatorics of higher-dimensional polytopes with few vertices, as in this case a Gale diagram translates the higher-dimensional structure to a low-dimensional one. For example, Gale diagrams can be used to classify \(n \)-polytopes with up to \(n + 3 \) vertices and to find unusual examples when the number of vertices is \(n + 4 \), see [367, §6.5].

\textbf{Exercises.}

1.2.11. Describe combinatorial Gale diagrams of polytopes shown in Figure 1.3.

\textbf{1.3. Face vectors and Dehn–Sommerville relations}

The notion of the \(f \)-vector (or face vector) is a central concept in the combinatorial theory of polytopes. It has been studied since the time of Euler.

\textbf{Definition 1.3.1.} Let \(P \) be a convex \(n \)-polytope. Denote by \(f_i \) the number of \(i \)-dimensional faces of \(P \). The integer sequence \(f(P) = (f_0, f_1, \ldots, f_n) \) is called the \(f \)-vector (or the face vector) of \(P \). We set formally \(f_n = 1 \) (the polytope itself is often viewed as an \(n \)-face). The homogeneous \(F \)-\textit{polynomial} of \(P \) is defined by

\[
F(P)(s, t) = s^n + f_{n-1} s^{n-1} t + \cdots + f_1 s t^{n-1} + f_0 t^n.
\]

The \(h \)-vector \(h(P) = (h_0, h_1, \ldots, h_n) \) and the \(H \)-\textit{polynomial} of \(P \) are defined by

\[
\begin{align*}
 h_0 s^n + h_1 s^{n-1} t + \cdots + h_n t^n &= f_n(s-t)^n + f_{n-1}(s-t)^{n-1} t + \cdots + f_0 t^n, \\
 H(P)(s, t) &= h_0 s^n + h_1 s^{n-1} t + \cdots + h_{n-1} s t^{n-1} + h_n t^n = F(P)(s-t, t).
\end{align*}
\]

The \(g \)-vector of a simple polytope \(P \) is the vector \(g(P) = (g_0, g_1, \ldots, g_{[n/2]}) \), where \(g_0 = 1 \) and \(g_i = h_i - h_{i-1} \) for \(i = 1, \ldots, [n/2] \).

\textbf{Example 1.3.2.} We have

\[
\begin{align*}
 F(\Delta^n) &= s^n + \binom{n+1}{1} s^{n-1} t + \binom{n+1}{2} s^{n-2} t^2 + \cdots + t^n = \frac{(s+t)^{n+1} - t^{n+1}}{s}, \\
 H(\Delta^n) &= s^n + s^{n-1} t + s^{n-2} t^2 + \cdots + t^n = \frac{s^{n+1} - t^{n+1}}{s-t}.
\end{align*}
\]
1.3. Face vectors and Dehn–Sommerville relations

\textbf{Figure 1.3.} Two combinatorially non-equivalent simple polytopes with the same f-vectors.

Obviously, the f-vector is a \textit{combinatorial invariant} of a polytope, that is, it depends only on the face poset. This invariant is far from being complete, even for simple polytopes:

\textbf{Example 1.3.3.} Two different combinatorial simple polytopes may have the same f-vectors. For instance, let P be the 3-cube and Q a simple 3-polytope with 2 triangular, 2 quadrangular and 2 pentagonal facets, see Figure 1.3. (Note that Q is obtained by truncating a tetrahedron at two vertices, it is also dual to the cyclic polytope $C^3(6)$ from Definition 1.1.17.) Then $f(P) = f(Q) = (8, 12, 6).

The f-vector and the h-vector contain equivalent combinatorial information, and determine each other by means of linear relations, namely

\begin{equation}
(1.10) \quad h_k = \sum_{i=0}^{k} (-1)^{k-i} \binom{n-i}{n-k} f_{n-i}, \quad f_k = \sum_{q=k}^{n} \binom{q}{k} h_{n-q}, \quad \text{for } 0 \leq k \leq n.
\end{equation}

In particular, $h_0 = 1$ and $h_n = f_0 - f_1 + \cdots + (-1)^n f_n$. By the \textit{Euler formula},

\begin{equation}
(1.11) \quad f_0 - f_1 + \cdots + (-1)^n f_n = 1,
\end{equation}

which is equivalent to $h_n = h_0$. This is the first evidence of the fact that many combinatorial relations for the face numbers have much simpler form when written in terms of the h-vector. Another example of this phenomenon is given by the following generalisation of the Euler formula for simple or simplicial polytopes.

\textbf{Theorem 1.3.4 (Dehn–Sommerville relations).} The h-vector of any simple n-polytope is symmetric, that is,

\[H(s, t) = H(t, s), \quad \text{or} \quad h_i = h_{n-i} \quad \text{for} \quad 0 \leq i \leq n. \]

The Dehn–Sommerville relations can be proved in many different ways. We present a proof from [49], which can be viewed as a combinatorial version of Morse-theoretic arguments. An alternative proof will be given in Section 1.7.

\textbf{Proof of Theorem 1.3.4.} Let $P \subset \mathbb{R}^n$ be a simple polytope. Choose a generic linear function $\varphi: \mathbb{R}^n \to \mathbb{R}$ which distinguishes the vertices of P. Write $\varphi(\mathbf{x}) = \langle \mathbf{v}, \mathbf{x} \rangle$ for some vector \mathbf{v} in \mathbb{R}^n. The assumption on φ implies that \mathbf{v} is parallel to no edge of P. We can view φ as a height function on P and turn the 1-skeleton of P into a directed graph by orienting each edge in such a way that φ increases along it, see Figure 1.4. For each vertex v of P define the index $\text{ind}_v(v)$ as...
the number of incident edges that point towards \(v \). Denote the number of vertices of index \(i \) by \(I_\nu(i) \). We claim that \(I_\nu(i) = h_{n-i} \). Indeed, each face of \(P \) has a unique top vertex (the maximum of the height function \(\varphi \) restricted to the face) and a unique bottom vertex (the minimum of \(\varphi \)). Let \(G \) be a \(k \)-face of \(P \), and \(v_i \) its top vertex. Since \(P \) is simple, there are exactly \(k \) edges of \(G \) meeting at \(v_i \), whence \(\text{ind}(v_i) \geq k \). On the other hand, each vertex of index \(q \geq k \) is the top vertex for exactly \(\binom{q}{k} \) faces of dimension \(k \). It follows that the number of \(k \)-faces of \(P \) can be calculated as

\[
f_k = \sum_{q \geq k} \binom{q}{k} I_\nu(q).
\]

Now the second identity from (1.10) shows that \(I_\nu(q) = h_{n-q} \), as claimed. In particular, the number \(I_\nu(q) \) does not depend on \(\nu \). At the same time, we have \(\text{ind}_\nu(v) = n - \text{ind}_{-\nu}(v) \) for any vertex \(v \), which implies that

\[
h_{n-q} = I_\nu(q) = I_{-\nu}(n-q) = h_q.
\]

\[\square\]

Remark. The above proof also shows that the numbers \(h_k = I_\nu(n-k) \) are nonnegative, which is not evident from (1.10). On the other hand, the nonnegativity of the \(h \)-vector translates into certain conditions on the \(f \)-vector. This will be important in the subsequent study of \(f \)-vectors for combinatorial objects more general than simple polytopes.

Theorem 1.3.5. The \(f \)-vector of a simple \(n \)-polytope satisfies

\[
f_k = \sum_{i=0}^{k} (-1)^i \binom{n-i}{n-k} f_i, \quad \text{for } 0 \leq k \leq n.
\]

Proof. By the Dehn–Sommerville relations,

\[
F(s-t,t) = H(s,t) = H(t,s) = F(t-s,s).
\]

By substituting \(u = s-t \) we obtain \(F(u,t) = F(-u,t+u) \), or

\[
\begin{align*}
 u^n + f_{n-1}u^{n-1}t + \cdots + f_1ut^{n-1} + f_0u_n \\
 = (-u)^n + f_{n-1}(-u)^{n-1}(t+u) + \cdots + f_1(-u)(t+u)^{n-1} + f_0(t+u)^n.
\end{align*}
\]
Calculating the coefficient of $u^{k}t^{n-k}$ in both sides above yields (1.12). \hfill \Box

Proposition 1.3.6. The F- and H-polynomials are multiplicative, i.e.

\begin{align}
F(P_1 \times P_2) &= F(P_1)F(P_2), \\
H(P_1 \times P_2) &= H(P_1)H(P_2).
\end{align}

for any convex polytopes P_1 and P_2.

Proof. Let $\dim P_1 = n_1$ and $\dim P_2 = n_2$. Each k-face of $P_1 \times P_2$ is the product of an i-face of P_1 and a $(k-i)$-face of P_2 for some i, whence

\begin{equation}
f_k(P_1 \times P_2) = \sum_{i=0}^{n_1} f_i(P_1)f_{k-i}(P_2), \quad \text{for } 0 \leq k \leq n_1 + n_2.
\end{equation}

This implies the first identity, and the second follows from (1.9). \hfill \Box

Example 1.3.7. We have $F(I^n) = (F(\Delta^1))^n$ and $H(I^n) = (H(\Delta^1))^n$, i.e.

\begin{align}
F(I^n) &= (s + 2t)^n, \\
H(I^n) &= (s + t)^n.
\end{align}

We can also express the f-vector and the h-vector of the connected sum $P \# Q$ in terms of those of P and Q (the proof is left as an exercise):

Proposition 1.3.8. Let P and Q be simple n-polytopes. Then

\begin{align}
f_0(P \# Q) &= f_0(P) + f_0(Q) - 2; \\
h_0(P \# Q) &= h_n(P \# Q) = 1; \\
f_i(P \# Q) &= f_i(P) + f_i(Q) - \binom{n}{i}, \quad \text{for } 1 \leq i \leq n; \\
h_i(P \# Q) &= h_i(P) + h_i(Q), \quad \text{for } 1 \leq i \leq n - 1.
\end{align}

Using the Dehn–Sommerville relations we can show that a simplicial polytope cannot be ‘too neighbourly’ (see Definition 1.1.15) if it is not a simplex:

Proposition 1.3.9. Let S be a q-neighbourly simplicial n-polytope, and let $S \neq \Delta^n$. Then $q \leq \left[\frac{n}{2} \right]$.

Proof. Let S^* be the dual polytope. By Theorem 1.1.7, $f_{n-i}(S^*) = f_{i-1}(S) = \binom{m-i}{i}$ for $1 \leq i \leq q$, where m is the number of vertices of S. From (1.10) we get

\begin{equation}
h_k(S^*) = \sum_{i=0}^{k} (-1)^{k-i}\binom{n-i}{k-i}\binom{m-i}{i} = \binom{m-n+k-1}{k}, \quad \text{for } k \leq q,
\end{equation}

The second equality is obtained by calculating the coefficient of t^k on both sides of

\[\frac{1}{(1+t)^{n-k+1}}(1+t)^m = (1+t)^{m-n+k-1}. \]

If $S \neq \Delta^n$, then $m > n + 1$, which together with (1.15) gives $h_0(S^*) < h_1(S^*) < \cdots < h_q(S^*)$. It then follows from the Dehn–Sommerville relations that $q \leq \left[\frac{n}{2} \right]$. \hfill \Box

Since the H-polynomial of a simple n-polytope P satisfies the identity $H(P)(s,t) = H(P)(t,s)$, we can express it in terms of elementary symmetric functions as follows:

\begin{equation}
H(P)(s,t) = \sum_{i=0}^{\left[\frac{n}{2} \right]} \gamma_i (s+t)^{n-2i}(st)^i.
\end{equation}

The identity $h_0 = h_n = 1$ implies that $\gamma_0 = 1$.
Definition 1.3.10. The integer sequence \(\gamma(P) = (\gamma_0, \ldots, \gamma_{[n/2]}) \) is called the \(\gamma \)-vector of \(P \). We refer to
\[
\Gamma(P)(\tau) = \gamma_0 + \gamma_1 \tau + \cdots + \gamma_{[n/2]} \tau^{[n/2]}
\]
as the \(\Gamma \)-polynomial of \(P \).

Example 1.3.11. We have \(\Gamma(I^1) = 1 \). If \(P_m^2 \) is an \(m \)-gon, then \(\Gamma(P_m^2)(\tau) = 1 + (m - 4)\tau \).

The components of the \(\gamma \)-vector can be expressed via the components of any of the \(f \)-, \(h \)- or \(g \)-vector by means of linear relations, and vice versa. The explicit transition formulae between the \(g \)- and \(\gamma \)-vectors are given by the next lemma.

Lemma 1.3.12. Let \(P \) be a simple \(n \)-polytope. Then
\[
g_i = (n - 2i + 1) \sum_{j=0}^{i} \frac{1}{n - i - j + 1} \binom{n - 2j}{i - j} \gamma_j, \quad 0 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor;
\]
\[
\gamma_i = (-1)^i \sum_{j=0}^{i} (-1)^j \binom{n - i - j}{i - j} g_j, \quad 0 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor.
\]

Proof. Using the formulae of Examples 1.3.2 and 1.3.7 we calculate
\[
H(P) = \sum_{j=0}^{[n/2]} \gamma_j (st)^j H(I^{n-2j}),
\]
\[
H(I^q) = \sum_{j=0}^{q} \binom{q}{j} s^j t^{q-j} = \sum_{k=0}^{[q/2]} c_k q H(\Delta^{q-2k}),
\]
where \(c_{0,q} = 1 \) and \(c_{k,q} = \binom{q}{k} - \binom{q}{k-1} = \frac{q-2k+1}{q-k+1} \binom{q}{k} > 0 \) for \(k = 1, \ldots, \left\lfloor \frac{q}{2} \right\rfloor \). Hence
\[
H(P)(s,t) = \sum_{i=0}^{[n/2]} \left(\sum_{j=0}^{i} c_{i-j,n-2j} \gamma_j \right) (st)^i H(\Delta^{n-2i}).
\]
On the other hand,
\[
H(P)(s,t) = \sum_{i=0}^{[n/2]} g_i (st)^i H(\Delta^{n-2i}).
\]
Comparing the last two formulae we obtain \(g_i = \sum_{j=0}^{i} c_{i-j,n-2j} \gamma_j \), which is equivalent to the first required formula. The second is left as an exercise.

Proposition 1.3.13. Let \(P, Q \) be two simple \(n \)-polytopes, and consider the following four conditions:
(a) \(f_i(P) \geq f_i(Q) \) for \(i = 0, 1, \ldots, n \);
(b) \(h_i(P) \geq h_i(Q) \) for \(i = 0, 1, \ldots, n \);
(c) \(g_i(P) \geq g_i(Q) \) for \(i = 0, 1, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \);
(d) \(\gamma_i(P) \geq \gamma_i(Q) \) for \(i = 0, 1, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \).

Then (d) \(\Rightarrow \) (c) \(\Rightarrow \) (b) \(\Rightarrow \) (a).
1.4. CHARACTERISING THE FACE VECTORS OF POLYTOPES

Proof. The first of equations (1.10) implies that the components of \(f(P) \) are expressed via the components of \(h(P) \) with positive coefficients, which proves the implication (b)⇒(a). We have \(h_k = \sum_{i=0}^{k} g_i \) for \(0 \leq k \leq \left[\frac{n}{2} \right] \), which gives the implication (c)⇒(b). The implication (d)⇒(c) follows similarly from the first formula of Lemma 1.3.12. □

The components of the \(f \)-vector of any polytope are nonnegative. The nonnegativity of the components of the \(h \)-vector of a simple polytope follows from their geometric interpretation obtained in the proof of Theorem 1.3.4; the \(h \)-vector of a non-simple polytope may have negative components (e.g. for the octahedron). The nonnegativity of the \(g \)-vector of a simple \(n \)-polytope (that is, the inequalities \(g_i(P) \geq g_i(\Delta^n) \)) is a much more subtle property; it follows from the \(g \)-theorem discussed in the next section. The \(\gamma \)-vector of a simple polytope may have negative components (e.g. for \(P = \Delta^2 \)); its nonnegativity for special classes of simple polytopes will be discussed in Section 1.6. The nonnegativity of the \(\gamma \)-vector can be expressed by the inequalities \(\gamma_i(P) \geq \gamma_i(I^n) \), see Exercise 1.3.18.

Exercises.

1.3.14. Show that any 3-polytope has a face with \(\leq 5 \) vertices.

1.3.15. The \(f \)-vector of a simplicial \(n \)-polytope satisfies

\[
f_{q-1} = \sum_{j=q}^{n} \frac{(-1)^{n-j} j!}{q!} f_{j-1}, \quad \text{for } 1 \leq q \leq n+1.
\]

1.3.16. Prove Proposition 1.3.8.

1.3.17. Prove the second transition formula of Lemma 1.3.12.

1.3.18. Show that the \(\Gamma \)-polynomial is multiplicative, that is,

\[
\Gamma(P \times Q)(\tau) = \Gamma(P)(\tau) \cdot \Gamma(Q)(\tau)
\]

In particular, \(\Gamma(I^n)(\tau) = 1 \), i.e. \(\gamma(I^n) = (1, 0, \ldots, 0) \).

1.4. Characterising the face vectors of polytopes

The face numbers are the simplest combinatorial invariants of polytopes, and they arise in many hard problems of combinatorial geometry. One of the most natural and basic questions is to describe all possible face numbers, or, more precisely, determine which integer vectors arise as the \(f \)-vectors of polytopes. In the general case this question is probably intractable (see the end of this section), but a particularly nice answer exists in the case of simple (or, equivalently, simplicial) polytopes. Obviously, the Dehn–Sommerville relations provide a necessary condition. As far as only linear equations are concerned, there are no further restrictions:

Proposition 1.4.1 (Klee [217]). The Dehn–Sommerville relations are the most general linear equations satisfied by the face numbers of all simple polytopes.

Proof. Once again, the use of the \(h \)-vector simplifies the proof significantly. Given a simple polytope \(P \), we set

\[
h(P)(t) = H(P)(1, t) = h_0(P) + h_1(P)t + \cdots + h_n(P)t^n.
\]

It is enough to prove that the affine hull of the \(h \)-vectors \((h_0, h_1, \ldots, h_n)\) of simple \(n \)-polytopes is an \(\left[\frac{n}{2} \right] \)-dimensional plane. This can be done by presenting \(\left[\frac{n}{2} \right] + 1 \)
simple polytopes with affinely independent \(h \)-vectors. Take \(Q_k = \Delta^k \times \Delta^{n-k} \) for \(0 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor \). Since \(h(\Delta^k)(t) = 1 + t + \cdots + t^k \), formula (1.13) gives
\[
h(Q_k)(t) = \frac{1 - t^{k+1}}{1 - t} \cdot \frac{1 - t^{n-k+1}}{1 - t}.
\]
It follows that the lowest degree term in the polynomial \(h(Q_{k+1})(t) - h(Q_k)(t) \) is \(t^{k+1} \), for \(0 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor - 1 \). Therefore, the vectors \(h(Q_k) \) are affinely independent for these values of \(k \). \(\square \)

Example 1.4.2. Let \(P \) be a simple polytope. Since every vertex is contained in exactly \(n \) edges and each edge connects two vertices, we have a linear relation
(1.17) \[2f_1 = nf_0. \]
By Proposition 1.4.1 this must be a consequence of the Dehn–Sommerville relations (in fact, it is equation (1.12) for \(k = 1 \).)

Equation (1.17) together with the Euler identity (1.11) shows that the \(f \)-vector of a simple 3-polytope \(P^3 \) is completely determined by the number of facets, namely,

\[f(P^3) = (2f_2 - 4, 3f_2 - 6, f_2, 1). \]

Similarly, the \(f \)-vector of a simplicial 3-polytope \(S^3 \) is determined by the number of vertices, namely,

\[f(S^3) = (f_0, 3f_0 - 6, 2f_0 - 4, 1). \]

Remark. Euler’s formula (1.11) is the only linear relation satisfied by the face vectors of general polytopes. This can be proved similarly to Proposition 1.4.1, by specifying sufficiently many polytopes with affinely independent face vectors.

Apart from the linear equations, the \(f \)-vectors of polytopes satisfy certain inequalities. Here are some of the simplest of them.

Example 1.4.3. There are the following obvious lower bounds for the number of vertices and the number of facets of an \(n \)-polytope:

\[f_0 \geq n + 1, \quad f_{n-1} \geq n + 1. \]

Since every pair of vertices is joined by at most one edge, and every pair of facets intersect at most one face of codimension 2, we have the upper bounds
\[f_1 \leq \binom{f_0}{2}, \quad f_{n-2} \leq \binom{f_{n-1}}{2}. \]
If the polytope is simplicial, then there is also the following lower bound for \(f_1 \):
\[f_1 \geq nf_0 - \binom{n+1}{2}. \]
It is much more difficult to prove though, even for 4-polytopes. For simplicial 3-polytopes the inequality above turns into an identity.

Historically, the most important inequality-type results preceding the general characterisation of \(f \)-vectors were the Upper Bound Theorem (UBT) and the Lower Bound Theorem (LBT). They give respectively an upper and a lower bound for the number of faces in a simplicial polytope with the given number of vertices.

Theorem 1.4.4 (UBT for simplicial polytopes). Among all simplicial \(n \)-polytopes \(S \) with \(m \) vertices the cyclic polytope \(C^n(m) \) (Example 1.1.17) has the maximal number of \(i \)-faces for \(1 \leq i \leq n \). That is, if \(f_0(S) = m \), then

\[f_i(S) \leq f_i(C^n(m)) \quad \text{for } i = 1, \ldots, n. \]
Equality is achieved for all i if and only if S is a neighbourly polytope.

The UBT was conjectured by Motzkin and proved by McMullen [260] in 1970. Since $C^n(m)$ is neighbourly, we have

$$f_i(C^n(m)) = \binom{m}{i+1} \quad \text{for } 0 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor - 1.$$

Due to the Dehn–Sommerville relations, this determines the full f-vector of $C^n(m)$.

The exact values are given by the following lemma.

Lemma 1.4.5. The number of i-faces of the cyclic polytope $C^n(m)$ (or any neighbourly n-polytope with m vertices) is given by

$$f_i = \sum_{q=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{q}{n-1-i} \binom{m-n+q-1}{q} + \sum_{p=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \binom{n-p}{n-1-i} \binom{m-n+p-1}{p}$$

for $0 \leq i \leq n$, where we set $\binom{p}{q} = 0$ for $p < q$ or $q < 0$.

Proof. We set $C = C^n(m)$. Using the second identity from (1.10), the identity

$$\left\lfloor \frac{n}{2} \right\rfloor + 1 = n - \left\lfloor \frac{n-1}{2} \right\rfloor,$$

the Dehn–Sommerville relations for C^*, and (1.15), we calculate

$$f_i(C) = f_{n-1-i}(C^*) = \sum_{q=0}^{n-1-i} \binom{n-1-i}{q} h_{n-q}(C^*)$$

$$= \sum_{q=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{q}{n-1-i} h_q(C^*) + \sum_{q=\left\lfloor \frac{n}{2} + 1 \right\rfloor}^{n-1-i} \binom{n-1-i}{q} h_{n-q}(C^*)$$

$$= \sum_{q=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{q}{n-1-i} \binom{m-n+q-1}{q} + \sum_{p=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \binom{n-p}{n-1-i} \binom{m-n+p-1}{p}. \quad \square$$

Lemma 1.4.6. Assume that the inequalities

$$h_i(P) \leq \binom{m-n+i-1}{i}, \quad i = 0, \ldots, \left\lfloor \frac{n}{2} \right\rfloor$$

hold for the h-vector of a simple polytope P with m facets. Then the dual simplicial polytope P^* satisfies the UBT inequalities $f_i(P^*) \leq f_i(C^n(m))$ for $i = 1, \ldots, n$.

Proof. Since $h_i((C^n(m))^*) = \binom{m-n+i-1}{i}$ for $i = 0, \ldots, \left\lfloor \frac{n}{2} \right\rfloor$, the statement follows from Proposition 1.3.13. Alternatively, replace the last ‘=’ in the calculation from the proof of Lemma 1.4.5 by ‘≤’.

This was one of the key observations in McMullen’s original proof [260] of the UBT for simplicial polytopes (the proof itself can be found in [49, §18] and [367, §8.4]). R. Stanley gave an algebraic argument establishing the inequalities from Lemma 1.4.6, and therefore the UBT, in a much more general setting of triangulated spheres. We shall discuss Stanley’s approach and conclude the proof of the UBT in Section 3.3.

Remark. The UBT holds for all convex polytopes. That is, the cyclic polytope $C^n(m)$ has the maximal number of i-faces among all convex n-polytopes with m vertices. The argument for this builds on the following observation of Klee and McMullen, which we reproduce from [367, Lemma 8.24].
Lemma 1.4.7. By a small perturbation of vertices of an \(n \)-polytope \(P \) one can achieve that the resulting polytope \(P' \) is simplicial, and
\[
f_i(P) \leq f_i(P') \quad \text{for } i = 1, \ldots, n - 1.
\]

Definition 1.4.8. A simplicial \(n \)-polytope \(S \) is called \textit{stacked} if there is a sequence \(S_0, S_1, \ldots, S_k = S \) of \(n \)-polytopes such that \(S_0 \) is an \(n \)-simplex and \(S_{i+1} \) is obtained from \(S_i \) by adding a pyramid over a facet of \(S_i \) (the vertex of the added pyramid is chosen close enough to its base, so that the whole construction remains convex and simplicial). The polar simple polytopes are those obtained from a simplex by iterating the vertex cut operation of Example 1.1.14.2. These are sometimes called \textit{truncation polytopes}.

The \(f \)-vector of a stacked polytope is easy to calculate (see Exercise 1.4.16).

Theorem 1.4.9 (LBT for simplicial polytopes). Among all simplicial \(n \)-polytopes \(S \) with \(m \) vertices a stacked polytope has the minimal number of \(i \)-faces for \(2 \leq i \leq n - 1 \). That is, if \(f_0(S) = m \), then
\[
f_i(S) \geq \left(\begin{array}{c} n \\ i \end{array} \right) m - \left(\begin{array}{c} n+1 \\ i+1 \end{array} \right) i \quad \text{for } i = 1, \ldots, n - 2;
\]
\[
f_{n-1}(S) \geq (n-1)m - (n+1)(n-2).
\]

For \(n \neq 3 \) equality is achieved for all \(i \) if and only if \(S \) is a stacked polytope.

Remark. For \(n = 3 \) the LBT inequalities \(f_1 \geq 3m - 6 \) and \(f_2 \geq 2m - 4 \) turn into equalities for all simplicial polytopes.

An inductive argument by McMullen, Perles and Walkup [265] reduced the LBT to the case \(i = 1 \), namely, to the inequality \(f_1 \geq nm - \left(\begin{array}{c} n+1 \\ 2 \end{array} \right) \). It was finally proved by Barnette [22], [23]. Barnette’s proof of the LBT, with some simplifications, can also be found in [49]. The fact that equality is achieved only for stacked polytopes (if \(n \neq 3 \)) was proved by Billera and Lee [34].

Remark. Unlike the UBT, little is known about generalisations of the LBT to non-simplicial convex polytopes. Some results in this direction were obtained in [205] along with generalisations of the LBT to triangulated spheres and manifolds, which we also discuss later in this book.

An easy calculation shows that the inequalities \(f_{n-1} \geq n + 1 \) and \(f_{n-2} \geq nf_{n-1} - \left(\begin{array}{c} n+1 \\ 2 \end{array} \right) \) for simple polytopes from Example 1.4.3 can be written in terms of the \(h \)-vector as follows: \(h_0 \leq h_1 \leq h_2 \). Having reduced the whole LBT to the inequality \(h_1 \leq h_2 \), McMullen and Walkup [265] conjectured that the components of the \(h \)-vector ‘grow up to the middle’, that is the inequalities
\[
h_0 \leq h_1 \leq \cdots \leq h_{\left\lfloor \frac{n}{2} \right\rfloor}
\]
hold for a simple \(n \)-polytope. It has since become known as the \textit{Generalised Lower Bound Conjecture (GLBC)}.

McMullen also suggested a generalisation to the UBT, whose formulation requires the following definition.

Definition 1.4.10. For any two positive integers \(a, i \) there exists a unique \textit{binomial \(i \)-expansion} of \(a \) of the form
\[
a = \left(\begin{array}{c} a \\ i \end{array} \right) + \left(\begin{array}{c} a-i \\ i-1 \end{array} \right) + \cdots + \left(\begin{array}{c} 0 \\ j \end{array} \right).
\]
where \(a_i > a_{i-1} > \cdots > a_j \geq j \geq 1 \).

The binomial \(i \)-expansion of \(a \) can be constructed by choosing \(a_i \) as the unique number satisfying \(\binom{a_i}{i} \leq a < \binom{a_i+1}{i} \), then choosing \(a_{i-1} \), and so on. One needs only to check that \(a_i > a_{i-1} \), which is straightforward.

Now define the \(i \)th pseudopower of \(a \) as

\[
a^{(i)} = \binom{a_i+1}{i+1} + \binom{a_{i-1}+1}{i} + \cdots + \binom{a_j+1}{j+1}, \quad 0^{(i)} = 0.
\]

Example 1.4.11.
1. For \(a > 0 \), \(a^{(i)} = \binom{a+1}{i} \).
2. If \(i \geq a \) then the binomial expansion has the form

\[
a = \binom{i}{i} + \binom{i-1}{i-1} + \cdots + \binom{i-a+1}{i-a+1} = 1 + \cdots + 1,
\]

and therefore \(a^{(i)} = a \).
3. Let \(a = 28 \), \(i = 4 \). Then

\[
28 = \binom{6}{4} + \binom{5}{4} + \binom{4}{4}.
\]

The importance of the binomial expansion and pseudopowers comes from the following fundamental result of combinatorial commutative algebra.

Theorem 1.4.12 (Macaulay, Stanley). *The following two conditions are equivalent for a sequence of integers \((k_0, k_1, k_2, \ldots)\):

\[
(a) \quad k_0 = 1 \text{ and } 0 \leq k_{i+1} \leq k_i \text{ for } i \geq 1;
\]

(b) there exists a connected commutative graded algebra \(A = A_0 \oplus A_1 \oplus A_2 \oplus \cdots \) over a field \(k \) such that \(A \) is generated by its degree-one elements and \(\dim_k A^i = k_i \) for \(i \geq 0 \).

Macaulay’s original theorem [243] says that (b) above is equivalent to the existence of a *multicomplex* whose \(h \)-vector is given by \((k_0, k_1, k_2, \ldots)\). The original proof is long and complicated. The reformulation of Macaulay’s condition in terms of pseudopowers, i.e. condition (a), is due to Stanley [336, Theorem 2.2]. Simpler proofs of Theorem 1.4.12 can be found in [98] and [52, §4.2].

Definition 1.4.13. A sequence of integers satisfying either of the conditions of Theorem 1.4.12 is called an \(M \)-sequence. Finite \(M \)-sequences are \(M \)-vectors.

Now observe that the number \(\binom{m-n+i-1}{i} \) on the right hand side of the inequality of Lemma 1.4.6 equals the number of degree \(i \) monomials in \(h_1 = m - n \) generators. By Lemma 1.4.6, the UBT holds if the \(h \)-vector is an \(M \)-vector.

In 1970 McMullen [261] combined all known and conjectured information about the \(f \)-vectors, including the Dehn–Sommerville relations and the generalisations to the LBT and UBT discussed above, into a (conjectured) complete characterisation. McMullen’s conjecture is now proved, and remains up to the present time perhaps the most impressive achievement of the combinatorial theory of face numbers.

Theorem 1.4.14 (\(g \)-theorem). *An integer vector \((f_0, f_1, \ldots, f_n)\) is the \(f \)-vector of a simple \(n \)-polytope if and only if the corresponding sequence \((h_0, \ldots, h_n)\) determined by (1.9) satisfies the following three conditions:

\[
(a) \quad h_i = h_{n-i} \text{ for } i = 0, 1, \ldots, n \text{ (the Dehn–Sommerville relations)};
\]

\[
(b) \quad h_0 \leq h_1 \leq \cdots \leq h_{\left\lfloor \frac{n}{2} \right\rfloor};
\]

\[
(c) \quad h_0 = 1, h_{i+1} - h_i \leq (h_i - h_{i-1})^{(i)} \text{ for } i = 1, \ldots, \left\lfloor \frac{n}{2} \right\rfloor - 1.
\]
Remark. Condition (b) says that the components of the h-vector ‘grow up to the middle’, while (c) gives a restriction on the rate of this growth. Both (b) and (c) can be reformulated by saying that the g-vector $(g_0, \ldots, g_{[n/2]})$ (see Definition 1.3.1) is an M-vector; this explains the name ‘g-theorem’. The fact that the g-vector is an M-vector implies that the h-vector is also an M-vector (see Exercise 1.4.17).

Both necessity and sufficiency parts of the g-theorem were proved almost simultaneously (around 1980), although by radically different methods.

The sufficiency part was proved by Billera and Lee [33, 34]. The proof is quite elementary and relies upon a remarkable combinatorial-geometrical construction combining cyclic polytopes (achieving the upper bound for the number of faces) with the operation of ‘adding a pyramid’ (used to produce polytopes achieving the lower bound). As a result, a simplicial polytope can be produced with any prescribed g-vector between the minimal and the maximal ones. Another important consequence of the results of [265] and [34] is that the GLBC inequalities (1.18) are the most general linear inequalities satisfied by the f-vectors of simplicial polytopes.

Stanley’s proof [332] of the necessity part of g-theorem (i.e. that the g-vector of a simple polytope is an M-vector) used deep results from algebraic geometry, in particular, the Hard Lefschetz theorem for the cohomology of toric varieties. We shall give this argument in Section 5.3. After the appearance of Stanley’s paper combinatorialists had been looking for a more elementary combinatorial proof of his theorem, until in 1993 a first such proof was found by McMullen [262]. It builds upon the notion of the polytope algebra, which may be thought of as a combinatorial model for the cohomology algebras of toric varieties. Despite being elementary, it was a complicated proof. Later McMullen simplified his approach in [263]. Another elementary proof of the g-theorem was given by Timorin [349]. It relies on an interpretation of McMullen’s polytope algebra as the algebra of differential operators vanishing on the volume polynomial of the polytope.

By duality, the UBT and the LBT provide upper and lower bounds for the number of faces of a simple polytope with the given number of facets. Similarly, the g-theorem also provides a characterisation for the f-vectors of simplicial polytopes. During the last three decades some work was done in extending the g-theorem to objects more general than simplicial (or simple) polytopes, although the most important conjecture here remains open since 1971 (see Section 2.5). There are basically two diverging routes for generalisations of the g-theorem: towards non-polytopal objects (like triangulations of spheres or manifolds), and towards general convex polytopes which are neither simple nor simplicial. The former requires machinery from combinatorial topology and commutative algebra; we shall discuss the corresponding generalisations in more detail in the next chapters. The generalisations of the g-theorem to non-simplicial convex polytopes are beyond the scope of this book; they require algebraic geometry techniques such as intersection homology, which we only briefly discuss in Section 5.3.

Exercises.

1.4.15. Prove the following upper bound for the number of k-faces in a simple n-polytope P with f_0 vertices:

$$f_k \leq \frac{1}{k+1} \binom{n}{k} f_0, \quad \text{for } k = 1, \ldots, n,$$
where the equality is achieved only for $P = \Delta^n$. Observe that this inequality gives a better upper bound for simple polytopes that the UBT.

1.4.16. Show that the numbers of faces of a stacked n-polytope S with $m = f_0$ vertices are given by

$$f_i(S) = \binom{n}{i}m - \binom{n+1}{i+1}, \quad \text{for} \ 1 \leq i \leq n - 2;$$

$$f_{n-1}(S) = (n-1)m - (n+1)(n-2).$$

1.4.17. Let $h = (h_0, h_1, \ldots, h_n)$ be an integer vector with $h_0 = 1$ and $h_i = h_{n-i}$ for $0 \leq i \leq n$, and let $g = (g_0, g_1, \ldots, g_{\lfloor n/2 \rfloor})$ where $g_0 = 1$, $g_i = h_i - h_{i-1}$ for $i > 0$. Show that if g is an M-vector, then h is also an M-vector.

1.4.18. Prove directly that parts (a) and (b) of the g-theorem imply the LBT, while parts (a) and (c) imply the UBT.
Polytopes: Additional Topics

1.5. Nestohedra and graph-associahedra

Several constructions of series of simple polytopes with remarkable properties appeared in the beginning of the 1990s under the common name of ‘generalised associahedra’. (The original associahedron, or Stasheff polytope, was first introduced in homotopy theory [338].) Nowadays generalised associahedra find numerous applications in algebraic geometry [150], the theory of knot and link invariants [44], representation theory and cluster algebras [139], and the theory of operads and geometric ‘field theories’ originating from quantum physics [339].

Without attempting to overview all aspects of generalised associahedra, we describe one particular construction which uses the Minkowski sum and the combinatorial concept of a building set. The resulting polytopes are known as nestohedra. Our exposition is much influenced by the original works of Feichtner–Sturmfels [134] and Postnikov [308]. Although the class of nestohedra does not include all possible generalisations of associahedra, it is wide enough to contain all classical series, and the construction is elementary enough so that it requires no specific knowledge.

The Minkowski sum is a classical geometric construction allowing one to produce new polytopes from known ones, just like the product, hyperplane cut and connected sum described in Section 1.1. However, a Minkowski sum of simple polytopes usually fails to be simple. Interesting examples of polytopes can be obtained by taking Minkowski sums of regular simplices. Simplices in such a Minkowski sum are indexed by a collection S of subsets of a finite set. It was shown in [134] and [308] that a Minkowski sum of regular simplices is a simple polytope if S satisfies certain combinatorial condition, identifying it as a building set. The resulting family of simple polytopes was called nestohedra in [309] because of its connection to nested sets considered by De Concini and Procesi [113] in the context of subspace arrangements. An example of a building set is provided by the collection of subsets of vertices which span connected subgraphs in a given graph. The corresponding nestohedra are called graph-associahedra; they were introduced and studied in the work of Carr and Devadoss [84], and independently in the work of Toledano Laredo [350] under the name De Concini–Procesi associahedra. These include the classical series of permutohedra and associahedra.

Minkowski sums of simplices. Recall that the Minkowski sum of two subsets $A, B \subseteq \mathbb{R}^n$ is defined as

$$A + B = \{ x + y : x \in A, y \in B \}.$$

Proposition 1.5.1. The Minkowski sum of two polytopes is a polytope. Moreover, if $P = \text{conv}(v_1, \ldots, v_k)$ and $Q = \text{conv}(w_1, \ldots, w_l)$, then

$$P + Q = \text{conv}(v_1 + w_1, \ldots, v_k + w_l).$$
Proof. Follows directly from the definition of Minkowski sum. \[\square\]

For every subset \(S \subseteq [n+1] = \{1, \ldots, n+1\}\) consider the regular simplex $$\Delta_S = \text{conv}(e_i : i \in S) \subseteq \mathbb{R}^{n+1}.$$

Let \(\mathcal{F}\) be a collection of nonempty subsets of \([n+1]\). We assume that \(\mathcal{F}\) contains all singletons \(\{i\}, \ 1 \leq i \leq n+1\). As usual, denote by \(|\mathcal{F}|\) the number of elements in \(\mathcal{F}\). Given a subset \(N \subseteq [n+1]\), denote by \(\mathcal{F}\lceil N\) the restriction of \(\mathcal{F}\) to \(N\), i.e. $$\mathcal{F}\lceil N = \{S \in \mathcal{F} : S \subseteq N\}$$ of subsets in \(N\). A collection \(\mathcal{F}\) is **connected** if \([n+1]\) cannot be represented as a disjoint union of nonempty subsets \(N_1\) and \(N_2\) such that for every \(S \subseteq N_1\) or \(S \subseteq N_2\).Obviously, every collection \(\mathcal{F}\) splits into the disjoint union of its connected components.

Remark. In some further considerations we shall allow \(\mathcal{F}\) to contain some subsets of \([n+1]\) with multiplicities.

Now consider the convex polytope

\[
P_{\mathcal{F}} = \sum_{S \in \mathcal{F}} \Delta_S \subseteq \mathbb{R}^{n+1}.
\]

The following statement gives some of its basic properties.

Proposition 1.5.2. Let \(\mathcal{F} = \mathcal{F}_1 \sqcup \cdots \sqcup \mathcal{F}_q\) be the decomposition into connected components. Then

(a) \(P_{\mathcal{F}} = P_{\mathcal{F}_1} \times \cdots \times P_{\mathcal{F}_q}\);

(b) \(\dim P_{\mathcal{F}} = n + 1 - q\).

Proof. Statement (a) follows from the fact that the polytopes \(P_{\mathcal{F}_i}\) are contained in complementary subspaces for \(1 \leq i \leq q\), so their Minkowski sum is the product. Because of (a), it is enough to verify (b) for connected \(\mathcal{F}\) only. Then we need to prove that \(\dim P_{\mathcal{F}} = n\). Observe that \(P_{\mathcal{F}}\) is contained in the hyperplane

\[H = \{x \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_i = |\mathcal{F}|\}\]

and therefore \(\dim P_{\mathcal{F}} \leq n\). If \(\mathcal{F}\) has a unique maximal element, then this element is \([n+1]\), because \(\mathcal{F}\) is connected. Hence, \(P_{\mathcal{F}}\) has an \(n\)-simplex as a Minkowski summand, and therefore \(\dim P_{\mathcal{F}} = n\). We shall only need this case in the further considerations, so we skip the rest of the proof and leave it as an exercise. \[\square\]

We now describe two extreme examples of polytopes \(P_{\mathcal{F}}\), corresponding to the minimal and the maximal connected collections.

Example 1.5.3 (Simplex). Let \(S\) be the collection consisting of all singletons and the whole set \([n+1]\). Then \(P_S\) is the regular \(n\)-simplex \(\Delta_{[n+1]}\) shifted by the vector \(e_1 + \cdots + e_{n+1}\).

Permutahedron. Let \(\mathcal{C}\) be the complete collection, consisting of all subsets in \([n+1]\). The polytope \(P_{\mathcal{C}}\) is \(n\)-dimensional by Proposition 1.5.2.

Theorem 1.5.4. \(P_{\mathcal{C}}\) can be described as the intersection of the hyperplane

\[H_{\mathcal{C}} = \{x \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_i = 2^{n+1} - 1\}\]
with the halfspaces

\[H_{S, >} = \{ x \in \mathbb{R}^{n+1}; \sum_{i \in S} x_i \geq 2^{|S|} - 1 \} \]

for all proper subsets \(S \subseteq [n+1] \). Moreover, every halfspace above is irredundant, i.e. determines a facet \(F_S \) of \(P_C \), so there are \(|C| = 2^{n+1} - 2 \) facets in total.

Proof. By definition, every point \(x = (x_1, \ldots, x_{n+1}) \in P_C \) can be written as \(x = \sum_{S \in C} x^S \) where \(x^S = (x_1^S, \ldots, x_{n+1}^S) \in \Delta_S \). Then

\[
\sum_{i=1}^{n+1} x_i = \sum_{S \in C} \sum_{i=1}^{n+1} x_i^S = \sum_{S \in C} 1 = |C| = 2^{n+1} - 1,
\]

which implies that \(P_C \subseteq H_C \). Similarly,

\[
\sum_{i \in S} x_i = \sum_{T \subseteq \mathbb{C} \in S} x_i^T \geq \sum_{T \subseteq \mathbb{C} \in S} x_i^T = \sum_{T \subseteq \mathbb{C} \in S} 1 = |C|_S = 2^{|S|} - 1,
\]

so \(P_C \) is contained in all subspaces \(H_{S, >} \).

It remains to show that any facet of \(P_C \) has the form \(P_C \cap H_S \), where \(H_S \) is the bounding hyperplane for \(H_{S, >} \). Since \(P_C \) is a Minkowski sum of simplices, each of its faces \(G \) is a Minkowski sum of faces of these simplices. We therefore may write \(G \) as \(\sum_{S \in C} \Delta_{T_S} \) where \(T_S \subseteq S \). By Proposition 1.5.2, if \(G \) is a facet (i.e. \(\dim G = n - 1 \)), then the collection \(\mathcal{T} = \{ T_S \} \) of subsets in \([n+1]\) has exactly two connected components. (Note that \(\mathcal{T} \) may contain some subsets more than once.) Let \([n+1] = N_1 \sqcup N_2 \) and \(\mathcal{T} = \{ T \} \mid N_1 \sqcup \mathbb{T} \mid N_2 \) be the decomposition into components. Then the hyperplane containing the facet \(G \) is defined by each of the two equations

\[
\sum_{i \in N_1} x_i = |\mathcal{T}|_{N_1} \quad \text{or} \quad \sum_{i \in N_2} x_i = |\mathcal{T}|_{N_2}.
\]

Since every \(T_S \) is contained in the corresponding \(S \), we have

\[
|\mathcal{T}|_{N_1} \geq |C|_{N_1} \quad \text{and} \quad |\mathcal{T}|_{N_2} \geq |C|_{N_2}.
\]

We claim that at least one of these inequalities turns into equality. Indeed, assume the converse. By (1.20) the minimum of the linear function \(\sum_{i \in N_1} x_i \) on \(P_C \) is \(|C|_{N_1} \), so there is a point \(x' \in P_C \) with

\[
\sum_{i \in N_1} x_i' = |C|_{N_1} < |\mathcal{T}|_{N_1}.
\]

Similarly, there is a point \(x'' \in P_C \) with

\[
\sum_{i \in N_2} x_i'' = |C|_{N_2} < |\mathcal{T}|_{N_2}.
\]

Since \(N_1 \sqcup N_2 = [n+1] \), the latter inequality is equivalent to \(\sum_{i \in N_1} x_i'' > |\mathcal{T}|_{N_1} \).

This together with (1.23) implies that there are points of \(P_C \) in both open halfspaces determined by the first of the equations (1.21), which contradicts the assumption that \(G \) is a facet. So at least one of (1.22) is an equality, which implies that the hyperplane (1.21) containing \(G \) has the form \(H_S \) (where \(S \) is either \(N_1 \) or \(N_2 \)).

It follows that every facet is contained in the hyperplane \(H_S \) for some \(S \). On the other hand, every subset \(S \) can be taken as \(N_1 \) in the construction of the preceding paragraph, which shows that every \(H_S \) contains a facet. \(\square \)
Having identified the facets, we may derive the following description of the whole face poset of P_n.

Proposition 1.5.5. Faces of P_n of dimension k are in one-to-one correspondence with ordered partitions of the set $[n+1]$ into $n+1-k$ nonempty parts. An inclusion of faces $G \subseteq F$ occurs whenever the ordered partition corresponding to G can be obtained by refining the ordered partition corresponding to F.

Proof. This follows from the fact that two facets F_S and $F_{S'}$ of P_n have nonempty intersection if and only if $S_1 \subset S_2$ or $S_2 \subset S_1$. We skip the details to avoid repetitive arguments; see Theorem 1.5.13 below for a more general result. □

Corollary 1.5.6.

(a) P_n is a simple polytope;

(b) the vertices of P_n are obtained by all permutations of the coordinates of the point $(1, 2, 4, \ldots, 2^n) \in \mathbb{R}^{n+1}$.

The polytope whose vertices are obtained by permuting the coordinates of a given point is known as the permutohedron; it has been studied by convex geometers since the beginning of the 20th century. More precisely, given a point $a = (a_1, \ldots, a_{n+1}) \in \mathbb{R}^{n+1}$ with $a_1 < a_2 < \cdots < a_{n+1}$, define the corresponding permutohedron as

$$P_n(a) = \text{conv}(\sigma(a_1), \ldots, \sigma(a_{n+1}); \sigma \in \Sigma_{n+1}),$$

where Σ_{n+1} denotes the group of permutations of $n+1$ elements. In particular, $P_n = P_n(1, 2, \ldots, 2^n)$. All n-dimensional permutohedra $P_n(a)$ are combinatorially equivalent; this follows from the following description of their faces:

Theorem 1.5.7.

(a) Every facet of $P_n(a)$ is the intersection of $P_n(a)$ with the hyperplane

$$H_S = \{ x \in \mathbb{R}^{n+1} : \sum_{i \in S} x_i = a_1 + a_2 + \cdots + a_{|S|} \}$$

for a proper subset $S \subset [n+1]$.

(b) The faces of $P_n(a)$ are described in the same way as in Proposition 1.5.5.

Proof. This can be proved by mimicking the proof of Theorem 1.5.4. Another way to proceed is as follows. Every face of $P_n(a)$ is a set of points where a certain linear function $\varphi_b = (b, \cdot)$ restricted to the polytope achieves its minimum. We denote this face by G_b. Then $b = (b_1, \ldots, b_{n+1})$ defines an ordered partition $[n+1] = N_1 \cup \cdots \cup N_k$ according to the sets of equal coordinates of b. Namely, if $b_k = b_l$ then k and l are in the same N_i, while if $b_k < b_l$ then $k \in N_i$ and $l \in N_j$ with $i < j$. It can be shown that (a) $\dim G_b = n+1-k$, and (b) the face G_b only depends on the ordered partition above and does not depend on the particular values of b_k. In particular, the vertices of $P_n(a)$ correspond to φ_b where all coordinates of b are different, while the facets correspond to φ_b where all coordinates of b are either 0 or 1. We leave the details to the reader. □

We shall denote an n-dimensional combinatorial permutohedron by P_n. The classical permutohedron corresponds to $a = (1, 2, \ldots, n+1)$. It can also be obtained as a Minkowski sum (1.19) as follows (we leave the proof as an exercise):
Proposition 1.5.8. Let I be the collection of all subsets of cardinality ≤ 2 in $[n+1]$. Then

$$P_I = P_{\mathbb{R}^n}(1, 2, \ldots, n+1).$$

The polytope P_I is the Minkowski sum of segments of the form $\text{conv}(e_i, e_j)$ for $1 \leq i < j \leq n+1$, shifted by the vector $e_1 + \cdots + e_{n+1}$. Minkowski sums of segments are known as *zonotopes*; this family of polytopes has many remarkable properties [367, §7.3]. However, general zonotopes are rarely simple; the permutahedron is one of the few exceptions.

Building sets and nestohedra. We now return to general Minkowski sums (1.19). The next statement gives a description of P_F in terms of inequalities, and generalises the first part of Theorem 1.5.4.

Proposition 1.5.9 ([134, Proposition 3.12]). P_F can be described as the intersection of the hyperplane

$$H_F = \{x \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_i = |F| \}$$

with the halfspaces

$$H_{T, \geq} = \{x \in \mathbb{R}^{n+1} : \sum_{i \in T} x_i \geq |F\setminus T| \}$$

corresponding to all proper subsets $T \subseteq [n+1]$.

Proof. Since P_F is a Minkowski summand in the permutahedron P_C, it is defined by inequalities of the form $\sum_{i \in T} x_i \geq b_T$ for some parameters b_T. The minimum value of the linear function $\sum_{i \in T} x_i$ on a simplex Δ_S equals one if $S \subset T$, and equals zero otherwise. Therefore, $b_T = |F\setminus T|$, as needed. \(\square\)

It follows that P_F can be obtained by iteratively cutting the n-simplex

$$H_F \cap \{x : x_i \geq 1 \text{ for } i = 1, \ldots, n+1\}$$

by the hyperplanes $H_{T, \geq}$ corresponding to subsets T of cardinality ≥ 2. In the case of the permutahedron, each of these cuts is nontrivial, that is, the corresponding hyperplane is not redundant. In general, the description of P_F in Proposition 1.5.9 is redundant. The concept of a building set will allow us to achieve an irredundant description of P_F for certain F and therefore describe the face posets. The resulting polytopes P_F will be simple; furthermore they will be obtained from a simplex by a sequence of face truncations.

Definition 1.5.10. A collection B of nonempty subsets of $[n+1]$ is called a *building set on* $[n+1]$ if the following two conditions are satisfied:

(a) $S', S'' \in B$ with $S' \cap S'' \neq \emptyset$ implies $S' \cup S'' \in B$;

(b) $\{i\} \in B$ for all $i \in [n+1]$.

Remark. The terminology comes from a more general notion of a building set in a finite lattice, so that the building set above corresponds to the case of the Boolean lattice $2^{[n+1]}$. See [134, §3] for the details.
Note that a building set B on $[n+1]$ is connected if and only if $[n+1] \in B$. Given $S \subset [n+1]$ define the contraction of S from B as

$$B/S = \{ T \setminus S : T \in B, \ T \setminus S \neq \emptyset \} = \{ S' \subset [n+1] \setminus S : S' \in B \text{ or } S' \cup S \in B \}.$$

The restriction $B|_S$ and the contraction B/S are building sets on S and $[n+1]\setminus S$ respectively. Note that $B|_S$ is connected if and only if $S \in B$. If B is connected, then B/S is also connected for any S.

We now consider polytopes P_B (1.19) corresponding to building sets B. The following specification of Proposition 1.5.9 gives an irredundant description of P_B as an intersection of halfspaces.

Proposition 1.5.11 ([134], [308]). We have

$$P_B = \left\{ x \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_i = |B|, \sum_{i \in S} x_i \geq |B|_S \text{ for every } S \in B \right\}.$$

If B is connected, then this representation is irredundant, that is, every hyperplane $H_S = \{ x \in \mathbb{R}^{n+1} : \sum_{i \in S} x_i = |B|_S \}$ with $S \neq [n+1]$ defines a facet F_S of P_B (so that the number of facets of P_B is $|B| - 1$).

Proof. The halfspace $H_{T, \geq}$ in the presentation of P_B from Proposition 1.5.9 is irredundant if the intersection of P_B with the corresponding hyperplane H_T is a facet. This intersection is a face of P_B given by

$$P_{B|_T} + P_{B/T}$$

(since $P_{B|_T}$ and $P_{B/T}$ lie in complementary subspaces, their Minkowski sum is actually a product). In order for this face to have codimension one in P_B, it is necessary, by Proposition 1.5.2, that the collection $B|_T$ be connected. This condition is equivalent to $T \in B$. If B is connected, then this condition is also sufficient, because then B/T is also connected, and $\dim(P_{B|_T} + P_{B/T}) = n - 1$ by Proposition 1.5.2. \hfill \Box

Corollary 1.5.12. If B is a connected building set on $[n+1]$, then every facet of P_B can be written as

$$P_{B|_T} \times P_{B/T}$$

for some $T \in B \setminus [n+1]$.

Theorem 1.5.13. The intersection of facets $F_{S_1} \cap \cdots \cap F_{S_k}$ is nonempty (and therefore is a face of P_B) if and only if the following two conditions are satisfied:

(a) for any i, j, $1 \leq i < j \leq k$, either $S_i \subset S_j$, or $S_j \subset S_i$, or $S_i \cap S_j = \emptyset$;

(b) if the sets S_1, \ldots, S_p are pairwise nonintersecting, then $S_1 \cup \cdots \cup S_p \notin B$.

Proof. Assume $F_{S_1} \cap \cdots \cap F_{S_k} \neq \emptyset$.

If (a) fails, then $S_1 \cup S_j \in B$, and for any $x \in F_{S_1} \cap F_{S_j}$ we have

$$\sum_{k \in S_1} x_k = |B|_{S_1}, \sum_{k \in S_j} x_k = |B|_{S_j}, \sum_{k \in S_1 \cup S_j} x_k \geq |B|_{S_1 \cup S_j}.$$

Adding the first two equalities and subtracting the third inequality we obtain

$$\sum_{k \in S_1 \cap S_j} x_k \leq |B|_{S_1} + |B|_{S_j} - |B|_{S_1 \cup S_j} < |B|_{S_1} + |B|_{S_j} - |B|_{S_1 \cup S_j} = |B|_{S_1 \cap S_j}$$

where the second inequality is strict because $B|_{S_1 \cup S_j} \subseteq B|_{S_1 \cup S_j}$. Now the inequality $\sum_{k \in S_1 \cap S_j} x_k < |B|_{S_1 \cap S_j}$ contradicts Proposition 1.5.9.
If (b) fails, then \(S_{i_1} \sqcup \cdots \sqcup S_{i_p} \in \mathcal{B} \), and for any \(x \in F_{S_{i_1} \cap \cdots \cap F_{S_{i_p}}} \) we have

\[
\sum_{k \in S_{i_q}} x_k = \left| \mathcal{B}|_{S_{i_q}} \right| \text{ for } 1 \leq q \leq p, \quad \text{and} \quad \sum_{k \in S_{i_1} \sqcup \cdots \sqcup S_{i_p}} x_k \geq \left| \mathcal{B}|_{S_{i_1} \cup \cdots \cup S_{i_p}} \right|.
\]

Subtracting the first \(p \) equalities from the last inequality we obtain

\[
\left| \mathcal{B}|_{S_{i_1}} \right| + \cdots + \left| \mathcal{B}|_{S_{i_p}} \right| \geq \left| \mathcal{B}|_{S_{i_1} \cup \cdots \cup S_{i_p}} \right|.
\]

This leads to a contradiction because \(S_{i_1} \sqcup \cdots \sqcup S_{i_p} \in \mathcal{B} \).

Now assume that both (a) and (b) are satisfied. We need to show that \(F_{S_{i_1} \cap \cdots \cap F_{S_{i_p}}} \neq \emptyset \).

We write \(x = \sum_{T \in \mathcal{B}} x^T \) and note that the inequality \(\sum_{i \in S} x_i \geq \left| \mathcal{B}|_{S} \right| \) defining the facet \(F_S \) turns into equality if and only if \(x_i^T = 0 \) for every \(T \in \mathcal{B} \), \(T \not\subseteq S \) and \(i \in S \) (this follows from (1.20)). Hence,

\[
(1.24) \quad x = \sum_{T \in \mathcal{B}} x^T \in F_{S_{i_1} \cap \cdots \cap F_{S_{i_k}}}
\]

\[\iff x_i^T = 0 \quad \text{whenever } T \in \mathcal{B}, \ T \not\subseteq S_j, \ i \in S_j, \ \text{for } 1 \leq j \leq k. \]

We therefore need to find \(x \) whose coordinates satisfy the \(k \) conditions on the right hand side of (1.24). Given \(T \in \mathcal{B} \), the \(j \)th condition is not void only if \(T \not\subseteq S_j \) and \(T \cap S_j \neq \emptyset \). We may assume without the loss of generality that the first \(k' \) conditions in (1.24) are not void, and the rest are void. That is, \(T \not\subseteq S_j \) and \(T \cap S_j \neq \emptyset \) for \(1 \leq j \leq k' \), while \(T \subseteq S_j \) or \(T \cap S_j = \emptyset \) for \(j > k' \). Then we claim that \(T \setminus (S_1 \cup \cdots \cup S_{k'}) \neq \emptyset \). Indeed, otherwise choosing among \(S_{i_1}, \ldots, S_{k'} \) the maximal subsets \(S_{i_1}, \ldots, S_{i_p} \) (which are pairwise disjoint by (a)) we obtain \(S_{i_1} \cup \cdots \cup S_{i_p} = T \cup S_{i_1} \cup \cdots \cup S_{i_p} \in \mathcal{B} \), which contradicts (b). Now setting \(x_i^T = 1 \) for only one \(i \in T \setminus (S_1 \cup \cdots \cup S_{k'}) \) and \(x_i^T = 0 \) for the rest, we obtain the required point \(x \) in the intersection \(F_{S_{i_1} \cap \cdots \cap F_{S_{i_k}}} \).

Definition 1.5.14. A subcollection \(\{S_1, \ldots, S_k\} \subset \mathcal{B} \) satisfying conditions (a) and (b) of Theorem 1.5.13 is called a **nested set**. Following [309], we refer to polytopes \(P_B \) (1.19) corresponding to building sets \(\mathcal{B} \) as **nestohedra**.

From the description of the face lattice of nestohedra in Theorem 1.5.13 it is easy to deduce their following main property.

Theorem 1.5.15. Every nestohedron \(P_B \) is a simple polytope.

Proof. By Proposition 1.5.2 we may assume that \(\mathcal{B} \) is connected. A collection \(S_1, \ldots, S_k \) can satisfy both conditions of Theorem 1.5.13 only if \(k \leq n \). \(\square \)

Example 1.5.16. If \(\mathcal{B} \) is a connected building set on a 2-element set, then \(P_B \) is an interval \(I^1 \). If \(\mathcal{B} \) is a connected building set on a 3-element set, then \(P_B \) is a polygon, and only \(m \)-gons with \(3 \leq m \leq 6 \) arise in this way.

More examples will appear in the next subsection.

Proposition 1.5.11 gives a particular way to obtain a nestohedron \(P_B \) from a simplex by a sequence of hyperplane cuts. The next result shows that these hyperplane cuts can be organised in such a way that we get a sequence of face truncations (see Construction 1.1.12).

Let \(\mathcal{B}_0 \subset \mathcal{B}_1 \) be building sets on \([n+1]\), and \(S \in \mathcal{B}_1 \). We define a **decomposition of \(S \)** into elements of \(\mathcal{B}_0 \) as \(S = S_1 \sqcup \cdots \sqcup S_k \), where \(S_j \) are pairwise nonintersecting
elements of B_0 and k is minimal among such disjoint representations of S. It can
easily be seen that this decomposition exists and is unique.

Lemma 1.5.17. Let $B_0 \subset B_1$ be connected building sets on $[n + 1]$. Then P_{B_1}
is combinatorially equivalent to the polytope obtained from P_{B_0} by a sequence of
truncations at the faces $G_i = \bigcap_{j=1}^k F_{S_i}$ corresponding to the decompositions $S^i = S^i_1 \cup \cdots \cup S^i_k$ of elements $S^i \in B_1 \setminus B_0$, numbered in any order that is inverse to
inclusion (i.e. $S^i \supset S^i' \Rightarrow i \leq i'$).

Proof. We use induction on the number $N = |B_1| - |B_0|$. For $N = 1$, we have
$B_1 = B_0 \cup \{S^1\}$. We shall show that P_{B_1} is obtained from P_{B_0} by a single truncation
at the face $G = \bigcap_{j=1}^k F_{S^1}$, where $S^1 = S^1_1 \cup \cdots \cup S^1_k$ is the decomposition of S^1
into elements of B_0. Let P_{B_0} denote the polytope obtained by truncating P_{B_0} at G.
Since both P_{B_0} and P_{B_1} are n-dimensional polytopes (here we use the assumption
that both B_0 and B_1 are connected), it is enough to verify that the face poset of
P_{B_1} is a subposet of the face poset of P_{B_0} (see Exercise 1.1.20).

The facets of P_{B_0} are F_{S^0} and F_{S^i} with $S^i \in B_0$. We first consider a nonempty
intersection of the form $F_{S^1} \cap \cdots \cap F_{S^r}$ in P_{B_1}, i.e. a nested set $\{S^1, \ldots, S^r\}$ of B_1,
with all $S^i \in B_0$. Then $\{S^1, \ldots, S^r\}$ is also a nested set of B_0, i.e. $F_{S^1} \cap \cdots \cap F_{S^r} \neq \emptyset$
in P_{B_0}. Furthermore, since S^1 is the only element of $B_1 \setminus B_0$, we have that
\[S_{j_1} \cup \cdots \cup S_{j_p} \neq S^1 = S^1_1 \cup \cdots \cup S^1_k\]
for any $\{j_1, \ldots, j_p\} \subset [r]$. The latter condition implies that $\{S^1_1, \ldots, S^1_k\} \not\subset
\{S^1, \ldots, S^r\}$, i.e. $F_{S^1} \cap \cdots \cap F_{S^r} \not\subset G$ in the face poset of P_{B_0}. By the
description of the face poset of P_{B_0} given in Construction 1.1.12, this implies that
$F_{S^1} \cap \cdots \cap F_{S^r} \neq \emptyset$ in P_{B_0}.

Now we consider a nonempty intersection of the form $F_{S^1} \cap F_{S^1} \cap \cdots \cap F_{S^r}$ in P_{B_1}, i.e. a nested set $\{S^1, S^1_1, \ldots, S^1_r\}$ of B_1, with $S^1 \in B_0$ and $S^1 \in B_1 \setminus B_0$. We
claim that $\{S^1_1, \ldots, S^1_k, S^1, \ldots, S^r\}$ is a nested set of B_0, i.e. $G \cap F_{S^1} \cap \cdots \cap F_{S^r} \neq \emptyset$
in P_{B_0}. To do this we need to verify (a) and (b) of Theorem 1.5.3.

We need to check condition (a) for pairs of the form S^1_p, S^1_q; for other pairs it
is obvious. That is, we need to check that if $S^1_p \cap S^1_q \neq \emptyset$, then one of S^1_p, S^1_q
is contained in the other. The condition $S^1_p \cap S^1_q \neq \emptyset$ implies that $S^1 \cap S^1_q \neq \emptyset$. Since
$\{S^1, S^1_1, \ldots, S^1_r\}$ is a nested set of B_1, we obtain that $S^1 \subset S^1_p \subset S^1_q \subset S^1$.
By the minimality of the decomposition $S^1 = S^1_1 \cup \cdots \cup S^1_k$, the inclusion $S^1 \subset S^1_q$
implies that S^1_q is contained in some S^1_i, which can only be S^1_p, since $S^1_p \cap S^1_q \neq \emptyset$.

To verify condition (b) of Theorem 1.5.3 for $\{S^1_1, \ldots, S^1_k, S^1, \ldots, S^r\}$, we
consider a subcollection $\{S^1_1, \ldots, S^1_p, S^1_q, \ldots, S^1_j\}$ consisting of pairwise nonintersecting
subsets. We need to check that its union is not in B_0. For obvious reasons, we
may assume that $p > 0$ and $q > 0$. Since $\{S^1, S^1_1, \ldots, S^1_r\}$ is a nested set of B_1, we
have that either $S_{j_i} \subset S^1$ or $S_{j_i} \cap S^1 = \emptyset$ for each $i = 1, \ldots, q$. Suppose that
$S^1 \cap S_{j_1} \cap \cdots \cap S_{j_q} \subset B_0$. Then $S^1 \cup (S_{j_1} \cup \cdots \cup S_{j_q}) \in B_1$ by the definition
of a building set. If any of S_{j_i} is disjoint with S^1, then we get a contradiction
with condition (b) for the nested set $\{S^1, S^1_1, \ldots, S^1_r\}$ of B_1. Therefore, $S_{j_i} \subset S^1$
for $i = 1, \ldots, q$, so that $S^1 \cup \cdots \cup S^1_p \subset S^1_j \cup \cdots \cup S^1_j \subset B_1$. By the argument of the
previous paragraph, for each S_{j_i} we have that $S_{j_i} \subset S^1_k \subset S^1_j$ for some $r = 1, \ldots, k$.
Then it follows from the minimality of the decomposition $S^1 = S^1_1 \cup \cdots \cup S^1_k$ and
the definition of a building set that \(S_1^1 \cup \cdots \cup S_i^1 \cup S_j^1 \cup \cdots \cup S_j^1 = S^1 \), which
contradicts the assumption that \(S^1 \not\in B_0 \).

Hence, \(\{ S_1^1, \ldots, S_i^1, S_j^1, \ldots, S_j^1 \} \) is a nested set of \(B_0 \). Similarly to the case
considered in the previous paragraph, we also obtain that \(F_{S_1} \cap \cdots \cap F_{S_j} \not\subset G \) in the
face poset of \(P_{B_0} \). Once again, by the description of the face poset of \(P_{B_0} \) given
in Construction 1.1.12, this implies that \(F_{S_1} \cap \cdots \cap F_{S_j} \not\subset \in \) in \(P_{B_0} \).
It follows that the face poset of \(P_{B_1} \) is indeed contained as a subposet in the
face poset of \(P_{B_0} \), and thus \(P_{B_1} = P_{B_0} \).

It now remains to finish the induction. Assuming the theorem holds for \(M < N \),
we shall prove it for \(M = N \). Since \(S^1 \) is not contained in any other \(S^i \), the collection
of sets \(B_0 = B_0 \cup \{ S^1 \} \) is a building set. By the induction assumption, \(P_{B_0} \)
is obtained from \(P_{B_1} \) by truncation at the face corresponding to the decomposition
of \(S^1 \), and \(P_{B_1} \) is obtained from \(P_{B_0} \) by a sequence of truncations corresponding to
the decompositions of \(S^i \) for \(i = 2, \ldots, N \). \(\square \)

Theorem 1.5.18. Every nestohedron \(P_B \) corresponding to a connected building
set \(B \) can be obtained from a simplex by a sequence of face truncations.

Proof. Assume that \(B \) is a connected building set on \([n+1] \). Then we have
\(S = B \), where \(S \) is the connected building set of Example 1.5.3, whose corresponding
nestohedron is an \(n \)-simplex. Now apply Lemma 1.5.17. \(\square \)

The following construction, suggested by N. Erokhovets, will allow us to show
that every nestohedron can be obtained from a connected building set, up to
combinatorial equivalence.

Construction 1.5.19 (Substitution of building sets). Let \(B_1, \ldots, B_{n+1} \) be
connected building sets on \([k_1], \ldots, [k_{n+1}] \). Then, for every connected building set
\(B \) on \([n+1] \), we define a connected building set \(B(B_1, \ldots, B_{n+1}) \) on \([k_1] \cup \cdots \cup [k_{n+1}]\] =
\([k_1 + \cdots + k_{n+1}]\), consisting of elements \(S^i \in B_i \) and \(\bigsqcup [k_i] \), where \(S \in B \).

When \(B_1, \ldots, B_n \) are singletons \(\{1\}, \ldots, \{n\} \), we shall write \(B(1, 2, \ldots, n, B_{n+1}) \)
instead of \(B(\{1\}, \{2\}, \ldots, \{n\}, B_{n+1}) \).

Lemma 1.5.20. Let \(B, B_1, \ldots, B_{n+1} \) be connected building sets on \([n+1],
[k_1], \ldots, [k_{n+1}] \), and let \(B' = B(B_1, \ldots, B_{n+1}) \). Then \(P_B \approx P_{B_1} \times P_{B_2} \times \cdots \times P_{B_{n+1}} \).

Proof. Set \(B'' = B \sqcup B_1 \sqcup \cdots \sqcup B_{n+1} \) and define the map \(\varphi : B'' \rightarrow B' \) by
\[
\varphi(S) = \begin{cases}
S & \text{if } S \in B_i \\
\bigsqcup \{k_i\} & \text{if } S \in B \end{cases}
\]
Then \(\varphi \) generates a bijection between \(B'' \setminus B''_{\text{max}} \) and \(B' \setminus \{k_1 + \cdots + k_{n+1}\} \), where
\(B''_{\text{max}} = \{[n+1], [k_1], \ldots, [k_{n+1}]\} \) denotes the collection of maximal elements of \(B'' \).
Let \(S \subseteq B \setminus \{n+1\} \) and \(S_i \subseteq B_i \setminus \{k_i\} \). Notice that \(\varphi(S) \cup \bigsqcup_{i=1}^{n+1} \varphi(S_i) \) is a nested
set of \(B' \) if and only if \(S \) is a nested set of \(B \) and \(S_i \) is a nested set of \(B_i \) for all \(i \).
It follows that \(P_B \approx P_{B''} = P_B \times P_{B_1} \times \cdots \times P_{B_{n+1}} \). \(\square \)

Example 1.5.21. Assume that each of \(B, B_1, B_2 \) is the building set
\(\{\{1\}, \{2\}, \{1, 2\}\} \) corresponding to the segment \(\mathbb{I} \). Let us describe the building set \(B(B_1, B_2) \). In the building set \(B = \{\{a\}, \{b\}, \{a, b\}\} \), we substitute
\[B_\Gamma = \{ \{1\}, \{2\}, \{1, 2\} \} \] for \(a \) and \(B_\Sigma = \{ \{3\}, \{4\}, \{3, 4\} \} \) for \(b \). As a result, we obtain the connected building set \(B' \), consisting of \(\{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{3, 4\}, \{4\} \). Its corresponding nestohedron is obtained by truncating a 3-simplex at two nonadjacent edges; it is combinatorially equivalent to a 3-cube.

The facet correspondence \(\varphi \) between the combinatorial cubes \(P_{B_\Gamma} \times P_{B_\Sigma} \times P_{B_\Xi} \) and \(P_{B'} \) is given by
\[
\begin{align*}
\{1\} &\in B_\Gamma \mapsto \{1\} \in B', \\
\{2\} &\in B_\Gamma \mapsto \{2\} \in B', \\
\{3\} &\in B_\Sigma \mapsto \{3\} \in B', \\
\{4\} &\in B_\Sigma \mapsto \{4\} \in B', \\
\{a\} &\in B \mapsto \{1, 2\} \in B', \\
\{b\} &\in B \mapsto \{3, 4\} \in B'.
\end{align*}
\]

Example 1.5.22. Let \(B = \{\{1\}, \ldots, \{n+1\}\} \) be the building set corresponding to the simplex \(\Delta^n \) and let \(B_1, \ldots, B_{n+1} \) be arbitrary connected building sets on \([k_1], \ldots, [k_{n+1}]\). Then
\[
B' = B(B_1, \ldots, B_{n+1}) = (B_1 \sqcup \cdots \sqcup B_{n+1}) \cup [k_1 + \cdots + k_{n+1}],
\]
and
\[
P_{B'} \approx \Delta^n \times P_{B_1} \times \cdots \times P_{B_{n+1}}.
\]

Proposition 1.5.23. For each nestohedron \(P_B \) there exists a connected building set \(B' \) such that \(P_B \approx P_{B'} \).

Proof. Indeed, any building set \(B \) can be written as \(B_1 \sqcup \cdots \sqcup B_k \), where \(B_i \) are connected building sets on \([k_i+1]\). Define a building set \(\tilde{B} = B_1(1, \ldots, k_1, B_2) \sqcup \cdots \sqcup B_k \), giving the same combinatorial polytope. We have that \(\tilde{B} \) is a product (disjoint union) of \(k-1 \) connected building sets. Then we again apply a substitution to \(\tilde{B} \), and so on. In the end we obtain a connected building set \(B' \). \(\square \)

Graph associahedra.

Definition 1.5.24. Let \(\Gamma \) be a graph on the vertex set \([n+1]\) without loops and multiple edges (a simple graph). The **graphical building set** \(B_\Gamma \) consists of all nonempty subsets \(S \subseteq [n+1] \) such that the graph \(\Gamma|_S \) is connected.

The nestohedron \(P_\Gamma = P_{B_\Gamma} \) corresponding to a graphical building set is called a **graph-associahedron** [84].

Example 1.5.25 (associahedron). Let \(\Gamma \) be a ‘path’ with \(n \) edges \(\{i, i+1\} \) for \(1 \leq i \leq n \). Then \(B_\Gamma \) consists of all ‘segments’ of the form \([i, j] = \{i, i+1, \ldots, j\} \) where \(1 \leq i \leq j \leq n+1 \). To describe the face poset of the corresponding polytope \(P_\Gamma \), it is convenient to use brackets in a string of \(n+2 \) letters \(a_1 a_2 \cdots a_{n+2} \). We associate with a segment \([i, j] \) a pair of brackets before \(a_i \) and after \(a_{j+1} \). Using Theorem 1.5.13 it is easy to see that the facets corresponding to \(n \) different segments intersect at a vertex if and only if the corresponding bracketing of \(a_1 a_2 \cdots a_{n+2} \) with \(n \) pairs of brackets is correct. In particular, the vertices of \(B_\Gamma \) correspond to all different ways to obtain a product \(a_1 a_2 \cdots a_{n+2} \) when multiplication is not associative. The number of vertices is therefore equal to \(\frac{1}{n+2} \binom{2n+2}{n+1} \), the \((n+1) \)st **Catalan number**. Two vertices are adjacent if and only if the bracketing corresponding to one vertex can be obtained from the bracketing corresponding to the other vertex by deleting a pair of brackets and inserting, in a unique way, another pair of brackets different from the deleted one. That is, two vertices are adjacent if they correspond to a single application of the associative law. This explains the name **associahedron** for the polytope \(P_\Gamma \) of this example; we shall denote it \(As^n \).
Figure 1.5. 3-dimensional associahedron and the corresponding graph.

Example 1.5.26. Proposition 1.5.11 describes the associahedron as the result of consecutive hyperplane cuts of a simplex. In the case \(n = 3 \), consider the graph shown in Figure 1.5, right. The corresponding building set is given by

\[\{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{2, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 3, 4\}, \]

and the presentation of Proposition 1.5.11 is

\[
\begin{align*}
x_1 + x_2 + x_3 + x_4 &= 10, \quad x_1 + x_2 + x_3 \geq 6, \quad x_1 + x_2 + x_4 \geq 6, \\
x_1 + x_2 \geq 3, \quad x_2 + x_3 \geq 3, \quad x_1 + x_4 \geq 3, \quad x_1 \geq 1, \quad x_2 \geq 1, \quad x_3 \geq 1, \quad x_4 \geq 1.
\end{align*}
\]

Eliminating the variable \(x_4 \) we get a presentation of a 3-dimensional associahedron in \(\mathbb{R}^3 \), shown in Figure 1.5, left:

\[x_1 \geq 1, \quad x_2 \geq 1, \quad 4 \geq x_3 \geq 1, \quad x_1 + x_2 \geq 3, \quad 7 \geq x_2 + x_3 \geq 3, \quad 9 \geq x_1 + x_2 + x_3 \geq 6. \]

The associahedron can also be obtained by hyperplane cuts from a cube, as described in the next theorem.

Theorem 1.5.27. The image of \(\text{As}^n \) under a certain affine transformation \(\mathbb{R}^{n+1} \rightarrow \mathbb{R}^n \) is the intersection of the parallelepiped

\[\{ y \in \mathbb{R}^n : 0 \leq y_j \leq j(n + 1 - j) \text{ for } 1 \leq j \leq n \} \]

with the halfspaces

\[\{ y \in \mathbb{R}^n : y_j - y_k + (j - k)k \geq 0 \} \]

for \(1 \leq k < j \leq n \).

Proof. Proposition 1.5.11 gives the following presentation:

\[
\text{As}^n = \left\{ x \in \mathbb{R}^{n+1} : \sum_{k=1}^{n+1} x_k = \frac{(n+1)(n+2)}{2}, \quad \sum_{k=i}^{j} x_k \geq \frac{(j-i+1)(j-i+2)}{2} \right. \text{ for } 1 \leq i \leq j \leq n+1 \right\}.
\]
Apply the affine transformation $\mathbb{R}^{n+1} \to \mathbb{R}^n$ given by
\[
(x_1, \ldots, x_{n+1}) \mapsto (z_1, \ldots, z_n) \text{ where } z_l = \sum_{k=1}^{l} x_k, \text{ for } 1 \leq l \leq n.
\]

Now we rewrite the inequalities of (1.25) in the new coordinates (z_1, \ldots, z_n). The inequalities with $i = 1$ (corresponding to the facets F_S with $1 \in S$) become
\[
(1.26) \quad z_j \geq \frac{j(j+1)}{2}, \text{ for } 1 \leq j \leq n.
\]
Inequalities (1.25) with $j = n + 1$ (corresponding to F_S with $n + 1 \in S$) become
\[
\frac{(n+1)(n+2)}{2} - z_{i-1} \geq \frac{(n+2-i)(n+3-i)}{2}, \text{ for } 2 \leq i \leq n + 1,
\]
or equivalently,
\[
(1.27) \quad z_j \leq (n+2)j - \frac{j(j+1)}{2}, \text{ for } 1 \leq j \leq n.
\]
The remaining inequalities (1.25) take the form
\[
(1.28) \quad z_j - z_{i-1} \geq \frac{(j-i+1)(j-i+2)}{2} \text{ for } 1 < i < j < n + 1.
\]
Now the required presentation is obtained from (1.26), (1.27) and (1.28) by applying the shift $y_j = z_j - \frac{j(j+1)}{2}$ and setting $k = i - 1$.

Example 1.5.28. The case $n = 3$ of Theorem 1.5.27 is shown in Figure 1.6 (right). We start with the parallelepiped given by the inequalities
\[
0 \leq y_1 \leq 3, \quad 0 \leq y_2 \leq 4, \quad 0 \leq y_3 \leq 3,
\]
and cut it by the three hyperplanes
\[
y_2 - y_1 + 1 = 0, \quad y_3 - y_1 + 2 = 0, \quad y_3 - y_2 + 2 = 0.
\]
Another way to cut a 3-dimensional combinatorial associahedron from a 3-cube is shown in Figure 1.6 (left); this time we cut three nonadjacent and pairwise orthogonal edges. The two associahedra in Figure 1.6 are not affinely equivalent.
The associahedron $A s^n$ first appeared (as a combinatorial object) in the work of Stasheff [338] as the space of parameters for the higher associativity of the $(n+2)$-fold product map in an H-space. For more information about the associahedra we refer to [150] and [57, Lecture II], where the reader may find other geometric and combinatorial realisations of $A s^n$.

Example 1.5.29 (permutahedron revisited). Let Γ be a complete graph; then B_Γ is the complete building set C and P_Γ is the permutahedron $P e^n$, see Figure 1.7 for the case $n = 3$.

Example 1.5.30 (cyclohedron). Let Γ be a ‘cycle’ consisting of $n + 1$ edges $\{i, i + 1\}$ for $1 \leq i \leq n$ and $\{n + 1, 1\}$. The corresponding P_Γ is known as the cyclohedron $C y^n$, or Bott–Tuomas polytope, see Figure 1.8. It was first introduced in [44] in connection with the study of link invariants.

Example 1.5.31 (stellahedron). Let Γ be a ‘star’ consisting of n edges $\{i, n + 1\}$, $1 \leq i \leq n$, emanating from the point $n + 1$. The corresponding P_Γ is known as the stellahedron $S t^n$, see Figure 1.9.
Figure 1.9. 3-dimensional stellahedron and the corresponding graph.

Exercises.

1.5.32. Every collection \mathcal{F} of subsets in $[n+1]$ may be completed in a unique way to a building set by iteratively adding to \mathcal{F} the unions $S_1 \cup S_2$ of intersecting sets $(S_1 \cap S_2 \neq \emptyset)$ until the process stops. Denote the resulting building set by $\tilde{\mathcal{F}}$. Show that $\tilde{\mathcal{F}}$ is connected if and only if \mathcal{F} is connected, and that $\dim P_\mathcal{F} = \dim P_{\tilde{\mathcal{F}}}$ (hint: for a pair of intersecting sets S_1, S_2 compare the polytopes $\Delta_{S_1} + \Delta_{S_2}$ and $\Delta_{S_1} + \Delta_{S_2} + \Delta_{S_1 \cup S_2}$). Use this fact to complete the proof of Proposition 1.5.2.

1.5.33. Finish the argument in the proof of Proposition 1.5.5.

1.5.34. Complete the details in the proof of Theorem 1.5.7.

1.5.35. Prove Proposition 1.5.8.

1.5.36. Given two building sets $B_0 \subset B_1$, show that a decomposition $S = S_1 \cup \cdots \cup S_k$ of $S \in B_1$ into elements $S_i \in B_0$ with minimal k is unique.

1.5.37. A combinatorial polytope obtained from a simplex by a sequence of face truncations is called a truncated simplex. Notice that a truncated simplex is a simple polytope. By Theorem 1.5.18, every nestohedron corresponding to a connected nested set is a truncated simplex. Give an example of

(a) a simple polytope which is not a truncated simplex;
(b) a truncated simplex which is not a nestohedron;
(c) a Minkowski sum of simplices $P_{\mathcal{F}}$ given by (1.19) which is not a truncated simplex.

1.5.38. Consider the following connected building set on $[4]$:
$$\mathcal{B} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{1, 2, 3\}, \{2, 3, 4\}, [4]\}.$$ Then $P_{\mathcal{B}}$ is combinatorially equivalent to the polytope shown in Figure 1.3, right.

1.6. Flagtopes and truncated cubes

Definition 1.6.1. A simple polytope P is called a flagtope (or flag polytope) if every collection of its pairwise intersecting facets has a nonempty intersection. (The origins of this terminology will be explained in Section 2.3.)
In the definition above, ‘facets’ can be replaced by ‘faces’:

Proposition 1.6.2. In a flagtope, every collection of pairwise intersecting faces has a nonempty intersection.

Proof. Let \(G_1, \ldots, G_l \) be a collection of pairwise intersecting faces. We write each \(G_i \) as an intersection of facets: \(G_i = \bigcap_{p=1}^{k_i} F_{i,p} \), where \(k_i = \text{codim} F_i \). All these facets \(F_{i,p} \) are pairwise intersecting, as \(F_{i,p} \cap F_{j,q} = G_i \cap G_j \neq \emptyset \). Therefore,

\[
\bigcap_{i=1}^{l} G_i = \bigcap_{i=1}^{l} \bigcap_{p=1}^{k_i} F_{i,p} = \bigcap_{i,p} F_{i,p} \neq \emptyset. \tag*{\blacksquare}
\]

Corollary 1.6.3. A face of a flagtope is a flagtope.

Example 1.6.4.
1. The cube \(I^n \) is a flagtope, but the simplex \(\Delta^n \) is not if \(n > 1 \).
2. The product \(P \times Q \) of two flagtopes is a flagtope.
3. The connected sum \(P \# Q \) of two simple \(n \)-polytopes and the vertex truncation \(v_t(P) \) are not flagtopes if \(n > 2 \).

Flagtopes and flag simplicial complexes feature in the Charney–Davis conjecture (see Conjecture 2.5.13) and its generalisation due to Gal. The latter uses the notion of the \(\gamma \)-vector \(\gamma(P) = (\gamma_0, \ldots, \gamma_{[n/2]}) \) (see Definition 1.3.10):

Conjecture 1.6.5 (Gal [148]). The \(\gamma \)-vector of a flagtope \(P \) of dimension \(n \) has nonnegative components: \(\gamma_i(P) \geq 0 \) for \(i = 0, \ldots, [n/2] \).

Gal’s conjecture is important as it connects the combinatorial study of polytopes and sphere triangulations to differential geometry and topology of manifolds. This conjecture has been proved in special cases.

Although not all nestohedra are flagtopes (a simplex is the easiest counterexample), flag nestohedra constitute an important family. In particular, all graph-associhedra (and therefore, the classical series of associahedra and permutahedra) are flagtopes, see Proposition 1.6.6.

As we have seen in Theorem 1.5.27, the associahedron can be obtained by hyperplane cuts from a cube. In this section we give a proof of a much more general and precise result: a nestohedron is a flagtope if and only if it can be obtained from a cube by a sequence of truncations at faces of codimension 2 (we refer to such polytopes as 2-truncated cubes), see Theorem 1.6.15. This was originally proved by Buchstaber and Volodin in [78, Theorem 6.6]. On the other hand, it can easily be seen that the Gal conjecture is valid for 2-truncated cubes (see Proposition 1.6.11). This observation (formulated in terms of the dual operation of stellar subdivision at an edge) was present in the work of Charney–Davis and later Gal, and used to support their conjectures. As a corollary we obtain that the Gal conjecture is valid for all flag nestohedra.

Proposition 1.6.6. Every graph-associhedron \(P \) is a flagtope.

Proof. Let \(F_{S_1}, \ldots, F_{S_k} \) be a set of facets of \(P \) with nonempty pairwise intersections. We need to check that \(F_{S_1} \cap \cdots \cap F_{S_k} \neq \emptyset \), i.e., that condition (b) of Theorem 1.5.13 is satisfied (condition (a) holds automatically as it depends only on pairwise intersections). Let \(S_{i_1}, \ldots, S_{i_p} \) be pairwise nonintersecting sets among \(S_1, \ldots, S_k \); then \(S_{i_r} \cup S_{i_s} \notin B_{P} \) for \(1 \leq r < s \leq p \) because \(F_{S_{i_r}} \cap F_{S_{i_s}} \neq \emptyset \). Hence,
all subgraphs $\Gamma|_{S_i \cup \cdots \cup S_p}$ are disconnected, so that $\Gamma|_{S_i \cup \cdots \cup S_p}$ is also disconnected. Thus, $S_i \cup \cdots \cup S_p \notin \mathcal{B}$, and $F_{S_i} \cap \cdots \cap F_{S_p} \neq \emptyset$ by Theorem 1.5.13. \hfill \Box

We shall verify Gal’s conjecture for all flag nestohedra. To do this we shall show that any flag nestohedron can be obtained by consecutively truncating a cube at codimension-2 faces. Our first task is therefore to describe how the γ-vector changes under face truncations. For this it is convenient to use the H-polynomial given by (1.9), and the Γ-polynomial

$$\Gamma(P) = \gamma_0 + \gamma_1 t + \cdots + \gamma_{[n/2]} t^{[n/2]}.$$

Proposition 1.6.7. Let Q be the polytope obtained by truncating a simple n-polytope P at a k-dimensional face G. Then

(a) $H(Q) = H(P)(s, t) + stH(G)H(\Delta^{n-k-2})$,

(b) $\Gamma(Q) = \Gamma(P) + \tau \Gamma(G)\Gamma(\Delta^{n-k-2})$.

Proof. The truncation removes G and creates a face $G \times \Delta^{n-k-1}$, so that $f_i(Q) = f_i(P) + f_i(G \times \Delta^{n-k-1}) - f_i(G)$, for $0 \leq i \leq n$. Hence, $F(Q) = F(P) + tF(G)F(\Delta^{n-k-1}) - t^{n-k}F(G)$, and

$$H(Q) = H(P) + tH(G)H(\Delta^{n-k-1}) - t^{n-k}H(G)$$

$$= H(P) + tH(G) \left(\sum_{i=0}^{n-k-1} s^{i} t^{n-k-1-i} - t^{n-k-1} \right)$$

$$= H(P) + stH(G) \left(\sum_{j=0}^{n-k-2} s^{j} t^{n-k-2-j} \right) = H(P) + stH(G)H(\Delta^{n-k-2}),$$

which proves (a). Furthermore,

$$\sum_{i=0}^{[\frac{n}{2}]} \gamma_i(Q)(st)^i(s + t)^{n-2i} = H(Q) = \sum_{i=0}^{[\frac{n}{2}]} \gamma_i(P)(st)^i(s + t)^{n-2i}$$

$$+ st \left(\sum_{p=0}^{[\frac{n}{2}]} \gamma_p(G)(st)^p(s + t)^{k-2p} \right) \left(\sum_{q=0}^{[\frac{n-k-2}{2}]} \gamma_q(\Delta^{n-k-2})(st)^q(s + t)^{n-k-2-2q} \right)$$

$$= \sum_{i=0}^{[\frac{n}{2}]} \gamma_i(P)(st)^i(s + t)^{n-2i} + \sum_{p=0}^{[\frac{n}{2}]} \gamma_p(G) \gamma_q(\Delta^{n-k-2})(st)^{p+q+1}(s + t)^{n-2(p+q+1)}.$$

Hence, $\gamma_i(Q) = \gamma_i(P) + \sum_{p+q=i-1} \gamma_p(G) \gamma_q(\Delta^{n-k-2})$, which proves (b). \hfill \Box

Definition 1.6.8. We refer to a truncation at a codimension-2 face as a 2-truncation. A combinatorial polytope obtained from a cube by 2-truncations will be called a 2-truncated cube.

The following corollary is the dual of a result from [148]:

Corollary 1.6.9. Let the polytope Q be obtained from a simple polytope P by 2-truncation at a face G. Then

(a) $H(Q) = H(P) + stH(G)$,

(b) $\Gamma(Q) = \Gamma(P) + \tau \Gamma(G)$.
Proposition 1.6.10. Each face of a 2-truncated cube is a 2-truncated cube.

Proof. It is enough to show that if P is a 2-truncated cube, then all the facets of P are 2-truncated cubes. The proof is by induction on the number of face truncations. Let the polytope Q be obtained from a 2-truncated cube P by 2-truncation at a face G of codimension 2. Then the new facet is $G \times I$, and it is a 2-truncated cube by the induction assumption. Every other facet F' of the polytope Q is either a facet of P, or obtained from a facet F'' of P by 2-truncation at a face $G' \subset F''$.

Proposition 1.6.11. Any 2-truncated cube P satisfies $\gamma_i(P) \geq 0$, i.e. the Gal conjecture holds for 2-truncated cubes.

Proof. We proceed by induction on the dimension of P, using Proposition 1.6.10 and the formula $\Gamma'(Q) = \Gamma(P) + \tau \Gamma(G)$.

Here is a criterion for a nestohedron to be a flagtope.

Proposition 1.6.12 ([78], [309]). Let \mathcal{B} be a building set on $[n+1]$. Then the nestohedron $P_\mathcal{B}$ is a flagtope if and only if for every element $S \in \mathcal{B}$ with $|S| > 1$ there exist elements $S', S'' \in \mathcal{B}$ such that $S' \cap S'' = S$.

Proof. Suppose $P_\mathcal{B}$ is a flagtope. Consider an element $S \in \mathcal{B}$. Then we may write $S = S_1 \sqcup \cdots \sqcup S_k$, where $S_1, \ldots, S_k \in \mathcal{B} \setminus \{S\}$ and k is minimal among such decompositions of S. Then for any subset $J \subset [k]$ with $1 < |J| < k$ we have that $\bigcup_{j \in J} S_j \notin \mathcal{B}$, since otherwise k can be decreased. If $k > 2$ then, by Theorem 1.5.13, the facets F_{S_1}, \ldots, F_{S_k} of $P_\mathcal{B}$ intersect pairwise, but have empty common intersection. Therefore, $k = 2$.

Suppose for each element $S \in \mathcal{B}$ with $|S| > 1$, there exist elements $S', S'' \in \mathcal{B}$ such that $S' \cap S'' = S$. Let F_{S_1}, \ldots, F_{S_k}, $k \geq 3$, be a minimal collection of facets that intersect pairwise but have empty common intersection. We shall lead this to a contradiction by finding a nontrivial subcollection of F_{S_1}, \ldots, F_{S_k} with empty common intersection.

Assume there is a set $\overline{S} \in \mathcal{B}|S$ intersecting more than one S_i, but not intersecting every S_i. Then the subcollection of facets F_{S_i} satisfying $S_i \cap \overline{S} \neq \emptyset$ will have empty common intersection, since

$$
\bigcup_{S_i: S_i \cap \overline{S} \neq \emptyset} S_i \in \mathcal{B}
$$

by definition of a building set.

It remains to find $\overline{S} \in \mathcal{B}|S$ intersecting more than one S_i, but not intersecting every S_i. By Theorem 1.5.13, $S_1 \sqcup \cdots \sqcup S_k = S \in \mathcal{B}$. Therefore, we can write $S = S' \sqcup S''$, where $S', S'' \in \mathcal{B}$. Let S^1 be that of the sets S' and S'' which intersects more elements S_i than the other. Then S^1 intersects more than one S_i. If S^2 does not intersect all of S_i, then we are done. Otherwise we write $S^1 = S'^1 \sqcup S''^1$, where $S'^1, S''^1 \in \mathcal{B}$, and choose as S^2 that of the sets S'^1 and S''^1 which intersects more elements S_i than the other. If S^2 intersects all the sets S_i, choose S^3 in the same way, and so on. Since the cardinality of the sets S^1, S^2, S^3, \ldots strictly decreases, at some point this process stops, and we get that one of the sets S'^1, S''^1 intersects more than one S_i, but does not intersect every S_i.

\[\square \]
Proposition 1.6.13 ([309]). Let B be a building set on $[n+1]$ such that P_B is a flagtope. Then there exists a building set $B_0 \subset B$ such that P_{B_0} is a combinatorial cube with $\dim P_{B_0} = \dim P_B$.

Proof. By Proposition 1.5.2, we need to consider only connected building sets. For $n = 1$, the proposition is true. Assuming that the assertion holds for $m < n$, we shall prove it for $m = n$. By Proposition 1.6.12, we have $[n + 1] = S' \cup S''$, where $S', S'' \in B$. By the induction assumption, the building sets $B|S'$ and $B|S''$ have subsets B'_0 and B''_0 whose corresponding nestohedra are cubes. The building set $B_0 = (B'_0 \cup B''_0) \cup [n + 1]$ is the desired one (see Example 1.5.22).

It now follows from Lemma 1.5.17 that a flag nestohedron can be obtained from a cube by a sequence of face truncations. The following lemma shows that there is a sequence consisting only of codimension-2 face truncations:

Lemma 1.6.14. Let $B_1 \subset B_2$ be connected building sets on $[n+1]$ whose corresponding nestohedra P_{B_1} and P_{B_2} are flagtopes. Then

(a) P_{B_2} is obtained from P_{B_1} by a sequence of 2-truncations;
(b) $\gamma_i(P_{B_2}) \leq \gamma_i(P_{B_1})$ for $i = 0, 1, \ldots, [n/2]$.

Furthermore, if $B_1 \neq B_2$, then at least one inequality in (b) is strict.

Proof. Let S be a minimal (by inclusion) element of $B_2 \setminus B_1$. We set $B' = B_1 \cup \{S\}$ to be the minimal (by inclusion) building set containing $B_1 \cup \{S\}$. By Proposition 1.6.12, there exist $S', S'' \in B_2$ such that $S' \cup S'' = S$. It follows from the choice of S that $S', S'' \in B_1$. It is easy to show that B' is the collection of sets $B_1 \cup \{T = T' \cup T'': T', T'' \in B_1, S' \subset T', S'' \subset T''\}$. Hence, the decomposition of any element of $B' \setminus B_1$ consists of two elements. Therefore, by Lemma 1.5.17, the nestohedron $P_{B'}$ is obtained from P_{B_1} by a sequence of 2-truncations.

Since $B_1 \subset B' \subset B_2$, we can finish the proof of (a) by induction on the number of elements in $B_2 \setminus B_1$. Statement (b) follows from Corollary 1.6.9. □

Finally we can prove the main result of this section, giving a characterisation of flag nestohedra:

Theorem 1.6.15 ([78]). A nestohedron P_B is a flagtope if and only if it is a 2-truncated cube.

More precisely, if P_B is a flagtope, then there exists a sequence of building sets $B_0 \subset B_1 \subset \cdots \subset B_N = B$, where P_{B_0} is a combinatorial cube, $B_i = B_{i-1} \cup \{S_i\}$, and P_{B_i} is obtained from $P_{B_{i-1}}$ by 2-truncation at the face $F_{S_{j_1}} \cap F_{S_{j_2}} \subset P_{B_{i-1}}$, where $S_i = S_{j_1} \cup S_{j_2}$, and $S_{j_1}, S_{j_2} \in B_{i-1}$.

Proof. By Proposition 1.5.23, we need to consider only connected building sets. The ‘only if’ statement follows from Proposition 1.6.13 and Lemma 1.6.14. To prove the ‘if’ statement we need to check that a polytope obtained from a flagtope by a 2-truncation is a flagtope. This is left as an exercise. □

Together with Proposition 1.6.11, Theorem 1.6.15 implies

Corollary 1.6.16. The Gal conjecture holds for all flag nestohedra P_B, i.e. $\gamma_i(P_B) \geq 0$.

Example 1.6.17. Let us see how Theorem 1.6.15 works in the case of the 3-dimensional associahedron. The building set corresponding to A^3 is given by

$$B = \{\{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 2, 3\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}$$

(see Figure 1.6, right). In order to obtain A^3 from I^3 by 2-truncations, we have to specify a building set $B_0 \subset B$, such that $P_{B_0} \approx I^3$, and to order the elements of $B \setminus B_0$ in such a way that adding a new element to the building set corresponds to a 2-truncation.

First let B_0 consist of $\{i\}, \{1, 2\}, \{3, 4\}, [4]$. The associahedron P_B is then obtained from $P_{B_0} \approx I^3$ by consecutive truncation at the faces $F_{\{1, 2\}} \cap F_{\{3\}}, F_{\{2\}} \cap F_{\{3, 4\}}, F_{\{2\}} \cap F_{\{3\}}$ in this order. (Warning: P_{B_0} is not the rectangular parallelepiped, it is a tetrahedron with two opposite edges truncated. However the three 2-truncations of P_{B_0} described here and the three 2-truncations of the rectangular parallelepiped described in Example 1.5.28 give the same (up to affine equivalence) polytope A^3 shown in Figure 1.6, right.)

Another option is to let B_0 consist of $\{i\}, \{1, 2\}, \{1, 2, 3\}, [4]$. Then P_{B_0} is obtained from a tetrahedron by truncating a vertex and then truncating an edge which contained this vertex; we have that $P_{B_0} \approx I^3$. To obtain the associahedron P_B from P_{B_0} we first truncate the face $F_{\{2\}} \cap F_{\{3\}}$ of $P_{B_0} \approx I^3$ and get the new facet $F_{\{2, 3\}}$. Then we truncate the faces $F_{\{2, 3\}} \cap F_{\{4\}}$ and $F_{\{3\}} \cap F_{\{4\}}$.

Exercises.

1.6.18. A polytope P is said to be triangle-free if it does not contain triangular 2-faces. Observe that a flagtope is triangle-free. Show that a triangle-free simple n-polytope with at most $2n+2$ facets is a flagtope. Give an example of a triangle-free simple n-polytope with $2n+3$ facets which is not a flagtope.

1.6.19. Give an example of a non-flag simple polytope P with $\gamma_i(P) \geq 0$.

1.6.20. A polytope obtained from a flagtope by a 2-truncation is a flagtope.

1.6.21 ([78, Theorem 9.1]). The face vectors of n-dimensional flag nestohedra P_B satisfy

(a) $\gamma_i(I^n) \leq \gamma_i(P_B) \leq \gamma_i(Pe^n)$ for $i = 0, 1, \ldots, [n/2]$;
(b) $g_i(I^n) \leq g_i(P_B) \leq g_i(Pe^n)$ for $i = 0, 1, \ldots, [n/2]$;
(c) $h_i(I^n) \leq h_i(P_B) \leq h_i(Pe^n)$ for $i = 0, 1, \ldots, n$;
(d) $f_i(I^n) \leq f_i(P_B) \leq f_i(Pe^n)$ for $i = 0, 1, \ldots, n$.

Furthermore, the lower bounds are achieved only for $P_B = I^n$ and the upper bounds are achieved only for $P_B = Pe^n$. (Hint: to prove (a) use Lemma 1.6.14. The other inequalities follow from Proposition 1.3.13.)

1.6.22 ([78, Theorem 9.2]). The face vectors of graph associahedra P_G corresponding to connected graphs G on $[n+1]$ satisfy

(a) $\gamma_i(A^n) \leq \gamma_i(P_G) \leq \gamma_i(Pe^n)$ for $i = 0, 1, \ldots, [n/2]$;
(b) $g_i(A^n) \leq g_i(P_G) \leq g_i(Pe^n)$ for $i = 0, 1, \ldots, [n/2]$;
(c) $h_i(A^n) \leq h_i(P_G) \leq h_i(Pe^n)$ for $i = 0, 1, \ldots, n$;
(d) $f_i(A^n) \leq f_i(P_G) \leq f_i(Pe^n)$ for $i = 0, 1, \ldots, n$.

Furthermore, the lower bounds are achieved only for $P_B = A^n$ and the upper bounds are achieved only for $P_B = Pe^n$.

1.6. Flagtopes and truncated cubes

51
1.7. Differential algebra of combinatorial polytopes

Here we develop a differential-algebraic formalism that will allow us to analyse the combinatorics of families of polytopes and their face numbers from the viewpoint of differential equations. All polytopes in this section are combinatorial.

Ring of polytopes. Denote by \mathfrak{P}^{2n} the free abelian group generated by all combinatorial n-polytopes. The group \mathfrak{P}^{2n} is infinitely generated for $n > 1$, and it splits into a direct sum of finitely generated components as follows:

$$\mathfrak{P}^{2n} = \bigoplus_{m \geq n+1} \mathfrak{P}^{2n,2(m-n)}$$

where $\mathfrak{P}^{2n,2(m-n)}$ is the group generated by n-polytopes with m facets. (The fact that there are finitely many combinatorial polytopes with a given number of facets is left as an exercise.)

Definition 1.7.1. The product of polytopes turns the direct sum

$$\mathfrak{P} = \bigoplus_{n \geq 0} \mathfrak{P}^{2n} = \mathfrak{P}^0 + \bigoplus_{m \geq 2, n=1} \mathfrak{P}^{2n,2(m-n)}$$

into a bigraded commutative ring, the *ring of polytopes*. The unit is P^0, a point.

Simple polytopes generate a bigraded subring of \mathfrak{P}, which we denote by \mathfrak{S}.

A polytope is *indecomposable* if it cannot be represented as a product of two other polytopes of positive dimension.

Proposition 1.7.2 ([59, Proposition A.1]). \mathfrak{P} is a polynomial ring generated by indecomposable combinatorial polytopes.

Proof. We need to show that any polytope P of positive dimension can be represented as a product of indecomposable polytopes, $P = P_1 \times \cdots \times P_k$, and this representation is unique up to reordering the factors. The existence of such a decomposition is clear. Now assume that $P_1 \times \cdots \times P_k \approx Q_1 \times \cdots \times Q_s$. Fix a vertex $v = v_1 \times \cdots \times v_k = w_1 \times \cdots \times w_s$, where $v_i \in P_i$ and $w_j \in Q_j$. The faces of the form $v_1 \times \cdots \times v_i \times \cdots \times v_k$ and $w_1 \times \cdots \times Q_j \times \cdots \times w_s$ are maximal indecomposable faces of P containing the vertex v, and therefore they bijectively correspond to each other under the combinatorial equivalence. It follows that $k = s$ and $P_i \approx Q_i$ for $i = 1, \ldots, k$ up to a permutation of factors.

Since \mathfrak{P} is a free abelian group generated by combinatorial polytopes, and each polytope can be uniquely represented by a monomial in indecomposable polytopes, it follows that \mathfrak{P} is a polynomial ring on indecomposable polytopes. \(\square\)

Given $P \in \mathfrak{P}^{2n}$, denote by $dP \in \mathfrak{P}^{2(n-1)}$ the sum of all facets of P in the ring \mathfrak{P}. The following lemma is straightforward.

Lemma 1.7.3. $d: \mathfrak{P} \to \mathfrak{P}$ is a linear operator of degree -2 satisfying the identity

$$d(P_1 P_2) = (dP_1)P_2 + P_1 (dP_2).$$

Therefore, \mathfrak{P} is a differential ring, and \mathfrak{S} is its differential subring.

Example 1.7.4. We have

$$dI^n = n(dI)I^{n-1} = 2nI^{n-1}, \quad d\Delta^n = (n + 1)\Delta^{n-1}. $$
Face-polynomials revisited. By Proposition 1.3.6, the F-polynomial and the H-polynomial define ring homomorphisms

$$F : \mathcal{P} \rightarrow \mathbb{Z}[s,t], \quad H : \mathcal{P} \rightarrow \mathbb{Z}[s,t],$$

which send $P \in \mathcal{P}$ to $F(P)(s,t)$ and $H(P)(s,t)$ respectively.

Theorem 1.7.5. For any simple polytope P we have

$$F(dP) = \frac{\partial}{\partial t} F(P). \quad (1.29)$$

Proof. Assume that P is a simple n-polytope with facets P_1, \ldots, P_m. Then

$$F(dP) = \sum_{i=1}^{m} F(P_i) = \sum_{i=1}^{m} \sum_{k=0}^{n-1} f_k(P_i) s^k t^{n-1-k}.$$

On the other hand,

$$\frac{\partial}{\partial t} F(P) = \sum_{k=0}^{n-1} (n-k) f_k(P) s^k t^{n-1-k}. \quad (1.30)$$

Comparing the coefficients in the two sums above we reduce (1.29) to

$$\sum_{i=1}^{m} f_k(P_i) = (n-k) f_k(P).$$

Since P is simple, every k-face is contained in exactly $n-k$ facets, so it is counted $n-k$ times on the left hand side of the above identity. \hfill \Box

Corollary 1.7.6. Let P_1 and P_2 be two simple n-polytopes such that $dP_1 = dP_2$ in \mathbb{S}. Then $F(P_1) = F(P_2)$.

Proof. Indeed, $F(dP_1) = F(dP_2)$ implies that $\frac{\partial F(P_1)}{\partial t} = \frac{\partial F(P_2)}{\partial t}$. Using that $F(P)(s,0) = s^n$ we obtain $F(P_1) = F(P_2)$. \hfill \Box

Proposition 1.7.7. Let $\tilde{F} : \mathbb{S} \rightarrow \mathbb{Z}[s,t]$ be a linear map such that

$$\tilde{F}(dP) = \frac{\partial}{\partial t} \tilde{F}(P) \quad \text{and} \quad \tilde{F}(P)|_{t=0} = s^n.$$

Then $\tilde{F}(P) = F(P)$.

Proof. We have $\tilde{F}(P^0) = 1 = F(P^0)$. Assume by induction the statement is true in dimensions $\leq n - 1$, and let P be a simple n-polytope. Then $\tilde{F}(dP)(s,t) = F(dP)(s,t)$. It follows that $\frac{\partial}{\partial t} \tilde{F}(P) = \frac{\partial}{\partial t} F(P)$. Therefore, $\tilde{F}(P)(s,t) = F(P)(s,t) + C(s)$. Setting $t = 0$, we obtain $s^n = s^n + C(s)$, whence $C(s) = 0$. \hfill \Box

Theorem 1.7.5 also allows us to reduce the Dehn–Sommerville relations (1.12) to the Euler formula:

Theorem 1.7.8. The following identity holds for any simple n-polytope P:

$$F(P)(s,t) = F(P)(-s, s + t). \quad (1.31)$$
Proof. We have \(F(P^n)(s,t) = 1 = F(P^n)(-s,s + t) \). Assume by induction the identity holds in dimensions \(n \leq n - 1 \). Then for a given \(P \) of dimension \(n \) we have \(F(P^n)(s,t) = F(P^n)(-s,s + t) \). Therefore, \(\frac{\partial}{\partial t} F(P^n)(s,t) = \frac{\partial}{\partial t} F(P^n)(-s,s + t) \) and \(F(P^n)(s,t) - F(P^n)(-s,s + t) = C(s) \). By Euler's formula (1.11),
\[
F(-s,s) = (f_0 - f_1 + \cdots + (-1)^n f_n) s^n = s^n.
\]
Therefore, \(C(s) = F(P^n)(s,0) - F(P^n)(-s,s) = 0 \). \(\square \)

Example 1.7.9. For a simple 3-polytope \(P^3 \) with \(m = f_2 \) facets we have \(f_1 = 3(m - 2), f_0 = 2(m - 2) \). Assume that all facets are \(k \)-gons, so \(dP^3 = mP_k^2 \). Then by Theorem 1.7.5,
\[
m(s^2 + kst + kt^2) = \frac{\partial}{\partial t} (s^3 + ms^2 t + 3(m - 2)s t^2 + 2(m - 2)t^3),
\]
which implies \(m(6 - k) = 12 \). It follows that the pair \((k,m)\) may only take values \((3,4), (4,6)\) and \((5,12)\) corresponding to a simplex, cube and dodecahedron.

For general polytopes the difference \(\delta = Fd - \frac{\partial}{\partial t} F \) measures the failure of identity (1.29).

A polytope is said to be \(k \)-simple (for \(k \geq 0 \)) if each of its \(k \)-faces is an intersection of exactly \(n - k \) facets. For example, a simple polytope is 0-simple, while 1-simple polytopes are also known as simple in edges. Every \(n \)-polytope is \((n-1)\)- and \((n-2)\)-simple.

A polytope is \(k \)-simplicial if each of its \(k \)-dimensional faces is a simplex. A simplicial \(n \)-polytope is \((n-1)\)-simplicial, and every polytope is \(1 \)-simplicial. By polarity, if an \(n \)-polytope \(P \) is \(k \)-simple, then \(P^* \) is \((n-1-k)\)-simplicial.

Theorem 1.7.10. Let \(P \in \Psi \). Then the following identity holds:
\[
F(P^n) = \frac{\partial}{\partial t} F(P^n) + \delta(P^n),
\]
where \(\delta : \Psi \rightarrow Z[s,t] \) is a linear map satisfying the identity
\[
\delta(P^n + P_m^n) = \delta(P^n) F(P_m^n) + F(P^n) \delta(P_m^n)
\]
(an \(F \)-derivation). Moreover, if \(P \) is an \(n \)-dimensional polytope, then \(\delta(P^n) = \delta_2 s^{n-3} t^2 + \cdots + \delta_{n-1} t^{n-1} \) and \(\delta_i \geq 0 \) for \(2 \leq i \leq n - 1 \). Also, \(P \) is \(k \)-simple if and only if \(\delta_{n-1-k} = 0 \); in this case \(\delta_i = 0 \) for \(2 \leq i \leq n - 1 - k \).

Proof. The fact that \(\delta = Fd - \frac{\partial}{\partial t} F \) is an \(F \)-derivation is verified by a direct computation. By (1.30) the coefficient of \(s^k t^{n-1-k} \) in \(\delta(P^n) \) is given by
\[
\delta_{n-1-k} = \sum_{i=1}^{m} f_k(P_i) - (n-k)f_k(P).
\]
It vanishes for \(k = n - 1 \) and \(k = n - 2 \) (as each codimension-two face of \(P \) is contained in exactly two facets). Also, \(\delta_{n-1-k} \) is non-negative because every \(k \)-face is contained in at least \(n-k \) facets. Finally, if \(P \) is \(k \)-simple, then every \(j \)-face is contained in exactly \(n-j \) facets for \(j \geq k \), so \(\delta_{n-1-j} \) vanishes for \(j \geq k \). \(\square \)

Example 1.7.11. Let \(P \) be a simple \(n \)-polytope, and \(P^* \) the dual simplicial polytope. Since the face poset of \(P^* \) is the opposite to the face poset of \(P \),
\[
F(P^*)(s,t) = s^n + t \frac{F(P)(t,s) - t^n}{s} = s^n + \sum_{k=0}^{n-1} f_k(P) s^{n-1-k} t^{k+1}.
\]
We have \(d\mathbf{P}^* = f_0(P) \Delta^{n-1} \), therefore,

\[
\delta(P^*) = f_0(P) \frac{(s + t)^n - t^n}{s} - \frac{\partial}{\partial t} \sum_{k=0}^{n} f_k(P) s^{n-1-k} t^k.
\]

The coefficient of \(s^{n-1-k} t^k \) on the right hand side above is given by

\[
\delta_k(P^*) = \binom{n}{k} f_0(P) - (k + 1) f_k(P), \quad \text{for } 1 \leq k \leq n.
\]

This is non-negative by Theorem 1.7.10 or by Exercise 1.4.15.

The following properties of \(H(P) \) follow from the corresponding properties of \(F(P) \) established above and the identity \(H(P)(s, t) = F(P)(s - t, t) \).

Theorem 1.7.12.

(a) The ring homomorphism \(H: \mathcal{P} \rightarrow \mathbb{Z}[s, t] \) satisfies \(H(P)|_{t=0} = s^n \). The restriction of \(H \) to the subring \(\mathcal{S} \) of simple polytopes satisfies the equation

\[
H(d\mathbf{P}) = D H(P)
\]

where \(D = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \).

(b) The image of \(H \) is generated by \(H(\Delta^1) = s + t \) and \(H(\Delta^2) = s^2 + st + t^2 \).

(c) If \(\tilde{H}: \mathcal{S} \rightarrow \mathbb{Z}[s, t] \) is a linear map satisfying \(\tilde{H}(d\mathbf{P}) = D \tilde{H}(P) \) and \(\tilde{H}(P)|_{t=0} = s^n \) for any simple \(n \)-polytope \(P \), then \(\tilde{H}(P) = H(P) \).

Ring of building sets. Let \(B_1 \) and \(B_2 \) be building sets on \([n_1]\) and \([n_2]\) respectively. A map \(f: B_1 \rightarrow B_2 \) of building sets is a map \(f: [n_1] \rightarrow [n_2] \) satisfying \(f^{-1}(S) \in B_1 \) for every \(S \in B_2 \). Two building sets \(B_1 \) and \(B_2 \) are said to be equivalent, if there exist maps \(f: B_1 \rightarrow B_2 \) and \(g: B_2 \rightarrow B_1 \) of building sets such that the compositions \(f \circ g \) and \(g \circ f \) are the identity maps.

The **product** of \(B_1 \) and \(B_2 \) is the building set \(B_1 \cdot B_2 \) on \([n_1 + n_2]\) induced by appending the interval \([n_1]\) to the interval \([n_2]\).

Example 1.7.13. The complete collection \(C \) and the collection \(S \) of Example 1.5.3 are the initial and the terminal connected building sets on \([n+1]\), respectively, since for every connected building set \(B \) on \([n+1]\) there are maps \(C \rightarrow B \rightarrow S \) of building sets induced by the identity map on \([n+1]\).

Definition 1.7.14. Denote by \(\mathcal{B}^{2n} \) the free abelian group generated by the equivalence classes of building sets on \([n+1]\). Since \(B_1 \cdot B_2 \) is equivalent to \(B_2 \cdot B_1 \), the product turns \(\mathcal{B} = \bigoplus_{n \geq 0} \mathcal{B}^{2n} \) into a commutative associative ring.

Given a connected building set \(B \) on \([n+1]\), define

\[
(1.32) \quad dB = \sum_{S \in B \setminus [n+1]} B|_S \cdot B/S
\]

where the sum is taken in the ring \(\mathcal{B} \). Since \(\mathcal{B} \) is generated by connected building sets, we may extend \(d \) to a linear map \(d: \mathcal{B} \rightarrow \mathcal{B} \) using the Leibniz formula

\[
d(B_1 \cdot B_2) = (dB_1) \cdot B_2 + B_1 \cdot (dB_2).
\]

We therefore get a derivation of \(\mathcal{B} \).

Proposition 1.7.15. The map \(\mathcal{B} \rightarrow P_\mathcal{B} \) induces a differential ring homomorphism \(\beta: \mathcal{B} \rightarrow \mathcal{P} \). Its image is a graded subring with unit in \(\mathcal{P} \) multiplicatively generated by nestohedra \(P_\mathcal{B} \) corresponding to connected building sets \(\mathcal{B} \).
PROOF. The fact that β is a ring homomorphism is obvious. It follows from Corollary 1.5.12 and (1.32) that β commutes with the differentials. Every building set consisting only of singletons is mapped to P^0 which represents a unit in \mathfrak{B}. Finally, it follows from Proposition 1.5.2 (a) that the image $\beta(\mathfrak{B})$ is generated by P_B with connected B.

Remark. The ring \mathfrak{B} does not have unit, and the map β is neither surjective, nor injective.

Given a subset $S \subset [n + 1]$, denote by $\Gamma|_S$ the restriction of Γ to the vertex set S, and denote by Γ/S the graph with the vertex set $[n + 1]\setminus S$ having an edge between two vertices i and j whenever they are path connected in $\Gamma_{S \cup \{i,j\}}$.

Proposition 1.7.16. For a connected graph Γ on $n+1$ vertices, we have

$$dP_\Gamma = \sum_{S \subseteq \left\{ n+1 \right\} \atop \Gamma|_S \text{ is connected}} P(\Gamma|_S) \times P(\Gamma/S).$$

Proof. Follows directly from (1.32).

Example 1.7.17. We have the following formulae for the differentials of the four graph-associhedra defined in Section 1.5:

$$d\ As^n = \sum_{i+j=n-1} (i+2)A^i \times A^j,$$

$$d\ Pe^n = \sum_{i+j=n-1} \binom{n+1}{i+1} P^i \times P^j,$$

$$d\ Cy^n = (n+1) \sum_{i+j=n-1} A^i \times Cy^j,$$

$$d\ St^n = n \cdot St^{n-1} + \sum_{i+j=n-1} \binom{n}{i} St^i \times Pe^j.$$

For example (see Figures 1.5–1.9),

$$d\ As^3 = 2A^0 \times A^2 + 3A^1 \times A^1 + 4A^2 \times A^0;$$

$$d\ Pe^3 = 4P^0 \times P^2 + 6P^1 \times P^1 + 4P^2 \times P^0;$$

$$d\ Cy^3 = 4(A^0 \times Cy^2 + A^1 \times Cy^1 + A^2 \times Cy^0);$$

$$d\ St^3 = 3St^2 + St^0 \times Pe^2 + 3St^1 \times Pe^1 + 3St^2 \times Pe^0.$$

Exercises.

1.7.18. Show that there are finitely many combinatorial polytopes with a given number of facets.

1.7.19. Show that $\delta = Fd - \frac{d}{dt} F$ is an F-derivation.

1.8. Families of polytopes and differential equations

In this section, using the language of generating series, we interpret the formulae for the differential of nestohedra and graph-associhedra as certain partial
differential equations. These differential equations encode the combinatorial information of the face structure of nestohedra. This exposition builds upon the results of [61] and [56].

Denote by \(\Psi[q] \) the polynomial ring in an indeterminate \(q \) with coefficients in the ring of polytopes \(\Psi \).

Proposition 1.8.1. Let
\[
Q: \Psi \to \Psi[q], \quad P \mapsto Q(P; q)
\]
be a linear map such that
\[
Q(dP; q) = \frac{\partial}{\partial q} Q(P; q) \quad \text{and} \quad Q(P; 0) = P
\]
for any polytope \(P \). Then
\[
Q(P; q) = \sum_{k=0}^{n} (d^k P) \frac{q^k}{k!}.
\]

Proof. Use induction by dimension, as in the proof of Proposition 1.7.7. \(\square \)

Now assume given a sequence \(\mathcal{P} = \{P^n, n \geq 0\} \) of polytopes, one in each dimension. We define its **generating series** as the formal power series
\[
\mathcal{P}(x) = \sum_{n \geq 0} \lambda_n x^n + n_0
\]
in \(\Psi \otimes \mathbb{Q}[x] \). The parameter \(n_0 \) and the coefficients \(\lambda_n \) will be chosen depending on a particular sequence \(\mathcal{P} \). Using the transformation \(Q \) of the previous proposition we may define the following 2-parameter extension of the generating series:
\[
\mathcal{P}(q, x) = \sum_{n \geq 0} \lambda_n Q(P^n; q) x^n + n_0.
\]

(1.33)

We have \(\mathcal{P}(0, x) = \mathcal{P}(x) \).

We consider the following generating series of the six sequences of nestohedra:
\[
\Delta(x) = \sum_{n \geq 0} \Delta_n \frac{x^{n+1}}{(n+1)!} ; \quad I(x) = \sum_{n \geq 0} \frac{P^n x^n}{n!} ;
\]
\[
As(x) = \sum_{n \geq 0} A_n x^{n+2} ; \quad Pe(x) = \sum_{n \geq 0} \frac{P^n x^{n+1}}{(n+1)!} ;
\]
\[
Cy(x) = \sum_{n \geq 0} C_n \frac{x^{n+1}}{n+1} ; \quad St(x) = \sum_{n \geq 0} \frac{St^n x^n}{n!} .
\]

(1.34)

Lemma 1.8.2. The differentials of the generating series above are given by
\[
d\Delta(x) = x \Delta(x) ; \quad dI(x) = 2xI(x) ;
\]
\[
d As(x) = As(x) \frac{d}{dx} As(x) ; \quad d Pe(x) = Pe^2(x) ;
\]
\[
d Cy(x) = As(x) \frac{d}{dx} Cy(x) ; \quad d St(x) = (x + Pe(x)) St(x) .
\]

Proof. This follows from the formulae of Examples 1.7.4 and 1.7.17. \(\square \)
Theorem 1.8.3. The two-parameter extensions of the generating series (1.34) satisfy the following partial differential equations:
\[
\frac{\partial}{\partial q} \Delta(q, x) = x \Delta(q, x) ; \quad \frac{\partial}{\partial q} I(q, x) = 2xI(q, x) ; \\
\frac{\partial}{\partial q} As(q, x) = As(q, x) \frac{\partial}{\partial x} As(q, x) ; \quad \frac{\partial}{\partial q} Pe(q, x) = Pe^2(q, x) ; \\
\frac{\partial}{\partial q} Cy(q, x) = As(q, x) \frac{\partial}{\partial x} Cy(q, x) ; \quad \frac{\partial}{\partial q} St(q, x) = (x + Pe(q, x))St(q, x) .
\]

Proof. A direct calculation using formulae (1.33) and (1.34).

Remark. The role of the parameters \(\lambda_n \) in (1.33) can be illustrated as follows. If we replace the first series \(\Delta(x) \) of (1.34) by
\[
\hat{\Delta}(x) = \sum_{n \geq 0} \Delta^n \frac{x^{n+1}}{n+1},
\]
then the first equations of Lemma 1.8.2 and Theorem 1.8.3 take the form
\[
d\hat{\Delta}(x) = x^2 \frac{d}{dx} \hat{\Delta}(x), \quad \frac{\partial}{\partial q} \hat{\Delta}(q, x) = x^2 \frac{d}{dx} \hat{\Delta}(q, x).
\]

Four of the equations of Theorem 1.8.3, namely those corresponding to the series \(\Delta, I, Pe \) and \(St \), are ordinary differential equations. Their solutions are completely determined by the initial data \(P(0, x) = P(x) \) and are given by the explicit formulae
\[
\Delta(q, x) = \Delta(x)e^{qx} ; \quad I(q, x) = I(x)e^{2qx} ; \\
Pe(q, x) = \frac{Pe(x)}{1 - qPe(x)} ; \quad St(q, x) = St(x)\frac{e^{qx}}{1 - qPe(x)} .
\]

The equation for \(U = As(q, x) \) has the form \(U_q = U U_x \). This classical quasilinear partial differential equation was considered by E. Hopf, and therefore became known as the Hopf equation.

Theorem 1.8.4.

(a) The series \(As(q, x) \) is given by the solution of the functional equation (equation on characteristics)
\[
As(q, x) = As(x + qAs(q, x)), \tag{1.35}
\]
where \(As(x) = As(0, x) \).

(b) The series \(Cy(q, x) \) is given by the solution of
\[
Cy(q, x) = Cy(x + qAs(q, x)) , \tag{1.36}
\]
where \(Cy(x) = Cy(0, x) \).

Proof. Set \(U = As(q, x) \) and \(As_x = \frac{d}{dx} As(x) \). If \(U \) is a solution to (1.35), then we obtain by differentiating
\[
U_q = (U + U_q) As_x, \quad U_x = (1 + qU_x) As_x .
\]
Therefore, \((1 - qAs_x)U_q = U As_x \) and \((1 - qAs_x)U_x = As_x \), which implies that \(U \) satisfies the Hopf equation \(U_q = U U_x \). Its solution with the initial condition
\[U(0, x) = As(x) \] is unique by the general theory of quasilinear equations (in our case the uniqueness can be also verified using standard arguments with power series).

Similarly, by differentiating (1.36) we obtain for \(V = Cy(q, x) \):

\[V_q = (U + qU_q)Cy_z, \quad V_x = (1 + qU_x)Cy_z. \]

Using that \(U_q = UU_z \) we rewrite the first equation above as \(V_q = U(1 + qU_z)Cy_z \), which implies \(V_q = UU_z \) as claimed. This is exactly the equation for \(V = Cy(q, x) \) given by Theorem 1.8.3, and its solution with \(V(0, x) = Cy(x) \) is unique. \(\square \)

We can also use Lemma 1.8.2 to calculate the face-polynomials \(F(s, t) \) of graph-association. Let \(P(x) \) be one of the generating series (1.34), and set

\[F_P = F(P(x)) = \sum_{n \geq 0} \Delta^n x^{n+n_0} \sum_{k=0}^n f_k(P^n)s^k t^{n-k}. \]

We refer to \(F_P = F_P(s, t; x) \) as the generating series of face-polynomials; it is a series in \(x \) whose coefficients are polynomials in \(s \) and \(t \).

Theorem 1.8.5. The generating series of face-polynomials corresponding to (1.34) satisfy the following differential equations, with the initial conditions given in the second column:

\[
\begin{align*}
\frac{\partial}{\partial t} F_\Delta &= xF_\Delta, & F_\Delta(s, 0; x) &= \frac{e^{sx} - 1}{s}; \\
\frac{\partial}{\partial t} F_I &= 2xF_I, & F_I(s, 0; x) &= e^{sx}; \\
\frac{\partial}{\partial t} F_{As} &= F_{As} \frac{\partial}{\partial x} F_{As}, & F_{As}(s, 0; x) &= \frac{x^2}{1 - sx}; \\
\frac{\partial}{\partial t} F_{Pe} &= F_{Pe}^2, & F_{Pe}(s, 0; x) &= \frac{e^{sx} - 1}{s}; \\
\frac{\partial}{\partial t} F_{Cy} &= F_{As} \frac{\partial}{\partial x} F_{Cy}, & F_{Cy}(s, 0; x) &= -\frac{\ln(1 - sx)}{s}; \\
\frac{\partial}{\partial t} F_{St} &= (x + F_{Pe})F_{St}, & F_{St}(s, 0; x) &= e^{sx}.
\end{align*}
\]

Proof. The differential equations are obtained by applying \(F \) to the equations of Lemma 1.8.2 and using the fact that \(F(dP) = \frac{\partial}{\partial P} F(P) \). The initial conditions follow by substituting \(s^n \) for \(P^n \) in (1.34) and calculating the resulting series. \(\square \)

Again, the four equations for the series \(F_\Delta, F_I, F_{Pe} \) and \(F_{St} \) are ordinary differential equations. Their solutions are completely determined by the initial data; the explicit formulae are left as exercises. The remaining two partial differential equations for the series \(F_{As} \) and \(F_{Cy} \) can be solved explicitly as follows.

Theorem 1.8.6.

(a) The series \(U = F_{As}(s, t; x) \) satisfies the quadratic equation

\[t(s + t)U^2 + (2tx + sx - 1)U + x^2 = 0. \]

The initial condition \(F_{As}(s, 0; x) = \frac{x^2}{1 - sx} \) determines its solution uniquely.
(b) The series F_{Cy} is given by

$$F_{Cy} = -\frac{1}{s} \ln(1 - s(x + tF_{As})).$$

Proof. (a) By analogy with (1.35) we show that $U = F_{As}$ satisfies

$$U = \varphi(x + tU),$$

where $\varphi(x) = F_{As}(s, 0; x) = \frac{x^2}{1 - sx}$. It is equivalent to (1.37).

(b) We have that $V = F_{Cy}$ is given by the solution to $V_t = UV_x$. By analogy with (1.36) we show that it is given by

$$V = \psi(x + tU),$$

where $U = F_{As}$ and $\psi(x) = F_{Cy}(s, 0; x) = -\frac{\ln(1 - sx)}{s}$. \hfill \Box

As a application, we derive a formula for the number of k-faces in As^n, which equals the number of bracketing of a word of $n + 2$ letters with $n - k$ pairs of brackets. These numbers were first calculated by Cayley in 1891:

Theorem 1.8.7. The number of k-dimensional faces in an n-dimensional associahedron is given by

$$f_k(As^n) = \frac{1}{n + 2} \binom{n}{k} \binom{2n - k + 2}{n + 1}.$$

Proof. We use the fact that F_{As} satisfies the Hopf equation, whose solutions may be obtained using conservation laws. Let

$$U(t, x) = \sum_{k \geq 0} U_k(x)t^k$$

be the solution of the Cauchy problem for the Hopf equation:

$$U_t = UU_x, \quad U(0, x) = \varphi(x).$$

This equation has the following conservation laws

$$\left(\frac{U_k}{k} \right)_t = \left(\frac{U^{k+1}}{k+1} \right)_x, \quad \text{for } k \geq 1.$$

Hence,

$$\frac{d^k}{dt^k} U = \frac{d^{k-1}}{dt^{k-1}} \left(\frac{U^2}{2} \right)_x = \frac{d^{k-2}}{dt^{k-2}} \left(\frac{U^3}{3} \right)_{xx} = \cdots = \frac{d^k}{dx^k} \left(\frac{U^{k+1}}{k + 1} \right), \quad \text{for } k \geq 1.$$

Evaluating at $t = 0$ we obtain

$$\left. \frac{d^k}{dt^k} U \right|_{t=0} = k! U_k(x) = \frac{d^k}{dx^k} \left(\frac{U^{k+1}_0}{k + 1} \right).$$

Therefore,

$$U_k(x) = \frac{1}{(k + 1)!} \frac{d^k}{dx^k} \varphi^{k+1}(x).$$

By Theorem 1.8.5 the function

$$U = F_{As}(s, t; x) = \sum_{n \geq 0} \sum_{k=0}^n f_{n-k}(As^n)s^{n-k}t^k x^{n+2}$$

(1.39)
satisfies the Hopf equation (1.38) with the initial function \(\varphi(s; x) = \frac{x^2}{1-sx} \). We therefore calculate

\[
U_k(s; x) = \frac{1}{(k+1)!} \frac{d^k}{dx^k} \left(\frac{x^{2(k+1)}}{(1-sx)^{k+1}} \right)
\]

\[
= \frac{1}{(k+1)!} \frac{d^k}{dx^k} \left(x^{2(k+1)} \sum_{l \geq 0} \binom{l+k}{l} s^l x^l \right)
\]

\[
= \frac{1}{(k+1)!} \sum_{l \geq 0} \binom{l+k}{k} \frac{(2k+l+2)!}{(k+l+2)!} s^l x^{k+l+2}
\]

\[
= \sum_{n \geq k} \frac{1}{n+2} \binom{n}{k} \binom{n+k+2}{n+1} s^{n-k} x^{n+2}.
\]

On the other hand, it follows from (1.39) that

\[
U_k(s; x) = \sum_{n \geq k} f_{n-k}(As^n) s^{n-k} x^{n+2}.
\]

Comparing the last two formulae we obtain

\[
f_{n-k}(As^n) = \frac{1}{n+2} \binom{n}{k} \binom{n+k+2}{n+1},
\]

which is equivalent to the required formula.

\[\square\]

Exercises.

1.8.8. By solving the first two differential equations of Theorem 1.8.5 show that the generating series for the F-polynomials of simplices and cubes are given by

\[
F_\Delta(s, t; x) = \sum_{n \geq 0} F(\Delta^n) \frac{x^{n+1}}{(n+1)!} = e^{tx} e^{sx} - 1
\]

\[
F_I(s, t; x) = \sum_{n \geq 0} F(I^n) \frac{x^n}{n!} = e^{tx} e^{(s+t)x}.
\]

Compare this with the formulae for \(F(\Delta^n) \) and \(F(I^n) \).

1.8.9. Show by solving the corresponding differential equations from Theorem 1.8.5 that the generating series for the face-polynomials of permutahedra and stellahedra are given by

\[
F_{\text{Pe}}(s, t; x) = \sum_{n \geq 0} F(\text{Pe}^n) \frac{x^{n+1}}{(n+1)!} = e^{sx} - 1
\]

\[
F_{\text{St}}(s, t; x) = \sum_{n \geq 0} F(\text{St}^n) \frac{x^n}{n!} = \frac{sx^{(s+t)x}}{s-t(e^{sx} - 1)}.
\]

Compute the face-polynomials \(F(\text{Pe}^n) \) and \(F(\text{St}^n) \) and the face numbers explicitly.

1.8.10. Define the generating series \(H_P(s, t; x) \) of H-polynomials by analogy with the generating series of face-polynomials. Deduce the following formulae for
sequences of nestohedra:

\[
H_\Delta(s, t; x) = \sum_{n \geq 0} H(\Delta^n x^{n+1}) \frac{x^{n+1}}{(n+1)!} = \frac{e^{sx} - e^{tx}}{s - t},
\]

\[
H_I(s, t; x) = \sum_{n \geq 0} H(\Gamma^n x^n) \frac{x^n}{n!} = e^{(s+t)x},
\]

\[
H_{Pe}(s, t; x) = \sum_{n \geq 0} H(Pe^n x^{n+1}) \frac{x^{n+1}}{(n+1)!} = \frac{e^{sx} - e^{tx}}{se^{tx} - te^{sx}},
\]

\[
H_{St}(s, t; x) = \sum_{n \geq 0} H(St^n x^n) \frac{x^n}{n!} = \frac{(s - t)e^{(s+t)x}}{se^{tx} - te^{sx}}.
\]

1.8.11. The series \(Y = H_{As}(s, t; x) = \sum_{n \geq 0} H(As^n x^{n+2})\) satisfies the quadratic equation

\[
Y = (x + sY)(x + tY).
\]

The initial condition \(H_{As}(s, 0; x) = \frac{x^2}{e^{sx}}\) determines its solution uniquely.

1.8.12. The components of the \(h\)-vector of \(As^n\) are given by

\[
h_k = \frac{1}{n+1} \binom{n+1}{k} \binom{n+1}{k+1}, \quad 0 \leq k \leq n.
\]
CHAPTER 2

Combinatorial Structures

The face poset of a convex polytope is a classical example of a combinatorial structure underlying a decomposition of a geometric object. With the development of combinatorial topology several new combinatorial structures emerged, such as simplicial and cubical complexes, simplicial posets and other types of regular cell complexes. Many of these structures have eventually become objects of independent study in geometric combinatorics.

A simplicial complex is the abstract combinatorial structure behind a simplicial subdivision (or triangulation) of a topological space. Triangulations were first introduced by Poincaré and provide a rigorous and convenient tool for studying topological invariants of smooth manifolds by combinatorial methods. The notion of a nerve of a covering of a topological space, introduced by Alexandroff, provides another source of examples of simplicial complexes.

The study of triangulations stimulated the development of first combinatorial and then algebraic topology in the first half of the XXth century. With the appearance of cell complexes algebraic tools gradually replaced the combinatorial ones in mainstream topology. Simplicial complexes still play a pivotal role in PL (piece-wise linear) topology, however nowadays the main source of interest in them is in discrete and computational geometry. One reason for that is the emergence of computers, since simplicial complexes provide an effective way to translate geometric and topological structures into machine language.

We therefore may distinguish two different views on the role of simplicial complexes and triangulations. In topology, simplicial complexes and their different derivatives such as singular chains and simplicial sets are used as technical tools to study the topology of the underlying space. Most combinatorial invariants of nerves or triangulations (such as the number of faces of a given dimension) do not have meaning in topology, as they do not reflect any topological feature of the underlying space. Topologists therefore tend not to distinguish between simplicial complexes that have the same underlying topology. For instance, refining a triangulation (such as passing to its barycentric subdivision) changes the combinatorics drastically, but does not affect the underlying topology. On the other hand, in combinatorial geometry the combinatorics of a simplicial complex is what really matters, while the underlying topology is often simple or irrelevant.

In toric topology the combinatorist’s point of view on triangulations and similar decompositions is enriched by elaborate topological techniques. Combinatorial invariants of triangulations therefore can be analysed by topological methods, and at the same time combinatorial structures such as simplicial complexes or posets become a source of examples of topological spaces and manifolds with nice features and lots of symmetry, e.g. bearing a torus action. The combinatorial structures are the subject of this chapter; the associated topological objects will come later.
Here we assume only minimal knowledge of topology. The reader may also check Appendix B for the definition of simplicial homology groups, etc.

2.1. Polyhedral fans

Like convex polytopes, polyhedral fans encode both geometrical and combinatorial information. This distinguishes fans from purely combinatorial objects considered later in this chapter.

Although fans were considered in convex geometry independently, the main source of interest to them is in the theory of toric varieties, which are classified by rational fans. Toric varieties are the subject of Chapter 5, and here we describe the terminology and constructions related to fans.

Definition 2.1.1. A convex polyhedral cone (or simply cone) is the set of nonnegative linear combinations of a finite set of vectors \(a_1, \ldots, a_k \in \mathbb{R}^n\):

\[
\sigma = \mathbb{R}_+ \langle a_1, \ldots, a_k \rangle = \{ \mu_1 a_1 + \cdots + \mu_k a_k : \mu_i \in \mathbb{R}_+ \}.
\]

Here \(a_1, \ldots, a_k\) are referred to as generating vectors (or generators) of \(\sigma\). A minimal set of generators of a cone is defined up to multiplication of vectors by positive constants. A cone is rational if its generators can be chosen from the integer lattice \(\mathbb{Z}^n \subset \mathbb{R}^n\). If \(\sigma\) is a rational cone, then its generators \(a_1, \ldots, a_k\) are usually chosen to be primitive, i.e. each \(a_i\) is the smallest lattice vector in the ray defined by it.

A cone is strongly convex if it does not contain a line. A cone is simplicial if it is generated by part of a basis of \(\mathbb{R}^n\), and is regular if it is generated by part of a basis of \(\mathbb{Z}^n\). (Regular cones play a special role in the theory of toric varieties.)

A cone is also an intersection of finitely many halfspaces in \(\mathbb{R}^n\), so it is a convex polyhedron in the sense of Definition 1.1.2. We therefore may define faces of a cone in the same way as we did for polytopes, as intersections of \(\sigma\) with supporting hyperplanes. We need only to consider supporting hyperplanes containing \(0\); such a hyperplane is defined by a linear function \(u\) and will be denoted by \(u^\perp\). A face \(\tau\) of a cone \(\sigma\) is therefore an intersection of \(\sigma\) with a supporting hyperplane \(u^\perp\), i.e. \(\tau = \sigma \cap u^\perp\). Every face of a cone is itself a cone. If \(\sigma \neq \mathbb{R}^n\), then \(\sigma\) has the smallest face \(\sigma \cap (-\sigma)\); it is the vertex \(0\) whenever \(\sigma\) is strongly convex. A minimal generating set of a cone consists of nonzero vectors along its edges.

A fan is a finite collection \(\Sigma = \{ \sigma_1, \ldots, \sigma_s \}\) of strongly convex cones in some \(\mathbb{R}^n\) such that every face of a cone in \(\Sigma\) belongs to \(\Sigma\) and the intersection of any two cones in \(\Sigma\) is a face of each. A fan \(\Sigma\) is rational (respectively, simplicial, regular) if every cone in \(\Sigma\) is rational (respectively, simplicial, regular). A fan \(\Sigma = \{ \sigma_1, \ldots, \sigma_s \}\) is called complete if \(\sigma_1 \cup \cdots \cup \sigma_s = \mathbb{R}^n\).

Given a cone \(\sigma \subset \mathbb{R}^n\), define its dual as

\[
\sigma^\vee = \{ x \in \mathbb{R}^n : \langle u, x \rangle \geq 0 \text{ for all } u \in \sigma \}.
\]

(Note the difference with the definition of the polar set of a polyhedron, see (1.4).) Observe that if \(u \in \sigma^\vee\), then \(u^\perp\) is a supporting hyperplane of \(\sigma\). A standard convex-geometric argument shows that \(\sigma^\vee\) is indeed a cone, \((\sigma^\vee)^\vee = \sigma\), and \(\sigma^\vee\) is strongly convex if and only if \(\dim \sigma = n\).

Cones in a fan can be separated by hyperplanes (or linear functions):
Lemma 2.1.2 (Separation Lemma). Let \(\sigma \) and \(\sigma' \) be two distinct cones whose intersection \(\tau \) is a face of each. Then there exists \(u \in \sigma' \cap (\sigma')^c \) such that
\[
\tau = \sigma \cap u^\perp = \sigma' \cap u^\perp.
\]
In other words, a supporting hyperplane defining \(\tau \) can be chosen so as to separate \(\sigma \) and \(\sigma' \).

Proof. We only sketch a proof; the details can be found, e.g. in [146, §1.2]. The fact that \(\sigma \) and \(\sigma' \) intersect in a face implies that the cone \(\xi = \sigma - \sigma' = \sigma + (-\sigma') \) is not the whole space. Let \(u^\perp \) be a supporting hyperplane defining the smallest face of \(\xi \), that is,
\[
\xi \cap u^\perp = \xi \cap (-\xi) = (\sigma - \sigma') \cap (\sigma' - \sigma).
\]
We claim that this \(u \) has the required properties. Indeed, \(\sigma \subset \xi \) implies \(u \in \sigma^c \), and \(\tau \subset \xi \cap (-\xi) \) implies \(\tau \subset \sigma \cap u^\perp \). Conversely, if \(x \in \sigma \cap u^\perp \), then \(x \) is in \(\sigma' - \sigma \), so that \(x = y' - y \) for \(y' \in \sigma' \), \(y \in \sigma \). Then \(x + y \in \sigma \cap \sigma' = \tau \), which implies that both \(x \) and \(y \) are in \(\tau \). Hence \(\sigma \cap u^\perp = \tau \). The same argument for \(-u\) shows that \(u \in (\sigma - \sigma')^c \) and \(\sigma' \cap u^\perp = \tau \).

Miraculously, the convex-geometrical separation property above will translate into topological separation (Hausdorffness) of algebraic varieties and topological spaces constructed from fans in the latter chapters.

The next construction assigns a complete fan to every convex polytope.

Construction 2.1.3 (Normal fan). Let \(P \) be a polytope (1.1) with \(m \) facets \(F_1, \ldots, F_m \) and normal vectors \(a_1, \ldots, a_m \). Given a face \(Q \subset P \) define the cone
\[
\sigma_Q = \{ u \in \mathbb{R}^n : \langle u, x' \rangle \leq \langle u, x \rangle \text{ for all } x' \in Q \text{ and } x \in P \}.
\]
The dual cone \(\sigma_Q^* \) is the ‘polyhedral angle’ at the face \(Q \); it is generated by all vectors \(x - x' \) pointing from \(x' \in Q \) to \(x \in P \).

We say that a vector \(a_i \) is normal to the face \(Q \) if \(Q \subset F_i \). The cone \(\sigma_Q \) is generated by those \(a_i \) which are normal to \(Q \) (this is an exercise). Then
\[
\Sigma_P = \{ \sigma_Q : Q \text{ is a face of } P \}
\]
is a complete fan \(\Sigma_P \) in \(\mathbb{R}^n \) (this is another exercise), which is denoted by \(\Sigma_P \) and is referred to as the normal fan of the polytope \(P \). If \(0 \) is contained in the interior of \(P \) then \(\Sigma_P \) may be also described as the set of cones over the faces of the polar polytope \(P^* \) (yet another exercise).

It is clear from the above descriptions that the normal fan \(\Sigma_P \) is simplicial if and only if \(P \) is simple. In this case the definition of \(\Sigma_P \) may be simplified: the cones of \(\Sigma_P \) are generated by those sets \(\{a_{i_1}, \ldots, a_{i_k}\} \) for which the intersection \(F_{i_1} \cap \cdots \cap F_{i_k} \) is nonempty.

If all vertices of \(P \) are in the lattice \(\mathbb{Z}^n \) then the normal fan \(\Sigma_P \) is rational, but the converse is not true. Polytopes whose normal fans are regular are called Delzant (this name comes from a symplectic geometry construction discussed in Section 5.5). Therefore, \(P \) is a Delzant polytope if and only if for every vertex \(x \in P \) the normal vectors to the facets meeting at \(x \) can be chosen to form a basis of \(\mathbb{Z}^n \). In this definition one may replace ‘normal vectors to the facets meeting at \(x \)’ by ‘vectors along the edges meeting at \(x \)’. A Delzant polytope is necessarily simple.
The normal fan Σ_P of a polytope P contains the information about the normals to the facets (the generators a_i of the edges of Σ_P) and the combinatorial structure of P (which sets of vectors a_i span a cone of Σ_P is determined by which facets intersect at a face), however the scalars b_i in (1.1) are lost. Not every complete fan can be obtained by ‘forgetting the numbers $b_i’$ from a presentation of a polytope by inequalities, i.e. not every complete fan is a normal fan. This is fails even for regular fans, as is shown by the next example, which is taken from [146].

Example 2.1.4. Consider the complete three-dimensional fan Σ with 7 edges generated by the vectors $a_1 = e_1, a_2 = e_2, a_3 = e_3, a_4 = -e_1 - e_2 - e_3, a_5 = -e_1 - e_2, a_6 = -e_2 - e_3, a_7 = -e_1 - e_3$, and 10 three-dimensional cones with vertex 0 over the faces of the triangulated boundary of the tetrahedron shown in Figure 2.1. It is easy to verify that Σ is regular.

Assume that $\Sigma = \Sigma_P$ is the normal fan of a polytope P. Consider the function $\psi: \mathbb{R}^n \to \mathbb{R}$ given by

$$\psi(u) = \min_{x \in P} \langle u, x \rangle = \min_{v \in V(P)} \langle u, v \rangle,$$

where $V(P)$ is the set of vertices of P. This function is continuous and its restriction to every 3-dimensional cone of Σ_P is linear. Indeed, 3-dimensional cones σ_v correspond to vertices $v \in V(P)$, and we have $\psi(u) = \langle u, v \rangle$ for $u \in \sigma_v$ by definition (2.2) of σ_v.

Now consider the two 3-dimensional cones of Σ_P generated by the triples a_1, a_3, a_5 and a_1, a_5, a_6, and let v and v' be the corresponding vertices of P. Then $\psi(a_1) = \langle a_1, v \rangle, \psi(a_3) = \langle a_3, v \rangle, \psi(a_5) = \langle a_5, v \rangle, \psi(a_6) = \langle a_6, v' \rangle$, hence,

$$\psi(a_1) + \psi(a_5) - \psi(a_3) = \langle a_1 + a_5 - a_3, v \rangle = \langle a_6, v' \rangle = \psi(a_6).$$

Therefore,

$$\psi(a_1) + \psi(a_5) > \psi(a_3) + \psi(a_6).$$

Similarly,

$$\psi(a_2) + \psi(a_6) > \psi(a_1) + \psi(a_7),$$

$$\psi(a_3) + \psi(a_7) > \psi(a_2) + \psi(a_5).$$

Adding the last three inequalities together we get a contradiction.
2.2. Simplicial complexes

A simplex is the convex hull of a set of affinely independent points in \mathbb{R}^n.

Definition 2.2.1. A geometric simplicial complex in \mathbb{R}^n is a collection P of simplices of arbitrary dimension such that every face of a simplex in P belongs to P and the intersection of any two simplices in P is either empty or a face of each.

To make the exposition more streamlined and without creating much ambiguity we shall not distinguish between the collection P (which is an abstract set of simplices) and the union of its simplices (which is a subset in \mathbb{R}^n). In PL (piecewise linear) topology the latter union is usually referred to as ‘the polyhedron of P’. Although we have already reserved the term ‘polyhedron’ for a finite intersection of halfspaces (1.1), we shall also occasionally use it in the PL topological sense (when it creates no ambiguity).

A face of P is a face of any of its simplices. The dimension of P is the maximal dimension of its faces.

If we know the set of vertices of P in \mathbb{R}^n then we may recover the whole P by specifying which subsets of vertices span simplices. This observation leads to the following definition.

Definition 2.2.2. An abstract simplicial complex on a set V is a collection K of subsets $I \subset V$ such that if $I \in K$ then any subset of I also belongs to K. We always assume that the empty set \emptyset belongs to K. We refer to $I \in K$ as an (abstract) simplex of K.

One-element simplices are called vertices of K. If K contains all one-element subsets of V, then we say that K is a simplicial complex on the vertex set V.

It is sometimes convenient to consider simplicial complexes K whose vertex sets are proper subsets of V. In this case we refer to a one-element subset of V which is not a vertex of K as a ghost vertex.

The dimension of a simplex $I \in K$ is $\dim I = |I| - 1$, where $|I|$ denotes the number of elements in I. The dimension of K is the maximal dimension of its simplices. A simplicial complex K is pure if all its maximal simplices have the same dimension. A subcollection $K' \subset K$ which is itself a simplicial complex is called a subcomplex of K.

A geometric simplicial complex P is said to be a geometric realisation of an abstract simplicial complex K on a set V if there is a bijection between V and the vertex set of P which maps abstract simplices of K to vertex sets of faces of P.

Exercises.

2.1.5. Let σ be a cone in \mathbb{R}^n. Show that σ° is also a cone, $(\sigma^\circ)^\circ = \sigma$, and σ° is strongly convex if and only if $\dim \sigma = n$.

2.1.6. The cone σ_Q given by (2.2) is generated by those vectors among a_1, \ldots, a_m which are normal to Q.

2.1.7. The set $\{\sigma_Q : Q$ is a face of $P\}$ is a complete fan in \mathbb{R}^n.

2.1.8. If 0 is contained in the interior of P then Σ_P consists of cones over the faces of the polar polytope P^*.

2.1.9. Let P be a convex polytope (not necessarily simple). Does the collection of cones generated by the sets $\{a_i, \ldots, a_k\}$ of normal vectors for which $F_i \cap \cdots \cap F_k \neq \emptyset$ form a fan?
Both geometric and abstract simplicial complexes will be assumed to be finite, unless we explicitly specify otherwise. In most constructions we identify the set \(V \) with the index set \([m] = \{1, \ldots, m\} \) and consider abstract simplicial complexes on \([m]\). An identification of \(V \) with \([m]\) fixes an order of vertices, although this order will be irrelevant in most cases. We drop the parentheses in the notation of one-element subsets \(\{i\} \subset [m] \), so that \(i \in \mathcal{K} \) means that \(\{i\} \) is a vertex of \(\mathcal{K} \), and \(i \notin \mathcal{K} \) means that \(\{i\} \) is a ghost vertex.

We shall use the common notation \(\Delta^{m-1} \) for any of the following three objects: an \((m-1)\)-simplex (a convex polytope), the geometric simplicial complex consisting of all faces in an \((m-1)\)-simplex, and the abstract simplicial complex consisting of all subsets of \([m]\).

Construction 2.2.3. Every abstract simplicial complex \(\mathcal{K} \) on \([m]\) can be realised geometrically in \(\mathbb{R}^m \) as follows. Let \(e_1, \ldots, e_m \) be the standard basis in \(\mathbb{R}^m \), and for each \(I \subset [m] \) denote by \(\Delta^I \) the convex hull of points \(e_i \) with \(i \in I \). Then

\[
\bigcup_{I \in \mathcal{K}} \Delta^I \subset \mathbb{R}^m
\]

is a geometric realisation of \(\mathcal{K} \).

The above construction is just a geometrical interpretation of the fact that any simplicial complex on \([m]\) is a subcomplex of the simplex \(\Delta^{m-1} \). Also, by a classical result of Pontryagin [306], a \(d\)-dimensional abstract simplicial complex admits a geometric realisation in \(\mathbb{R}^{2d+1} \).

Example 2.2.4. The boundary of a simplicial \(n\)-polytope is a simplicial complex of dimension \(n-1\). For a simple polytope \(P \), we shall denote by \(\mathcal{K}_P \) the boundary complex \(\partial P^n \) of the dual polytope. It coincides with the nerve of the covering of \(\partial P \) by the facets. That is, the vertices of \(\mathcal{K}_P \) are the facets of \(P \), and a set of vertices spans a simplex whenever the intersection of the corresponding facets is nonempty. We refer to \(\mathcal{K}_P \) as the nerve complex of \(P \).

Definition 2.2.5. The \(f \)-vector of an \((n-1)\)-dimensional simplicial complex \(\mathcal{K} \) is \(f(\mathcal{K}) = (f_0, f_1, \ldots, f_{n-1}) \), where \(f_i \) is the number of \(i \)-dimensional simplices in \(\mathcal{K} \). We also set \(f_{-1} = 1 \); to justify this convention one can assign dimension \(-1\) to the empty simplex. The \(h \)-vector \(h(\mathcal{K}) = (h_0, h_1, \ldots, h_n) \) is defined by

\[
h_0 s^n + h_1 s^{n-1} + \cdots + h_n = (s-1)^n + f_0 (s-1)^{n-1} + \cdots + f_{n-1}.
\]

(WARNING: this is not the identity obtained by substituting \(t = 1 \) in (1.9).) The \(g \)-vector \(g(\mathcal{K}) = (g_0, g_1, \ldots, g_{\lfloor n/2 \rfloor}) \) is defined by \(g_0 = 1 \) and \(g_i = h_i - h_{i-1} \) for \(i = 1, \ldots, \lfloor n/2 \rfloor \).

Remark. If \(\mathcal{K} = \mathcal{K}_P \) is the nerve complex of a simple polytope \(P \), then \(f(\mathcal{K}) = f(P^n) \) and \(h(\mathcal{K}) = h(P) \). This our notational convention may look artificial, but it seems to be the best possible way to treat the face vectors of both polytopes and simplicial complexes consistently.

Definition 2.2.6. Let \(\mathcal{K}_1, \mathcal{K}_2 \) be simplicial complexes on the sets \([m_1], [m_2]\) respectively, and \(P_1, P_2 \) their geometric realisations. A map \(\varphi: [m_1] \rightarrow [m_2] \) induces a simplicial map between \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \) if \(\varphi(I) \in \mathcal{K}_2 \) for any \(I \in \mathcal{K}_1 \). A simplicial map \(\varphi \) is said to be nondegenerate if \(|\varphi(I)| = |I| \) for any \(I \in \mathcal{K}_1 \). On the geometric level, a simplicial map extends linearly on the faces of \(P_1 \) to a map \(P_1 \rightarrow P_2 \), which we
continue to denote by \(\varphi \). A simplicial isomorphism is a simplicial map for which there exists a simplicial inverse.

There is an obvious isomorphism between any two geometric realisations of an abstract simplicial complex \(K \). We therefore shall use the common notation \(|K|\) for any geometric realisation of \(K \). Whenever it is safe, we shall not distinguish between abstract simplicial complexes and their geometric realisations. For example, we shall say ‘simplicial complex \(K \) is homeomorphic to \(X \)’ instead of ‘the geometric realisation of \(K \) is homeomorphic to \(X \)’.

A triangulation, or simplicial subdivision of a topological space \(X \) is a simplicial complex \(K \) together with a homeomorphism \(|K| \to X\).

A subdivision of a geometric simplicial complex \(P \) is a geometric simplicial complex \(P' \) such that each simplex of \(P' \) is contained in a simplex of \(P \) and each simplex of \(P \) is a union of finitely many simplices of \(P' \). A PL map \(\varphi : P_1 \to P_2 \) is a simplicial map from a subdivision of \(P_1 \) to a subdivision of \(P_2 \). A PL homeomorphism is a PL map for which there exists a PL inverse. In other words, two simplicial complexes are PL homeomorphic if there is a simplicial complex isomorphic to a subdivision of each of them.

Remark. For a topological approach to PL maps (where a PL map is defined between spaces rather than their triangulations) we refer to standard sources on PL topology, such as [192] and [321].

Example 2.2.7.

1. If \(P \) is a simple \(n \)-polytope then the nerve complex \(K_P \) (see Example 2.2.4) is a triangulation of an \((n-1)\)-dimensional sphere \(S^{n-1} \).

2. Let \(\Sigma \) be a simplicial fan in \(\mathbb{R}^n \) with \(m \) edges generated by vectors \(a_1, \ldots, a_m \). Its underlying simplicial complex is defined by

\[
K_\Sigma = \{ \{ i_1, \ldots, i_k \} \subset [m] : a_{i_1}, \ldots, a_{i_k} \text{ span a cone of } \Sigma \}.
\]

Informally, \(K_\Sigma \) may be viewed as the intersection of \(\Sigma \) with a unit sphere. The fan \(\Sigma \) is complete if and only if \(K_\Sigma \) is a triangulation of \(S^{n-1} \). If \(\Sigma \) is a normal fan of a simple \(n \)-polytope \(P \), then \(K_\Sigma = K_P \).

Construction 2.2.8 (join). Let \(K_1 \) and \(K_2 \) be simplicial complexes on sets \(V_1 \) and \(V_2 \) respectively. The join of \(K_1 \) and \(K_2 \) is the simplicial complex

\[
K_1 \star K_2 = \{ I \subset V_1 \sqcup V_2 : I = I_1 \sqcup I_2, I_1 \in K_1, I_2 \in K_2 \}
\]

on the set \(V_1 \sqcup V_2 \). The join operation is associative by inspection.

Example 2.2.9.

1. If \(K_1 = \Delta^{m_1-1} \), \(K_2 = \Delta^{m_2-1} \), then \(K_1 \star K_2 = \Delta^{m_1+m_2-1} \).

2. The simplicial complex \(\Delta^0 \star K \) (the join of \(K \) and a point) is called the cone over \(K \) and denoted by \(\text{cone } K \).

3. Let \(S^0 \) be a pair of disjoint points (a 0-sphere). Then \(S^0 \star K \) is called the suspension of \(K \) and denoted by \(\Sigma K \). Geometric realisations of cone \(K \) and \(\Sigma K \) are the topological cone and suspension over \(|K|\) respectively.

4. Let \(P_1 \) and \(P_2 \) be simple polytopes. Then

\[
K_{P_1 \times P_2} = K_{P_1} \star K_{P_2}.
\]

Construction 2.2.10. The fact that the product of two simplices is not a simplex makes triangulations of products of spaces more subtle. There is the following canonical way to triangulate the product of two simplicial complexes whose
vertices are ordered. Let \mathcal{K}_1 and \mathcal{K}_2 be simplicial complexes on $[m_1]$ and $[m_2]$ respectively (this is one of the few constructions where the order of vertices is important: here it is an additional structure). We construct a simplicial complex $\tilde{\mathcal{K}}_1 \times \tilde{\mathcal{K}}_2$ on $[m_1] \times [m_2]$ as follows. By definition, simplices of $\tilde{\mathcal{K}}_1 \times \tilde{\mathcal{K}}_2$ are those subsets in products $I_1 \times I_2$ of $I_1 \in \mathcal{K}_1$ and $I_2 \in \mathcal{K}_2$ which establish non-decreasing relations between I_1 and I_2. More formally,

$$\tilde{\mathcal{K}}_1 \times \tilde{\mathcal{K}}_2 = \{ I \subseteq I_1 \times I_2 : I_1 \in \mathcal{K}_1, I_2 \in \mathcal{K}_2, \quad \text{and } i \leq i' \text{ implies } j \leq j' \text{ for any two pairs } (i, j), (i', j') \in I \}.$$

We leave it as an exercise to check that $|\tilde{\mathcal{K}}_1 \times \tilde{\mathcal{K}}_2|$ defines a triangulation of $|\mathcal{K}_1| \times |\mathcal{K}_2|$. Note that $\tilde{\mathcal{K}}_1 \times \tilde{\mathcal{K}}_2 \neq \tilde{\mathcal{K}}_2 \times \tilde{\mathcal{K}}_1$ in general. Note also that if $\mathcal{K}_1 = \mathcal{K}_2 = \mathcal{K}$, then the diagonal is naturally a subcomplex in $\tilde{\mathcal{K}} \times \tilde{\mathcal{K}}$.

Construction 2.2.11 (connected sum of simplicial complexes). Let \mathcal{K}_1 and \mathcal{K}_2 be two pure d-dimensional simplicial complexes on sets \mathcal{V}_1 and \mathcal{V}_2 respectively, where $|\mathcal{V}_1| = m_1$, $|\mathcal{V}_2| = m_2$. Choose two maximal simplices $I_1 \in \mathcal{K}_1$, $I_2 \in \mathcal{K}_2$ and fix an identification of I_1 with I_2. Let $\mathcal{V}_1 \cup_I \mathcal{V}_2$ be the union of \mathcal{V}_1 and \mathcal{V}_2 in which I_1 is identified with I_2, and denote by I the subset created by the identification. We have $|\mathcal{V}_1 \cup_I \mathcal{V}_2| = m_1 + m_2 - d - 1$. Both \mathcal{K}_1 and \mathcal{K}_2 now can be viewed as simplicial complexes on the set $\mathcal{V}_1 \cup_I \mathcal{V}_2$. We define the **connected sum** of \mathcal{K}_1 and \mathcal{K}_2 at I_1 and I_2 as the simplicial complex

$$\mathcal{K}_1 \#_{I_1, I_2} \mathcal{K}_2 = (\mathcal{K}_1 \cup \mathcal{K}_2) \setminus \{ I \}$$

on the set $\mathcal{V}_1 \cup_I \mathcal{V}_2$. When the choices are clear, or their effect on the result irrelevant, we use the abbreviation $\mathcal{K}_1 \# \mathcal{K}_2$. Geometrically, the connected sum of $|\mathcal{K}_1|$ and $|\mathcal{K}_2|$ is produced by attaching $|\mathcal{K}_1|$ to $|\mathcal{K}_2|$ along I_1 and I_2 and then removing the face I obtained by the identification.

Example 2.2.12. Connected sum of simple polytopes defined in Construction 1.1.13 is dual to the operation described above. Namely, if P and Q are two simple n-polytopes, then

$$P \# Q = P \# Q.$$

Definition 2.2.13. Let \mathcal{K} be a simplicial complex on a set \mathcal{V}. The **link** and the **star** of a simplex $I \subseteq \mathcal{K}$ are the subcomplexes

$$\text{lk}_\mathcal{K} I = \{ J \subseteq \mathcal{K} : I \cup J \subseteq \mathcal{K}, \quad I \cap J = \emptyset \};$$

$$\text{st}_\mathcal{K} I = \{ J \subseteq \mathcal{K} : I \cup J \subseteq \mathcal{K} \}.$$

We also define the subcomplex

$$\partial \text{st}_\mathcal{K} I = \{ J \subseteq \mathcal{K} : I \cup J \subseteq \mathcal{K}, \quad I \not\subseteq J \}.$$

Then we have a sequence of inclusions

$$\text{lk}_\mathcal{K} I \subseteq \partial \text{st}_\mathcal{K} I \subseteq \text{st}_\mathcal{K} I.$$

For any vertex $v \in \mathcal{K}$, the subcomplex $\text{st}_\mathcal{K} v$ is the cone over $\text{lk}_\mathcal{K} v = \partial \text{st}_\mathcal{K} v$. Also, $|\text{st}_\mathcal{K} v|$ is the union of all faces of $|\mathcal{K}|$ that contain v. We omit the subscript \mathcal{K} in the notation of link and star whenever the ambient simplicial complex is clear.

The links of simplices determine the topological structure of the space $|\mathcal{K}|$ near any of its points. In particular, the following proposition describes the ‘local cohomology’ of $|\mathcal{K}|$.
Proposition 2.2.14. Let x be an interior point of a simplex $I \in \mathcal{K}$. Then
\[H^i(|\mathcal{K}|, |\mathcal{K}| \setminus x) \cong \tilde{H}^{i-1}(\text{lk} I), \]
where $H^i(X, A)$ denotes the ith relative singular cohomology group of a pair $A \subset X$, and $\tilde{H}^i(\mathcal{K})$ denotes the ith reduced simplicial cohomology group of \mathcal{K}.

Proof. We have
\[H^i(|\mathcal{K}|, |\mathcal{K}| \setminus x) \cong H^i(\text{st} I, (\text{st} I) \setminus x) \cong H^i(\text{st} I, (\partial I) \ast (\text{lk} I)) \cong \tilde{H}^{i-1}((\partial I) \ast (\text{lk} I)) \cong \tilde{H}^{i-1}(\text{lk} I). \]
Here the first isomorphism follows from the excision property, the second uses the fact that $(\partial I) \ast (\text{lk} I)$ is a deformation retract of $(\text{st} I) \setminus x$, the third follows from the homology sequence of a pair, and the fourth is by the suspension isomorphism. \(\square\)

Given a simplicial subcomplex $\mathcal{L} \subset \mathcal{K}$, define the closed combinatorial neighbourhood of \mathcal{L} in \mathcal{K} by
\[U_\mathcal{K}(\mathcal{L}) = \bigcup_{I \in \mathcal{L}} \text{st}_\mathcal{K} I. \]
That is, $U_\mathcal{K}(\mathcal{L})$ consists of all simplices of \mathcal{K}, together with all their faces, having some simplex of \mathcal{L} as a face. Define also the open combinatorial neighbourhood $\tilde{U}_\mathcal{K}(\mathcal{L})$ of $|\mathcal{L}|$ in $|\mathcal{K}|$ as the union of relative interiors of simplices of $|\mathcal{K}|$ having some simplex of $|\mathcal{L}|$ as a face.

Definition 2.2.15. Given a subset $I \subset \mathcal{V}$, define the corresponding full subcomplex of \mathcal{K} (or the restriction of \mathcal{K} to I) as
\[(2.4) \quad \mathcal{K}_I = \{ J \in \mathcal{K} : J \subset I \}. \]
Set $\text{core} \mathcal{V} = \{ v \in \mathcal{V} : \text{st} v \neq \mathcal{K} \}$. The core of \mathcal{K} is the subcomplex $\text{core} \mathcal{K} = \text{core} \mathcal{V}$. Then $\mathcal{K} = \text{core} \mathcal{K} \ast \Delta^{s-1}$, where Δ^{s-1} is the simplex on the set $\mathcal{V} \setminus \text{core} \mathcal{V}$.

Example 2.2.16.
1. $\text{lk}_{\mathcal{K}} \emptyset = \mathcal{K}$.
2. Let $\mathcal{K} = \text{bd} \Delta^3$ be the boundary of the tetrahedron on four vertices $1, 2, 3, 4$, and $I = \{ 1, 2 \}$. Then $\text{lk} I$ consists of two disjoint points 3 and 4.
3. Let \mathcal{K} be the cone over \mathcal{L} with vertex v. Then $\text{lk} v = \mathcal{L}$, st $v = \mathcal{K}$, and $\text{core} \mathcal{K} = \text{core} \mathcal{L}$.

Exercises.

2.2.17. Assume that \mathcal{K}_1 is realised geometrically in \mathbb{R}^n_1 and \mathcal{K}_2 in \mathbb{R}^n_2. Construct a realisation of the join $\mathcal{K}_1 \ast \mathcal{K}_2$ in $\mathbb{R}^{n_1 + n_2 + 1}$.

2.2.18. Show that $|\mathcal{K}_1 \ast \mathcal{K}_2|$ is a triangulation of $|\mathcal{K}_1| \times |\mathcal{K}_2|$.

2.2.19. Let \mathcal{K} be a pure simplicial complex. Then $\text{lk} I$ is pure of dimension $\dim \mathcal{K} - |I|$ for any $I \in \mathcal{K}$.
2.3. Barycentric subdivision and flag complexes

Definition 2.3.1. The barycentric subdivision of an abstract simplicial complex K is the simplicial complex K' defined as follows. The vertex set of K' is the set \(\{ I \in K, \ I \neq \emptyset \} \) of nonempty simplices of K. Simplices of K' are chains of embedded simplices of K. That is, \(\{ I_1, \ldots, I_r \} \subset K' \) if and only if $I_1 \subset I_2 \subset \cdots \subset I_r$ in K (after possible reordering) and $I_1 \neq \emptyset$.

The barycentre of a geometric simplex in \mathbb{R}^d with vertices v_1, \ldots, v_{d+1} is the point $\frac{1}{d+1}(v_1 + \cdots + v_{d+1})$. A geometric realisation of K' may be obtained by mapping every vertex of K' to the barycentre of the corresponding simplex of $|K|$; simplices of $|K'|$ are therefore spanned by the sets of barycentres of chains of embedded simplices of $|K|$.

Example 2.3.2. For any $(n-1)$-dimensional simplicial complex K on $[m]$, there is a nondegenerate simplicial map $K' \rightarrow \Delta^{n-1}$ defined on the vertices by $I \mapsto |I|$ for $I \in K$, where $|I|$ denotes the cardinality of I. Here I is viewed as a vertex of K' and $|I|$ as a vertex of Δ^{n-1}.

Example 2.3.3. Let K be a simplicial complex on a set \mathcal{V}, and assume we are given a choice function $c: K \rightarrow \mathcal{V}$ assigning to each simplex $I \in K$ one of its vertices. For instance, if $\mathcal{V} = [m]$ we can define $c(I)$ as the minimal element of I. For every such f there is a canonical simplicial map $\varphi_c: K' \rightarrow K$ constructed as follows. We define φ_c on the vertices of K' by $\varphi_c(I) = c(I)$ and then extend it to simplices of K' by the formula

$$\varphi_c(I_1 \subset I_2 \subset \cdots \subset I_r) = \{ c(I_1), c(I_2), \ldots, c(I_r) \}.$$

The right hand side is a subset of I_r, and therefore it is a simplex of K.

We shall need explicit formulae for the transformation of the f- and h-vectors under barycentric subdivision. Introduce the matrix

$$B = (b_{ij}), \quad 0 \leq i, j \leq n - 1; \quad b_{ij} = \sum_{k=0}^{i} (-1)^k \binom{i+1}{k} (i-k+1)^{j+1}.$$

One checks that $b_{ij} = 0$ for $i > j$ and $b_{ii} = (i+1)!$ (an exercise), so that B is a nondegenerate upper triangular matrix.

Lemma 2.3.4. Let K' be the barycentric subdivision of an $(n-1)$-dimensional simplicial complex K. Then the f-vectors of K and K' are related by the identity

$$f_i(K') = \sum_{j=1}^{n-1} b_{ij} f_j(K), \quad 0 \leq i \leq n - 1,$$

that is, $f^t(K') = B f^t(K)$ where $f^t(K)$ is the column vector with entries $f_i(K)$.

Proof. Consider the barycentric subdivision of a j-simplex Δ^j, and let b'_{ij} be the number of its i-simplices which lie inside Δ^j, i.e. not contained in $\partial \Delta^j$. Then we have $f_i(K') = \sum_{j=1}^{n-1} b'_{ij} f_j(K)$. It remains to show that $b_{ij} = b'_{ij}$. Indeed, it is easy to see that the numbers b'_{ij} satisfy the following recurrence relation:

$$b'_{ij} = (j+1) b'_{i-1,j-1} + \binom{j+1}{2} b'_{i-1,j-2} + \cdots + \binom{j+1}{j-1} b'_{i-1,j-1}.$$

It follows by induction that b'_{ij} is given by the same formula as b_{ij}. \qed
Now introduce the matrix

\[D = (d_{pq}), \quad 0 \leq p, q \leq n; \quad d_{pq} = \sum_{k=0}^{p} (-1)^{k} \binom{n+1}{k} (p-k)^{q}(p-k+1)^{n-q}, \]

where we set \(0^{0} = 1. \)

Lemma 2.3.5. The \(h \)-vectors of \(K \) and \(K' \) are related by the identity:

\[h_{p}(K') = \sum_{q=0}^{n} d_{pq}h_{q}(K), \quad 0 \leq p \leq n, \]

that is, \(h^{i}(K') = Dh^{i}(K). \) Moreover, the matrix \(D \) is nonsingular.

Proof. The formula for \(h_{p}(K') \) is established by a routine check using Lemma 2.3.4, relations (2.3) and identities for the binomial coefficients. If we add the component \(f_{-1} = 1 \) to the \(f \)-vector and change the matrix \(B \) appropriately, then we obtain \(D = C^{-1}BC, \) where \(C \) is the transition matrix from the \(h \)-vector to the \(f \)-vector (its explicit form can be obtained easily from relations (2.3)). This implies the nonsingularity of \(D. \)

Definition 2.3.6. Let \(P \) be a poset (partially ordered set) with strict order relation \(<. \) Its **order complex** \(\text{ord}(P) \) is the collection of all totally ordered chains \(x_{1} < x_{2} < \cdots < x_{i} \) (or flags), \(x_{i} \in P. \) Clearly, \(\text{ord}(P) \) is a simplicial complex.

The following proposition is clear from the definition.

Proposition 2.3.7. Let \(K \) be a simplicial complex, viewed as the poset of its simplices with respect to inclusion. Then \(\text{ord}(K \setminus \varnothing) \) is the **barycentric subdivision** \(K'. \) The **order complex** of \(K \) (with the empty simplex included) is \(\text{cone}(K') \).

This observation may be used to define the barycentric subdivision of other combinatorial objects. For example, let \(Q \) be a convex polytope, and \(Q \) the poset of its faces. Then \(\text{ord}(Q) \) is a simplicial complex; moreover, it is the boundary complex of a simplicial polytope \(Q' \) (an exercise), called the **barycentric subdivision** of \(Q. \) The vertices of \(Q' \) correspond to the barycentres of faces of \(Q. \)

Proposition 2.3.8. Let \(P \) be a simple polytope and let \(K = K_{P} \) be its **nerve complex.** Given a facet \(F \subset P, \) let \(v \) be the corresponding vertex of \(K. \) Then \(\text{st}_{K'} v \) is a triangulation of \(F. \)

Proof. We identify \(\partial P \) with \(K' \) by mapping the barycentre of each proper face of \(P \) to the corresponding vertex of \(K'. \) Under this identification, \(F \) is mapped to the union of simplices of \(K' \) corresponding to chains \(G_{1} \subset \cdots \subset G_{k} = F \) of faces of \(P \) ending at \(F. \) This union is exactly the star of \(v \) in \(K'. \)

Definition 2.3.9. A simplicial complex \(K \) is called a **flag complex** if any set of vertices of \(K \) which are pairwise connected by edges spans a simplex.

A flag complex is therefore completely determined by its 1-skeleton, which is a simple graph. Given such a graph \(\Gamma, \) we may reconstruct the flag complex \(K_{\Gamma}, \) whose simplices are the vertex sets of complete subgraphs (or **cliques**) of \(\Gamma. \)

Flag complexes may be characterised in terms of their missing faces. A **missing face** of \(K \) is a subset \(I \subset [m] \) such that \(I \nsubseteq K, \) but every proper subset of \(I \) is a simplex of \(K. \) Then \(K \) is flag if and only if each of its missing faces has two vertices.
Example 2.3.10.
1. The order complex of a poset is a flag complex.
2. A simple polytope P is a flagtope (see Definition 1.6.1) if and only if its nerve complex \mathcal{K}_P is a flag complex.
3. The boundary of a 5-gon is a flag complex, but it is not the order complex of a poset.
4. The boundary of a d-simplex is not flag for $d > 1$.
5. The join $\mathcal{K}_1 \ast \mathcal{K}_2$ of two flag complexes (see Construction 2.2.8) is flag (an exercise). Therefore, the product $P \times Q$ of two flagtopes is flag.
6. The connected sum $\mathcal{K}_1 \# \mathcal{K}_2$ of two d-dimensional complexes (see Construction 2.2.11) is not flag if $d > 1$.

Exercises.

2.3.11. Show that the matrix B of Lemma 2.3.4 satisfies $b_{ij} = 0$ for $i > j$ and $b_{ii} = (i + 1)!$.

2.3.12. Prove the formula for $h_p(\mathcal{K'})$ of Lemma 2.3.5.

2.3.13. Show that the order complex of the poset of proper faces of a polytope is the boundary complex of a simplicial polytope. (Hint: use stellar subdivisions, see Section 2.7 and the exercises there.)

2.3.14. The join of two flag complexes is flag.

2.3.15. Links of simplices in a flag complex are flag.

2.4. Alexander duality

For any simplicial complex, a dual complex may be defined on the same set. This duality has many important combinatorial and topological consequences.

Definition 2.4.1 (dual complex). Let \mathcal{K} be a simplicial complex on $[m]$ and $\mathcal{K} \neq \Delta^{m-1}$. Define

$$\hat{\mathcal{K}} = \{I \subset [m]: [m] \setminus I \notin \mathcal{K}\}.$$

Then $\hat{\mathcal{K}}$ is also a simplicial complex on $[m]$, which we refer to as the Alexander dual of \mathcal{K}. Obviously, the dual of $\hat{\mathcal{K}}$ is \mathcal{K}.

Construction 2.4.2. The barycentric subdivisions of both \mathcal{K} and $\hat{\mathcal{K}}$ can be realised as subcomplexes in the barycentric subdivision of the boundary of the standard simplex on the set $[m]$ in the following way.

A face of $(\partial \Delta^{m-1})'$ corresponds to a chain $I_1 \subset \cdots \subset I_r$ of included subsets in $[m]$ with $I_1 \neq \emptyset$ and $I_r \neq [m]$. We denote this face by $\Delta_{I_1 \subset \cdots \subset I_r}$. (For example, $\Delta_{\{i\}}$ is the ith vertex of Δ^{m-1} regarded as a vertex of $(\partial \Delta^{m-1})'$.) Then

$$G(\mathcal{K}) = \bigcup_{I_1 \subset \cdots \subset I_r, I_r \notin \mathcal{K}} \Delta_{I_1 \subset \cdots \subset I_r}$$

is a geometric realisation of \mathcal{K}'. Denote $\hat{\mathcal{K}} = [m] \setminus \{i\}$ and, more generally, $\hat{\mathcal{K}} = [m] \setminus I$ for any subset $I \subset [m]$. Define the following subcomplex in $(\partial \Delta^{m-1})'$:

$$D(\hat{\mathcal{K}}) = \bigcup_{I_1 \subset \cdots \subset I_r, \hat{I} \notin \mathcal{K}} \Delta_{\hat{I}_1 \subset \cdots \subset \hat{I}_r}.$$
2.4. ALEXANDER DUALITY

Figure 2.2. Dual complex and Alexander duality.

Proposition 2.4.3. For any simplicial complex $\mathcal{K} \neq \Delta^{m-1}$ on the set $[m]$, $D(\mathcal{K})$ is a geometric realisation of the barycentric subdivision of the dual complex:

\[D(\mathcal{K}) = |\mathcal{K}'|. \]

Moreover, the open combinatorial neighbourhood of complex (2.5) realising \mathcal{K}' in $(\partial \Delta^{m-1})'$ coincides with the complement of the complex $D(\mathcal{K})$ realising \mathcal{K}':

\[U(\partial \Delta^{m-1})' \, (|\mathcal{K}'|) = (\partial \Delta^{m-1})' \setminus |\mathcal{K}'|. \]

In particular, $|\mathcal{K}'|$ is a deformation retract of the complement to $|\mathcal{K}'|$ in $(\partial \Delta^{m-1})'$.

Proof. We map a vertex $[i]$ of $\hat{\mathcal{K}}$ to the vertex $\hat{i} = \Delta_i$ of $(\partial \Delta^{m-1})'$, and map the barycentre of a face $I \in \hat{\mathcal{K}}$ to the vertex Δ_I. Then the whole complex $\hat{\mathcal{K}}'$ is mapped to the subcomplex

\[\bigcup_{I_1, \ldots, I_r \subseteq I, \, I_r \in \hat{\mathcal{K}}} \Delta_{I_1, \ldots, I_r}, \]

which is the same as $D(\mathcal{K})$. The second statement is left as an exercise. \(\square \)

Example 2.4.4. Let \mathcal{K} be the boundary of a 4-gon with vertices 1, 2, 3, 4 (see Figure 2.2). Then $\hat{\mathcal{K}}$ consists of two disjoint segments. The picture shows both \mathcal{K}' and $\hat{\mathcal{K}}'$ as subcomplexes in $(\partial \Delta^3)'$.

Theorem 2.4.5 (Combinatorial Alexander duality). For any simplicial complex $\mathcal{K} \neq \Delta^{m-1}$ on the set $[m]$ there is an isomorphism

\[\tilde{H}^j(\mathcal{K}) \cong \tilde{H}_{m-3-j}(\hat{\mathcal{K}}), \quad \text{for} \quad -1 \leq j \leq m-2, \]
Figure 2.3. The boundary of a pentagon and its dual complex.

where $\widehat{H}_k(\cdot)$ and $\widehat{H}^k(\cdot)$ denote the kth reduced simplicial homology and cohomology group (with integer coefficients) respectively. Here we assume that $\widehat{H}_{-1}(\emptyset) = \widehat{H}^{-1}(\emptyset) = \mathbb{Z}$.

Proof. Since $(\partial \Delta^{m-1})'$ is homeomorphic to S^{m-2}, the Alexander duality theorem [177, Theorem 3.44] and Proposition 2.4.3 imply that

$$\widehat{H}^j(\mathcal{K}) = \widehat{H}^j\left(U_{(\partial \Delta^{m-1})'}(|\mathcal{K}'|)\right) = \widehat{H}^j((\partial \Delta^{m-1})' \setminus |\widehat{\mathcal{K}}'|)$$

$$= \widehat{H}^j(S^{m-2} \setminus |\widehat{\mathcal{K}}|) \cong \widehat{H}_{m-3-j}(\widehat{\mathcal{K}}).$$

A more direct topological proof is outlined in Exercise 2.4.10. Theorem 2.4.5 can be also proved in a purely combinatorial way, see [36]. There is also a proof within ‘combinatorial commutative algebra’ (which is the subject of Chapter 3), see Exercise 3.2.15 or [269, Theorem 5.6].

The duality between \mathcal{K} and $\widehat{\mathcal{K}}$ extends to a duality between full subcomplexes of \mathcal{K} and links of simplices in $\widehat{\mathcal{K}}$:

Corollary 2.4.6. Let $\mathcal{K} \neq \Delta^{m-1}$ be a simplicial complex on $[m]$ and $I \notin \mathcal{K}$, that is, $\widehat{I} \in \widehat{\mathcal{K}}$. Then there is an isomorphism

$$\widehat{H}^j(\mathcal{K}_I) \cong \widehat{H}_{|I|-3-j}(\text{lk}_{\widehat{\mathcal{K}}} \widehat{I}), \quad \text{for } -1 \leq j \leq |I| - 2.$$

Proof. We apply Theorem 2.4.5 to the complex \mathcal{K}_I, viewed as a simplicial complex on the set I of $|I|$ elements. It follows from the definition that the dual complex is $\text{lk}_{\widehat{\mathcal{K}}} \widehat{I}$, which also can be viewed as a simplicial complex on the set I. ∎

Example 2.4.7. Let \mathcal{K} be the boundary of a pentagon. Then $\widehat{\mathcal{K}}$ is a Möbius band triangulated as shown on Figure 2.3. Note that this $\widehat{\mathcal{K}}$ can be realised as a subcomplex in $\partial \Delta^4$, and therefore it can be realised in \mathbb{R}^3 as a subcomplex in the Schlegel diagram of Δ^4, see Definition 2.5.2.

Adding a ghost vertex to \mathcal{K} results in suspending $\widehat{\mathcal{K}}$, up to homotopy. The precise statement is as follows (the proof is clear and is omitted).

Proposition 2.4.8. Let \mathcal{K} be a simplicial complex on $[m]$ and \mathcal{K}° be the complex on $[m+1]$ obtained by adding one ghost vertex $\emptyset = m + 1$ to \mathcal{K}. Then the maximal
simplices of \widehat{K} are $[m]$ and $I \cup \circ$ for $I \in \widehat{K}$, that is,

$$\widehat{K} = \Delta^{m-1} \cup \circ \text{ cone } \widehat{K}.$$

In particular, \widehat{K} is homotopy equivalent to the suspension $\Sigma \widehat{K}$.

Exercises.

2.4.9. Show that

$$\hat{U}(\partial \Delta^{m-1})'(|K|) = (\partial \Delta^{m-1})' \setminus |\widehat{K}|'.$$

2.4.10. Complete the details in the following direct proof of combinatorial Alexander duality (Theorem 2.4.5).

There is a simplicial map

$$\varphi: (\partial \Delta^{m-1})' \to K' \ast \widehat{K}',$$

which is constructed as follows. We identify $|K'|$ with $G(K)$ and $|\widehat{K}'|$ with $D(K)$, see (2.5) and (2.6). The vertex sets of these two subcomplexes split the vertex set of $(\partial \Delta^{m-1})'$ into two nonintersecting subsets. Therefore, φ is uniquely determined on the vertices. Check that φ is indeed a simplicial map. It induces a map of simplicial cochains

$$\varphi^*: C^j(K') \otimes C^{m-3-j}(\widehat{K})' \to C^{m-2}(\partial \Delta^{m-1})', $$

or, equivalently,

$$C^j(K') \to C_{m-3-j}(\widehat{K}') \otimes C^{m-2}(\partial \Delta^{m-1})'. $$

By evaluating on the fundamental cycle of $(\partial \Delta^{m-1})'$ in C_{m-2} and passing to simplicial (co)homology, we obtain the required isomorphism

$$H^j(K) \cong \rightarrow H_{m-3-j}(\widehat{K}).$$

2.5. Classes of triangulated spheres

Boundary complexes of simplicial polytopes form an important albeit restricted class of triangulated spheres. In this section we review several other classes of triangulated spheres and related complexes, and discuss their role in topology, geometry and combinatorics.

Definition 2.5.1. A **triangulated sphere** (also known as a *sphere triangulation* or *simplicial sphere*) of dimension d is a simplicial complex K homeomorphic to a d-sphere S^d. A **PL sphere** is a triangulated sphere K which is PL homeomorphic to the boundary of a simplex (equivalently, there exists a subdivision of K isomorphic to a subdivision of the boundary of a simplex).

Remark. A PL sphere is not the same as a ‘PL manifold homeomorphic to a sphere’, but rather a ‘PL manifold which is PL homeomorphic to the standard sphere’, where the standard PL structure on a sphere is defined by triangulating it as the boundary of a simplex. Nevertheless, the two notions coincide in dimensions other than 4, see the discussion in the next section.

In small dimensions, triangulated spheres can be effectively visualised using *Schlegel diagrams* and their generalisations, which we describe below.
Definition 2.5.2. By analogy with the notion of a geometric simplicial complex, we define a polyhedral complex as a collection \mathcal{C} of convex polytopes in a space \mathbb{R}^n such that every face of a polytope in \mathcal{C} belongs to \mathcal{C} and the intersection of any two polytopes in \mathcal{C} is either empty or a face of each. Two polyhedral complexes \mathcal{C}_1 and \mathcal{C}_2 are said to be combinatorially equivalent if there is a one-to-one correspondence between their polytopes respecting the inclusion of faces.

The boundary ∂P of a convex polytope P is a polyhedral complex. Another important polyhedral complex associated with P can be constructed as follows. Choose a facet F of P and a point $p \notin P$ 'close enough' to F so that any segment connecting p to a point in $P \setminus F$ intersects the relative interior of F (see Figure 2.4 for the case $P = I^3$). Now project the complex ∂P onto F from the point p. The projection images of faces of P different from F form a polyhedral complex \mathcal{C} subdividing F. We refer to \mathcal{C}, and also to any polyhedral complex combinatorially equivalent to it, as a Schlegel diagram of the polytope P.

An n-diagram is a polyhedral complex \mathcal{C} consisting of n-polytopes and their faces and satisfying the following conditions:

(a) the union of all polytopes in \mathcal{C} is an n-polytope Q;

(b) every nonempty intersection of a polytope from \mathcal{C} with the boundary of Q belongs to \mathcal{C}.

We refer to Q as the base of the n-diagram \mathcal{C}. An n-diagram is simplicial if it consists of simplices and its base is a simplex.

By definition, a Schlegel diagram of an n-polytope is an $(n-1)$-diagram.

Proposition 2.5.3. Let \mathcal{C} be a simplicial $(n-1)$-diagram with base Q. Then $\mathcal{C} \cup_{\partial Q} Q$ is an $(n-1)$-dimensional PL sphere.

Proof. We need to construct a simplicial complex which is a subdivision of both $\mathcal{C} \cup_{\partial Q} Q$ and $\partial \Delta^n$. This can be done as follows. Replace one of the facets of $\partial \Delta^n$ by the diagram \mathcal{C}. The resulting simplicial complex K is a subdivision of $\partial \Delta^n$.
On the other hand, K is isomorphic to the subdivision of $C \cup_{\Delta} Q$ obtained by replacing Q by a Schlegel diagram of Δ^n. \hfill \Box

Corollary 2.5.4. The boundary of a simplicial n-polytope is an $(n - 1)$-dimensional PL sphere.

In dimensions $n \leq 3$ every $(n - 1)$-diagram is a Schlegel diagram of an n-polytope. Indeed, for $n \leq 2$ this is obvious, and for $n = 3$ this is one of equivalent formulations of the well-known Steinitz Theorem (see [367, Theorem 5.8]). The first example of a 3-diagram which is not a Schlegel diagram of a 4-polytope was found by Grünbaum ([165, §11.5], see also [166]) as a correction of Brückner’s result of 1909 on the classification of simplicial 4-polytopes with 8 vertices. Another example was found by Barnette [21]. We describe Barnette’s example below. For the original example of Grünbaum, see Exercise 2.5.17.

Construction 2.5.5 (Barnette’s 3-diagram). Here a certain simplicial 3-diagram C will be constructed. Consider the octahedron Q obtained by twisting the top face (abc) of a triangular prism (Figure 2.5 (a)) slightly so that the vertices a, b, c, d, e and f are in general position. Assume that the edges (bd), (ce) and (af) lie inside Q. The tetrahedra $(abde)$, $(bcef)$ and $(acdf)$ will be included in the complex C. Each of these tetrahedra has two faces which lie inside Q. These 6 triangles together with (abc) and (def) form a triangulated 2-sphere inside Q, which we denote by S. Now place a point p inside S so that the line segments from p to the vertices of S lie inside S. We add to C the eight tetrahedra obtained by taking cones with vertex p over the faces of S (namely, the tetrahedra $(pace)$, $(pdef)$, $(pabd)$, $(pbde)$, $(pbec)$, $(pcef)$, $(pacf)$ and $(padf)$). Note that $S = \text{lk}_p$. Applying a projective transformation if necessary, we may assume that there is a point p' outside the octahedron Q with the property that the segments joining p'
with the vertices of \(Q \) lie outside \(Q \) (see Figure 2.5 (b)). Finally, we add to \(C \) the tetrahedra obtained by taking cones with vertex \(p' \) over the faces of \(Q \) other than the face \((de)\) (there are 7 such tetrahedra: \((p'abc)\), \((p'abe)\), \((p'ade)\), \((p'acd)\), \((p'cde)\), \((p'bef)\) and \((p'bef))\). The union of all tetrahedra in \(C \) is the tetrahedron \((p'def)\); hence, \(C \) is a simplicial 3-diagram. It has 8 vertices and 18 tetrahedra.

Proposition 2.5.6. The 3-diagram \(C \) from the previous construction is not a Schlegel diagram.

Proof. Suppose there is a polytope \(P \) whose Schlegel diagram is \(C \). Since \(P \) is simplicial, we may assume that its vertices are in general position. We label the vertices of \(P \) with the same letters as the corresponding vertices in \(C \). Consider the complex \(S = \text{lk} \ p \). Let \(P' \) be the convex hull of all vertices of \(P \) other than \(p \). Then \(P' \) is still a simplicial polytope, and \(S \) is a subcomplex in \(\partial P' \). In the complex \(\partial P' \) the sphere \(S \) is filled with tetrahedra whose vertices belong to \(S \). Then at least one edge of one of these tetrahedra lies inside \(S \). However, any two vertices of \(S \) which are not joined by an edge on \(S \) are joined by an edge of \(C \) lying outside \(S \). Since the polytope \(P' \) cannot contain a double edge we have reached a contradiction. \(\square \)

Now we can introduce two more classes of triangulated spheres.

Definition 2.5.7. A polytopal sphere is a triangulated sphere isomorphic to the boundary complex of a simplicial polytope.

A starshaped sphere is a triangulated sphere isomorphic to the underlying complex of a complete simplicial fan. Equivalently, a triangulated sphere \(K \) of dimension \(n - 1 \) is starshaped if there is a geometric realisation of \(K \) in \(\mathbb{R}^n \) and a point \(p \in \mathbb{R}^n \) with the property that each ray emanating from \(p \) meets \(K \) in exactly one point. The set of points such that \(p \in \mathbb{R}^n \) is called the kernel of \(K \).

Example 2.5.8. The triangulated 3-sphere coming from Barnette’s 3-diagram is known as the Barnette sphere. It is starshaped. Indeed, in the construction of Barnette’s 3-diagram we have the octahedron \(Q \subset \mathbb{R}^3 \) and a vertex \(p' \) outside \(Q \) such that \(\text{lk} \ p' = \partial Q \). If we choose the vertex \(p' \) in \(\mathbb{R}^4 \setminus \mathbb{R}^3 \), then the Barnette sphere can be realised in \(\mathbb{R}^4 \) as the boundary complex of the pyramid with vertex \(p' \) and base \(Q \) (subdivided as described in Construction 2.5.5). This realisation is obviously starshaped.

We therefore have the following hierarchy of triangulations:

\[(2.7) \quad \text{polytopal spheres} \subset \text{starshaped spheres} \subset \text{PL spheres} \subset \text{triangulated spheres}\]

Here the first inclusion follows from the construction of the normal fan (Construction 2.1.3), and the second is left as an exercise.

In dimension 2 any triangulated sphere is polytopal (this is another corollary of the Steinitz theorem). Also, by the result of Mani [247], any triangulated \(d \)-dimensional sphere with up to \(d + 4 \) vertices is polytopal. However, in general all inclusions above are strict.

The first inclusion in (2.7) is strict already in dimension 3, as is seen from Example 2.5.8. There are 39 combinatorially different triangulations of a 3-sphere with 8 vertices, among which exactly two are nonpolytopal (namely, the Barnette and Brückner spheres); this classification was completed by Barnette [24].
The second inclusion in (2.7) is also strict in dimension 3. The first example of a non-starshaped sphere triangulation was found by Ewald and Schulz [132]. We sketch this example below, following [131, Theorem 5.5].

Example 2.5.9 (Non-starshaped sphere triangulation). We use the fact, observed by Barnette, that not every tetrahedron in Barnette's 3-diagram can be chosen as the base of a 3-diagram of the Barnette sphere (see Exercise 2.5.18). For instance, the tetrahedron (abcd) cannot be chosen as the base.

Now let \mathcal{K} be a connected sum of two copies of the Barnette sphere along the tetrahedron (abcd) (the identification of vertices in the two tetrahedra is irrelevant). Assume that \mathcal{K} has a starshaped realisation in \mathbb{R}^4. The hyperplane H through the points a, b, c, d splits $|\mathcal{K}|$ into two parts $|\mathcal{K}_1|$ and $|\mathcal{K}_2|$. Since the kernel of $|\mathcal{K}|$ is an open set, it contains a point p not lying in H. Then by projecting either $|\mathcal{K}_1|$ or $|\mathcal{K}_2|$ onto H from p, we obtain a 3-diagram of the Barnette sphere with base (abcd). This is a contradiction.

The fact that \mathcal{K} is a PL sphere is an exercise.

The third inclusion in (2.7) is the subtlest one. It is known that in dimension 3 any triangulated sphere is PL. In dimension 4 the corresponding question is open, but starting from dimension 5 there exist non-PL sphere triangulations. See the discussion in the next section and Example 2.6.3.

Many important open problems of combinatorial geometry arise from analysing the relationships between different classes of sphere triangulations. We end this section by discussing some of these problems.

In connection with the condition of realisability of a triangulated $(n-1)$-sphere in \mathbb{R}^n in the definition of a starshaped sphere, we note that the existence of such a realisation is open in general:

Problem 2.5.10. Does every PL $(n-1)$-sphere admit a geometric realisation in an n-dimensional space?

The g-theorem (Theorem 1.4.14) gives a complete characterisation of integral vectors arising as the f-vectors of polytopal spheres. It is therefore natural to ask whether the g-theorem extends to all sphere triangulations. This question was posed by McMullen [261] as an extension of his conjecture for simplicial polytopes. Since 1980, when McMullen's conjecture for simplicial polytopes was proved by Billera, Lee, and Stanley, its generalisation to spheres has been regarded as the main open problem in the theory of f-vectors:

Problem 2.5.11 (g-conjecture for triangulated spheres). Does Theorem 1.4.14 hold for triangulated spheres?

The g-conjecture is open even for starshaped spheres. Note that only the necessity of the conditions in the g-theorem (that is, the fact that every g-vector is an M-vector) has to be verified for triangulated spheres. If correct, the g-conjecture would imply a complete characterisation of f-vectors of triangulated spheres.

The Dehn–Sommerville relations (condition (a) in Theorem 1.4.14) hold for arbitrary sphere triangulations (see Corollary 3.4.7 below). The f-vectors of triangulated spheres also satisfy the UBT and LBT inequalities given in Theorems 1.4.4 and 1.4.9 respectively. The proof of the Lower Bound Theorem for simplicial polytopes given by Barnette in [23] extends to all triangulated spheres (see also [205]). In particular, this implies the second GLBC inequality $h_1 \leq h_2$, see (1.18). The
Upper Bound Theorem for triangulated spheres was proved by Stanley [331] (we shall give his argument in Section 3.3). This implies that the g-conjecture is true for triangulated spheres of dimension ≤ 4. The third GLBC inequality $h_2 \leq h_3$ (for spheres of dimension ≥ 5) is open.

Many attempts to prove the g-conjecture were made after 1980. Though unsuccessful, these attempts resulted in some very interesting reformulations of the g-conjecture. The results of Pachner [299] reduce the g-conjecture (for PL spheres) to some properties of bistellar moves; see the discussion after Theorem 2.7.3 below.

The lack of progress in proving the g-conjecture motivated Björner and Lutz to launch a computer-aided search for counterexamples [35]. Though their bistellar flip algorithm and BISTELLAR software produced many remarkable results on triangulations of manifolds, no counterexamples to the g-conjecture were found. More information on the g-conjecture and related questions may be found in [336] and [367, Lecture 8].

There is also an important problem of characterising face numbers of triangulated spheres which are flag complexes (see Definition 2.3.9). We discuss two related conjectures below.

Since the h-vector of a sphere triangulation is symmetric, the γ-vector $\gamma(K) = (\gamma_0, \gamma_1, \ldots, \gamma_{[n/2]}$) of an $(n-1)$-dimensional sphere triangulation K can be defined by the equation

$$\sum_{i=0}^{n} h_i s^{t-i} = \sum_{i=0}^{[n/2]} \gamma_i (s+t)^{n-2i} (st)^i.$$

Conjecture 2.5.12 (Gal [148]). Let K be a flag triangulation of an $(n-1)$-sphere. Then $\gamma_i(K) \geq 0$ for $i = 0, \ldots, \lceil \frac{n}{2} \rceil$.

Substituting $n = 2q$, $s = 1$ and $t = -1$ into (2.8) we obtain

$$\sum_{i=0}^{2q} (-1)^i h_i = (-1)^q \gamma_q.$$

The top inequality $\gamma_q \geq 0$ from the Gal conjecture therefore implies the following:

Conjecture 2.5.13 (Charney–Davis [86]). The inequality

$$(-1)^q \sum_{i=0}^{2q} (-1)^i h_i(K) \geq 0$$

holds for any flag triangulation K of a $(2q-1)$-sphere.

The Charney–Davis conjecture is a discrete analogue of the Hopf conjecture, which states that the Euler characteristic χ of a closed aspherical manifold M^{2q} satisfies the inequality $(-1)^q \chi \geq 0$. Due to a theorem of Gromov [162], a piecewise Euclidean cubical complex satisfies the discrete analogue of the nonpositive curvature condition, the so-called CAT(0) inequality, if and only if the links of all vertices are flag complexes. As was observed in [86], the Hopf conjecture for piecewise Euclidean cubical manifolds translates into Conjecture 2.5.13.

The Hopf and Charney–Davis conjectures are valid for $q = 1, 2$. In [148] the Gal conjecture was verified for $n \leq 5$.

We may extend the hierarchy (2.7) by considering polyhedral complexes homeomorphic to spheres (the so-called polyhedral spheres) instead of triangulated spheres.
There are obvious analogues of polytopal and PL spheres in this generality. However, unlike the case of triangulations, the two definitions of a starshaped sphere (namely, the one using fans and the one using the kernel points) no longer produce the same classes of objects, see [131, §III.3] for the corresponding examples. One of the most notorious and long standing problems is to find a proper higher dimensional analogue to the Steinitz theorem. This theorem characterises graphs of 3-dimensional polytopes, and one of its equivalent formulations is that every polyhedral 2-sphere is polytopal. In higher dimensions, identification of the class of polytopal spheres inside all polyhedral spheres is known as the Steinitz problem:

Problem 2.5.14 (Steinitz Problem). Find necessary and sufficient conditions for a polyhedral decomposition of a sphere to be combinatorially equivalent to the boundary complex of a convex polytope.

This is far from being solved even in the case of triangulated spheres. For more information on the relationships between different classes of polyhedral spheres and complexes see the above cited book of Ewald [131] and the survey article by Klee and Kleinschmidt [218].

Exercises.

2.5.15. Show that \mathcal{K} is the underlying complex of a complete simplicial fan if and only if there is a geometric realisation of \mathcal{K} in \mathbb{R}^n and a point $p \in \mathbb{R}^n$ with the property that each ray emanating from p meets $|\mathcal{K}|$ in exactly one point.

2.5.16. Prove that every starshaped sphere is a PL sphere.

2.5.17 (Brückner sphere). The Brückner sphere is obtained by replacing two tetrahedra $(pabc)$ and $(p'abc)$ in the Barnette sphere by three tetrahedra $(pp'ab)$, $(pp'ac)$ and $(pp'bc)$ (this is an example of a bistellar 1-move considered in Section 2.7). Show that the Brückner sphere is starshaped but not polytopal. Note that the 1-skeleton of the Brückner sphere is a complete graph (that is, the Brückner sphere is a neighbourly triangulation, see Definition 1.1.15).

2.5.18. Show that the tetrahedron $(abcd)$ in Barnette’s 3-diagram (Construction 2.5.5) cannot be chosen as the base of a 3-diagram of the Barnette sphere. Which tetrahedra can be chosen as the base?

2.5.19. The connected sum of two PL spheres is a PL sphere.

2.6. Triangulated manifolds

Piecewise linear topology experienced an intensive development during the second half of the 20th century, thanks to the efforts of many topologists. Surgery theory for simply connected manifolds of dimension ≥ 5 originated from the early work of Milnor, Kervaire, Browder, Novikov and Wall, culminated in the proof of the topological invariance of rational Pontryagin classes given by Novikov in 1965, and was further developed in the work of Lashof, Rothenberg, Sullivan, Kirby, Siebenmann, and others. It led to a better understanding of the place of PL manifolds between the topological and smooth categories. Without attempting to overview the current state of the subject, which is generally beyond the scope of this book, we include several important results on the triangulation of topological manifolds, with a particular emphasis on various nonexamples. We also provide references for further reading.
All manifolds here are compact, connected and closed, unless otherwise stated.

Definition 2.6.1. A **triangulated manifold** (or **simplicial manifold**) is a simplicial complex K whose geometric realisation $|K|$ is a topological manifold.

A **PL manifold** is a simplicial complex K of dimension d such that $\text{lk} \, I$ is a PL sphere of dimension $d - |I|$ for every nonempty simplex $I \in K$.

Every PL manifold $|K|$ of dimension d is a triangulated manifold: it has an atlas whose change of coordinates functions are piecewise linear. Indeed, for each vertex $v \in |K|$ the $(d - 1)$-dimensional PL sphere $\text{lk} \, v$ bounds an open neighbourhood U_v which is homeomorphic to an open d-ball. Since any point of $|K|$ is contained in U_v for some v, this defines an atlas for $|K|$.

Remark. The term ‘PL manifold’ is often used for a manifold with a PL atlas, while its particular triangulation with the property above is referred to as a combinatorial manifold. We shall not distinguish between these two notions.

Does every triangulation of a topological manifold yield a simplicial complex which is a PL manifold? The answer is ‘no’, and the question itself ascends to a famous conjecture from the dawn of topology, known as the **Hauptvermutung**, which is German for ‘main conjecture’. Below we briefly review the current status of this conjecture, referring to the survey article [317] by Ranicki for a much more detailed historical account and more references.

In the early days of topology all of the known topological invariants were defined in combinatorial terms, and it was very important to find out whether the topology of a triangulated space fully determines the combinatorial equivalence class of the triangulation. In the modern terminology, the Hauptvermutung states that any two homeomorphic simplicial complexes are PL homeomorphic. This is valid in dimensions ≤ 3; the result is due to Rado (1926) for 2-manifolds, Papakyriakopoulos (1943) for 2-complexes, Moise (1953) for 3-manifolds, and E. M. Brown (1963) for 3-complexes [50]; see [277] for a detailed exposition. The first examples of complexes disproving the Hauptvermutung in dimensions ≥ 6 were found by Milnor in the early 1960s. However, the manifold Hauptvermutung, namely the question of whether two homeomorphic triangulated manifolds are PL homeomorphic, remained open until the end of the 1960s. The first counterexamples were found by Siebenmann in 1969, and relied heavily on topological surgery theory. The ‘double suspension theorem’, which we state as Theorem 2.6.2 below, appeared around 1975 and provided explicit counterexamples to the manifold Hauptvermutung.

A **d-dimensional homology sphere** (or simply **homology d-sphere**) is a topological d-manifold whose integral homology groups are isomorphic to those of a sphere S^d.

Theorem 2.6.2 (Edwards, Cannon). The double suspension of any homology d-sphere is homeomorphic to S^{d+2}.

This theorem was proved for most double suspensions and all triple suspensions by Edwards [126]; the general case was done by Cannon [82]. One of its most important consequences is the existence of non-PL triangulations of 5-spheres, which also disproves the manifold Hauptvermutung in dimensions ≥ 5.

Example 2.6.3 (non-PL triangulated 5-sphere). Let M be a triangulated homology 3-sphere which is not homeomorphic to S^3. An example of such M is provided by the **Poincaré sphere**. It is the homogeneous space $SO(3)/A_5$, where
the alternating group A_5 is represented in \mathbb{R}^3 as the group of self-transformations of a dodecahedron. A particular symmetric triangulation of the Poincaré sphere is given in [35]. By Theorem 2.6.2, the double suspension $\Sigma^2 M$ is homeomorphic to S^5 (and, more generally, $\Sigma^k M$ is homeomorphic to S^{k+3} for $k \geq 2$). However, $\Sigma^2 M$ cannot be a PL sphere, since M appears as the link of a 1-simplex in $\Sigma^2 M$.

Also, according to a result of Björner and Lutz [35], for any $d \geq 5$ there is a non-PL triangulation of S^d with $d + 13$ vertices.

Theorem 2.6.2 led to progress in the following 'manifold recognition problem': given a simplicial complex, how one can decide whether its geometric realisation is a topological manifold? In higher dimensions there is the following result, which can be viewed as a generalisation of the double suspension theorem.

Theorem 2.6.4 (Edwards [127]). For $d \geq 5$ the realisation of a simplicial complex K is a topological manifold of dimension d if and only if $lk I$ has the homology of a $(d - |I|)$-sphere for each nonempty simplex $I \in K$, and $lk v$ is simply connected for each vertex v of K.

Remark. From the algorithmic point of view, the homology of links is easily computable, but their simply connectedness seems to be undecidable. There is a related result of Novikov [359, Appendix] that a triangulated 3-sphere cannot be algorithmically recognised. On the other hand, the algorithmic recognition problem for a triangulated 3-sphere has a positive solution, with the first algorithm provided by Rubinstein [322]. See detailed exposition in Matveev’s book [256], which also contains a proof that all 3-dimensional Haken manifolds can be recognised and fully classified algorithmically.

With the discovery of exotic smooth structures on 7-spheres by Milnor and the disproof of the Hauptvermutung it had become important to understand better the relationship between PL and smooth structures on topological manifolds. Since a PL structure implies the existence of a particular sort of triangulation, the related question of whether a topological manifold admits any triangulation (not necessarily PL) had also become important.

Triangulations of 2-manifolds have been known from the early days of topology. A proof that any 3-manifold can be triangulated was obtained independently by Moise and Bing in the end of 1950s (the proof can be found in [277]). Since the link of a vertex in a triangulated 3-sphere is a 2-sphere, and a 2-sphere is always PL, all topological 3-manifolds are PL.

A smooth manifold of any dimension has a PL triangulation by a theorem of Whitney (a proof can be found in [279]). Moreover, in dimensions ≤ 3 every topological manifold has a unique smooth structure, see [277] for a proof. All these considerations show that in dimensions up to 3 the categories of topological, PL and smooth manifolds are equivalent.

The situation in dimension 4 is quite different. There exist topological 4-manifolds that do not admit a PL triangulation. An example is provided by Freedman’s fake $\mathbb{C}P^2$ [142, §8.3, §10.1], a topological manifold which is homeomorphic, but not diffeomorphic to the complex projective plane $\mathbb{C}P^2$. This example also shows that the Hauptvermutung is false in dimension 4. Even worse, some topological 4-manifolds do not admit any triangulation; an example is the topological 4-manifold with the intersection form E_8, see [5].
In dimension 4 the categories of PL and smooth manifolds agree, that is, there is exactly one smooth structure on every PL manifold. However, the classification of PL (or equivalently, smooth) structures is wide open even for the simplest topological manifolds. The most notable problem here is the following.

Problem 2.6.5. Is a PL (or smooth) structure on a 4-sphere unique?

In dimensions ≥ 5 the PL structure on a topological sphere is unique (that is, a PL manifold which is homeomorphic to a sphere is a PL sphere).

For the discussion of the classification of PL structures on topological manifolds we refer to Ranicki’s survey [317] and the original essay [215] by Kirby and Siebenmann.

2.7. Stellar subdivisions and bistellar moves

By a theorem of Alexander [6], a common subdivision of two PL homeomorphic PL manifolds can be obtained by iterating operations from a very simple and explicit list, known as stellar subdivisions. An even more concrete iterative description of PL homeomorphisms was obtained by Pachner [298], who introduced the notion of bistellar moves (in other terminology, bistellar flips or bistellar operations), generalising the 2- and 3-dimensional flips from low-dimensional topology. These operations allow us to decompose a PL homeomorphism into a sequence of simple ‘moves’ and provide a convenient way to compute and handle topological invariants of PL manifolds. Starting from a given PL triangulation, bistellar operations may be used to construct new triangulations with some good properties, such as ones that are symmetric or have a small number of vertices. On the other hand, bistellar moves can be used to produce some nasty triangulations if we start from a non-PL triangulation. Both approaches were used in the work of Björner–Lutz [35] and Lutz [241] to find many interesting triangulations of low-dimensional manifolds.

Apart from numerous applications in low-dimensional topology, bistellar moves also provide a combinatorial interpretation for algebraic flop operations for projective toric varieties and for surgery operations on moment-angle complexes and torus manifolds. Bistellar moves are used to define a metric on the space of PL triangulations of a given PL manifold, see [283]. A substantial progress has been recently achieved on the classical problem of representing characteristic classes by combinatorial cycles in the works of Gaifullin (see [147]). Bistellar moves are the key technical tool for Gaifullin’s local combinatorial formulae for Pontryagin classes.

Definition 2.7.1 (stellar subdivisions and bistellar moves). Let $I \in \mathcal{K}$ be a nonempty simplex of a simplicial complex \mathcal{K}. The stellar subdivision of \mathcal{K} at I is obtained by replacing the star of I by the cone over its boundary:

$$\text{ss}_I \mathcal{K} = (\mathcal{K} \setminus \text{st}_\mathcal{K} I) \cup (\text{cone} \partial \text{st}_\mathcal{K} I).$$

If $\dim I = 0$ then $\text{ss}_I \mathcal{K} = \mathcal{K}$. Otherwise the complex $\text{ss}_I \mathcal{K}$ acquires an additional vertex (the vertex of the cone) whose link is $\partial \text{st}_\mathcal{K} I$. Two possible stellar subdivisions of a 2-dimensional complex are shown in Figure 2.6.

Now let \mathcal{K} be a triangulated manifold of dimension d. Assume that $I \in \mathcal{K}$ is a $(d - j)$-face such that the simplicial complex $\text{lk}_\mathcal{K} I$ is the boundary of a j-simplex J which is not a face of \mathcal{K}. Then the operation $\text{bm}_I \mathcal{K}$ on \mathcal{K} defined by

$$\text{bm}_I \mathcal{K} = (\mathcal{K} \setminus (I \ast \partial J)) \cup (\partial I \ast J)$$

is a bistellar operation on \mathcal{K}.
is called a bistellar j-move. Since $I \ast \partial J = \text{st}_K I$ and $\partial I \ast J = \text{st}_{\tilde{K}} J$, where $\tilde{K} = \text{bm}_I K$, the bistellar j-move is the composition of a stellar subdivision at I and the inverse stellar subdivision at J, which explains the terminology. In particular, the stellar subdivision $ss_I K$ is a common subdivision of K and \tilde{K}, so that K and \tilde{K} are PL homeomorphic. Note that a 0-move is the stellar subdivision at a maximal simplex (we assume that the boundary of a 0-simplex is empty).

Bistellar j-moves with $i \geq \left\lfloor \frac{d}{2} \right\rfloor$ are also called reverse $(d-j)$-moves. A 0-move adds a new vertex, a d-move deletes a vertex, and all other bistellar moves do not change the number of vertices. The bistellar moves in dimension 2 and 3 are shown in Figures 2.7 and 2.8. The bistellar 1-move in dimension 3 replaces two tetrahedra with a common face by 3 tetrahedra with a common edge.

Two simplicial complexes are said to be bistellarly equivalent if one can be transformed to another by a finite sequence of bistellar moves.

We have seen that bistellar equivalence implies PL homeomorphism. The following result shows that for PL manifolds the converse is also true.

Theorem 2.7.2 (Pachner [298, Theorem 1], [299, (5.5)]). Two PL manifolds are bistellarly equivalent if and only if they are PL homeomorphic.

Lickorish [232] gives a good exposition of Alexander’s and Pachner’s theorems.

The behaviour of the face numbers of a triangulation under bistellar moves is easily controlled. It can be most effectively described in terms of the g-vector, $g_i(K) = h_i(K) - h_{i-1}(K), \ 0 < i \leq \left\lfloor \frac{d}{2} \right\rfloor$.

Theorem 2.7.3 (Pachner [298]). If a triangulated d-manifold \tilde{K} is obtained from K by a bistellar k-move, $0 \leq k \leq \left\lfloor \frac{d-1}{2} \right\rfloor$, then

\[g_{k+1}(\tilde{K}) = g_{k+1}(K) + 1; \]
\[g_i(\tilde{K}) = g_i(K) \text{ for all } i \neq k + 1. \]

Furthermore, if d is even and \tilde{K} is obtained from K by a bistellar $\left\lfloor \frac{d}{2} \right\rfloor$-move, then

\[g_i(\tilde{K}) = g_i(K) \text{ for all } i. \]
This theorem allows us to interpret the inequalities from the g-conjecture for PL spheres (see Theorem 1.4.14) in terms of the numbers of bistellar k-moves needed to transform a given PL sphere to the boundary of a simplex. For instance, the inequality $h_1 \leq h_2$, $n \geq 4$, is equivalent to the statement that the number of 1-moves in the sequence of bistellar moves taking a given $(n - 1)$-dimensional PL
sphere to the boundary of an \(n \)-simplex is less than or equal to the number of reverse 1-moves. (Note that the \(g \)-vector of \(\partial \Delta^n \) is \((1, 0, \ldots, 0)\).)

Remark. There is also a generalisation of Theorem 2.7.2 to PL manifolds with boundary, see [299, (6.3)].

In the case of polytopal sphere triangulations a stellar subdivision is related to another familiar operation:

Proposition 2.7.4. Assume given a simple polytope \(P \) and a proper face \(G \subset P \). Let \(P^* \) be the dual simplicial polytope, \(K_P = \partial P^* \) its nerve complex, and \(J \subset P^* \) the face dual to \(G \). Then the stellar subdivision \(ss_J K_P \) is the nerve complex of the polytope \(\tilde{P} \) obtained by the face truncation at \(G \).

Proof. This follows directly by comparing the face poset of \(\tilde{P} \), described in Construction 1.1.12, with that of \(ss_J K_P \).

Exercises.

2.7.5. The barycentric subdivision of \(K \) can be obtained as a sequence of stellar subdivisions at all faces \(I \in K \), starting from the maximal ones.

2.7.6. Deduce formulae for the transformation of the \(f^-, h^* \) and \(g \)-vector of \(K \) under a stellar subdivision. Deduce similar formulae for a bistellar move (the case of the \(g \)-vector is Theorem 2.7.3).

2.8. Simplicial posets and simplicial cell complexes

Simplicial posets describe the combinatorial structures underlying ‘generalised simplicial complexes’ whose faces are still simplices, but two faces are allowed to intersect in any subcomplex of their boundary, rather than just in a single face. These are also known as ‘ideal triangulations’ in low-dimensional topology, or as ‘simplicial cell complexes’.

Definition 2.8.1. A poset (partially ordered set) \(S \) with order relation \(\leq \) is called **simplicial** if it has an initial element \(0 \) and for each \(\sigma \in S \) the lower segment

\[[0, \sigma] = \{ \tau \in S : 0 \leq \tau \leq \sigma \} \]

is the face poset of a simplex. (The latter poset is also known as a **Boolean lattice**, and simplicial posets are sometimes called **Boolean posets**.) We assume all our posets to be finite. The rank function \(|\cdot| \) on \(S \) is defined by setting \(|\sigma| = k \) if \([0, \sigma]\) is the face poset of a \((k - 1)\)-dimensional simplex. The rank of \(S \) is the maximum of the ranks of its elements, and the **dimension** of \(S \) is its rank minus one. A **vertex** of \(S \) is an element of rank one. We assume that \(S \) has \(m \) vertices, denote the vertex set by \(V(S) \), and usually identify it with \([m] = \{1, \ldots, m\} \). Similarly, we denote by \(V(\sigma) \) the vertex set of \(\sigma \), that is the set of \(i \) with \(i \leq \sigma \).

The face poset of a simplicial complex is a simplicial poset, but there are many simplicial posets that do not arise in this way (see Example 2.8.2 below). We identify a simplicial complex with its face poset, thereby regarding simplicial complexes as particular cases of simplicial posets.

To each \(\sigma \in S \) we assign a geometric simplex \(\Delta^\sigma \) whose face poset is \([0, \sigma]\), and glue these geometric simplices together according to the order relation in \(S \). As a result we get a cell complex \(X \) in which the closure of each cell is identified with a
simplex preserving the face structure, and all attaching and characteristic maps are inclusions (see Appendix B.1 for the terminology of cell complexes). We call X the \textit{simplicial cell complex} associated with S and denote its underlying space by $|S|$.

In the case when S is (the face poset of) a simplicial complex \mathcal{K} the space $|S|$ is the geometric realisation $|\mathcal{K}|$.

\textbf{Remark.} Using a more formal categorical language, we consider the \textit{face category} $\text{cat}(S)$ whose objects are elements $\sigma \in S$ and there is a morphism from σ to τ whenever $\sigma \leq \tau$. Define a diagram (covariant functor) \mathcal{D} from $\text{cat}(S)$ to topological spaces by sending $\sigma \in S$ to the geometric simplex Δ^σ and sending every morphism $\sigma \leq \tau$ to the inclusion $\Delta^\sigma \hookrightarrow \Delta^\tau$. Then $|S| = \text{colim} \mathcal{D}$, where the colimit is taken in the category of topological spaces (see Appendix C.1 for the definition of the colimit). This is the first example of a colimit construction over the face category $\text{cat}(S)$. Many other examples of this sort will appear later.

In most circumstances we shall not distinguish between simplicial posets and simplicial cell complexes. We shall also sometimes refer to elements $\sigma \in S$ as \textit{simplices or faces} of S.

\textbf{Example 2.8.2.} Consider the simplicial cell complex obtained by attaching two d-dimensional simplices along their boundaries. Its corresponding simplicial poset is not the face poset of a simplicial complex if $d > 0$.

Three cellular subdivisions of a circle are shown in Figure 2.9. The first is not a simplicial cell complex. The second is a simplicial cell complex, but not a simplicial complex (it corresponds to $d = 1$ in the previous paragraph). The third one is a simplicial complex.

\textbf{Construction 2.8.3} (folding a simplicial poset onto a simplicial complex). For every simplicial poset S there is the associated simplicial complex \mathcal{K}_S on the same vertex set $V(S)$, whose simplices are sets $V(\sigma)$, $\sigma \in S$. There is a \textit{folding map} of simplicial posets

\begin{equation}
S \longrightarrow \mathcal{K}_S, \quad \sigma \mapsto V(\sigma).
\end{equation}

It is identical on the vertices, and every simplex in \mathcal{K}_S is covered by a finite number of simplices of S.

For any two elements $\sigma, \tau \in S$, denote by $\sigma \vee \tau$ the set of their least common upper bounds (joins), and denote by $\sigma \wedge \tau$ the set of their greatest common lower bounds (meets). Since S is a simplicial poset, $\sigma \wedge \tau$ consists of a single element whenever $\sigma \vee \tau$ is nonempty. It is easy to observe that S is a simplicial complex if and only if for any $\sigma, \tau \in S$ the set $\sigma \vee \tau$ is either empty or consists of a single element. In this case S coincides with \mathcal{K}_S.

\begin{figure}[h]
\centering
\begin{tikzpicture}
 \node (1) at (0,0) [circle, draw] {};
 \node (2) at (1,0) [circle, draw] {};
 \node (3) at (2,0) [circle, draw] {};
 \draw (1) -- (2) -- (3) -- (1);
\end{tikzpicture}
\caption{Cellular subdivisions of a circle.}
\end{figure}
Applying barycentric subdivision to every simplex $\sigma \in S$ we obtain a new simplicial cell complex S', called the barycentric subdivision of S. From Proposition 2.3.7 it is clear that S' can be identified with the (geometric realisation of the) order complex $\text{ord}(S \setminus \emptyset)$. We therefore obtain the following.

Proposition 2.8.4. The barycentric subdivision S' of a simplicial cell complex is a simplicial complex.

Exercises.

2.8.5. Show that the following conditions are equivalent for a simplicial poset S:

(a) S is (the face poset of) a simplicial complex;
(b) for any $\sigma, \tau \in S$ the set $\sigma \wedge \tau$ consists of a single element;
(c) for any $\sigma, \tau \in S$ the set $\sigma \vee \tau$ is either empty or consists of a single element.

2.9. Cubical complexes

Alongside with triangulations, cubical complexes provide a combinatorial tool to study topological invariants. Their structure is more complicated, but the nice feature is that the product of cubes is again a cube. This makes subdivisions of products easier, which leads to a more straightforward definition of the multiplication in cohomology, and is especially useful when working with loop spaces or topological groups. Cubical complexes are also interesting objects from a purely combinatorial point of view. In this section we collect the necessary definitions and notation, and then proceed to describe some important cubical decompositions of simple polytopes and simplicial complexes.

Definitions and examples. As in the case of simplicial complexes, a cubical complex can be defined either abstractly (as a poset) or geometrically (as a cell complex).

Definition 2.9.1. An abstract cubical complex is a finite poset (C, \subset) containing an initial element \emptyset and satisfying the following two conditions:

(a) for every element $G \in C$ the segment $[\emptyset, G]$ is isomorphic to the face poset of a cube;
(b) for every two elements $G_1, G_2 \in C$ there is a unique meet (greatest lower bound).

Elements $G \in C$ are faces of the cubical complex. If $[\emptyset, G]$ is the face poset of the k-cube I^k, then the face G is k-dimensional. The dimension of C is the maximal dimension of its faces. The meet of two faces G_1, G_2 is also called their intersection and denoted $G_1 \cap G_2$.

A d-dimensional topological cube is a closed d-ball with a face structure defined by a homeomorphism with the standard cube I^d. A face of a topological d-cube is thus the homeomorphic image of a face of I^d.

Definition 2.9.2. A topological cubical complex is a set U of topological cubes of arbitrary dimensions which are all embedded in the same space \mathbb{R}^n and satisfy the following conditions:

(a) every face of a cube in U belongs to U;
(b) The intersection of any two cubes in U is a face of each.
Every abstract cubical complex \mathcal{C} has a geometric realisation, a topological cubical complex \mathcal{U} whose faces form a poset isomorphic to \mathcal{C}. Such \mathcal{U} can be constructed by taking a disjoint union of topological cubes corresponding to all segments $[\emptyset, G] \subset \mathcal{C}$ and identifying faces according to the poset relation.

From now on we shall not distinguish between abstract cubical complexes and their geometric realisations.

By analogy with simplicial complexes, define the f-vector of a cubical complex \mathcal{C} by $f(\mathcal{C}) = (f_0, f_1, \ldots)$ where f_i is the number of i-dimensional faces. There are also notions of h- and g-vectors, and cubical analogues of the UBC, LBC and g-conjecture. See [2], [15] and [337] for more details and references.

The difference between Definition 2.9.2 of a geometric cubical complex and Definition 2.2.1 of a geometric simplicial complex is that we realise abstract cubes by topological complexes rather than polytopes. This difference is substantial: if we replace topological cubes by combinatorial ones (i.e. by convex polytopes combinatorially equivalent to a cube) in Definition 2.9.2, then we obtain the definition of a polyhedral cubical complex. Although this notion is also important in combinatorial geometry, not every abstract cubical complex can be realised by a polyhedral complex, as shown by the next example.

Example 2.9.3. Consider the decomposition of a Möbius strip into 3 squares shown in Figure 2.10.

Proposition 2.9.4. The topological cubical complex shown in Figure 2.10 does not admit a polyhedral cubical realisation.

Proof. Assume that such a realisation exists. Then since $ABED$ is a convex 4-gon, the points A and D are in the same halfplane with respect to the line BE, and therefore A and D are in the same halfspace defined by the plane BCE. Similarly, since $ABCF$ is a convex 4-gon, the points A and F are in the same halfspace with respect to BCE. Hence, D and F are also in the same halfspace with respect to BCE. On the other hand, since $CDEF$ is a convex 4-gon, the points D and F must be in different subspaces with respect to BCE. A contradiction. \square

The example above shows that, unlike the case of simplicial complexes, the theory of abstract cubical complexes cannot be described by using only convex-geometric considerations. Another simple manifestation of this is the fact that not every cubical complex may be realised as a subcomplex in a standard cube, in contrast to simplicial complexes which are always embeddable in a standard simplex. The boundary of a triangle is the simplest example of a cubical complex not embeddable in a cube. It is also not embeddable into the standard cubical
lattice in \(\mathbb{R}^n \) (for any \(n \)). On the other hand, every cubical complex admits a cubical subdivision which is embeddable in a standard cube, as shown in the next subsection. Without subdivision the question of embeddability in a standard cube or cubical lattice is nontrivial. In \[121\] necessary and sufficient conditions were obtained for a cubical complex to admit a cubical map to the standard lattice.

Cubical subdivisions of simple polytopes and simplicial complexes. The particular constructions of cubical complexes given here will be important in the definition of moment-angle complexes. Neither of these constructions is particularly new, but they are probably not well recorded in the literature (see however the references at the end of the section).

Any face of \(\mathbb{I}^m \) has the form
\[
C_{J \subseteq I} = \{(y_1, \ldots, y_m) \in \mathbb{I}^m : y_j = 0 \text{ for } j \in J, \quad y_j = 1 \text{ for } j \notin I\}
\]
where \(J \subseteq I \) is a pair of embedded (possibly empty) subsets of \(\{m\} \). We also set
\[
(2.10) \quad \quad C_I = C_{\emptyset \subseteq I} = \{(y_1, \ldots, y_m) \in \mathbb{I}^m : y_j = 1 \text{ for } j \notin I\}
\]
to simplify the notation.

Construction 2.9.5 (canonical triangulation of \(\mathbb{I}^m \)). Denote by \(\Delta = \Delta^{m-1} \) the simplex on \(\{m\} \). We assign to a subset \(I = \{i_1, \ldots, i_k\} \subseteq \{m\} \) the vertex \(v_I = C_{I \subseteq I} \) of \(\mathbb{I}^m \). That is, \(v_I = (\varepsilon_1, \ldots, \varepsilon_m) \) where \(\varepsilon_i = 0 \) if \(i \in I \) and \(\varepsilon_i = 1 \) otherwise. Regarding each \(I \) as a vertex of the barycentric subdivision of \(\Delta \), we can extend the correspondence \(I \mapsto v_I \) to a piecewise linear embedding \(i_c : \Delta' \to \mathbb{I}^m \).

Under this embedding the vertices of \(\Delta \) are mapped to the vertices of \(\mathbb{I}^m \) with exactly one zero coordinate, and the barycentre of \(\Delta \) is mapped to \((0, \ldots, 0)\in\mathbb{I}^m\) (see Figure 2.11). The image \(i_c(\Delta') \) is the union of \(m \) facets of \(\mathbb{I}^m \) meeting at the vertex \((0, \ldots, 0)\). For each pair \(I \subseteq J \), all simplices of \(\Delta' \) of the form \(I_1 \subseteq I_2 \subseteq \ldots \subseteq I_k = J \) are mapped to the same face \(C_{I \subseteq J} \) of \(\mathbb{I}^m \). The map \(i_c : \Delta' \to \mathbb{I}^m \) extends to \(\text{cone}(\Delta') \) by mapping the cone vertex to \((1, \ldots, 1)\in\mathbb{I}^m \). The image of the resulting map \(\text{cone}(i_c) \) is the whole cube \(\mathbb{I}^m \). Thus, \(\text{cone}(i_c) : \text{cone}(\Delta') \to \mathbb{I}^m \) is a PL homeomorphism which is linear on simplices of \(\text{cone}(\Delta') \). This defines a canonical triangulation of \(\mathbb{I}^m \), the ‘triangulation along the main diagonal’.

The subdivisions which appear above can be summarised as follows:

Proposition 2.9.6. The PL map \(\text{cone}(i_c) : \text{cone}(\Delta') \to \mathbb{I}^m \) gives rise to
\[\text{(a) a cubical subdivision of } \Delta^{m-1} \text{ isomorphic to 'half of the boundary of } \mathbb{I}^m \text{'} \]
(\text{the union of facets of } \mathbb{I}^m \text{ containing } 0);\]
\[\text{(b) a cubical subdivision of } \text{cone } \Delta^{m-1} \text{ (which is } \Delta^{m-1} \text{) isomorphic to } \mathbb{I}^m ;\]
\[\text{(c) a simplicial subdivision of } \mathbb{I}^m \text{ isomorphic to } \text{cone}(\Delta^{m-1})' \text{.}\]

Construction 2.9.7 (cubical subdivision of a simple polytope). Let \(P \) be a simple \(n \)-polytope with \(m \) facets \(F_1, \ldots, F_m \). We shall construct a piecewise linear embedding of \(P \) into the standard cube \(\mathbb{I}^m \), thereby inducing a cubical subdivision \(C(P) \) of \(P \) by the preimages of faces of \(\mathbb{I}^m \).

Denote by \(S \) the set of barycentres of faces of \(P \), including the vertices and the barycentre of the whole polytope (here we count \(P \) itself as an \(n \)-face). The set \(S \) will be the vertex set of \(C(P) \). Every \((n-k)\)-face \(G \) of \(P \) is an intersection of \(k \) facets: \(G = F_{i_1} \cap \cdots \cap F_{i_k} \). We map the barycentre of \(G \) to the vertex \((\varepsilon_1, \ldots, \varepsilon_m)\in\mathbb{I}^m \), where \(\varepsilon_i = 0 \) if \(i \in \{i_1, \ldots, i_k\} \) and \(\varepsilon_i = 1 \) otherwise. We also map the barycentre
of P to $(1,1,\ldots,1)$. The resulting map $S \to \mathbb{I}^m$ can be extended linearly on the simplices of the barycentric subdivision of P to an embedding $c_P : P \to \mathbb{I}^m$. The case $n = 2$, $m = 3$ is shown in Figure 2.12.

The image $c_P(P) \subseteq \mathbb{I}^m$ is the union of all faces $C_{I \subseteq \Omega}$ such that $\bigcap_{i \in I} F_i \neq \emptyset$. For such $C_{I \subseteq \Omega}$, the preimage $c_P^{-1}(C_{I \subseteq \Omega})$ is declared to be a face of the cubical complex $\mathcal{C}(P)$. The vertex set of $c_P^{-1}(C_{I \subseteq \Omega})$ is the subset of S consisting of barycentres of all faces between the faces G and H of P, where $G = \bigcap_{j \in J} F_j$ and $H = \bigcap_{i \in I} F_i$. Therefore, faces of $\mathcal{C}(P)$ correspond to pairs of embedded faces $G \supset H$ of P, and we denote them by $G \supset H$. In particular, maximal (n-dimensional) faces of $\mathcal{C}(P)$

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.11.png}
\caption{Taking cone over the barycentric subdivision of simplex defines a triangulation of the cube.}
\end{figure}

correspond to pairs $G = P$, $H = v$, where v is a vertex of P. For these maximal faces we use the abbreviated notation $C_v = C_{P^G}$.

For every vertex $v = F_{i_1} \cap \cdots \cap F_{i_n} \in P$ with $I_v = \{i_1, \ldots, i_n\}$ we have

$$c_P(C_v) = C_{I_v} = \{(y_1, \ldots, y_m) \in \mathbb{I}^m : y_j = 1 \text{ whenever } v \notin F_j\}.$$

We therefore obtain:

Proposition 2.9.8. A simple polytope P with m facets admits a cubical decomposition whose maximal faces C_v correspond to the vertices $v \in P$. The resulting cubical complex $C(P)$ embeds canonically into \mathbb{I}^m, as described by (2.11).

Lemma 2.9.9. The number of k-faces of the cubical complex $C(P)$ is given by

$$f_k(C(P)) = \sum_{i=0}^{n-k} \binom{n-i}{k} f_i(P), \quad \text{for } 0 \leq k \leq n.$$

Proof. The formula follows from the fact that the k-faces of $C(P)$ are in one-to-one correspondence with the pairs $G^{i+k} \supset H^i$ of faces of P. \qed

Construction 2.9.10 (cubical subdivision of a simplicial complex). Let K be a simplicial complex on $[m]$. Then K is naturally a subcomplex of Δ^{m-1} and its barycentric subdivision K' is a subcomplex of $(\Delta^{m-1})'$. Restricting the PL map from Construction 2.9.5 to K', we obtain the embedding $i_c|K' : |K'| \to \mathbb{I}^m$. Its image is a cubical subcomplex in \mathbb{I}^m, which we denote $\mathrm{cub}(K)$. Then $\mathrm{cub}(K)$ is the union of faces $C_{I \subseteq J} \subset \mathbb{I}^m$ over all pairs $I \subset J$ of nonempty simplices of K:

$$\mathrm{cub}(K) = \bigcup_{\varnothing \neq I \subseteq J \in K} C_{I \subseteq J} \subset \mathbb{I}^m. \quad (2.12)$$

Construction 2.9.11. Since $\mathrm{cone}(K')$ is a subcomplex of $\mathrm{cone}((\Delta^{m-1})')$, Construction 2.9.5 also provides a PL embedding

$$\mathrm{cone}(i_c)|\mathrm{cone}(K') : |\mathrm{cone}(K')| \to \mathbb{I}^m.$$
The image of this embedding is an n-dimensional cubical subcomplex of Γ^m, which we denote $cc(K)$. It is easy to see that

\begin{equation}
cc(K) = \bigcup_{I \subseteq J \in \mathcal{K}} C_{I \subseteq J} = \bigcup_{J \in \mathcal{K}} C_J.
\end{equation}

Remark. If $i \in [m]$ is not a vertex of K (a ghost vertex), then $cc(K)$ is contained in the facet $\{y_i = 1\}$ of Γ^m.

Here is a summary of the two previous constructions.

Proposition 2.9.12. For any simplicial complex K on the set $[m]$, there is a PL embedding of $|K|$ into Γ^m linear on the simplices of K'. The image of this embedding is the cubical subcomplex (2.12). Moreover, there is a PL embedding of $|\text{cone}(K)|$ into Γ^m linear on the simplices of $\text{cone}(K')$, whose image is the cubical subcomplex (2.13).

A cubical complex C' is called a **cubical subdivision** of a cubical complex C if each face of C' is contained in a face of C, and each face of C is a union of finitely many faces of C'.

Proposition 2.9.13. For every cubical complex C with q vertices, there exists a cubical subdivision that is embeddable as a subcomplex in Γ^q.

Proof. We first construct a simplicial complex K_C which subdivides the cubical complex C and has the same vertices. This can be done by induction on the skeleta of C, by extending the triangulation from the k-dimensional skeleton to the interiors of $(k + 1)$-dimensional faces using a generic convex function $f: \mathbb{R}^k \to \mathbb{R}$, see [367, §5.1] (note that the 1-skeleton of C is already a simplicial complex). Then applying Construction 2.9.10 to K_C we get cubical complex $\text{cub}(K_C)$ that subdivides K_C and therefore C. It is embeddable into Γ^q by Proposition 2.9.12.

Example 2.9.14. The cubical complexes $\text{cub}(K)$ and $cc(K)$ when K is a disjoint union of 3 vertices or the boundary of a triangle are shown in Figures 2.13–2.14.

Remark. Let P be a simple n-polytope, and let K_P be its nerve complex. Then $cc(K_P) = c_P(P)$, i.e. $cc(K_P)$ coincides with the cubical complex $C(P)$ from Construction 2.9.7.
Different versions of Construction 2.9.11 can be found in [15, p. 299]. A similar construction was also considered in [112, p. 434]. Finally, a version of cubical subcomplex $\text{cub}(\mathcal{K}) \subset \mathbb{I}^m$ appeared in [121].

Exercises.

2.9.15. Show that the triangulation of \mathbb{I}^m from Construction 2.9.5 coincides with the triangulation of the product of m one-dimensional simplices from Construction 2.2.10.
CHAPTER 3

Combinatorial Algebra of Face Rings

In this chapter we collect the wealth of algebraic notions and constructions related to face rings. Our choice of material and notation was guided by the topological applications in the later chapters of the book. (This explains the—unusual for algebraists—even grading in the polynomial rings and their homogeneous quotients, and also the nonpositive homological grading in free resolutions and Tor.) In the first sections we review standard results and constructions of combinatorial commutative algebra, including the Tor-algebras and algebraic Betti numbers of face rings, Cohen–Macaulay and Gorenstein complexes. The later sections contain some more recent developments, including the face rings of simplicial posets, different characterisations of Cohen–Macaulay and Gorenstein simplicial posets in terms of their face rings and h-vectors, and generalisations of the Dehn–Sommerville relations. Although all these algebraic and combinatorial results have a strong topological flavour and were indeed originally motivated by topological constructions, we have tried to keep this chapter mostly algebraic and do not require much topological knowledge from the reader here.

The preliminary algebraic material of a more general sort, not directly or exclusively related to the face rings (such as resolutions and the functor Tor, and Cohen–Macaulay rings) is collected in Appendix A.

Alongside the monograph by Stanley [336], an extensive survey of Cohen–Macaulay rings by Bruns and Herzog [52] and a more recent monograph [269] by Miller and Sturmfels may be recommended for a deeper study of algebraic methods in combinatorics.

We use the common notation k for the ground ring, which is always assumed to be the ring \mathbb{Z} of integers or a field. The former is preferable for topological applications, but the latter is more common in the algebraic literature. We shall often refer to k-modules as ‘k-vector spaces’; in the case $k = \mathbb{Z}$ the latter means ‘abelian groups’.

We assume graded commutativity instead of commutativity; algebras commutative in the standard sense will be those whose nontrivial graded components appear only in even degrees. In particular, the polynomial algebra $k[v_1, \ldots, v_m]$, which we often abbreviate to $k[m]$, has $\deg v_i = 2$. The exterior algebra $\Lambda[u_1, \ldots, u_m]$ has $\deg u_i = 1$. Given a subset $I = \{i_1, \ldots, i_k\} \subseteq [m]$ we denote by v_I the square-free monomial $v_{i_1} \cdots v_{i_k}$ in $k[m]$. We also denote by u_I the exterior monomial $u_{i_1} \cdots u_{i_k}$ where $i_1 < \cdots < i_k$.
3.1. Face rings of simplicial complexes

Definition 3.1.1. The face ring (or the Stanley–Reisner ring) of a simplicial complex \mathcal{K} on the set $[m]$ is the quotient graded ring

$$k[\mathcal{K}] = k[v_1, \ldots, v_m]/\mathcal{I}_K,$$

where $\mathcal{I}_K = (v_I : I \notin \mathcal{K})$ is the ideal generated by those monomials v_I for which I is not a simplex of \mathcal{K}. The ideal \mathcal{I}_K is known as the Stanley–Reisner ideal of \mathcal{K}.

Example 3.1.2.
1. Let \mathcal{K} be the 2-dimensional simplicial complex shown in Figure 3.1. Then

$$\mathcal{I}_K = (v_{1v5}, v_{3v4}, v_{1v2v3}, v_{2v4v5}).$$

2. The face ring $k[\mathcal{K}]$ is a quadratic algebra (that is, the ideal \mathcal{I}_K is generated by quadratic monomials) if and only if \mathcal{K} is a flag complex (an exercise).

3. Let $\mathcal{K}_1 \ast \mathcal{K}_2$ be the join of \mathcal{K}_1 and \mathcal{K}_2 (see Construction 2.2.8). Then

$$k[\mathcal{K}_1 \ast \mathcal{K}_2] = k[\mathcal{K}_1] \otimes k[\mathcal{K}_2].$$

Here and below \otimes denotes the tensor product over k.

We note that \mathcal{I}_K is a monomial ideal, and it has a basis consisting of square-free monomials v_I corresponding to the missing faces of \mathcal{K}.

Proposition 3.1.3. Every square-free monomial ideal \mathcal{I} in the polynomial ring is the Stanley–Reisner ideal of a simplicial complex \mathcal{K}.

Proof. We set

$$\mathcal{K} = \{I \subseteq [m] : v_I \notin \mathcal{I}\}.$$

Then \mathcal{K} is a simplicial complex and $\mathcal{I} = \mathcal{I}_K$. \hfill \Box

Let P be a simple n-polytope and let \mathcal{K}_P be its nerve complex (see Example 2.2.4). We define the face ring $k[P]$ as the face ring of \mathcal{K}_P. Explicitly,

$$k[P] = k[v_1, \ldots, v_m]/\mathcal{I}_P,$$

where \mathcal{I}_P is the ideal generated by those square-free monomials $v_i v_2 \cdots v_s$ whose corresponding facets intersect trivially, $F_i \cap \cdots \cap F_s = \emptyset$.

Example 3.1.4.
1. Let P be an n-simplex (viewed as a simple polytope). Then

$$k[P] = k[v_1, \ldots, v_{n+1}]/(v_1 v_2 \cdots v_{n+1}).$$
2. Let \(P \) be a 3-cube \(I^3 \). Then
\[
k[P] = k[v_1, v_2, \ldots, v_6]/(v_1v_4, v_2v_5, v_3v_6).
\]
3. Let \(P \) be an \(m \)-gon, \(m \geq 4 \). Then
\[
I_P = (v_iv_j : i - j \neq 0, \pm 1 \mod m).
\]
4. Given two simple polytopes \(P_1 \) and \(P_2 \), we have
\[
k[P_1 \times P_2] = k[P_1] \otimes k[P_2].
\]

Proposition 3.1.5. Let \(\varphi : K \rightarrow L \) be a simplicial map between simplicial complexes \(K \) and \(L \) on the vertex sets \(|K| \) and \(|L| \) respectively. Define the map \(\varphi^* : k[w_1, \ldots, w_l] \rightarrow k[v_1, \ldots, v_m] \) by
\[
\varphi^*(w_j) = \sum_{i \in \varphi^{-1}(j)} v_i.
\]
Then \(\varphi^* \) induces a homomorphism \(k[L] \rightarrow k[K] \), which we continue to denote by \(\varphi^* \).

Proof. We need to check that \(\varphi^*(I_L) \subset I_K \). Suppose \(J = \{j_1, \ldots, j_s\} \subset |L| \) is not a simplex of \(L \). We have
\[
\varphi^*(w_{j_1}, \ldots, w_{j_s}) = \sum_{i_1 \in \varphi^{-1}(j_1), \ldots, i_s \in \varphi^{-1}(j_s)} v_{i_1} \cdots v_{i_s}.
\]
We claim that the right hand side above belongs to \(I_K \), i.e. for any monomial \(v_{i_1} \cdots v_{i_s} \) in the right hand side the set \(I = \{i_1, \ldots, i_s\} \) is not a simplex of \(K \). Indeed, otherwise we would have \(\varphi(I) = J \subset L \) by the definition of a simplicial map, which contradicts the assumption. \(\square \)

Example 3.1.6. The face ring of the barycentric subdivision \(K' \) of \(K \) is
\[
k[K'] = k[b_I : I \in K \setminus \emptyset]/I_{K'},
\]
where \(b_I \) is the polynomial generator of degree 2 corresponding to a nonempty simplex \(I \in K \), and \(I_{K'} \) is generated by quadratic monomials \(b_I b_J \) for which \(I \not\subset J \) and \(J \not\subset I \). The simplicial map \(\nabla : K' \rightarrow K \) from Example 2.3.3 induces a map \(\nabla^* \) of the face ring, given on the generators \(v_j \in k[K] \) by
\[
\nabla^*(v_j) = \sum_{I \in K : \min I = j} b_I.
\]

Example 3.1.7. The nondegenerate map \(K' \rightarrow \Delta^n \) from Example 2.3.2 induces the following map of the corresponding face rings:
\[
k[v_1, \ldots, v_n] \rightarrow k[K']
\]
\[
v_i \mapsto \sum_{|I| = i} b_I.
\]
This defines a canonical \(k[v_1, \ldots, v_n] \)-module structure on \(k[K'] \).

An important tool arising from the functoriality of the face ring is the restriction homomorphism. For any simplex \(I \in K \), the corresponding full subcomplex \(K_I \) is \(\Delta^{|I| - 1} \) and \(k[K_I] \) is the polynomial ring \(k[v_i : i \in I] \) on \(|I| \) generators. The inclusion \(K_I \subset K \) induces the restriction homomorphism
\[
s_I : k[K] \rightarrow k[v_i : i \in I],
\]
which maps \(v_i \) to zero whenever \(i \not\in I \).
The following simple proposition will be used in several algebraic and topological arguments of the later chapters.

Proposition 3.1.8. The direct sum

\[s = \bigoplus_{I \in \mathcal{K}} s_I : k[\mathcal{K}] \longrightarrow \bigoplus_{I \in \mathcal{K}} k[v_i : i \in I] \]

of all restriction maps is a monomorphism.

Proof. Consider the composite map

\[k[v_1, \ldots, v_m] \xrightarrow{p} k[\mathcal{K}] \xrightarrow{s} \bigoplus_{I \in \mathcal{K}} k[v_i : i \in I] \]

where \(p \) is the quotient projection. Suppose \(s \cdot p(Q) = 0 \) where \(Q = Q(v_1, \ldots, v_m) \) is a polynomial. Then for any monomial \(v_1^{ \alpha_1} \cdots v_k^{ \alpha_k} \) which enters \(Q \) with a nonzero coefficient we have \(I = \{i_1, \ldots, i_k\} \notin \mathcal{K} \) (as otherwise the \(i \)th component of the image under \(s \cdot p \) is nonzero). Hence \(p(Q) = 0 \) and \(s \) is injective.

Proposition 3.1.9. The face ring \(k[\mathcal{K}] \) has the \(k \)-vector space basis consisting of \(1 \) and monomials \(v_{i_1}^{ \alpha_1} \cdots v_{i_k}^{ \alpha_k} \) with \(\alpha_i > 0 \) and \(\{j_1, \ldots, j_k\} \in \mathcal{K} \).

Proof. Indeed, the polynomial algebra \(k[m] \) has the \(k \)-vector space basis consisting of all monomials \(v_{j_1}^{ \alpha_1} \cdots v_{j_k}^{ \alpha_k} \), and such a monomial maps to zero under the projection \(k[m] \to k[\mathcal{K}] \) precisely when \(\{j_1, \ldots, j_k\} \notin \mathcal{K} \).

Recall that the Poincaré series of a nonnegatively graded \(k \)-vector space \(V = \bigoplus_{i=0}^\infty V^i \) is given by \(F(V; \lambda) = \sum_{i=0}^\infty (\dim_k V^i) \lambda^i \). Since \(k[\mathcal{K}] \) is graded by even integers, its Poincaré series is even.

Theorem 3.1.10 (Stanley). Let \(\mathcal{K} \) be an \((n-1)\)-dimensional simplicial complex with \(f \)-vector \((f_0, \ldots, f_{n-1})\) and \(h \)-vector \((h_0, \ldots, h_n)\). Then the Poincaré series of the face ring \(k[\mathcal{K}] \) is

\[F(\mathcal{K}; \lambda) = \sum_{k=0}^n f_{k-1} \left(\frac{\lambda^2}{1-\lambda^2} \right)^k = \frac{h_0 + h_1 \lambda^2 + \cdots + h_n \lambda^{2n}}{(1-\lambda^2)^n}. \]

Proof. By Proposition 3.1.9, a \((k-1)\)-dimensional simplex \(\{i_1, \ldots, i_k\} \in \mathcal{K} \) contributes a summand \(\frac{\lambda^\alpha}{(1-\lambda^2)^k} \) to the Poincaré series of \(\mathcal{K} \) (this summand is just the Poincaré series of the subspace generated by monomials \(v_{i_1}^{ \alpha_1} \cdots v_{i_k}^{ \alpha_k} \) with positive exponents \(\alpha_i \)). This proves the first identity, and the second follows from (2.3).

Example 3.1.11.

1. Let \(\mathcal{K} = \Delta^{n-1} \). Then \(f_i = \binom{n}{i+1} \) for \(-1 < i < n-1\), \(h_0 = 1 \) and \(h_i = 0 \) for \(i > 0 \). Since every subset of \([n]\) is a simplex of \(\Delta^{n-1} \), we have \(k[\Delta^{n-1}] = k[v_1, \ldots, v_n] \) and \(F(k[\Delta^{n-1}]; \lambda) = (1-\lambda^2)^{-n}. \)

2. Let \(\mathcal{K} = \partial \Delta^n \) be the boundary of an \(n \)-simplex. Then \(h_i = 1 \) for \(0 < i < n \), and \(k[\partial \Delta^n] = k[v_1, \ldots, v_{n+1}]/(v_1 v_2 \cdots v_{n+1}) \). By Theorem 3.1.10,

\[F(\mathcal{k}[\partial \Delta^n]; \lambda) = \frac{1 + \lambda^2 + \cdots + \lambda^{2n}}{(1-\lambda^2)^n}. \]

The affine algebraic variety corresponding to the commutative finitely generated \(k \)-algebra \(k[\mathcal{K}] = k[m]/I_{\mathcal{K}} \) (i.e. the set of common zeros of elements of \(I_{\mathcal{K}} \), viewed as algebraic functions on \(k[m] \)) can be easily identified as follows.
Proposition 3.1.12. The affine variety corresponding to \(k[K] \) is given by
\[
X(K) = \bigcup_{I \in K} S_I,
\]
where \(S_I = k(e_i : i \in I) \) is the coordinate subspace in \(k^m \) spanned by the set of standard basis vectors corresponding to \(I \).

Proof. The statement obviously holds in the case \(K = \Delta^{m-1} \). So we assume \(K \neq \Delta^{m-1} \). We shall use the following notation from Section 2.4: \(\hat{I} = [m] \setminus I \), the complement of \(I \subset [m] \), and \(\hat{K} = \{ \hat{I} \in [m] : I \notin K \} \), the dual complex of \(K \). Given a point \(z = (z_1, \ldots, z_m) \in k^m \), we denote by
\[
\omega(z) = \{ i : z_i = 0 \} \subset [m],
\]
the set of zero coordinates of \(z \).

By the definition of the algebraic variety \(X(K) \) corresponding to \(k[K] \),
\[
X(K) = \bigcap_{J \notin K} \bigcup_{J \in J} \{ z : z_j = 0 \} = \bigcap_{J \notin K} \{ z : \omega(z) \cap J \neq \emptyset \}
\]
\[
= \bigcap_{\hat{J} \in \hat{K}} \{ z : \omega(z) \nsubseteq \hat{J} \} = \{ z : \omega(z) \notin \hat{K} \}.
\]
On the other hand,
\[
\bigcup_{I \in K} S_I = \bigcup_{I \in K} \bigcap_{\hat{I} \in \hat{K}} \{ z : z_j = 0 \} = \bigcup_{I \in K} \{ z : \hat{I} \subset \omega(z) \}
\]
\[
= \bigcup_{\hat{I} \in \hat{K}} \{ z : \omega(z) \supset \hat{I} \} = \{ z : \omega(z) \notin \hat{K} \}.
\]
The required identity follows by comparing the two formulae above. \(\square \)

Remark. The variety \(X(K) \) is an example of an arrangement of coordinate subspaces, which will be studied further in Section 4.7.

We finish this section with a result showing that the face ring determines its underlying simplicial complex:

Theorem 3.1.13 (Bruno–Gubeladze [51]). Let \(k \) be a field, and \(K_1 \) and \(K_2 \) be two simplicial complexes on the vertex sets \([m_1] \) and \([m_2] \) respectively. Suppose \(k[K_1] \) and \(k[K_2] \) are isomorphic as \(k \)-algebras. Then there exists a bijective map \([m_1] \to [m_2] \) which induces an isomorphism between \(K_1 \) and \(K_2 \).

Proof. Let \(f : k[K_1] \to k[K_2] \) be an isomorphism of \(k \)-algebras. An easy argument shows that we can assume that \(f \) is a graded isomorphism (an exercise, or see [51, p. 316]).

Since \(f \) is graded, by restriction to the linear components we observe that
\(m_1 = m_2 \) and that \(f \) is induced by a linear isomorphism \(F : k[m_1] \to k[m_2] \). This is described by the commutative diagram
\[
\begin{array}{ccc}
k[v_1, \ldots, v_{m_1}] & \xrightarrow{F} & k[v_1, \ldots, v_{m_2}] \\
\downarrow & & \downarrow \\
k[K_1] & \xrightarrow{f} & k[K_2]
\end{array}
\]
By passing to the associated affine varieties, we observe that the isomorphism $f^*: X(K_2) \to X(K_1)$ is the restriction of the k-linear isomorphism $F^*: k^{m_2} \to k^{m_1}$. This is described by the commutative diagram

\[
\begin{array}{c}
k^{m_2} \xrightarrow{F^*} k^{m_1} \\
\downarrow \quad \quad \quad \downarrow \\
X(K_2) \xrightarrow{f^*} X(K_1)
\end{array}
\]

The isomorphism f^* establishes a bijective correspondence

\[
\Phi: \{\text{maximal faces of } K_2\} \to \{\text{maximal faces of } K_1\}
\]

which is defined by the formula $f^*(S_I) = S_{\Phi(I)}$, where I is a maximal face of K_2. It is also clear that $|\Phi(I)| = |I| = \dim S_I$.

We denote by \mathcal{P}_1 the intersection poset of the subspaces S_I, $I \in K_1$, with respect to inclusion (i.e. the elements of \mathcal{P}_1 are nonempty intersections $S_{I_1} \cap \cdots \cap S_{I_k}$ with $I_j \in K_1$). The poset \mathcal{P}_1 can be also viewed as the intersection poset of the maximal faces of K_1. We define the poset \mathcal{P}_2 corresponding to K_2 similarly. The correspondence Φ obviously extends to an isomorphism of posets $\Phi: \mathcal{P}_2 \to \mathcal{P}_1$, which preserves the dimension of spaces (or the number of elements in the intersections of maximal faces).

Now introduce the following equivalence relation on the vertex sets $[m_1]$ and $[m_2]$; for $i_1, i_2 \in [m_1]$ (or $j_1, j_2 \in [m_2]$) we put $i_1 \sim i_2$ if and only if the two sets of maximal faces K_1 containing i_1 and i_2 respectively coincide (and similarly for j_1 and j_2). The equivalence classes in $[m_1]$ are the minimal (with respect to inclusion) nonempty intersections of maximal faces of K_1, and similarly for $[m_2]$. Since Φ is an isomorphism of posets, the two systems of equivalence classes are in natural bijective correspondence, and the corresponding equivalence classes have the same numbers of elements. This gives rise to the bijective map $\varphi: [m_2] \to [m_1]$ which satisfies the condition that $i \in I$ if and only if $\varphi(i) \in \Phi(I)$, where $i \in [m_2]$ and $I \in K_2$ is a maximal face. Since any face of a simplicial complex is contained in a maximal face, we obtain that $\psi = \varphi^{-1}: [m_1] \to [m_2]$ is the required map.

\[\square\]

Exercises.

3.1.14. Show that the Stanley–Reisner ideal \mathcal{I}_K is generated by quadratic monomials if and only if K is a flag complex.

3.1.15 (see [303, (4.7)]). Let $\text{cat}(K)$ be the face category of K (objects are simplices, morphisms are inclusions), $\text{cat}^{op}(K)$ the opposite category (in which the morphisms are reversed), and cga the category of commutative graded algebras. (See Appendix C.1 for basics of categories and diagrams.) Consider the diagram

\[
k^{[\cdot]}: \text{cat}^{op}(K) \to \text{cga},
\]

\[
I \mapsto k[v_i: i \in I]
\]

whose value on a morphism $I \subset J$ is the surjection $k[v_j: j \in J] \to k[v_i: i \in I]$ sending each v_j with $j \notin I$ to zero. Show that

\[
k[K] = \lim k^{[\cdot]}_K
\]

where the limit is taken in the category cga.
3.2. Tor-algebras and Betti numbers

The algebraic Betti numbers of the face ring \(k[K] \) are the dimensions of the Tor-groups of \(k[K] \) viewed as a module over the polynomial ring. These basic homological invariants of a simplicial complex \(K \) appear to be of great importance both for combinatorial commutative algebra and toric topology.

The face ring \(k[K] \) acquires a canonical structure of a module over \(k[m] = k[v_1, \ldots, v_m] \) via the quotient projection \(k[m] \to k[K] \). We therefore may consider the corresponding Tor-modules (see Appendix, Section A.2):

\[
\text{Tor}_{k[v_1, \ldots, v_m]}(k[K], k) = \bigoplus_{i,j \geq 0} \text{Tor}^{-i,2j}_{k[v_1, \ldots, v_m]}(k[K], k).
\]

From Lemma A.2.10 we obtain that \(\text{Tor}_{k[m]}(k[K], k) \) is a bigraded algebra in a natural way, and there is the following isomorphism of bigraded algebras:

\[
\text{Tor}_{k[v_1, \ldots, v_m]}(k[K], k) \cong H(\Lambda[u_1, \ldots, u_m] \otimes k[K], d),
\]

where the bigrading and differential on the right hand side are given by

\[
\text{bideg } u_i = (-1,2), \quad \text{bideg } v_i = (0,2),
\]

\[
du_i = v_i, \quad dv_i = 0.
\]

Definition 3.2.1. We refer to \(\text{Tor}_{k[v_1, \ldots, v_m]}(k[K], k) \) as the Tor-algebra of a simplicial complex \(K \).

The **bigraded Betti numbers** of \(k[K] \) are defined by

\[
\beta^{-i,2j}(k[K]) = \dim_k \text{Tor}^{-i,2j}_{k[v_1, \ldots, v_m]}(k[K], k), \quad \text{for } i, j \geq 0.
\]

We also set

\[
\beta^{-i}(k[K]) = \dim_k \text{Tor}^{-i}_{k[v_1, \ldots, v_m]}(k[K], k) = \sum_j \beta^{-i,2j}(k[K]).
\]

The Tor-algebra has the following functorial property:

Proposition 3.2.2. A simplicial map \(\varphi: K \to L \) between simplicial complexes on the sets \([m]\) and \([\ell]\) respectively induces a homomorphism

\[
\varphi^*: \text{Tor}_{k[v_1, \ldots, v_m]}(k[L], k) \to \text{Tor}_{k[v_1, \ldots, v_m]}(k[K], k)
\]

of the corresponding Tor-algebras.

Proof. This follows from Proposition 3.1.5 and Theorem A.2.5 (b). \(\square \)

Consider the minimal resolution \((R_{\min}^0, d) \) of the \(k[m] \)-module \(k[K] \) (see Construction A.2.2). Then \(R_{\min}^0 \cong 1 \cdot k[m] \) is a free module with one generator of degree 0. The basis of \(R_{\min}^{-1} \) is a minimal generator set for \(E \), and these minimal generators correspond to the missing faces of \(K \). Given a missing face \(\{i_1, \ldots, i_k\} \subset [m] \), denote by \(r_{i_1, \ldots, i_k} \) the corresponding generator of \(R_{\min}^{-1} \). Then the map \(d: R_{\min}^{-1} \to R_{\min}^0 \) takes \(r_{i_1, \ldots, i_k} \) to \(v_{i_1} \cdots v_{i_k} \). By Proposition A.2.6, \(\beta^{-1,2j}(k[K]) \) is equal to the number of missing faces with \(j \) elements.
Example 3.2.3. Let $K = \{ 0,1 \}^3$, the boundary of a 4-gon. Then
\[
k[K] \cong k[v_1,\ldots,v_4]/(v_1v_3,v_2v_4).
\]
Let us construct a minimal resolution of $k[K]$. The module R^0_{min} has one generator 1 (of degree 0). The module R^{-1}_{min} has two generators r_{13} and r_{24} of degree 4, and the differential $d: R^{-1}_{\text{min}} \to R^0_{\text{min}}$ takes r_{13} to v_1v_3 and r_{24} to v_2v_4. The kernel of $R^{-1}_{\text{min}} \to R^0_{\text{min}}$ is generated by one element $v_2v_4r_{13}^4 - v_1v_3r_{24}$. Hence, R^{-2}_{min} has one generator of degree 8, which we denote by a, and the map $d: R^{-2}_{\text{min}} \to R^{-1}_{\text{min}}$ is injective and takes a to $v_2v_4r_{13}^4 - v_1v_3r_{24}$ to $v_2r_{13} - v_1v_3r_{24}$. Thus, the minimal resolution is
\[
0 \to R^{-2}_{\text{min}} \to R^{-1}_{\text{min}} \to R^0_{\text{min}} \to M \to 0,
\]
where rank $R^0_{\text{min}} = \beta^{0,0}(k[K]) = 1$, rank $R^{-1}_{\text{min}} = \beta^{-1,1}(k[K]) = 2$, rank $R^{-2}_{\text{min}} = \beta^{-2,2}(k[K]) = 1$.

The following fundamental result of Hochster reduces the calculation of the Betti numbers $\beta^{-1,2j}(k[K])$ to the calculation of reduced simplicial cohomology of full subcomplexes in K.

\textbf{Theorem 3.2.4 (Hochster \cite{Hochster1}).} We have
\[
\text{Tor}_{j}^{k[K]}(k[k],k) = \bigoplus_{J \subset [m]} H^{j-i-1}(K,J;k),
\]
where K,J is the full subcomplex of K obtained by restricting to $J \subset [m]$. We assume $H^{-1}(K,J;k) = k$ above.

We shall give a proof of Hochster’s formula following \cite{Hochster2}. The idea is to first reduce the Koszul algebra $(A[u_1,\ldots,u_m] \otimes k[K],d)$ to a certain finite dimensional quotient $R^*(K)$, without changing the cohomology, and then identify $R^*(K)$ with the sum of simplicial cochain complexes of all full subcomplexes in K. The algebra $R^*(K)$ will also be used in the cohomological calculations for moment-angle complexes in Chapter 4.

We use simplified notation u_Jv_I for a monomial $u_J \otimes v_I$ in the Koszul algebra $A[u_1,\ldots,u_m] \otimes k[K]$.

\textbf{Construction 3.2.5.} We introduce the quotient algebra
\[
R^*(K) = A[u_1,\ldots,u_m] \otimes k[K]/(v_i^2 = u_i v_i = 0, \ 1 \leq i \leq m).
\]

The ideal generated by v_i^2 and $u_i v_i$ is homogeneous and invariant with respect to the differential (since $d(u_i v_i) = 0$ and $d(v_i^2) = 0$), so we obtain that $R^*(K)$ has differential and bigrading (3.1). We also have the quotient projection
\[
\varrho: A[u_1,\ldots,u_m] \otimes k[K] \to R^*(K).
\]

By definition, the algebra $R^*(K)$ has a k-vector space basis consisting of monomials u_Jv_I where $J \subset [m], I \in K$ and $J \cap I = \emptyset$. Therefore,
\[
\dim_k R^{-p,q} = \binom{m-q+p}{p},
\]
where $(f_0, f_1, \ldots, f_{n-1})$ is the f-vector of K and $f_{-1} = 1$. We have a k-linear map
\[
\iota: R^*(K) \to A[u_1,\ldots,u_m] \otimes k[K]
\]
sending each u_Jv_I identically. The map ι commutes with the differentials, and therefore defines a homomorphism of bigraded differential k-vector spaces satisfying the relation $\varrho \cdot \iota = \text{id}$. Note that ι is not a map of algebras.
Lemma 3.2.6. The projection homomorphism $\varrho: \Lambda[u_1, \ldots, u_m] \otimes k[\mathcal{K}] \to R^*(\mathcal{K})$ induces an isomorphism in cohomology.

Proof. The argument is similar to that used for the Koszul resolution (see Construction A.2.4). We shall construct a cochain homotopy between the maps \id and $\iota \cdot \varrho$ from $\Lambda[u_1, \ldots, u_m] \otimes k[\mathcal{K}]$ to itself, that is, a map s satisfying the identity

\[ds + sd = \id - \iota \cdot \varrho. \tag{3.4} \]

We first consider the case $\mathcal{K} = \Delta^{m-1}$. Then $\Lambda[u_1, \ldots, u_m] \otimes k[\Delta^{m-1}]$ is the Koszul resolution (A.5), which will be denoted by

\[E = E_m = \Lambda[u_1, \ldots, u_m] \otimes k[v_1, \ldots, v_m], \tag{3.5} \]

and the algebra $R^*(\Delta^{m-1})$ is isomorphic to the m-fold tensor product

\[(\Lambda[u] \otimes k[v]/(v^2, uv))^\otimes m. \tag{3.6} \]

For $m = 1$, we define the map $s_1: E_1^{0,*} = k[v] \to E_1^{-1,*}$ by the formula

\[s_1(a_0 + a_1 v + \cdots + a_j v^j) = u(a_2 v + a_3 v^2 + \cdots + a_j v^{j-1}). \]

We need to check identity (3.4) for $x = a_0 + a_1 v + \cdots + a_j v^j \in E_1^{0,*}$, as each element of E_1 is the sum of elements of these two types. In the first case we have $ds_1 x = d(a_0 + a_1 v + \cdots + a_j v^j) = -x_0 + \iota \varrho(x)$, and $s_1 d(x) = 0$. In the second case, i.e., for $ux \in E_1^{-1,*}$, we have $ds_1(ux) = 0$, and $s_1 d(ux) = ux - a_0 u = ux - \iota \varrho(ux)$. In both cases (3.4) holds.

Now we may assume by induction that a cochain homotopy $s_m: E_m \to E_m$ has been already constructed for $m = k - 1$. Since $E_k = E_{k-1} \otimes E_1$, $\varrho_k = \varrho_{k-1} \otimes \varrho_1$ and $\iota_k = \iota_{k-1} \otimes \iota_1$, a direct calculation shows that the map

\[s_k = s_{k-1} \otimes \id + \iota_{k-1} \varrho_{k-1} \otimes s_1 \tag{3.7} \]

is a cochain homotopy between \id and $\iota_k \varrho_k$, which finishes the proof for $\mathcal{K} = \Delta^{m-1}$.

In the case of arbitrary \mathcal{K} the algebras $\Lambda[u_1, \ldots, u_m] \otimes k[\mathcal{K}]$ and $R^*(\mathcal{K})$ are obtained by factorising (3.5) and (3.6) respectively by the ideal $I_{\mathcal{K}}$ in $\Lambda[u_1, \ldots, u_m] \otimes k[m]$. Observe that $I_{\mathcal{K}}$ is generated by v_j with $I \notin \mathcal{K}$ as an ideal, and it has a k-vector space basis of monomials $u_j v_{i_1}^{\alpha_1} \cdots v_{i_k}^{\alpha_k}$ with $I = \{ i_1, \ldots, i_k \} \notin \mathcal{K}$ and $\alpha_i > 0$. We need to check that

\[d(I_{\mathcal{K}}) \subset I_{\mathcal{K}}, \quad \varrho(I_{\mathcal{K}}) \subset I_{\mathcal{K}}, \quad s(I_{\mathcal{K}}) \subset I_{\mathcal{K}}. \]

The first inclusion is obvious: since d is a derivation, we only need to check that $dv_j \in I_{\mathcal{K}}$ for $I \notin \mathcal{K}$, but $dv_j = 0$. The second inclusion is also clear, since

\[\varrho(u_j v_{i_1}^{\alpha_1} \cdots v_{i_k}^{\alpha_k}) = \begin{cases} u_j v_{i_1}^{\alpha_1} \cdots v_{i_k}^{\alpha_k}, & \text{if } \alpha_1 = 1 \text{ and } J \cap \{ i_1, \ldots, i_k \} = \emptyset; \\ 0, & \text{otherwise}. \end{cases} \]

It remains to check the third inclusion. By expanding the inductive formula (3.7) we obtain

\[s_m = s_1 \otimes \id \cdots \otimes \id + \iota_1 \varrho_1 \otimes s_1 \otimes \cdots \otimes \id + \iota_1 \varrho_1 \otimes \cdots \otimes \iota_1 \varrho_1 \otimes s_1. \]

It follows that

\[s_m(u_j v_{i_1}^{\alpha_1} \cdots v_{i_k}^{\alpha_k}) = \sum_{p: \alpha_p > 1} \pm u_j u_{i_p} v_{i_1}^{\alpha_1} \cdots v_{i_p}^{\alpha_p-1} \cdots v_{i_k}^{\alpha_k}. \]

Therefore, $s(I_{\mathcal{K}}) \subset I_{\mathcal{K}}$, and identity (3.4) holds in $\Lambda[u_1, \ldots, u_m] \otimes k[\mathcal{K}]$. \qed
As an immediate consequence of Lemma 3.2.6 we obtain

Corollary 3.2.7. We have that \(\beta^{-i,2j}(k[K]) = 0 \) if \(i > m \) or \(j > m \).

Proof. Indeed, \(R^{-i,2j}(K) = 0 \) if either \(i \) or \(j \) is greater than \(m \). \(\square \)

Now, in order to prove Theorem 3.2.4, we need to show that the cohomology of \(R^*(K) \) is isomorphic to the direct sum of the reduced cohomology of the full subcomplexes on the right hand side of Hochster’s formula. We shall see that this is true even without passing to cohomology, i.e. \(R^*(K) \) is isomorphic to \(\bigoplus_{I \subseteq m} C^*(K_I) \), with the appropriate shift in dimensions, where \(C^* \) denotes the simplicial cochain groups. To do this, it is convenient to refine the grading in \(k[K] \) as follows.

Construction 3.2.8 (multigraded structure in face rings and Tor-algebras). A multigrading (more precisely, an \(\mathbb{N}^m \)-grading) is defined in \(k[v_1, \ldots, v_m] \) by setting

\[
\text{mdeg } v_1^{i_1} \cdots v_m^{i_m} = (2i_1, \ldots, 2i_m).
\]

Since \(k[K] \) is the quotient of the polynomial ring by a monomial ideal, it inherits the multigrading. We may assume that all free modules in the resolution (A.2) are multigraded and the differentials preserve the multidegree. Then the algebra \(\text{Tor}_{k[m]}(k[K], k) \) acquires the canonical \(\mathbb{Z} \oplus \mathbb{N}^m \)-grading, i.e.

\[
\text{Tor}^1_{k[v_1, \ldots, v_m]}(k[K], k) = \bigoplus_{i \geq 0, a \in \mathbb{N}^m} \text{Tor}^{-i,2a}_{k[v_1, \ldots, v_m]}(k[K], k).
\]

The differential algebra \(R^*(K) \) also acquires a \(\mathbb{Z} \oplus \mathbb{N}^m \)-grading, and Lemma 3.2.6 implies that

\[
\text{Tor}^{-i,2a}_{k[v_1, \ldots, v_m]}(k[K], k) \cong H^{-i,2a}(R^*(K), d).
\]

We may view a subset \(J \subset [m] \) as a \((0,1)\)-vector in \(\mathbb{N}^m \) whose \(j \)th coordinate is 1 if \(j \in J \) and is 0 otherwise. Then there is the following multigraded version of Hochster’s formula:

Theorem 3.2.9. For any subset \(J \subset [m] \) we have

\[
\text{Tor}^{-i,2J}_{k[v_1, \ldots, v_m]}(k[K], k) \cong H^{-i,J-1}(K,J),
\]

and \(\text{Tor}^{-i,2a}_{k[m]}(k[K], k) = 0 \) if \(a \) is not a \((0,1)\)-vector.

Proof of Theorem 3.2.4 and Theorem 3.2.9. Let \(C^q(K,J) \) denote the \(q \)th simplicial cochain group with coefficients in \(k \). Denote by \(\alpha_L \in C^{p-1}(K,J) \) the basis cochain corresponding to an oriented simplex \(L = (l_1, \ldots, l_p) \in K_J \); it takes value 1 on \(L \) and vanishes on all other simplices. Now we define a \(k \)-linear map

\[
f : C^{p-1}(K,J) \to R^{p-|J|,2J}(K),
\]

\[
\alpha_L \mapsto \varepsilon(L,J) u_{J \setminus L} v_L,
\]

where \(\varepsilon(L,J) \) is the sign defined by

\[
\varepsilon(L,J) = \prod_{j \in L} \varepsilon(j,J),
\]

and \(\varepsilon(j,J) = (-1)^{r-1} \) if \(j \) is the \(r \)th element of the set \(J \subset [m] \), written in increasing order. Obviously, \(f \) is an isomorphism of \(k \)-vector spaces, and a direct check shows

\[
\sum_{i \in I_L} \varepsilon \left(\bigcup_{j \in I_L} \varepsilon(j,J) u_{J \setminus L} v_L \right)
\]
that it commutes with the differentials. Indeed, we have
\[
 f(d\alpha_L) = f\left(\sum_{j \in J \setminus L, j \cup L \in \mathcal{K}_J} \varepsilon(j, j \cup L) \alpha_{j \cup L} \right) = \sum_{j \in J \setminus L} \varepsilon(j \cup L, J) \varepsilon(j, j \cup L) u_{j \setminus (j \cup L)} v_{j \cup L} (note that \(v_{j \cup L} \in k[\mathcal{K}] \), and hence it is zero unless \(j \cup L \in \mathcal{K}_J \)). On the other hand,
\[
 df(\alpha_L) = \sum_{j \in J \setminus L} \varepsilon(L, J) \varepsilon(j, J \setminus L) u_{j \setminus (j \cup L)} v_{j \cup L}.
\]
By the definition of \(\varepsilon(L, J) \),
\[
 \varepsilon(j \cup L, J) \varepsilon(j, j \cup L) = \varepsilon(L, J) \varepsilon(j, J) \varepsilon(j, j \cup L) = \varepsilon(L, J) \varepsilon(j, J \setminus L),
\]
which implies that \(f(d\alpha_L) = df(\alpha_L) \). Therefore, \(f \) together with the map \(k \to R^{-|J|, 2J}(\mathcal{K}), 1 \to u_J \), defines an isomorphism of cochain complexes
\[
 0 \to k \xrightarrow{d} C^0(\mathcal{K}_J) \xrightarrow{d} \cdots \xrightarrow{d} C^{p-1}(\mathcal{K}_J) \xrightarrow{d} \cdots
\]
Then it follows from (3.8) that
\[
 \tilde{H}^{p-1}(\mathcal{K}_J) \cong \text{Tor}_k^{p-|J|, 2J}(k[\mathcal{K}], k),
\]
which is equivalent to the first isomorphism of Theorem 3.2.9. Since \(R^{-|J|, 2J}(\mathcal{K}) = 0 \) if \(a \) is not a (0, 1)-vector, \(\text{Tor}_k^{-|J|, 2J}(k[\mathcal{K}], k) \) vanishes for such \(a \).

Since \(\text{Tor}_k[\mathcal{K}](k[\mathcal{K}], k) \) is an algebra, the isomorphisms of Theorem 3.2.4 turn the direct sum
\[
 \bigoplus_{p \geq 0} \tilde{H}^{p-1}(\mathcal{K}_J)
\]
into a (multigraded) k-algebra.

Proposition 3.2.10. The product in the direct sum \(\bigoplus_{p \geq 0, J \subseteq [m]} \tilde{H}^{p-1}(\mathcal{K}_J) \) induced by the isomorphisms from Hochster’s theorem coincides up to a sign with the cohomology product induced by the maps of simplicial cochains
\[
 \mu: C^{p-1}(\mathcal{K}_I) \otimes C^{q-1}(\mathcal{K}_J) \to C^{p+q-1}(\mathcal{K}_{I \cup J}),
\]
\[
 \alpha_L \otimes \alpha_M \mapsto \begin{cases} \alpha_{L \cup M}, & \text{if } I \cap J = \emptyset; \\ 0, & \text{otherwise.} \end{cases}
\]
Here \(\alpha_{L \cup M} \in C^{p+q-1}(\mathcal{K}_{I \cup J}) \) denotes the basis simplicial cochain corresponding to \(L \cup M \) if the latter is a simplex of \(\mathcal{K}_{I \cup J} \) and zero otherwise.

Proof. This is a direct calculation. We use the isomorphism \(f \) given by (3.9):
\[
 \alpha_L \cdot \alpha_M = f^{-1}(f(\alpha_L) \cdot f(\alpha_M)) = f^{-1}(\varepsilon(L, I) u_{I \setminus L} v_L \varepsilon(M, J) u_{J \setminus M} v_M)
\]
If \(I \cap J \neq \emptyset \), then the product \(u_{I \setminus L} v_L u_{J \setminus M} v_M \) is zero in \(R^*(\mathcal{K}) \). Otherwise we have that \(u_{I \setminus L} v_L u_{J \setminus M} v_M = \zeta u_{(I \cup J) \setminus (L \cup M)} v_{L \cup M}, \) where \(\zeta = \prod_{k \in I \setminus L} \varepsilon(k, k \cup J \setminus M) \), and we can continue the above identity as
\[
 \alpha_L \cdot \alpha_M = \varepsilon(L, I) \varepsilon(M, J) \zeta \varepsilon(L \cup M, I \cup J) \alpha_{L \cup M}.
\]
1. Let P be a flag, so that $K_P = \mathbb{R}^k$. From Theorem 3.29 and the fact that K_P is a deformation retract of P, the latter is because P is a simple and therefore $P = \bigcup_i E_i = \bigcup_i \text{st}_i\{\{i\}\}$.

Exercise 3.212

Example 3.212

Let P be a flag, so that $K_P = \mathbb{R}^k$. From Theorem 3.29 and the fact that K_P is a deformation retract of P, the latter is because P is a simple and therefore $P = \bigcup_i E_i = \bigcup_i \text{st}_i\{\{i\}\}$. For a description of the multiplication in $\text{Tor}(\mathbb{Z}_2)[K,P]$ in terms of P, see Proposition 2.38, which is the combinatorial neighborhood of (K) in K.

Proposition 3.211. For any subset $J \subseteq [m]$ we have

$$P = \bigcup_i E_i$$

where in the right column we include cocycles of the corresponding cohomology groups. All other cocycles of positive-dimensional classes are zero. Note that in this example all cocycles have bases represented by monomials in the Koszul algebra.

2. Now let $K = \mathbb{R}^3$ be the nerve complex of P. Then the statement follows from Exercise 3.23. This time we calculate the Betti numbers $\beta_{p-1}(K_P)$ using Hodge's formula. We have $eta_{3-1}(K_P) = \dim H^3(P_1) = 1$ and $\beta_{2-1}(K_P) = \dim H^2(P_2) = 2$.

Remark. If P is a simple polytope, the multigraded components of $\text{Tor}(\mathbb{Z}_2)[K,P]$ can be expressed directly in terms of P as follows. Let F'_1, \ldots, F'_m be the set of facets of P given $I \subseteq [m]$, we define the following subset of the boundary of P.

$$P = \bigcup_i E_i$$

Remark. If P is a simple polytope, the multigraded components of $\text{Tor}(\mathbb{Z}_2)[K,P]$ can be expressed directly in terms of P as follows. Let F'_1, \ldots, F'_m be the set of facets of P given $I \subseteq [m]$, we define the following subset of the boundary of P.

$$P = \bigcup_i E_i$$

The multigraded components of $\text{Tor}(\mathbb{Z}_2)[K,P]$ can be expressed directly in terms of P as follows. Let F'_1, \ldots, F'_m be the set of facets of P given $I \subseteq [m]$, we define the following subset of the boundary of P.

Remark. If P is a simple polytope, the multigraded components of $\text{Tor}(\mathbb{Z}_2)[K,P]$ can be expressed directly in terms of P as follows. Let F'_1, \ldots, F'_m be the set of facets of P given $I \subseteq [m]$, we define the following subset of the boundary of P.

$$P = \bigcup_i E_i$$

The multigraded components of $\text{Tor}(\mathbb{Z}_2)[K,P]$ can be expressed directly in terms of P as follows. Let F'_1, \ldots, F'_m be the set of facets of P given $I \subseteq [m]$, we define the following subset of the boundary of P.

$$P = \bigcup_i E_i$$

The multigraded components of $\text{Tor}(\mathbb{Z}_2)[K,P]$ can be expressed directly in terms of P as follows. Let F'_1, \ldots, F'_m be the set of facets of P given $I \subseteq [m]$, we define the following subset of the boundary of P.

$$P = \bigcup_i E_i$$

The multigraded components of $\text{Tor}(\mathbb{Z}_2)[K,P]$ can be expressed directly in terms of P as follows. Let F'_1, \ldots, F'_m be the set of facets of P given $I \subseteq [m]$, we define the following subset of the boundary of P.

$$P = \bigcup_i E_i$$

The multigraded components of $\text{Tor}(\mathbb{Z}_2)[K,P]$ can be expressed directly in terms of P as follows. Let F'_1, \ldots, F'_m be the set of facets of P given $I \subseteq [m]$, we define the following subset of the boundary of P.

$$P = \bigcup_i E_i$$

The multigraded components of $\text{Tor}(\mathbb{Z}_2)[K,P]$ can be expressed directly in terms of P as follows. Let F'_1, \ldots, F'_m be the set of facets of P given $I \subseteq [m]$, we define the following subset of the boundary of P.

$$P = \bigcup_i E_i$$

The multigraded components of $\text{Tor}(\mathbb{Z}_2)[K,P]$ can be expressed directly in terms of P as follows. Let F'_1, \ldots, F'_m be the set of facets of P given $I \subseteq [m]$, we define the following subset of the boundary of P.

$$P = \bigcup_i E_i$$
3. Let us calculate the Betti numbers (both bigraded and multigraded) of $k[\mathcal{K}]$ for the complex shown in Figure 3.1, using Hochster’s formula. We have

\[
\begin{align*}
\beta^{0,0} &= \dim \tilde{H}^{-1}(\emptyset) = 1, \\
\beta^{-1,4} &= \beta^{-1,(2,0,0,0,2)} + \beta^{-1,(0,0,2,2,0)} = \dim \tilde{H}^0(\mathcal{K}_{(1,5)}) \oplus \tilde{H}^0(\mathcal{K}_{(3,4)}) = 2, \\
\beta^{-1,6} &= \beta^{-1,(2,2,2,0,0)} + \beta^{-1,(0,2,0,2,2)} = \dim \tilde{H}^1(\mathcal{K}_{(1,2,3)}) \oplus \tilde{H}^1(\mathcal{K}_{(2,4,5)}) = 2, \\
\beta^{-2,8} &= \beta^{-2,(0,2,2,2,2)} + \beta^{-2,(2,0,2,2,2)} + \ldots + \beta^{-2,(2,2,2,2,0)} \\
= & \dim \tilde{H}^1(\mathcal{K}_{(2,3,4,5)}) \oplus \cdots \oplus \tilde{H}^1(\mathcal{K}_{(1,2,3,4,5)}) = 5, \\
\beta^{-3,10} &= \beta^{-3,(2,2,2,2,2)} = \dim \tilde{H}^1(\mathcal{K}_{(1,2,3,4,5)}) = 2.
\end{align*}
\]

All other Betti numbers are zero.

4. Let \mathcal{K} be a triangulation of the real projective plane $\mathbb{R}P^2$ with m vertices (the minimal example has $m = 6$, see Figure 3.2, where the vertices with the same labels are identified, and the boundary edges are identified according to the orientation shown). Then, by Hochster’s formula,

\[
\text{Tor}^{3-m,2m}_{k[v_1, \ldots, v_m]}(k[\mathcal{K}], k) = \tilde{H}^2(\mathcal{K}_{[m]}; k) = \tilde{H}^2(\mathbb{R}P^2; k) = 0
\]

if the characteristic of k is not 2. On the other hand,

\[
\text{Tor}^{3-m,2m}_{\mathbb{Z}[v_1, \ldots, v_m]}(\mathbb{Z}[\mathcal{K}], \mathbb{Z}_2) = \tilde{H}^2(\mathcal{K}_{[m]}; \mathbb{Z}_2) = \tilde{H}^2(\mathbb{R}P^2; \mathbb{Z}_2) = \mathbb{Z}_2.
\]

This example shows that the Tor-groups of $k[\mathcal{K}]$, and even the algebraic Betti numbers, depend on k. A similar example shows that $\text{Tor}_{\mathbb{Z}[m]}(\mathbb{Z}[\mathcal{K}], \mathbb{Z})$ may have an arbitrary amount of additive torsion. (This is a well-known fact for the usual cohomology of spaces, and so we may take \mathcal{K} to be a triangulation of a space with the appropriate torsion in cohomology.)

Exercises.

3.2.13. Let P be a pentagon. Calculate the bigraded Betti numbers of $k[P]$ and the multiplication in $\text{Tor}_{k[m]}(k[P], k)$

(a) using algebra $R^*(\mathcal{K}_P)$ and Lemma 3.2.6;

(b) using Hochster’s theorem and Proposition 3.2.10,

and compare the results.
3.2.14. Use Proposition 3.2.11 and the isomorphism

\[\tilde{H}^{[J]-i-1}(P_J) \cong H^{[J]-i}(P, P_J) \]

to show that the multiplication induced from \(\text{Tor}_{k[m]}(k[P], k) \) in the direct sum

\[\bigoplus_{\substack{J \subseteq [m] \setminus \{\emptyset\}}} H^p(P, P_J) \]

comes from the standard exterior multiplication

\[H^p(P, P_I) \otimes H^q(P, P_J) \to H^{p+q}(P, P_I \cup P_J) \]

when \(I \cap J = \emptyset \) and is zero otherwise.

3.2.15. Complete the details in the following algebraic proof of Alexander duality (Theorem 2.4.5); this argument goes back to the original work of Hochster [189]:

1. Choose \(J \notin \mathcal{K} \), that is, \(\widehat{J} = [m] \setminus J \in \widehat{\mathcal{K}} \), and show that for any \(L = \{l_1, \ldots, l_q\} \subset J \),

\[J \setminus L \notin \mathcal{K} \iff L \in \text{lk}_\widehat{J} \widehat{L} \]

2. Consider the Koszul algebra

\[S(\mathcal{K}) = [A[u_1, \ldots, u_m] \otimes \mathcal{I}_\mathcal{K}, d] \]

of the Stanley–Reisner ideal \(\mathcal{I}_\mathcal{K} \) (see Lemma A.2.10 and the remark after it), and show that its multigraded component \(S^{-q,2J}(\mathcal{K}) \) has a \(k \)-basis consisting of monomials \(u_L v_{J \setminus L} \) where \(L \in \text{lk}_\widehat{J} \widehat{L} \).

3. Consider the \(k \)-vector space isomorphism

\[g: C_{q-1}(\text{lk}_\widehat{J} \widehat{L}) \to S^{-q,2J}(\mathcal{K}), \]

\[[L] \mapsto u_L v_{J \setminus L} \]

where \([L] \in C_{q-1}(\text{lk}_\widehat{J} \widehat{L}) \) is the basis simplicial chain corresponding to \(L \). Show that \(g \) commutes with the differentials, and therefore defines an isomorphism of chain complexes (in analogy with (3.9), but with no correction sign).

4. Deduce that

\[\tilde{H}_{q-1}(\text{lk}_\widehat{J} \widehat{L}) \cong \text{Tor}_{k[m]}^{-q,2J} (\mathcal{I}_\mathcal{K}, k) \cong \text{Tor}_{k[m]}^{-q,2J} (k[\mathcal{K}], k) \cong \tilde{H}^{[J]-q-2}(\mathcal{K}_J) \]

where the first isomorphism is obtained by passing to homology in step 3, the second follows from the long exact sequence of Theorem A.2.5 (e), and the third is Theorem 3.2.4. It remains to note that the resulting isomorphism is equivalent to that of Corollary 2.4.6.

3.3. Cohen–Macaulay complexes

It is usually quite difficult to determine whether a given ring is Cohen–Macaulay (see Appendix, Section A.3). One of the key results of combinatorial commutative algebra, the Reisner theorem, gives an effective criterion for the Cohen–Macaulayness of face rings, in terms of simplicial cohomology of \(\mathcal{K} \). A reformulation of Reisner’s criterion, due to Munkres and Stanley, tells us that the Cohen–Macaulayness of the face ring \(k[\mathcal{K}] \) is a topological property of \(\mathcal{K} \), i.e. it depends only on the topology of the realisation \(|\mathcal{K}| \). These results have many important applications in both combinatorial commutative algebra and toric topology.
Here we assume that k is a field, unless otherwise stated. If K is of dimension $n - 1$, then the dimension of $k[K]$ is n (an exercise). We start with the following description of homogeneous systems of parameters (lisp's) in $k[K]$ in terms of the restriction homomorphisms $s_I: k[K] \rightarrow k[v_i: i \in I]$ (see Proposition 3.1.8).

Lemma 3.3.1. Let K be a simplicial complex of dimension $n - 1$. A sequence of homogeneous elements $t = (t_1, \ldots, t_n)$ of the face ring $k[K]$ is a homogeneous system of parameters if and only if

$$\dim_k (k[v_i: i \in I]/s_I(t)) < \infty$$

for each simplex $I \in K$, where $s_I(t)$ is the image of the sequence t under the restriction map s_I.

Proof. Assume that t is an lisp. By applying the right exact functor $\otimes_{k[t]}$ to the epimorphism $s_I: k[K] \rightarrow k[v_i: i \in I]$ we obtain that $k[K]/t \rightarrow k[v_i: i \in I]/s_I(t)$ is also an epimorphism. Hence,

$$\dim_k (k[v_i: i \in I]/s_I(t)) \leq \dim_k (k[K]/t) < \infty.$$

For the opposite statement, assume that

$$\dim_k \bigoplus_{I \in K} k[v_i: i \in I]/s_I(t) < \infty.$$

Consider the short exact sequence of $k[t]$-modules

$$0 \rightarrow k[K] \overset{s_I}{\rightarrow} \bigoplus_{I \in K} k[v_i: i \in I] \rightarrow Q \rightarrow 0,$$

where Q is the quotient module, and the following fragment of the corresponding long exact sequence for Tor (Theorem A.2.5 (e)):

$$\cdots \rightarrow \text{Tor}^{-1}_{k[t]}(Q, k) \rightarrow k[K]/t \rightarrow \bigoplus_{I \in K} k[v_i: i \in I]/s_I(t) \rightarrow \cdots.$$

Since $\bigoplus_{I \in K} k[v_i: i \in I]$ is a finitely generated $k[t]$-module, its quotient Q is also finitely generated. Hence $\dim_k \text{Tor}^{-1}_{k[t]}(Q, k) < \infty$ (see Proposition A.2.6), and, by the exact sequence above, $\dim_k (k[K]/t) < \infty$. Therefore, t is an lisp in $k[K]$. \hfill \square

Recall that we refer to a sequence $t = (t_1, \ldots, t_n) \in k[K]$ as linear if $\deg t_i = 2$ for all i. We may write a linear sequence as

$$(3.12) \quad t_i = \lambda_{i1} v_1 + \cdots + \lambda_{im} v_m, \quad \text{for} \ 1 \leq i \leq n.$$

Here is a simple characterization of lisp's in a face ring (see Definition A.3.9):

Lemma 3.3.2. A linear sequence $t = (t_1, \ldots, t_n)$ of elements of $k[K]$, $\dim K = n - 1$, is an lisp if and only if the restriction $s_I(t)$ to each simplex of $I \in K$ generates the polynomial algebra $k[v_i: i \in I]$.

In other words, (3.12) is an lisp if and only if the rank of the $n \times |I|$ matrix $\Lambda_I = (\lambda_{ij}), \ 1 \leq i \leq n, \ j \in I$, is equal to $|I|$ for any $I \in K$.

Proof. Indeed, if t is linear, then the conditions $\dim_k k[v_i: i \in I]/s_I(t) < \infty$ and $k[v_i: i \in I]/s_I(t) \cong k$ are equivalent. The latter means that $s_I(t)$ generates $k[v_i: i \in I]$ as a k-algebra. \hfill \square

Note that it is enough to verify the conditions of Lemmata 3.3.1 and 3.3.2 only for maximal simplices $I \in K$.

3.3. COHEN–MACAULAY COMPLEXES

113
Definition 3.3.3. A linear sequence \(t = (t_1, \ldots, t_n) \) of elements of \(\mathbb{Z}[\mathcal{K}] \) is referred to as an integral isop if its reduction modulo \(p \) is an isop in \(\mathbb{Z}_p[\mathcal{K}] \) for any prime \(p \). Equivalently, \(t \) is an integral isop if \(n = \dim \mathcal{K} + 1 \) and the restriction \(s_I(t) \) to each simplex \(I \in \mathcal{K} \) generates the polynomial ring \(\mathbb{Z}[v_i : i \in I] \) (the equivalence of these two conditions is an exercise).

Although the rational face ring \(\mathbb{Q}[\mathcal{K}] \) always admits an isop by Theorem A.3.10, an isop in \(\mathbb{Z}_p[\mathcal{K}] \) for a prime \(p \) (or an integral isop in \(\mathbb{Z}[\mathcal{K}] \)) may fail to exist, as is shown by the next example.

Example 3.3.4.
1. Let \(\mathcal{K} \) be a simplicial complex of dimension \(n - 1 \) on \(m \geq 2^n \) vertices whose 1-skeleton is a complete graph. Then the face ring \(\mathbb{Z}_2[\mathcal{K}] \) does not admit an isop. Indeed, assume that (3.12) is an isop. Then, by Corollary 3.3.2, each column vector of the \(n \times m \)-matrix \((\lambda_{ij}) \) is nonzero, and all column vectors are pairwise different (since each pair of vertices of \(\mathcal{K} \) spans an edge). This is a contradiction, since the number of different nonzero vectors in \(\mathbb{Z}_2^n \) is \(2^n - 1 \). By considering the reduction modulo 2 we obtain that \(\mathbb{Z}[\mathcal{K}] \) also does not admit an integral isop.

2. There are also simple polytopes \(P \) whose face rings \(k[P] \) do not admit an isop over \(\mathbb{Z}_2 \) or \(\mathbb{Z} \). Indeed, let \(P \) be the dual of a 2-neighbourly simplicial \(n \)-polytope (e.g., a cyclic polytope of dimension \(n \geq 4 \), see Example 1.1.17) with \(m \geq 2^n \) vertices. Then the 1-skeleton of \(K_P \) is a complete graph, and therefore \(\mathbb{Z}[P] = \mathbb{Z}[K_P] \) does not admit an isop. This example is taken from [112].

By considering the reduction modulo 2 we observe that the ring \(\mathbb{Z}[\mathcal{K}] \) for \(\mathcal{K} \) from the previous example also does not admit an integral isop. Existence of integral isop's in the face rings \(\mathbb{Z}[\mathcal{K}] \) is a subtle question of great importance for toric topology; it will be discussed in more detail in Section 4.8.

Definition 3.3.5. \(\mathcal{K} \) is a **Cohen–Macaulay complex** over a field \(k \) if \(k[\mathcal{K}] \) is a Cohen–Macaulay algebra. We say that \(\mathcal{K} \) is a **Cohen–Macaulay complex** over \(\mathbb{Z} \), or simply a **Cohen–Macaulay complex**, if \(k[\mathcal{K}] \) is a Cohen–Macaulay algebra for \(k = \mathbb{Q} \) and any finite field.

Remark. We shall often consider \(k[\mathcal{K}] \) as a \(k[m]-\)module rather than a \(k\)-algebra. However, this does not affect regular sequences and the Cohen–Macaulay property: it is an easy exercise to show that a sequence \(t \subset k[m] \) is \(k[m] \)-regular for \(k[\mathcal{K}] \) as a \(k[m]-\)module if and only the image of \(t \) in \(k[\mathcal{K}] \) is \(k[\mathcal{K}]-\)regular. In particular, \(k[\mathcal{K}] \) is a Cohen–Macaulay algebra if and only if it is a Cohen–Macaulay \(k[m]-\)module. We shall therefore not distinguish between these two notions.

Example 3.3.6. Let \(\mathcal{K} = \partial \Delta^2 \). Then \(k[\mathcal{K}] = k[v_1, v_2, v_3]/(v_1 v_2 v_3) \) and \(\dim k[\mathcal{K}] = 2 \). The elements \(v_1, v_2 \in k[\mathcal{K}] \) are algebraically independent, but do not form an isop, since \(k[\mathcal{K}]/(v_1, v_2) \cong k[v_3] \) and \(\dim (k[\mathcal{K}]/(v_1, v_2)) = 1 \). On the other hand, the elements \(t_1 = v_1 - v_3, t_2 = v_2 - v_3 \) form an isop, since \(k[\mathcal{K}]/(t_1, t_2) \cong k[t]/t^3 \). It is easy to see that \(k[\mathcal{K}] \) is a free \(k[t_1, t_2]-\)module on the basis \(\{1, v_1, v_2^2\} \). Therefore, \(k[\mathcal{K}] \) is a Cohen–Macaulay ring and \((t_1, t_2) \) is a regular sequence.

Cohen–Macaulay complexes can be characterised homologically as follows:

Proposition 3.3.7. The following conditions are equivalent for a simplicial complex \(\mathcal{K} \) of dimension \(n - 1 \) with \(m \) vertices:
3.3. COHEN–MACAULAY COMPLEXES

(a) \mathcal{K} is Cohen–Macaulay over a field k;
(b) $\beta^{-i}(k[\mathcal{K}]) = 0$ for $i > m - n$.

Under any of these conditions, $\beta^{-(m-n)}(k[\mathcal{K}]) \neq 0$.

Proof. Assume that (a) holds. Then depth $k[\mathcal{K}] = n$ and

$$\text{pdim } k[\mathcal{K}] = \text{depth } k[m] - \text{depth } k[\mathcal{K}] = m - n$$

by Theorem A.3.8. By Corollary A.2.7, this implies condition (b) and also that $\beta^{-(m-n)}(k[\mathcal{K}]) \neq 0$.

Assume that (b) holds. Then $\text{pdim } k[\mathcal{K}] \leq m - n$ by Corollary A.2.7. On the other hand,

$$\text{pdim } k[\mathcal{K}] = \text{depth } k[m] - \text{depth } k[\mathcal{K}] \geq m - \dim k[\mathcal{K}] = m - n.$$

Therefore, $\text{pdim } k[\mathcal{K}] = m - n$. This implies that $\beta^{-(m-n)}(k[\mathcal{K}]) \neq 0$ and also that depth $k[\mathcal{K}] = n$, i.e. \mathcal{K} is Cohen–Macaulay.

Example 3.3.8. Let \mathcal{K} be the 6-vertex triangulation of $\mathbb{R}P^2$, see Example 3.2.12.4 and Figure 3.2. Then $m - n = 3$ and, by Theorem 3.2.4,

$$\beta^{-4}(\mathbb{Z}_2[\mathcal{K}]) = \beta^{-4,12}(\mathbb{Z}_2[\mathcal{K}]) = \dim_{\mathbb{Z}_2} \tilde{H}^1(\mathbb{R}P^2; \mathbb{Z}_2) = 1,$$

so \mathcal{K} is not Cohen–Macaulay over \mathbb{Z}_2. On the other hand, a similar calculation shows that if the characteristic of k is not 2, then $\beta^{-i}(k[\mathcal{K}]) = 0$ for $i > 3$ and $\beta^{-3}(k[\mathcal{K}]) = 6$, i.e. \mathcal{K} is Cohen–Macaulay over such fields.

Proposition 3.3.9 (Stanley). If \mathcal{K} is a Cohen–Macaulay complex of dimension $n - 1$, then $h(\mathcal{K}) = (h_0, \ldots, h_n)$ is an M-vector (see Definition 1.4.13).

Proof. Let \mathcal{K} be Cohen–Macaulay, and let $t = (t_1, \ldots, t_n)$ be an isop in $k[\mathcal{K}]$, where k is a field of zero characteristic. Then, by Proposition A.3.14,

$$F(k[\mathcal{K}], \lambda) = \frac{F(k[\mathcal{K}]/t; \lambda)}{(1 - \lambda^2)^n}.$$

On the other hand, the Poincaré series of $k[\mathcal{K}]$ is given by Theorem 3.1.10, which implies that

$$F(k[\mathcal{K}]/t; \lambda) = h_0 + h_1 \lambda^2 + \cdots + h_n \lambda^{2n}.$$

Now, $A = k[\mathcal{K}]/t$ is a graded algebra generated by its degree-two elements and $\dim_k A^{2i} = h_i$, so (h_0, \ldots, h_n) is an M-vector by definition.

Remark. According to a result of Stanley [336, Theorem II.3.3], if (h_0, \ldots, h_n) is an M-vector, then there exists an $(n-1)$-dimensional Cohen–Macaulay complex \mathcal{K} such that $h_i(\mathcal{K}) = h_i$. Together with Proposition 3.3.9, this gives a complete characterisation of face vectors of Cohen–Macaulay complexes.

The following fundamental result gives a combinatorial characterisation of Cohen–Macaulay complexes:

Theorem 3.3.10 (Reiner [320]). Let $k = \mathbb{Z}$ or a field. A simplicial complex \mathcal{K} is Cohen–Macaulay over k if and only if for any simplex $I \in \mathcal{K}$ (including $I = \emptyset$) and $i < \dim \text{lk } I$, we have $H_i(\text{lk } I; k) = 0$.
Proof. We give a proof which uses an elegant combinatorial reduction and Mayer-Vietoris topological argument, suggested by Aizenberg in [3].

We first assume that \(k \) is a field, and introduce two acyclicity conditions for \(\mathcal{K} \) in terms of links and full subcomplexes.

Let \(s \geq 0 \) be an integer. A simplicial complex \(\mathcal{K} \) is called \(s \)-link-acyclic (\(s \)-LA for short) over \(k \) if \(\tilde{H}^i(\operatorname{lk}_{\mathcal{K}} I; k) = 0 \) for any \(J \in \mathcal{K} \) (including \(I = \emptyset \)) and \(i < s - |I| \).

Recall the notation \(\mathcal{J} = [m] \setminus J \) for any \(J \subseteq [m] \). A simplicial complex \(\mathcal{K} \) on the vertex set \([m] \) is called \(s \)-subcomplex-acyclic (\(s \)-SCA for short) over \(k \) if \(\tilde{H}^i(\mathcal{K}_{\mathcal{J}}; k) = 0 \) for any \(J \subseteq [m] \) and \(i < s - |J| \). One can think of \(\mathcal{K}_{\mathcal{J}} \) as the result of removing all simplices containing at least one vertex of \(J \).

Each of the \(s \)-LA and \(s \)-SCA conditions implies that \(\tilde{H}^i(\mathcal{K}; k) = 0 \) for \(i < s \). As \(k \) is a field, we do not distinguish between homological and cohomological acyclicity.

Lemma 3.3.11. Let \(\dim \mathcal{K} = n - 1 \). Then \(\mathcal{K} \) is Cohen–Macaulay over \(k \) if and only if \(\mathcal{K} \) is \((n-1) \)-SCA over \(k \).

Proof. By Proposition 3.3.7, \(\mathcal{K} \) is Cohen–Macaulay if and only if

\[
\beta^{-i}(k[\mathcal{K}]) = 0 \quad \text{for } i > m - n.
\]

Using Hochster’s formula (Theorem 3.2.4) we obtain

\[
\beta^{-i}(k[\mathcal{K}]) = \sum_{J \subseteq [m]} \dim \tilde{H}^{|J| - i - 1}((\mathcal{K}_{\mathcal{J}}; k).
\]

Therefore, condition (3.13) is equivalent to \(\tilde{H}^r(\mathcal{K}_{\mathcal{J}}; k) = 0 \) for \(r < |J| - m + n - 1 \), which is exactly the \((n-1) \)-SCA condition (with \(\mathcal{J} \) replaced by \(J \)).

Lemma 3.3.12. Let \(\dim \mathcal{K} = n - 1 \). Then \(\mathcal{K} \) is \((n-1) \)-LA if and only if \(\tilde{H}_i(\operatorname{lk}_I; k) = 0 \) for any \(I \in \mathcal{K} \) and \(i < \dim \operatorname{lk}_I \).

Proof. Note that \(\dim \operatorname{lk}_I \leq \dim \mathcal{K} - |I| \), so the ‘only if’ part is clear.

Now assume that \(\tilde{H}_i(\operatorname{lk}_I; k) = 0 \) for any \(I \in \mathcal{K} \) and \(i < \dim \operatorname{lk}_I \). We prove that \(\mathcal{K} \) is pure by induction on the dimension. The case \(\dim \mathcal{K} = 0 \) is trivial. Assume \(\dim \mathcal{K} \geq 1 \). Our assumption implies \(H_0(\mathcal{K}; k) = 0 \), so \(\mathcal{K} \) is connected. The links of vertices of \(\mathcal{K} \) are pure by induction. This implies that if two vertices are connected by an edge, then their links have the same dimension. Therefore, the links of all vertices are pure \((n-2)\)-dimensional. This implies that \(\mathcal{K} \) itself is pure. Thus, \(\dim \operatorname{lk}_I = n - 1 - |I| \) for any \(I \in \mathcal{K} \), and the statement follows.

We say that \(\mathcal{K} \) is \(t \)-acyclic (over \(k \)) if \(\tilde{H}^i(\mathcal{K}; k) = 0 \) for \(i \leq t \).

Lemma 3.3.13. Assume that \(\mathcal{K} \) is \(t \)-acyclic, and let \(\{i\} \in \mathcal{K} \) be a vertex. Then \(\operatorname{lk}_{\mathcal{K}}(i) \) is \((t-1)\)-acyclic if and only if \(\mathcal{K}_{\{i\}} \) is \((t-1)\)-acyclic.

Proof. Consider the star \(\operatorname{st}_{\mathcal{K}}(\{i\}) \) and observe that \(\operatorname{st}_{\mathcal{K}}(\{i\}) \cup \mathcal{K}_{\{i\}} = \mathcal{K} \) and \(\operatorname{st}_{\mathcal{K}}(\{i\}) \cap \mathcal{K}_{\{i\}} = \operatorname{lk}_{\mathcal{K}}(i) \). The corresponding Mayer–Vietoris exact sequence has the form

\[
\cdots \to \tilde{H}^i(\mathcal{K}; k) \to \tilde{H}^i(\mathcal{K}_{\{i\}}; k) \to \tilde{H}^i(\operatorname{lk}_{\mathcal{K}}(i); k) \to \tilde{H}^{i+1}(\mathcal{K}; k) \to \cdots
\]

as \(\operatorname{st}_{\mathcal{K}}(\{i\}) \) is contractible. For \(i \leq t - 1 \), we have \(H^i(\mathcal{K}; k) = H^{i+1}(\mathcal{K}; k) = 0 \), so \(H^i(\mathcal{K}_{\{i\}}; k) = H^i(\operatorname{lk}_{\mathcal{K}}(i); k) \).

Lemma 3.3.14. The conditions \(s \)-SCA and \(s \)-LA over \(k \) are equivalent.
3.3. COHEN–MACAUAY COMPLEXES

Proof. For each element \(i \in [m] \) we define two operations \(p_i \) and \(q_i \) on the set of simplicial complexes \(\mathcal{L} \) on \([m]\). Namely, we set \(p_i \mathcal{L} = \text{lk}_{\mathcal{L}}(i) \) if \(\{i\} \in \mathcal{L} \) and \(p_i \mathcal{L} = \mathcal{L} \) otherwise. Similarly, we set \(q_i \mathcal{L} = \mathcal{L}_{i} \) if \(\{i\} \in \mathcal{L} \) and \(q_i \mathcal{L} = \mathcal{L} \) otherwise. Note that all links and full subcomplexes in a given complex \(\mathcal{K} \) can be obtained by iterating the operations \(p_i \) and \(q_i \). Namely, if \(I = \{i_1, \ldots, i_k\} \in \mathcal{K} \), then \(\text{lk}_I = p_{i_1} \cdots p_{i_k} \mathcal{K} \), and if \(J = \{j_1, \ldots, j_k\} \subseteq [m] \), then \(\mathcal{K}_J = q_{j_1} \cdots q_{j_k} \mathcal{K} \).

We therefore need to prove the equivalence of the following two conditions:

(a) \(q_{j_k} \cdots q_{j_1} \mathcal{K} \) is \((s - k - 1)\)-acyclic for any \(J = \{j_1, \ldots, j_k\} \subseteq [m] \);

(b) \(p_{i_k} \cdots p_{i_1} \mathcal{K} \) is \((s - k - 1)\)-acyclic for any \(I = \{i_1, \ldots, i_k\} \in \mathcal{K} \).

We can replace (b) by a more convenient equivalent condition

(b') \(p_{i_k} \cdots p_{i_1} \mathcal{K} \) is \((s - k - 1)\)-acyclic for any \(I = \{i_1, \ldots, i_k\} \subseteq [m] \).

Obviously, (b') implies (b). Let us prove the opposite implication. Consider an arbitrary expression \(p_{i_k} \cdots p_{i_1} \mathcal{K} \). If \(i_l \) is a vertex of \(p_{i_{l-1}} \cdots p_{i_1} \mathcal{K} \) for each \(l \), then there is nothing to prove. Otherwise \(p_1 \) is the identity operation, and we can remove it from the expression. Removing all identity operations we get \(p_{i_k} \cdots p_{i_1} \mathcal{K} = \text{lk}_I' \) where \(I' \subseteq \{i_1, \ldots, i_k\} \). Therefore, \(p_{i_k} \cdots p_{i_1} \mathcal{K} = \text{lk}_I' \) is \((s - |I'| - 1)\)-acyclic, which is a stronger condition than the \((s - k - 1)\)-acyclicity.

Hence it is sufficient to prove the equivalence of (a) and (b'). This will be done by induction on the number \(k \) of the letters \(p \) and \(q \) in the expression. More precisely, we prove the equivalence of the following three conditions

(a\(_N\)) \(q_{i_k} \cdots q_{i_1} \mathcal{K} \) is \((s - k - 1)\)-acyclic for any \(\{i_1, \ldots, i_k\} \subseteq [m] \) with \(k \leq N \);

(b\(_N\)) \(p_{i_k} \cdots p_{i_1} \mathcal{K} \) is \((s - k - 1)\)-acyclic for any \(\{i_1, \ldots, i_k\} \subseteq [m] \) with \(k \leq N \);

(c\(_N\)) \(r_{i_k} \cdots r_{i_1} \mathcal{K} \) is \((s - k - 1)\)-acyclic for any \(\{i_1, \ldots, i_k\} \subseteq [m] \) with \(k \leq N \), where \(r_i \) is either \(p_i \) or \(q_i \) (mixed condition).

The equivalence of (a\(_1\)), (b\(_1\)) and (c\(_1\)) follows from Lemma 3.3.13.

Now we assume by induction that (a\(_{N-1}\)), (b\(_{N-1}\)) and (c\(_{N-1}\)) are equivalent. Obviously, (c\(_N\)) implies (a\(_N\)) and (b\(_N\)). Let us prove that (a\(_N\)) implies (c\(_N\)). By (a\(_N\)), the complex \(q_{i_k} \cdots q_{i_1} \mathcal{K} \) is \((s - N - 1)\)-acyclic. Applying Lemma 3.3.13 to \(q_{i_{N-1}} \cdots q_{i_1} \mathcal{K} \) we obtain that \(p_{i_N} q_{i_{N-1}} \cdots q_{i_1} \mathcal{K} \) is also \((s - N - 1)\)-acyclic. This allows us to replace the leftmost letter \(q \) in the expression by the letter \(p \) with the same index. If we can make the same replacement of the letters \(q \) at all positions, the lemma is proved. To do this we use the fact that the operations \(p \) and \(q \) commute in the most interesting situation. Namely, if \(i, j \in [m] \), then \(r_i r_j \mathcal{L} \) is either equal to \(r_j r_i \mathcal{L} \) or reduces to a shorter expression.

Therefore, given an expression \(r_{i_N} \cdots r_{i_1} \mathcal{K} \), we may try to commute the letters to make any given letter \(p_i \) travel to the leftmost position. If we succeed, we replace it by the corresponding \(q \). In a finite number of steps we get an expression consisting of \(q \)'s only, which is \((s - N - 1)\)-acyclic by assumption. Applying Lemma 3.3.13 iteratively, we prove that \(r_{i_N} \cdots r_{i_1} \mathcal{K} \) is \((s - N - 1)\)-acyclic as well, as needed. And if we fail to commute the letters at some step, then the length of the expression reduces. In this case the \((s - N - 1)\)-acyclicity follows by the induction hypothesis.

The implication (b\(_N\)) \(\Rightarrow \) (c\(_N\)) is proved by the same argument.

\(\square \)

The proof of Theorem 3.3.10 for a field \(k \) now follows by setting \(s = n - 1 \) in Lemma 3.3.14 and using Lemmata 3.3.11 and 3.3.12. For the case \(k = \mathbb{Z} \), we recall that \(\mathcal{K} \) is Cohen–Macaulay over \(\mathbb{Z} \) if it is Cohen–Macaulay over \(\mathbb{Q} \) and any finite field. As we have already proved, the latter condition is equivalent to \(H_i(\text{lk}_I; \mathbb{K}) = 0 \)
for $i < \dim lk I$, where $k = \mathbb{Q}$ or a finite field. This is equivalent to $\widetilde{H}_i(lk I; \mathbb{Z}) = 0$
for $i < \dim lk I$ by the universal coefficient theorem. \hfill \Box

Remark. Several other proofs of Reisner’s Theorem are available. An algebraic proof following the original approach of Reisner via local cohomology can be found in [336, §II.4] (see also [269, Chapter 13]). Another topological proof was given by Munkres [280]. Instead of dealing with many consecutive Mayer–Vietoris exact sequences as in the proof above, one may arrange them all in a single spectral sequence. This is the essence of Munkres’s work, which relies on the properties of Zeeman’s spectral sequence. The work of Aizenberg [3], to which we owe the above proof, contains also several other topological proofs of results of combinatorial commutative algebra (including the characterisation of Gorenstein complexes, see the next section), and generalisations. See also exercises at the end of this section.

The following reformulation of Reisner’s Theorem shows that Cohen–Macaulayness is a topological property of a simplicial complex.

Proposition 3.3.15 (Munkres, Stanley). A simplicial complex \mathcal{K} is Cohen–Macaulay over k if and only if for any point $x \in |\mathcal{K}|$, we have

$$H_i(|\mathcal{K}|, |\mathcal{K}| \setminus x; k) = \widetilde{H}_i(\mathcal{K}; k) = 0 \quad \text{for } i < \dim \mathcal{K}.$$

Proof. Let $I \subset \mathcal{K}$. If $I = \emptyset$, then $\widetilde{H}_i(\mathcal{K}; k) = \widetilde{H}_i(lk I; k)$. If $I \neq \emptyset$, then

$$H_i(|\mathcal{K}|, |\mathcal{K}| \setminus x; k) = \widetilde{H}_{i-|I|}(lk I; k)$$

for any x in the interior of I, by Proposition 2.2.14.

If \mathcal{K} is Cohen–Macaulay, then it is pure and therefore $lk I$ is pure of dimension $\dim \mathcal{K} - |I|$ (see the proof of Lemma 3.3.12). Hence, $i < \dim \mathcal{K}$ implies that $i - |I| < \dim lk I$ and $H_i(|\mathcal{K}|, |\mathcal{K}| \setminus x; k) = 0$ by (3.14) and Theorem 3.3.10.

On the other hand, if $H_i(|\mathcal{K}|, |\mathcal{K}| \setminus x; k) = 0$ for $i < \dim \mathcal{K}$, then $\widetilde{H}_i(lk I; k) = H_{i+|I|}(|\mathcal{K}|, |\mathcal{K}| \setminus x; k) = 0$ for $j < \dim lk I$, since $j + |I| < \dim lk I + |I| \leq \dim \mathcal{K}$. Thus, \mathcal{K} is Cohen–Macaulay by Theorem 3.3.10. \hfill \Box

Corollary 3.3.16. If a triangulation of a space X is a Cohen–Macaulay complex, then any other triangulation of X is Cohen–Macaulay as well.

Corollary 3.3.17. Any triangulated sphere is a Cohen–Macaulay complex.

In particular, the h-vector of a triangulated sphere is an M-vector. This fact was used by Stanley in his generalisation of the UBT (Theorem 1.4.4) to arbitrary sphere triangulations:

Theorem 3.3.18 (UBT for spheres). For any triangulated $(n-1)$-dimensional sphere \mathcal{K} with m vertices, the h-vector (h_0, h_1, \ldots, h_n) satisfies the inequalities

$$h_i(\mathcal{K}) \leq \binom{m-n+i-1}{i}.$$

Therefore, the UBT holds for triangulated spheres, that is,

$$f_i(\mathcal{K}) \leq f_i(C^n(m)) \quad \text{for } i = 1, \ldots, n-1.$$

Proof. Let $A = k[\mathcal{K}]/t$ be the algebra from the proof of Proposition 3.3.9, so that $\dim_k A^2 = h_i$. In particular, $\dim_k A^2 = h_1 = m - n$. Since A is generated by A^2, the number h_i cannot exceed the number of monomials of degree i in $m - n$ generators, i.e. $h_i \leq \binom{m-n+i-1}{i}$. The rest follows from Lemma 1.4.6. \hfill \Box
3.4. GORENSTEIN COMPLEXES

Exercises.

3.3.19. If \(K \) is a simplicial complex of dimension \(n - 1 \), then \(\dim k[K] = n \).

3.3.20. Let \(t \) be an Isp in \(k[K] \). Then the \(k \)-vector space \(k[K]/t \) is generated by monomials \(v_I \) for \(I \in K \). (Hint: prove that \(v_i v_j = 0 \) in \(k[K]/t \) for any \(i \in [m] \) and for any maximal simplex \(I \in K \), and then use Proposition 3.1.9).

3.3.21. A sequence \(t \subset k[m] \) is \(k[m] \)-regular for \(k[K] \) as a \(k[m] \)-module if and only the image of \(t \) in \(k[K] \) is \(k[K] \)-regular.

3.3.22. Let \(t = (t_1, \ldots, t_n) \subset Z[K] \) be a linear sequence (3.12), \(\dim K = n - 1 \). The following conditions are equivalent:

(a) the reduction of \(t \) modulo \(p \) is an Isp in \(Z_p[K] \) for any prime \(p \);
(b) the restriction \(s_I(t) \) to each simplex \(I \in K \) generates the polynomial ring \(Z[i_1: i \in I] \);
(c) for each \(I \in K \) the columns of the \(n \times |I| \) matrix \((\lambda_{ij}) \), \(1 \leq i \leq n, j \in I \), generate the integer lattice \(Z^{|I|} \).

3.3.23. A finitely generated commutative \(k \)-algebra is called a complete intersection algebra if it is the quotient of a polynomial algebra by a regular sequence. Observe that a complete intersection algebra is Cohen–Macaulay. Show that a face ring \(k[K] \) is a complete intersection algebra if and only if it is isomorphic to the quotient of the form

\[
k[v_1, \ldots, v_m]/(v_1 v_2 \cdots v_{k_1}, v_{k_1} + 1 v_{k_1} + 2 \cdots v_{k_3}, \ldots, v_{k_1} + \cdots + k_{p-1} + 1 \cdots v_{k_1} + \cdots + k_p).
\]

This is equivalent to \(K \) being decomposable into a join of the form

\[
\partial \Delta^{k_1-1} * \partial \Delta^{k_2-1} * \cdots * \partial \Delta^{k_p-1} * \Delta^{m-s-1},
\]

where \(s = k_1 + \cdots + k_p \) and the join factor \(\Delta^{m-s-1} \) is void if \(s = m \).

3.3.25. The s-SCA and s-LA conditions are equivalent to depth \(k[K] \geq s + 1 \).

3.3.26. The \(i \)th skeleton of a Cohen–Macaulay complex is Cohen–Macaulay, for any \(i \). If \(K \) is a complex with depth \(k[K] = s \), then \(sk^{s-1}K \) is Cohen–Macaulay.

3.3.27. The depth of the face ring is a topological invariant, as the Cohen–Macaulay property. Namely, if \(|K| \cong |\mathcal{L}| \), then depth \(k[K] \) = depth \(k[\mathcal{L}] \).

3.4. GORENSTEIN COMPLEXES AND DEHN–SOMMERVILLE RELATIONS

Gorenstein rings are a class of Cohen–Macaulay rings with a special duality property. As in the case of Cohen–Macaulayness, simplicial complexes whose face rings are Gorenstein play an important role in combinatorial commutative algebra. In a sense, non-acyclic Gorenstein complexes provide an ‘algebraic approximation’ to triangulated spheres. We give only a brief account here, referring to [52, Chapter 3] for the general theory of Gorenstein rings and the missing proofs.

We recall from Proposition 3.3.7 that nonzero Betti numbers of a Cohen–Macaulay complex \(K \) of dimension \(n - 1 \) with \(m \) vertices appear up to homological degree \(- (m - n)\), and \(\beta^{-(m-n)}(k[K]) \neq 0 \).
DEFINITION 3.4.1. A Cohen–Macaulay complex K of dimension $n-1$ with m vertices is called Gorenstein (over a field k) if $\beta^{-(m-n)}(k[K]) = 1$, that is, if $\text{Tor}_{k[m]}^{-(m-n)}(k[K], k) \cong k$. Furthermore, K is Gorenstein* if K is Gorenstein and $K = \text{core}(K)$ (see Definition 2.2.15).

Since $K = \text{core}(K) \ast \Delta^{s-1}$ for some s, we have $k[K] = k[\text{core}(K)] \otimes k[s]$. Then Lemma A.3.5 implies that

$$\text{Tor}^{-i}_{k[m]}(k[K], k) \cong \text{Tor}^{-i}_{k[m-s]}(k[\text{core}(K)], k).$$

Therefore, K is Gorenstein if and only if $\text{core}(K)$ is Gorenstein*.

As in the case of Cohen–Macaulay complexes, Gorenstein* complexes can be characterised topologically as follows.

THEOREM 3.4.2 ([336, §II.5] or [3]). The following conditions are equivalent:

(a) K is a Gorenstein* complex over k;

(b) for any simplex $I \subseteq K$ (including $I = \emptyset$) the subcomplex $lk I$ has homology of a sphere of dimension $\dim lk I$;

(c) for any $x \in |K|$,

$$H^i(|K|, |K| \setminus x; k) = \bar{H}^i(|K|; k) = \begin{cases} k & \text{if } i = \dim K; \\ 0 & \text{otherwise}. \end{cases}$$

In topology, polyhedra $|K|$ satisfying the conditions of the previous theorem are sometimes called generalised homology spheres (‘generalised’ because a homology sphere is usually assumed to be a manifold). In particular, triangulated spheres are Gorenstein* complexes. Triangulated manifolds are not Gorenstein* or even Cohen–Macaulay in general (Buchsbaum complexes provide a proper algebraic approximation to triangulated manifolds, see [336, §II.8]). Nevertheless, the Tor-algebra of a Gorenstein* complex behaves like the cohomology algebra of a manifold: it satisfies Poincaré duality. This fundamental result was proved by Avramov and Golod for Noetherian local rings; here we state the graded version of their theorem in the case of face rings.

DEFINITION 3.4.3. A graded commutative connected k-algebra A is called a Poincaré algebra if it is finite dimensional over k, i.e. $A = \bigoplus_{i=0}^{d} A^i$, and the k-linear maps

$$A^i \to \text{Hom}_k(A^{d-i}, A^d),$$

$$a \mapsto \varphi_a, \quad \text{where } \varphi_a(b) = ab$$

are isomorphisms for $0 \leq i \leq d$. The classical example of a Poincaré algebra is the cohomology algebra of a manifold.

THEOREM 3.4.4 (Avramov–Golod, [52, Theorem 3.4.5]). A simplicial complex K is Gorenstein* if and only if the algebra $T = \bigoplus_{i=0}^{d} T^i$, where $T^i = \text{Tor}_{k[m]}^{-i}(k[K], k)$ and $d = \max\{j : \text{Tor}_{k[m]}^{-j}(k[K], k) \neq 0\}$, is a Poincaré algebra.

COROLLARY 3.4.5. Let K be a Gorenstein* complex of dimension $n-1$ on the set $[m]$. Then the Betti numbers and the Poincaré series of the Tor groups satisfy

$$\beta^{-i, 2j}(k[K]) = \beta^{-(m-n)+i, 2(m-j)}(k[K]), \quad 0 \leq i \leq m-n, \quad 0 \leq j \leq m,$$

$$F(\text{Tor}_{k[m]}^{-i}(k[K], k); \lambda) = \lambda^{2m} F(\text{Tor}_{k[m]}^{-(m-n)+i}(k[K], k); \frac{1}{\lambda}).$$
PROOF. Theorems 3.2.4 and 3.4.2 imply that
\[\beta^{-(m-n)}(k[k]) = \beta^{-(m-n)2m}(k[k]) = 1. \]
We therefore have \(d = m - n \) and \(T^d = \text{Tor}_{k[k]}^{-(m-n), 2m}(k[k], k) \cong k \) in the notation of Theorem 3.4.4. Since the multiplication in the Tor-algebra preserves the bigrading, the isomorphisms \(T^i \cong \text{Hom}_k(T^{m-n-i}, T^{m-n}) \) from the definition of a Poincaré algebra can be refined to isomorphisms
\[T^{i, 2j} \cong \text{Hom}_k(T^{m-n-i, 2(m-j)}, T^{m-n, 2m}), \]
where \(T^{m-n, 2m} \cong k \). This implies the first identity, and the second is a direct corollary. \(\square \)

As a further corollary we obtain the following symmetry property for the Poincaré series of the face ring:

Corollary 3.4.6. If \(K \) is Gorenstein\(^\ast \) of dimension \(n - 1 \), then
\[F(k[k], \lambda) = (-1)^n F(k[k], \frac{\lambda}{\lambda^m}). \]

Proof. We apply Proposition A.2.1 to the minimal resolution of the \(k[m] \)-module \(k[k] \). Note that \(F(k[m]; \lambda) = (1 - \lambda^2)^{-m} \). It follows from the formula for the Poincaré series from Proposition A.2.1 and Proposition A.2.6 that
\[F(k[k]; \lambda) = (1 - \lambda^2)^{-m} \sum_{i=0}^{m-n} (-1)^i \lambda^{2m}(\text{Tor}_{k[m]}^{-i}(k[k], k); \frac{1}{\lambda^m}) = \]
\[= (1 - (\frac{\lambda}{\lambda^m})^2)^{-m} \sum_{j=0}^{m-n} (-1)^{m-n-j} \lambda^{m-n-j}(\text{Tor}_{k[m]}^{-j}(k[k], k); \frac{1}{\lambda^m}) = \]
\[= (-1)^n F(k[k]; \frac{1}{\lambda}). \] \(\square \)

Corollary 3.4.7. The Dehn–Sommerville relations \(h_i = h_{n-i} \) hold for any Gorenstein\(^\ast \) complex of dimension \(n - 1 \) (in particular, for any triangulation of an \((n - 1)\)-sphere).

Proof. This follows from the explicit form of the Poincaré series for \(k[k] \) (Theorem 3.1.10) and the previous corollary. \(\square \)

The Dehn–Sommerville relations may be further generalised to wider classes of complexes and posets; we give some of these generalisations in Section 3.8 below.

Unlike the situation with Cohen–Macaulay complexes, a characterisation of \(h \)-vectors (or, equivalently, \(f \)-vectors) of Gorenstein complexes is not known:

Problem 3.4.8 (Stanley). Characterise the \(h \)-vectors of Gorenstein complexes.

If the \(g \)-conjecture (i.e. the inequalities of Theorem 1.4.14 (b) and (c)) holds for Gorenstein complexes, then this would imply a solution to the above problem.
Exercises.

3.4.9. A Gorenstein complex \mathcal{K} is Gorenstein* if and only if it is non-acyclic (i.e. $\tilde{H}^*(\mathcal{K}; k) \neq 0$).

3.4.10 ([336, Theorem II.5.1]). Show that \mathcal{K} is Gorenstein* if and only if the following three conditions are satisfied:

(a) \mathcal{K} is Cohen–Macaulay;
(b) every $(n - 2)$-dimensional simplex is contained in exactly two $(n - 1)$-dimensional simplices;
(c) $\chi(\mathcal{K}) = \chi(S^{n-1})$, where $\chi(\cdot)$ denotes the Euler characteristic.

3.4.11. Let \mathcal{K} be a Gorenstein* complex of dimension $n - 1$ on $[m]$. Show that

$$\tilde{H}^k(\mathcal{K}_J) \cong \tilde{H}_{n-2-k}(\mathcal{K}_{\hat{J}})$$

for any $J \subset [m]$, where $\hat{J} = [m] \setminus J$. This is known as Alexander duality for non-acyclic Gorenstein complexes.

3.5. Face rings of simplicial posets

The whole theory of face rings may be extended to simplicial posets (defined in Section 2.8), thereby leading to new important classes of rings in combinatorial commutative algebra and applications in toric topology.

In this section, k is \mathbb{Z} or a field.

The face ring $k[\mathcal{S}]$ of a simplicial poset \mathcal{S} was introduced by Stanley [335] as a quotient of a certain graded polynomial ring by a homogeneous ideal determined by the poset relation in \mathcal{S}. Unlike $k[\mathcal{K}]$, the ring $k[\mathcal{S}]$ is not generated in the lowest positive degree. Face rings of simplicial posets were further studied by Duval [124] and Maeda–Masuda–Panov [252], [246], among others. Cohen–Macaulay and Gorenstein* face rings are particularly important; both properties are topological, that is, depend only on the topological type of the geometric realisation $|\mathcal{S}|$.

As usual, we shall not distinguish between simplicial posets \mathcal{S} and their geometric realisations (simplicial cell complexes) $|\mathcal{S}|$. Given two elements $\sigma, \tau \in \mathcal{S}$, we denote by $\sigma \vee \tau$ the set of their joins, and denote by $\sigma \wedge \tau$ the set of their meets. Whenever either of these sets consists of a single element, we use the same notation for this particular element of \mathcal{S}.

To make clear the idea behind the definition of the face ring of a simplicial poset, we first consider the case when \mathcal{S} is a simplicial complex \mathcal{K}. Then $\sigma \wedge \tau$ consists of a single element (possibly \emptyset), and $\sigma \vee \tau$ is either empty or consists of a single element. We consider the graded polynomial ring $k[v_\sigma : \sigma \in \mathcal{K}]$ with one generator v_σ of degree $\deg v_\sigma = 2|\sigma|$ for each simplex $\sigma \in \mathcal{K}$. The following proposition provides an alternative presentation of the face ring $k[\mathcal{K}]$, with a larger set of generators:

Proposition 3.5.1. There is a canonical isomorphism of graded rings

$$k[\mathcal{K}] \cong k[v_\sigma : \sigma \in \mathcal{K}] / I'_K,$$

where I'_K is the ideal generated by the element $v_\emptyset - 1$ and all elements of the form

$$v_\sigma v_\tau - v_{\sigma \wedge \tau} v_{\sigma \vee \tau}.$$

Here we set $v_{\sigma \vee \tau} = 0$ whenever $\sigma \vee \tau$ is empty.
3.5. FACE RINGS OF SIMPLICIAL POSETS

\[\text{Figure 3.3. Simplicial cell complexes.}\]

Proof. The isomorphism is established by the map taking \(v_\sigma\) to \(\prod_{i \in \sigma} v_i\). The rest is left as an exercise. \(\square\)

Now let \(\mathcal{S}\) be an arbitrary simplicial poset with the vertex set \(V(\mathcal{S}) = [m]\). In this case both \(\sigma \vee \tau\) and \(\sigma \wedge \tau\) may consist of more than one element, but \(\sigma \wedge \tau\) consists of a single element whenever \(\sigma \vee \tau\) is nonempty.

We consider the graded polynomial ring \(k[v_\sigma : \sigma \in \mathcal{S}]\) with one generator \(v_\sigma\) of degree \(\deg v_\sigma = 2|\sigma|\) for every element \(\sigma \in \mathcal{S}\).

Definition 3.5.2 ([335]). The face ring of a simplicial poset \(\mathcal{S}\) is the quotient

\[k[\mathcal{S}] = k[v_\sigma : \sigma \in \mathcal{S}] / \mathcal{I}_S,\]

where \(\mathcal{I}_S\) is the ideal generated by the elements \(v_0 - 1\) and

\[v_\sigma v_\tau - v_{\sigma \wedge \tau} - \sum_{\eta \in \sigma \vee \tau} v_\eta.\]

The sum over the empty set is zero, so we have \(v_\sigma v_\tau = 0\) in \(k[\mathcal{S}]\) if \(\sigma \vee \tau\) is empty.

The grading may be refined to an \(\mathbb{N}^m\)-grading by setting \(\text{mdeg } v_\sigma = 2V(\sigma)\). Here \(V(\sigma) \subset [m]\) is the vertex set of \(\sigma\), and we identify subsets of \([m]\) with \((0,1)\)-vectors in \([0,1]^m \subset \mathbb{N}^m\) as usual. In particular, \(\text{mdeg } v_i = 2e_i\).

Example 3.5.3.

1. The simplicial cell complex shown in Figure 3.3 (a) is obtained by gluing two segments along their boundaries and has rank 2. The vertices are 1, 2 and we denote the 1-dimensional simplices by \(\sigma\) and \(\tau\). Then the face ring \(k[\mathcal{S}]\) is the quotient of the graded polynomial ring

\[k[v_1, v_2, v_\sigma, v_\tau], \quad \deg v_1 = \deg v_2 = 2, \quad \deg v_\sigma = \deg v_\tau = 4\]

by the two relations

\[v_1 v_2 = v_\sigma + v_\tau, \quad v_\sigma v_\tau = 0.\]

2. The simplicial cell complex in Figure 3.3 (b) is obtained by gluing two triangles and has rank 3. The vertices are 1, 2, 3 and we denote the 1-dimensional simplices (edges) by \(e\), \(f\) and \(g\), and the 2-dimensional simplices by \(\sigma\) and \(\tau\). The face ring \(k[\mathcal{S}]\) is isomorphic to the quotient of the polynomial ring

\[k[v_1, v_2, v_3, v_\sigma, v_\tau], \quad \deg v_1 = \deg v_2 = \deg v_3 = 2, \quad \deg v_\sigma = \deg v_\tau = 6\]

by the two relations

\[v_1 v_2 v_3 = v_\sigma + v_\tau, \quad v_\sigma v_\tau = 0.\]

The generators corresponding to the edges can be excluded because of the relations \(v_e = v_1 v_2, v_f = v_2 v_3\) and \(v_g = v_1 v_3\).
Remark. The ideal \(I_S \) is generated by straightening relations (3.15); these relations allow us to express the product of any pair of generators via products of generators corresponding to pairs of ordered elements of the poset. This can be restated by saying that \(k[S] \) is an example of an algebra with straightening law (ASL for short, also known as a Hodge algebra). Lemma 3.5.4 and Theorem 3.5.7 below reflect algebraic properties of ASL’s, and may be restated in this generality. For more on the theory of ASL’s see [336, § III.6] and [52, Chapter 7].

A monomial \(v_{\sigma_1}^{i_1} v_{\sigma_2}^{i_2} \cdots v_{\sigma_k}^{i_k} \in k[v_\sigma : \sigma \in S] \) is standard if \(\sigma_1 < \sigma_2 < \cdots < \sigma_k \).

Lemma 3.5.4. Any element of \(k[S] \) can be written as a linear combination of standard monomials.

Proof. It is enough to prove the statement for elements of \(k[S] \) represented by monomials in generators \(v_\sigma \). We write such a monomial as \(a = v_{\tau_1} v_{\tau_2} \cdots v_{\tau_k} \) where some of the \(\tau_i \) may coincide. We need to show that any such monomial can be expressed as a sum of monomials \(\sum v_{\sigma_1} \cdots v_{\sigma_l} \) with \(\sigma_1 \leq \cdots \leq \sigma_l \). We may assume by induction that \(\tau_2 \leq \cdots \leq \tau_k \). Using relation (3.15) we can replace \(a \) by
\[
v_{\tau_1 \wedge \tau_2} \left(\sum_{\rho \in \tau_1 \vee \tau_2} v_{\rho} \right) v_{\tau_3} \cdots v_{\tau_k}.
\]
Now the first two factors in each summand above correspond to ordered elements of \(S \). We proceed by replacing the products \(v_{\rho} v_{\tau_3} \) by \(v_{\rho \wedge \tau_3} (\sum_{\sigma \in \rho \vee \tau_3} v_{\sigma}) \). Since \(\tau_1 \wedge \tau_2 \leq \rho \wedge \tau_3 \), now the first three factors in each monomial are in order. Continuing this process, we obtain in the end a sum of monomials corresponding to totally ordered sets of elements of \(S \).

We refer to the presentation from Lemma 3.5.4 as a standard presentation of an element \(a \in k[S] \).

Given \(\sigma \in S \), we define the corresponding restriction homomorphism as
\[
s_\sigma : k[S] \to k[S]/(v_\tau : \tau \not\in \sigma).
\]

The following result is straightforward.

Proposition 3.5.5. Let \(|\sigma| = k \) with \(V(\sigma) = \{i_1, \ldots, i_k\} \). Then the image of the homomorphism \(s_\sigma \) is the polynomial ring \(k[v_{i_1}, \ldots, v_{i_k}] \).

The next result generalises Proposition 3.1.8 to simplicial posets.

Theorem 3.5.6. The direct sum
\[
s = \bigoplus_{\sigma \in S} s_\sigma : k[S] \to \bigoplus_{\sigma \in S} k[v_i : i \in V(\sigma)]
\]

of all restriction maps is a monomorphism.

Proof. Take a nonzero element \(a \in k[S] \) and write its standard presentation. Fix a standard monomial \(v_{\sigma_1}^{i_1} \cdots v_{\sigma_k}^{i_k} \) which enters the sum with a nonzero coefficient. Allowing some of the exponents \(i_j \) to be zero, we may assume that \(\sigma_k \) is a maximal element in \(S \) and \(|\sigma_j| = j \) for \(1 \leq j \leq k \). We shall prove that \(s_{\sigma_k}(a) \neq 0 \). Identify \(s_{\sigma_k}(k[S]) \) with the polynomial ring \(k[t_1, \ldots, t_k] \) (so that \(t_j = v_{i_j} \) in the notation of Proposition 3.5.5). Then \(s_{\sigma_k}(v_{\sigma_j}) = t_1 \cdots t_k \), and we may assume without loss of generality that \(s_{\sigma_k}(v_{\sigma_j}) = t_1 \cdots t_j \) for \(1 \leq j \leq k \). Hence,
\[
s_{\sigma_k}(v_{\sigma_1}^{i_1} \cdots v_{\sigma_k}^{i_k}) = t_1^{i_1} (t_1 t_2)^{i_2} \cdots (t_1 \cdots t_k)^{i_k}.
\]
If we prove that no other monomial \(v_{\tau_1}^{j_1} \cdots v_{\tau_m}^{j_m} \) is mapped by \(s_{\sigma_k} \) to the same element of \(k[t_1, \ldots, t_k] \), then this would imply that \(s_{\sigma_k}(a) \neq 0 \). Note that

\[
s_{\sigma_k}(v_{\tau_1}^{j_1} \cdots v_{\tau_m}^{j_m}) = 0 \quad \text{if } \tau_i \not\in \sigma_k \text{ for some } i \text{ with } j_i \neq 0,
\]

so that we may assume that \(m = k \). Now suppose that

\[(3.16) \quad s_{\sigma_k}(v_{\sigma_1}^{i_1} \cdots v_{\sigma_k}^{i_k}) = s_{\sigma_k}(v_{\tau_1}^{j_1} \cdots v_{\tau_k}^{j_k}).\]

We shall prove that \(v_{\tau_1}^{j_1} \cdots v_{\tau_k}^{j_k} = v_{\sigma_1}^{i_1} \cdots v_{\sigma_k}^{i_k} \). We may assume by induction that the ‘tails’ of these monomial coincide, that is, there is some \(q, 1 \leq q \leq k \), such that \(i_p = j_p \) and \(\sigma_p = \tau_p \) for \(i_p \neq 0 \) whenever \(p > q \). We shall prove that \(i_q = j_q \) and \(\sigma_q = \tau_q \) if \(i_q \neq 0 \). We obtain from (3.16) that

\[
s_{\sigma_k}(v_{\sigma_1}^{i_1} \cdots v_{\sigma_q}^{i_q})(t_1 \cdots t_{q+1})^{i_{q+1}} \cdots (t_1 \cdots t_k)^{i_k} = s_{\sigma_k}(v_{\tau_1}^{j_1} \cdots v_{\tau_q}^{j_q})(t_1 \cdots t_{q+1})^{i_{q+1}} \cdots (t_1 \cdots t_k)^{j_k},
\]

hence, \(s_{\sigma_k}(v_{\sigma_1}^{i_1} \cdots v_{\sigma_q}^{i_q}) = s_{\sigma_k}(v_{\tau_1}^{j_1} \cdots v_{\tau_q}^{j_q}) \). Let \(j_l \) be the last nonzero exponent in \(v_{\tau_1}^{j_1} \cdots v_{\tau_q}^{j_q} \) (i.e. \(j_{l+1} = \cdots = j_q = 0 \)). Then we also have \(i_{l+1} = \cdots = i_q = 0 \), as otherwise \(s_{\sigma_k}(v_{\sigma_1}^{i_1} \cdots v_{\sigma_q}^{i_q}) \) is divisible by \(t_1 \cdots t_{l+1} \), while \(s_{\sigma_k}(v_{\tau_1}^{j_1} \cdots v_{\tau_q}^{j_q}) \) is not. We also have \(i_l = j_l \) and \(\sigma_l = \tau_l \), since \(i_l \) is the maximal power of the monomial \(t_1 \cdots t_l \) which divides \(s_{\sigma_k}(v_{\sigma_1}^{i_1} \cdots v_{\sigma_l}^{i_l}) \). We conclude by induction that \(v_{\sigma_1}^{i_1} \cdots v_{\sigma_k}^{i_k} = v_{\tau_1}^{j_1} \cdots v_{\tau_k}^{j_k} \), and \(s_{\sigma_k}(a) \neq 0 \).

Remark. The proof above also shows that the map \(s = \bigoplus_{\sigma} s_{\sigma} \) in Theorem 3.5.6 can be defined as the sum over only the maximal elements \(\sigma \in S \).

Theorem 3.5.7. A standard presentation of an element \(a \in k[S] \) is unique. In other words, the standard monomials \(v_{\sigma_1}^{i_1} \cdots v_{\sigma_k}^{i_k} \) form a \(k \)-basis of \(k[S] \).

Proof. This follows directly from Lemma 3.5.4 and Theorem 3.5.6. \(\square \)

Lemma 3.3.1, which describes hsp's in the face rings of simplicial complexes, can be readily extended to simplicial posets (the same proof based on the properties of the restriction map \(s \) works):

Lemma 3.5.8. Let \(S \) be a simplicial poset of rank \(n \). A sequence of homogeneous elements \(t = (t_1, \ldots, t_n) \) of \(k[S] \) is a homogeneous system of parameters if and only if

\[
\dim_k(k[v_i : i \in V(\sigma)]/s_{\sigma}(t)) < \infty
\]

for each element \(\sigma \in S \).

The \(f \)-vector of a simplicial poset \(S \) is \(f(S) = (f_0, \ldots, f_{n-1}) \), where \(n - 1 = \dim S \) and \(f_i \) is the number of elements of rank \(i + 1 \) (i.e. the number of faces of dimension \(i \) in the simplicial cell complex). We also set \(f_{-1} = 1 \). The \(h \)-vector \(h(S) = (h_0, \ldots, h_n) \) is then defined by (2.3).

The Poincaré series of the face ring \(k[S] \) has exactly the same form as in the case of simplicial complexes:

Theorem 3.5.9. We have

\[
F(k[S]; \lambda) = \sum_{k=0}^{n} \frac{f_{k-1} \lambda^{2k}}{(1- \lambda^2)^k} = \frac{h_0 + h_1 \lambda^2 + \cdots + h_n \lambda^{2n}}{(1- \lambda^2)^n}.
\]
Proof. By Theorem 3.5.7, we need to calculate the Poincaré series of the \(k \)-vector space generated by the monomials \(v_{\sigma_1}^{i_1} \cdots v_{\sigma_k}^{i_k} \) with \(\sigma_1 < \cdots < \sigma_k \). For every \(\sigma \in S \) denote by \(M_\sigma \) the set of such monomials with \(\sigma_k = \sigma \) and \(i_k > 0 \). Let \(|\sigma| = k \); consider the restriction homomorphism \(s_\sigma \) to the polynomial ring \(k[t_1, \ldots, t_k] \). Then \(s_\sigma(M_\sigma) \) is the set of monomials in \(k[t_1, \ldots, t_k] \) which are divisible by \(t_1 \cdots t_k \). Therefore, the Poincaré series of the subspace generated by the set \(M_\sigma \) is \(\overline{\chi(S, \sigma)} \). Now, to finish the proof of the first identity we note that \(S \) is the union \(\bigcup_{\sigma \in S} M_\sigma \) of the nonintersecting subsets \(M_\sigma \). The second identity follows from (2.3).

As we have seen in Exercise 3.1.15, the face ring \(k[K] \) of a simplicial complex can be realised as the limit of a diagram of polynomial algebras over \(\text{cat}^{op}(K) \). A similar description exists for the face ring \(k[S] \):

Construction 3.5.10 (\(k[S] \) as a limit). We consider the diagram \(k[\cdot]^S \) similar to that of Exercise 3.1.15:

\[
k[\cdot]^S : \text{cat}^{op}(S) \longrightarrow
\begin{array}{c}
\sigma \\
\downarrow \\
\tau
\end{array}
\longrightarrow
\begin{array}{c}
k[v_i : i \in V(\sigma)] \\
k[v_i : i \in V(\tau)] \\
k[v_i : i \in V(\sigma)]
\end{array},
\]

whose value on a morphism \(\sigma \leq \tau \) is the surjection

\[
k[v_i : i \in V(\tau)] \longrightarrow k[v_i : i \in V(\sigma)]
\]

sending each \(v_i \) with \(i \notin V(\sigma) \) to zero.

Lemma 3.5.11. We have

\[
k[S] = \lim k[\cdot]^S
\]

where the limit is taken in the category \(\text{cat}^{op} \).

Proof. We set up a total order on the elements of \(S \) so that the rank function does not decrease, and proceed by induction. We therefore may assume the statement is proved for a simplicial poset \(T \), and need to prove it for \(S \) which is obtained from \(T \) by adding one element \(\sigma \). Then \(S_{<\sigma} = \{ \tau \in S : \tau < \sigma \} \) is the face poset of the boundary of the simplex \(\Delta^\sigma \). Geometrically, we may think of \(|S| \) as obtained from \(|T| \) by attaching one simplex \(\Delta^\sigma \) along its boundary (if \(|\sigma| = 1 \), then \(\Delta^\sigma \) is a single point, so \(|S| \) is a disjoint union of \(|T| \) and a point). We therefore need to prove that the following is a pullback diagram:

\[
\begin{array}{ccc}
k[S] & \longrightarrow & k[S_{<\sigma}] \\
\downarrow & & \downarrow \\
k[T] & \longrightarrow & k[S_{<\sigma}].
\end{array}
\]

Here the vertical arrows map \(v_\sigma \) to 0, while the horizontal ones map \(v_\tau \) to 0 for \(\tau \not\prec \sigma \). Denote by \(A \) the pullback of (3.17) with \(k[S] \) dropped. We need to show that the natural map \(k[S] \to A \) is an isomorphism.

Since the limits in \(\text{cat}^{op} \) are created in the underlying category of graded \(k \)-modules, \(A \) is the direct sum of \(k[T] \) and \(k[S_{<\sigma}] \) with the pieces \(k[S_{<\sigma}] \) identified in both \(k \)-modules. In other words,

\[
A = T \oplus k[S_{<\sigma}] \oplus S,
\]

where \(T \) is the complement to \(k[S_{<\sigma}] \) in \(k[T] \), and \(S \) is the complement to \(k[S_{<\sigma}] \) in \(k[S_{<\sigma}] \). By Theorem 3.5.7, the \(k \)-module \(k[S_{<\sigma}] \) has basis of standard monomials.
with $\tau_k < \sigma$. Similarly, S has basis of those monomials with $\tau_k = \sigma$ and $j_k > 0$, while T has basis of those monomials with $\tau_k \leq \sigma$ and $j_k > 0$. Yet another application of Theorem 3.5.7 gives a decomposition of $k[S]$ identical to (3.18): a standard basis monomial $v_{j_1}^1 v_{j_2}^2 \cdots v_{j_k}^k$ with $j_k > 0$ has either $\tau_k \leq \sigma$, or $\tau_k < \sigma$, or $\tau_k = \sigma$. These three possibilities map to T, $k[S_{<\sigma}]$ and S respectively. It follows that $k[S] \to A$ is an isomorphism of k-modules. Since it is an algebra map, it is also an isomorphism of algebras, thus finishing the proof. \hfill \Box

The description of $k[S]$ as a limit has the following important corollary, describing the functorial properties of the face rings and generalising Proposition 3.1.5.

Proposition 3.5.12. Let $f : S \to T$ be a rank-preserving map of simplicial posets. Define a homomorphism

$$f^* : k[w_\tau : \tau \in T] \to k[v_\sigma : \sigma \in S], \quad f^*(w_\tau) = \sum_{\sigma \in f^{-1}(\tau), |\sigma| = |\tau|} v_\sigma.$$

Then f^* descends to a ring homomorphism $k[T] \to k[S]$, which we continue to denote by f^*.

Proof. The poset map f gives rise to a functor $f : \text{cat}^{op}(S) \to \text{cat}^{op}(T)$ and therefore to a natural transformation

$$f^* : [\text{cat}^{op}(T), \text{CGA}] \to [\text{cat}^{op}(S), \text{CGA}],$$

where $[\text{cat}^{op}(S), \text{CGA}]$ denotes the set of functors from $\text{cat}^{op}(S)$ to CGA. It is easy to see that $f^* k[\cdot]_T = k[\cdot]_S$ in the notation of Construction 3.5.10, so we have the induced map of limits $f^* : k[T] \to k[S]$. We also have that $f^*(w_\tau) = \sum_{\sigma \in f^{-1}(\tau)} v_\sigma$ by the construction of lim in CGA. \hfill \Box

Example 3.5.13. The folding map (2.9) induces a monomorphism $k[K_{S}] \to k[S]$, which embeds $k[K_{S}]$ in $k[S]$ as the subring generated by the elements v_i.

Remark. An attempt to prove Proposition 3.5.12 directly from the definition, by showing that $f^*(I_{T}) \subset I_{S}$, runs into a complicated combinatorial analysis of the poset structure. This is an example of a situation where the use of an abstract categorial description of $k[S]$ proves to be beneficial.

Let $k[m] = k[v_1, \ldots, v_m]$ be the polynomial algebra on m generators of degree 2 corresponding to the vertices of S. The face ring $k[S]$ acquires a $k[m]$-algebra structure via the map $k[m] \to k[S]$ sending each v_i identically. (Unlike the case of simplicial complexes, this map is generally not surjective.) We thereby obtain a $\mathbb{Z} \oplus \mathbb{N}^m$-graded Tor-algebra of $k[S]$:

$$\text{Tor}_{k[v_1, \ldots, v_m]}^{i, 2a}(k[S], k) = \bigoplus_{i \geq 0, a \in \mathbb{N}^m} \text{Tor}_{k[v_1, \ldots, v_m]}^{i, 2a}(k[S], k),$$

by analogy with Construction 3.2.8 for simplicial complexes.

We finish this section by stating a generalisation of Hochster’s theorem to simplicial posets, and deriving some of its corollaries.

Theorem 3.5.14 (Duval [124], see also [238]). For any subset $J \subset [m]$, $\text{Tor}_{k[v_1, \ldots, v_m]}^{i, 2J}(k[S], k) \cong \widehat{H}_{i-J-i}(S_J; k)$,

where S_J the subposet of S consisting of those σ for which $V(\sigma) \subset J$. Also, $\text{Tor}_{k[m]}^{i, 2\alpha}(k[S], k) = 0$ if α is not a $(0, 1)$-vector.
Proof. The argument follows the lines of the proof of Theorem 3.2.9. We define the quotient differential graded algebra

\[R^*(S) = \Lambda[u_1, \ldots, u_m] \otimes k[S]/\mathcal{I}_R \]

where \(\mathcal{I}_R \) is the ideal generated by the elements

\[u_i v_{\sigma} \quad \text{with} \quad i \in V(\sigma), \quad \text{and} \quad v_{\sigma} v_{\tau} \quad \text{with} \quad \sigma \land \tau \neq 0. \]

Note that the latter condition is equivalent to \(V(\sigma) \cap V(\tau) \neq \emptyset \).

Then we need to prove an analogue of Lemma 3.2.6, that is, to show that the quotient projection

\[\varrho: \Lambda[u_1, \ldots, u_m] \otimes k[S] \rightarrow R^*(S) \]

induces an isomorphism in cohomology. This can be done by providing the appropriate chain homotopy, as in the proof of Lemma 3.2.6, but the formulae will be more complicated. Alternatively, we can use a topological argument, see the proof of Theorem 4.10.6 below.

Let \(C^{p-1}(|S_j|) \) denote the \((p - 1) \)th cellular cochain group of \(|S_j| \) with coefficients in \(k \). It has a basis of cochains \(\alpha_{\sigma} \) corresponding to elements \(\sigma \in S_j \) with \(|\sigma| = p \). We define a \(k \)-linear map

\[f: C^{p-1}(|S_j|) \rightarrow R^{p-|J|,2J}(S), \quad \alpha_{\sigma} \mapsto \varepsilon(V(\sigma), J) u_{J \setminus V(\sigma)} v_{\sigma}, \]

where \(\varepsilon(V(\sigma), J) \) is the sign from the proof of Theorem 3.2.9. This map is an isomorphism of cochain complexes; the details are left to the reader. Therefore,

\[\tilde{H}^{p-1}(|S_j|) \cong \text{Tor}_k^{p-|J|,2J}(|k[S], k|), \]

which is equivalent to the first required isomorphism. Since \(R^{-i,2a}(S) = 0 \) if \(a \) is not a \((0,1)\)-vector, \(\text{Tor}_{k_{[m]}}^{p-2a}(k[k], k) \) vanishes for such \(a \).

We define the multigraded algebraic Betti numbers of \(k[S] \) as

\[\beta^{-i,2a}(k[S]) = \dim_k \text{Tor}_{k_{[v_1, \ldots, v_m]}}^{i,2a}(|k[S], k|), \]

for \(0 \leq i \leq m, a \in \mathbb{N}^m \). We also set

\[\beta^{-i}(k[S]) = \dim_k \text{Tor}_{k_{[v_1, \ldots, v_m]}}^{i}(|k[S], k|) = \sum_{a \in \mathbb{N}^m} \beta^{-i,2a}(k[S]). \]

Example 3.5.15. Let \(S \) be the simplicial poset of Example 3.5.3.1. By Theorem 3.5.14, \(\beta^{0,(0,0)}(k[S]) = \beta^{0,(2,2)}(k[S]) = 1 \), and the other Betti numbers are zero. This implies that \(k[S] \) is a free \(k[v_1, v_2] \)-module with two generators, \(1 \) and \(v_\sigma \), of degree 0 and 4 respectively.

Note that unlike the case of simplicial complexes, \(\beta^0(k[S]) \) may be larger than 1. In fact, the following proposition follows easily from Theorem 3.5.14.

Proposition 3.5.16. The number of generators of \(k[S] \) as a \(k[m] \)-module equals

\[\beta^0(k[S]) = \sum_{J \subseteq [m]} \dim \tilde{H}^{[J]-1}(|S_j|). \]

Exercises.

3.5.17. Calculate the multigraded Betti numbers for the simplicial poset of Example 3.5.3.2.
Face Rings: Additional Topics

3.6. Cohen–Macaulay simplicial posets

Assume given a property A of simplicial complexes. Then we can extend this property to posets by postulating that a poset P has the property A if the order complex $\text{ord}(P)$ (see Definition 2.3.6) has the property A. In particular, Cohen–Macaulay and Gorenstein posets can be defined in this way. Simplicial posets S are of particular interest to us; in this case the order complex is identified with the barycentric subdivision S' (to be precise, with the cone over the barycentric subdivision, as we include the empty simplex, but this difference is inessential for the definitions to follow).

Definition 3.6.1. A simplicial poset S is **Cohen–Macaulay (over k)** if its barycentric subdivision S' is a Cohen–Macaulay simplicial complex.

By definition, S is a Cohen–Macaulay simplicial poset if and only if the face ring $k[S']$ is Cohen–Macaulay. Since the face ring is also defined for the face poset S itself (and not only for its barycentric subdivision), it is perfectly natural to ask whether the class of Cohen–Macaulay simplicial posets admits an intrinsic description in terms of their face rings $k[S]$. One would achieve such a description by proving that the ring $k[S']$ is Cohen–Macaulay if and only if the ring $k[S]$ is Cohen–Macaulay. The ‘if’ part follows from the general theory of ASL’s, see [335, Corollary 3.7]. The ‘only if’ part was proved in [246]; the proof uses the decomposition of the barycentric subdivision into a sequence of stellar subdivisions and then goes on to show that the Cohen–Macaulay property is preserved under stellar subdivisions. We include this characterisation of Cohen–Macaulay simplicial posets in terms of their face rings in Theorem 3.6.7 below.

Since many of the constructions in this section are geometric, we often talk about simplicial cell complexes rather than simplicial posets. We say that a simplicial subdivision of a simplicial cell complex S is **regular** if it is a simplicial complex. For instance, the barycentric subdivision is regular. Since the Cohen–Macaulayness of a simplicial complex is a topological property (see Proposition 3.3.15), we have the following statement.

Proposition 3.6.2. The following conditions are equivalent:

(a) the barycentric subdivision of a simplicial cell complex S is a Cohen–Macaulay complex;
(b) any regular subdivision of S is a Cohen–Macaulay complex;
(c) a regular subdivision of S is a Cohen–Macaulay complex.

As a further corollary we obtain that Proposition 3.3.15 itself extends to simplicial cell complexes, i.e. the property of a simplicial cell complex to be Cohen–Macaulay is also topological.
By analogy with Definition 2.2.13, we define the \textit{star} and the \textit{link} of $\sigma \in \mathcal{S}$ as the following subcomplexes:

- $\text{st}_{\mathcal{S}} \sigma = \{ \tau \in \mathcal{S} : \sigma \vee \tau \text{ is nonempty} \}$;
- $\text{lk}_{\mathcal{S}} \sigma = \{ \tau \in \mathcal{S} : \sigma \vee \tau \text{ is nonempty, and } \tau \wedge \sigma = \emptyset \}$.

Remark. If \mathcal{S} is a simplicial complex, then the poset $\text{lk}_{\mathcal{S}} \sigma$ is isomorphic to the closed semi-interval $\mathcal{S}_{\sigma} = \{ \rho \in \mathcal{S} : \rho \supseteq \sigma \}$ (with σ playing the role of the empty simplex \emptyset) and $|\text{st}_{\mathcal{S}} \sigma| \cong \Delta^* |\text{lk}_{\mathcal{S}} \sigma|$, where \ast denotes the join. However, none of these isomorphisms holds for general \mathcal{S}, see Example 3.6.5 below.

Because of this remark, we cannot simply extend the definition of stellar subdivisions (Definition 2.7.1) to simplicial cell complexes. Instead, we define the \textit{stellar subdivision} $\text{ss}_{\sigma} \mathcal{S}$ of \mathcal{S} at σ as the simplicial cell complex obtained by stellarly subdividing each face containing σ in a compatible way.

Proposition 3.6.3. The barycentric subdivision \mathcal{S}' can be obtained as a sequence of stellar subdivisions, one at each face $\sigma \in \mathcal{S}$, starting from the maximal faces. Moreover, each stellar subdivision in the sequence is applied to a face whose \textit{star} is a simplicial complex.

Proof. Assume $\dim \mathcal{S} = n - 1$. We start by applying to \mathcal{S} stellar subdivisions at all $(n-1)$-dimensional faces. Denote the resulting complex by \mathcal{S}_1. The $(n-2)$-faces of \mathcal{S}_1 are of two types: the “old” ones, remaining from \mathcal{S}, and the “new” ones, appearing as the result of the stellar subdivisions. Then we take stellar subdivisions of \mathcal{S}_1 at all “old” $(n-2)$-faces, and denote the result by \mathcal{S}_2. Next we apply to \mathcal{S}_2 stellar subdivisions at all $(n-3)$-faces remaining from \mathcal{S}. Proceeding in this way, at the end we get $\mathcal{S}_{n-1} = \mathcal{S}'$. To prove the second statement, consider two subsequent complexes \mathcal{R} and \mathcal{R}' in the sequence, so that \mathcal{R}' is obtained from \mathcal{R} by a single stellar subdivision at some $\sigma \in \mathcal{S}$. Then $\text{st}_{\mathcal{R}} \sigma$ is isomorphic to $\Delta^* (\mathcal{S}_{\sigma})'$ and therefore it is a simplicial complex. \square

We proceed with two lemmata necessary to prove our main result.

Lemma 3.6.4. Let \mathcal{S} be a simplicial poset of rank n with vertex set $V(\mathcal{S}) = [m]$, and assume that the first k vertices span a face σ. Assume further that $\text{st}_{\mathcal{S}} \sigma$ is a simplicial complex, and let $\tilde{\mathcal{S}}$ be the stellar subdivision of \mathcal{S} at σ. Let v denote the degree-two generator of $k[\tilde{\mathcal{S}}]$ corresponding to the added vertex. Then there exists a unique homomorphism $\beta : k[\tilde{\mathcal{S}}] \to k[\tilde{\mathcal{S}}]$ such that

- $v_{\tau} \mapsto v_{\tau}$ for $\tau \notin \text{st}_{\mathcal{S}} \sigma$;
- $v_i \mapsto v + v_i$, for $i = 1, \ldots, k$;
- $v_i \mapsto v_i$, for $i = k + 1, \ldots, m$.

Moreover, β is injective, and if t is an hsop in $k[\mathcal{S}]$, then $\beta(t)$ is an hsop in $k[\tilde{\mathcal{S}}]$.

Proof. In order to define the map β we first need to specify the images of v_{τ} for all $\tau \in \text{st}_{\mathcal{S}} \sigma$. Choose such a v_{τ} and let $V(\tau) = \{i_1, \ldots, i_k\}$ be its vertex set. Then we have the following identity in the ring $k[\mathcal{S}] = k[v_{\tau} : \tau \in \mathcal{S}] / I_S$:

$$v_{i_1} \cdots v_{i_k} = v_{\tau} + \sum_{\eta : V(\eta) = V(\tau), \eta \neq \tau} v_{\eta}.$$ \hfill (3.19)

We then get $\beta(t)$ as the corresponding element in the ring $k[\tilde{\mathcal{S}}]$.
For any v_η in the latter sum we have $\eta \notin st_\sigma \sigma$, since $st_\sigma \sigma$ is a simplicial complex, in which any set of vertices spans at most one face. Since β is already defined on the product on the left hand side and on the sum on the right hand side above, this determines $\beta(v_r)$ uniquely.

We therefore obtain a map of polynomial algebras $k[v_\tau: \tau \in S] \to k[v_\tau: \tau \in \tilde{S}]$ (which we denote by the same letter β for a moment), and need to check that it descends to a map of face rings, $k[S] \to k[\tilde{S}]$. In other words, we need to verify that $\beta(\mathcal{I}_S) \subset \mathcal{I}_{\tilde{S}}$.

It is clear from the definition of β that we have the commutative diagram

$$
\begin{array}{ccc}
\kappa[v_\tau: \tau \in S] & \xrightarrow{p} & k[S] \\
\downarrow \beta \quad & & \downarrow \sigma \\
\kappa[v_\tau: \tau \in \tilde{S}] & \xrightarrow{\tilde{p}} & \bigoplus_{\tau \in \tilde{S}} k[v_i: i \in V(\tau)]
\end{array}
$$

in which the middle vertical map is not yet defined. Here by s and \tilde{s} we denote the restriction maps from Theorem 3.5.6, and $s(\beta)$ is the map induced by β on the direct sum of polynomial algebras. Now let $x \in \mathcal{I}_S$, i.e. $p(x) = 0$. Then, by the commutativity of the diagram, $\tilde{p}\beta(x) = 0$. Since \tilde{s} is injective, we have $\tilde{p}\beta(x) = 0$.

Hence, $\beta(x) \in \mathcal{I}_{\tilde{S}}$, which implies that the middle vertical map is well defined.

The last statement also follows from the commutative diagram above. The map $s(\beta)$ sends each direct summand of its domain isomorphically to at least one summand of its range, and therefore it is injective. Thus, $\beta: k[S] \to k[S']$ is also injective. The statement about hsop's then follows from Lemma 3.5.8. ☐

Remark. If we defined the map β by sending each v_i identically, then it would still give rise to a ring homomorphism $k[S] \to k[\tilde{S}]$, but the latter would not be injective (for example, it would map $v_\sigma \in k[S]$ to zero).

Example 3.6.5. The assumption on $st_\sigma \sigma$ in Lemma 3.6.4 is not always satisfied. For example, if S is obtained by identifying two 2-simplices along their boundaries, and σ is any edge, then $st_\sigma \sigma = S$, which is not a simplicial complex.

Note also that if $st_\sigma \sigma$ is not a simplicial complex, then the map $\beta: k[S] \to k[S']$ is not determined uniquely by the conditions specified in Lemma 3.6.4 (we cannot determine the images of v_τ with $\tau \in st_\sigma \sigma$). Nevertheless, it is still possible to define the map $\beta: k[S] \to k[S']$ for an arbitrary simplicial poset S, see Section 7.9.

Lemma 3.6.6. Assume that $k[S]$ is a Cohen–Macaulay ring, and let \tilde{S} be a stellar subdivision of S at σ such that $st_\sigma \sigma$ is a simplicial complex. Then $k[\tilde{S}]$ is a Cohen–Macaulay ring.

Proof. We first prove that $st_\sigma \sigma$ is a Cohen–Macaulay complex. Since $st_\sigma \sigma = \Delta^\sigma \ast \text{lk}_S \sigma$, it is enough to verify that $\text{lk}_S \sigma$ is Cohen–Macaulay. This follows from Reiner’s Theorem (Theorem 3.3.10) and the fact that the simplicial cohomology of $\text{lk}_S \sigma$ is a direct summand in the local cohomology of $k[S]$ (see [336, Theorem II.4.1] or [52, Theorem 5.3.8]).

Choose an hsp $t = (t_1, \ldots, t_n)$ in $k[S]$ and set $\tilde{t} = \beta(t)$. Let

$$p: k[S] \to k[S]/(v_\tau: \tau \notin st_\sigma \sigma) = k[st_\sigma \sigma]$$
be the quotient projection. Set $R = \ker p$. Similarly, set
$$\tilde{R} = \ker(\tilde{p}: k[\tilde{S}] \to k[st_{\tilde{S}} v]),$$
where v is the new vertex added in the process of stellar subdivision. Since the simplicial cell complexes S and \tilde{S} do not differ on the complements of $st_{\tilde{S}} \sigma$ and $st_{\tilde{S}} v$ respectively, the map β restricts to the identity isomorphism $R \to \tilde{R}$. We therefore have the following commutative diagram with exact rows:

$$
\begin{array}{ccccccc}
0 & \longrightarrow & R & \longrightarrow & k[S] & \overset{p}{\longrightarrow} & k[st_{\tilde{S}} \sigma] & \longrightarrow & 0 \\
& & \downarrow{\cong} & \downarrow{\beta} & \downarrow & & \\
0 & \longrightarrow & \tilde{R} & \longrightarrow & k[\tilde{S}] & \overset{\tilde{p}}{\longrightarrow} & k[st_{\tilde{S}} v] & \longrightarrow & 0,
\end{array}
$$

Applying the functors $\otimes_{k[t]}k$ and $\otimes_{k[t]}k$ to the diagram above, we get a map between the long exact sequences for Tor. Consider the following fragment:

$$
\begin{array}{ccccccc}
\text{Tor}_{k[t]}^{-2}(k[st \sigma], k) & \overset{f}{\longrightarrow} & \text{Tor}_{k[t]}^{-1}(R, k) & \longrightarrow & \text{Tor}_{k[t]}^{-1}(k[S], k) & \longrightarrow & \text{Tor}_{k[t]}^{-1}(k[st \sigma], k) \\
\downarrow & & \downarrow{\cong} & & \downarrow & & \\
\text{Tor}_{k[t]}^{-2}(k[st v], k) & \overset{\tilde{f}}{\longrightarrow} & \text{Tor}_{k[t]}^{-1}(\tilde{R}, k) & \longrightarrow & \text{Tor}_{k[t]}^{-1}(k[\tilde{S}], k) & \longrightarrow & \text{Tor}_{k[t]}^{-1}(k[st v], k).
\end{array}
$$

Since $k[S]$ is Cohen–Macaulay, $\text{Tor}_{k[t]}^{-1}(k[S], k) = 0$ and the map f is surjective. Then \tilde{f} is also surjective. Since $st_{\tilde{S}} \sigma$ is a Cohen–Macaulay simplicial complex and $|st_{\tilde{S}} \sigma| \cong |st_{\tilde{S}} v|$, Proposition 3.3.15 implies that $k[st v]$ is Cohen–Macaulay. Therefore, $\text{Tor}_{k[t]}^{-1}(k[st v], k) = 0$. Since \tilde{f} is surjective, we also have $\text{Tor}_{k[t]}^{-1}(k[\tilde{S}], k) = 0$. Hence $k[\tilde{S}]$ is free as a $k[t]$-module (see [245, Lemma VII.6.2]) and thereby is Cohen–Macaulay.

Now we can prove the main result of this section:

Theorem 3.6.7. A simplicial poset S is Cohen–Macaulay if and only if the face ring $k[S]$ is Cohen–Macaulay.

Proof. The fact that the face ring of a Cohen–Macaulay simplicial poset S is Cohen–Macaulay is proved in [335, Corollary 3.7] (see also [336, § III.6]) using the theory of ASL’s.

Assume now that $k[S]$ is a Cohen–Macaulay ring. Since the barycentric subdivision S' is obtained by a sequence of stellar subdivisions, subsequent application of Lemma 3.6.6 shows that $k[S']$ is also Cohen–Macaulay. Thus, S' is a Cohen–Macaulay poset.

We end this section by giving Stanley’s characterisation of h-vectors of Cohen–Macaulay simplicial posets.

Theorem 3.6.8 (Stanley). The integer vector $h = (h_0, h_1, \ldots, h_n)$ is the h-vector of a Cohen–Macaulay simplicial poset if and only if $h_0 = 1$ and $h_i \geq 0$.

Proof. Let $h = h(S)$ for a Cohen–Macaulay simplicial poset S. The condition $h_0 = 1$ follows from the definition of the h-vector, see (2.3). Let k be a field of characteristic zero, and $t = (t_1, \ldots, t_n)$ an isop in $k[S]$ (since $k[S]$ is not generated by linear elements, the existence of an isop is not automatic and is left as an exercise;
alternatively, see [335, Lemma 3.9]). Comparing the formula for the Poincaré series from Proposition A.3.14 with that of Theorem 3.5.9, we obtain
\[F (k[S]/t; \lambda) = h_0 + h_1 \lambda^2 + \cdots + h_n \lambda^{2n}. \]
Hence, \(h_i \geq 0 \), as needed.

Now we construct a Cohen–Macaulay simplicial cell complex \(S \) with any given \(h \)-vector such that \(h_0 = 1 \) and \(h_i \geq 0 \). First note that \(h(\Delta^{n-1}) = (1, 0, \ldots, 0) \) and \(\Delta^{n-1} \) is a Cohen–Macaulay simplicial (cell) complex. Now, given an \((n – 1)\)-dimensional Cohen–Macaulay simplicial cell complex \(S \) with the \(h \)-vector \((h_0, \ldots, h_n)\), it suffices to construct, for any \(k = 1, \ldots, n \), a new Cohen–Macaulay simplicial cell complex \(S_k \) with the \(h \)-vector given by
\[h(S_k) = (h_0, \ldots, h_{k-1}, h_k + 1, h_{k+1}, \ldots, h_n). \]
To do this, choose an \((n – 1)\)-face of \(S \), and in this face choose some \(k \) faces of dimension \(n – 2 \). Then add to \(S \) a new \((n – 1)\)-simplex by attaching it along some \(k \) faces of dimension \(n – 2 \) to the chosen \(k \) faces of \(S \). A direct check shows that the \(h \)-vector of the resulting simplicial cell complex \(S_k \) is given by (3.20). The fact that \(S_k \) is Cohen–Macaulay follows directly from Proposition 3.3.15.

Note that this characterisation is substantially simpler than that for simplicial complexes (see Propositions 3.3.9 and the remark after it).

Exercises.

3.6.9. The map of face rings \(k[S] \rightarrow k[\tilde{S}] \) of Lemma 3.6.4 is not induced by any poset map \(\tilde{S} \rightarrow S \).

3.6.10. Let \(\tilde{S} \) be a stellar subdivision of \(S \) at \(\sigma \) such that \(st_S \sigma \) is a simplicial complex. Show that the ring \(k[S] \) is Cohen–Macaulay if and only if \(k[\tilde{S}] \) is Cohen–Macaulay, i.e. the converse of Lemma 3.6.6 holds.

3.6.11. If \(k \) is of characteristic zero, then \(k[S] \) admits an Isop.

3.6.12. The \(h \)-vector of the simplicial cell complex \(S_k \) is given by (3.20).

3.7. Gorenstein simplicial posets

Gorenstein simplicial posets arise in toric topology as the combinatorial structures associated to the orbit quotients of torus manifolds, which are the subject of Chapter 7. It was exactly this particular feature of Gorenstein simplicial posets which allowed Masuda [250] to complete the characterisation of their \(h \)-vectors, conjectured by Stanley in [335]. We include Masuda’s result here as Theorem 3.7.4.

Definition 3.7.1. A simplicial poset \(S \) is Gorenstein (respectively, Gorenstein*) if its barycentric subdivision \(S' \) is a Gorenstein (respectively, Gorenstein*) simplicial complex.

Like Cohen–Macaulayness, the property of a simplicial poset \(S \) being Gorenstein* depends only on the topology of the realisation \(|S| \) (this follows from Theorem 3.4.2). In particular, simplicial cell subdivisions of spheres are Gorenstein*.

The problem of characterisation of \(h \)-vectors of Gorenstein* simplicial posets is more subtle than the corresponding question in the Cohen–Macaulay case. (Although this problem is much easier for simplicial posets than for simplicial complexes, see the discussion of the \(g \)-conjecture in Sections 2.5 and 3.4.)
THEOREM 3.7.2. Let $h(S) = (h_0, h_1, \ldots, h_n)$ be the h-vector of a Gorenstein* simplicial poset of rank n. Then $h_0 = 1$, $h_i \geq 0$ and $h_i = h_{n-i}$ for any i.

PROOF. The inequalities $h_i \geq 0$ follow from the fact that S is Cohen–Macaulay (Theorem 3.6.8). The identities $h_i = h_{n-i}$ will follow from the expression of the h-vector of the barycentric subdivision S' via $h(S)$ and from the Dehn–Sommerville relations for the Gorenstein* simplicial complex S'. Indeed, repeating the argument from Lemmata 2.3.4 and 2.3.5 we obtain the identity $h(S') = Dh(S)$, in which the vector $h(S')$ is symmetric, i.e. satisfies the Dehn–Sommerville relations. It can be checked directly using some identities for binomial coefficients that the operator D (and its inverse) takes symmetric vectors to symmetric ones (which is equivalent to the identity $d_{pq} = d_{n+1-p,n+1-q}$). This calculation can be avoided by using the following argument. The Dehn–Sommerville relations specify a linear subspace W of dimension $k = \binom{n}{2} + 1$ in the space \mathbb{R}^{n+1} with coordinates h_0, \ldots, h_n. We need to check that this subspace is D-invariant. To do this it suffices to choose a basis e_1, \ldots, e_k in W and check that $De_i \in W$ for all i. There is a basis in W consisting of h-vectors of simplicial spheres (and even simplicial polytopes, see the proof of Proposition 1.4.1). Since the barycentric subdivision of a simplicial sphere is a simplicial sphere, the vectors De_i, $1 \leq i \leq k$, are also symmetric, and W is a D-invariant subspace. Thus, the vector $h(S) = D^{-1}h(S')$ satisfies the Dehn–Sommerville relations. \hfill \Box

THEOREM 3.7.3 ([335, Theorem 4.3]). Let $h = (h_0, h_1, \ldots, h_n)$ be an integer vector with $h_0 = 1$, $h_i \geq 0$ and $h_i = h_{n-i}$. Any of the following (mutually exclusive) conditions are sufficient for the existence of a Gorenstein* simplicial poset of rank n and h-vector $h(S) = h$:

(a) n is odd;
(b) n is even and $h_{n/2}$ is even;
(c) n is even, $h_{n/2}$ is odd, and $h_i > 0$ for all i.

PROOF. We start with the following two basic examples of $(n-1)$-dimensional simplicial cell complexes of dimension: $\partial \Delta^n$, with h-vector $h(\partial \Delta^n) = (1, 1, \ldots, 1)$; and S_n, the simplicial cell complex obtained by identifying two $(n-1)$-simplices along their boundaries, with $h(S_n) = (1, 0, \ldots, 0, 1)$. By applying the standard operations of join and connected sum (Constructions 2.2.8 and 2.2.11) to these two complexes we can obtain a simplicial cell complex with any prescribed h-vector satisfying the conditions of the theorem. Indeed, for $k \neq n - k$ we have

$$h(S_k \ast S_{n-k}) = (1, 0, \ldots, 0, 1, 0, \ldots, 0, 1, 0, \ldots, 0, 1),$$

where $h_k = h_{n-k} = 1$, and the other entries are zero. Also, for $n = 2k$ we have

$$h(S_k \ast S_k) = (1, 0, \ldots, 0, 2, 0, \ldots, 0, 1),$$

where $h_k = 2$. Now, by taking connected sum of the appropriate number of complexes $\partial \Delta^n$, S_n and $S_k \ast S_{n-k}$ and using the identity

$$h_i(S \# \tilde{S}) = h_i(S) + h_i(\tilde{S}) \quad \text{for } 1 \leq i \leq n-1,$$

(see Example 1.3.8, which is valid for any two pure $(n-1)$-dimensional simplicial cell complexes), we obtain any required h-vector. \hfill \Box

The subtler part of the characterisation of h-vectors of Gorenstein* simplicial posets is the following result:
Theorem 3.7.4 (Masuda [250]). Let \(h(S) = (h_0, h_1, \ldots, h_n) \) be the h-vector of a Gorenstein* simplicial poset \(S \) of even rank \(n \), and let \(h_i = 0 \) for some \(i \). Then the number \(h_{n/2} \) is even.

Note that the evenness of \(h_{n/2} \) is equivalent to the evenness of the number of facets \(f_{n-1} = \sum_{i=0}^{n} h_i \). The idea behind Masuda’s proof of Theorem 3.7.4 lies within the topological theory of torus manifolds, which is the subject of Section 7.4.

We combine the results of Theorems 3.7.2, 3.7.3 and 3.7.4 in the following characterisation result for the h-vectors of Gorenstein* simplicial posets.

Theorem 3.7.5. An integer vector \(h = (h_0, h_1, \ldots, h_n) \) is the h-vector of a Gorenstein* simplicial poset of rank \(n \) (or a simplicial cell subdivision of an \((n-1)\)-sphere) if and only if the following conditions are satisfied:

(a) \(h_0 = 1 \) and \(h_i \geq 0 \);
(b) \(h_i = h_{n-i} \) for all \(i \);
(c) either \(h_i > 0 \) for all \(i \) or \(\sum_{i=0}^{n} h_i \) is even.

3.8. Generalised Dehn–Sommerville relations

In this section we obtain some further generalisations of the Dehn–Sommerville relations, in particular, to arbitrary triangulated manifolds.

Let \(S \) be a simplicial poset of rank \(n \). Given \(\sigma \in S \), consider the closed upper semi-interval \(S_{\geq \sigma} = \{ \tau \in S : \tau \geq \sigma \} \) with the induced rank function, and set

\[
\chi(S_{\geq \sigma}) = \sum_{\tau \in S_{\geq \sigma}} (-1)^{|\tau|-1}.
\]

A simplicial poset \(S \) of rank \(n \) satisfying \(\chi(S_{\geq \sigma}) = (-1)^n - 1 \) for all \(\sigma \in S \) is called Eulerian. According to a result of [333, (3.40)], the Dehn–Sommerville relations \(h_i = h_{n-i} \) hold for Eulerian posets. This can be generalised as follows.

Theorem 3.8.1 (see [246, Theorem 9.1]). The following identity holds for the h-vector \(h(S) = (h_0, \ldots, h_n) \) of a simplicial poset \(S \) of rank \(n \):

\[
\sum_{i=0}^{n} (h_{n-i} - h_i) t^i = \sum_{\sigma \in S} \left(1 + (-1)^n \chi(S_{\geq \sigma}) \right) (t-1)^{n-|\sigma|}.
\]

In particular, if \(S \) is Eulerian, then \(h_i = h_{n-i} \).

Proof. We have

\[
\sum_{i=0}^{n} h_i t^i = t^n \sum_{i=0}^{n} h_i \left(\frac{t}{1} \right)^{n-i} = t^n \sum_{i=0}^{n} f_{i-1} \left(\frac{1-t}{t} \right)^{n-i} = \sum_{i=0}^{n} f_{i-1} t^i (1-t)^{n-i} = \sum_{\tau \in S} \ell^{\tau} (1-t)^{n-|\tau|} = \sum_{\tau \in S} (t-1)^{|\tau|-|\sigma|} (1-t)^{n-|\sigma|} = \sum_{\tau \in S} (t-1)^{n-|\sigma|} \chi(S_{\geq \sigma}) = (t-1)^{n-|\sigma|} \sum_{\tau \in S} (t-1)^{|\tau|-|\sigma|} (1-1)^{n-1} = (t-1)^{n-|\sigma|} = (t-1)^{n-|\sigma|} \chi(S_{\geq \sigma}),
\]

where the fifth identity follows from the binomial expansion of the right hand side of the identity \(t^{\tau} = ((t-1) + 1)^{|\tau|} \) and the fact that \([0, \tau] = \{ \sigma \in S : \sigma \subseteq \tau \} \) is a Boolean lattice of rank \(|\tau| \).
On the other hand, we have

\[
\sum_{i=0}^{n} h_{n-i} t^i = \sum_{i=0}^{n} h_i t^{n-i} = \sum_{i=0}^{n} f_{i-1}(t-1)^{n-i} = \sum_{\sigma \in S} (t-1)^{n-|\sigma|}.
\]

Subtracting (3.22) from (3.23) we obtain the required identity.

As a corollary we obtain a generalisation of the Dehn–Sommerville relations to triangulated manifolds. This formula appeared in [336, p. 74] (the orientability assumption there can be removed by passing to the orientation double cover, see also [67, Corollary 4.5.4]):

Theorem 3.8.2. Let \(K \) be a triangulation of a closed \((n-1)\)-dimensional manifold. Then the \(h \)-vector \(h(K) = (h_0, \ldots, h_n) \) satisfies the identities

\[
h_{n-i} = (-1)^i \binom{n}{i} (\chi(K) - \chi(S^{n-1})), \quad 0 \leq i \leq n.
\]

Here \(\chi(K) = f_0 - f_1 + \cdots + (-1)^{n-1} f_{n-1} = 1 + (-1)^{n-1} h_n \) is the Euler characteristic of \(K \) and \(\chi(S^{n-1}) = 1 + (-1)^{n-1} \).

Proof. Viewing \(K \) as a simplicial poset, we calculate

\[
\chi(K_{\geq \sigma}) = \sum_{\tau \geq \sigma} (-1)^{|\tau|-1} + (-1)^{|\sigma|-1} = (-1)^{|\sigma|} \left(\sum_{\tau \geq \sigma} (-1)^{|\tau|-|\sigma|-1} - 1 \right) = (-1)^{|\sigma|} \sum_{\emptyset \neq \rho \leq \text{lk}_K \sigma} (-1)^{|\rho|-1} = (-1)^{|\sigma|} (\chi(\text{lk}_K \sigma) - 1).
\]

Here we have used the fact that the poset of nonempty faces of \(\text{lk}_K \sigma \) is isomorphic to \(K_{\geq \sigma} \), with the rank function shifted by \(|\sigma|\). Now since \(K \) is a triangulated \((n-1)\)-dimensional manifold, the link of a nonempty face \(\sigma \in K \) has homology of a sphere of dimension \((n - |\sigma| - 1)\). Hence, \(\chi(\text{lk}_K \sigma) = 1 + (-1)^{n-|\sigma|-1} \), and therefore \(\chi(K_{\geq \sigma}) = (-1)^{n-1} \) for \(\sigma \neq \emptyset \). Also, \(\text{lk}_K \emptyset = K \). Now using the identity of Theorem 3.8.1 we calculate

\[
\sum_{i=0}^{n} (h_{n-i} - h_i) t^i = (1 + (-1)^n(\chi(K) - 1))(t-1)^n = (-1)^n(\chi(K) - \chi(S^{n-1}))(t-1)^n.
\]

The required identity follows by comparing the coefficients of \(t^i \). \(\square \)

For other generalisations of Dehn–Sommerville relations see [29] and [164].

Exercises.

3.8.3. The identity of Theorem 3.8.2 holds for simplicial posets.
CHAPTER 4

Moment-Angle Complexes

This is the first genuinely ‘toric’ chapter of this book; it links the combinatorial and algebraic constructions of the previous chapters to the world of toric spaces.

The term ‘moment-angle complex’ refers to a cell complex Z_K built up of products of polydiscs and tori, which are parametrised by simplices in a given simplicial complex K. Moment angle complexes were introduced in [65], [66] as cell decompositions of particular toric spaces appearing in several seemingly unrelated constructions of algebraic geometry, symplectic geometry and combinatorial topology. These include

- Intersections of special real and Hermitian quadrics studied in topology and holomorphic dynamics, cf. [81], [236], [237], [41];
- Level sets for the moment map appearing in the construction of Hamiltonian toric manifolds via symplectic reduction, cf. [216], [14].
- Several constructions of identification spaces $P \times G/\sim$ where P is a polytope and G is a finite group or a torus, taking their origin in the theory of Coxeter groups and buildings [354], [110], [112].
- Complements of arrangements of coordinate subspaces in a complex space, arising in the algebraic quotient construction or toric varieties [103], and also studied in the general theory of arrangements of planes [155], [235].

In this chapter we study moment-angle complexes Z_K and their generalisations from a purely topological perspective; the geometric properties of the underlying space of Z_K will be considered in detail in the next three chapters.

The basic building block in the ‘moment-angle’ decomposition of Z_K is the pair (D^2, S^1) of a unit disc and circle, and the whole construction can be extended naturally to arbitrary pairs of spaces (X, A). The resulting complex $(X, A)^K$ is now known as the ‘polyhedral product space’ over a simplicial complex K; this terminology was suggested by William Browder, cf. [16]. Many spaces important for toric topology admit polyhedral product decompositions.

It soon became clear that the construction of the moment-angle complex Z_K and its generalisation $(X, A)^K$ is of truly universal nature, and has remarkable functorial properties. The most basic of these is that the construction of Z_K establishes a functor from simplicial complexes and simplicial maps to spaces with torus actions and equivariant maps. If K is a triangulated sphere then Z_K is a manifold, and most important geometric examples of Z_K arise in this way. In the case when A is a point, the polyhedral product $(X, pt)^K$ interpolates between the m-fold wedge of X (corresponding to m discrete points as K) and the m-fold product of X (corresponding to the full simplex as K). A homotopy-theoretic study of polyhedral
products $(X,A)^K$ has now gained its own momentum. Basic homotopical properties of moment-angle complexes are given in Section 4.3, while more advanced homotopy-theoretic aspects of toric topology are the subject of Chapter 8.

The key result of this chapter is the calculation of the integral cohomology ring of Z_K, carried out in Section 4.5. The ring $H^*(Z_K)$ is shown to be isomorphic to the Tor-algebra $\text{Tor}_{\mathbb{Z}[K]}(\mathbb{Z}[K]/\mathbb{Z}, \mathbb{Z})$, where $\mathbb{Z}[K]$ is the face ring of K. The canonical bigraded structure in the Tor groups thereby acquires a geometric interpretation in terms of the bigraded cell decomposition of Z_K. The calculation of $H^*(Z_K)$ builds upon a construction of a ring model for cellular cochains of Z_K and the corresponding cellular diagonal approximation, which is functorial with respect to maps of moment-angle complexes induced by simplicial maps of K. This functorial property of the cellular diagonal approximation for Z_K is quite special, due to the lack of such a construction for general cell complexes.

The construction of the moment-angle complex therefore brings the methods of equivariant topology to bear on the study of combinatorics of simplicial complexes, and gives a new geometric dimension to combinatorial commutative algebra. In particular, homological invariants of face rings, such as Tor-algebras or algebraic Betti numbers, can be now interpreted geometrically in terms of cohomology of moment-angle complexes. This link is explored further in Sections 4.6 and 4.10.

Another important aspect of the theory of moment-angle complexes is their connection to coordinate subspace arrangements and their complements. As we have already seen in Proposition 3.1.12, coordinate subspace arrangements arise as affine varieties corresponding to face rings. Their complements have played an important role in toric geometry and singularity theory, and, more recently, in the theory of linkages and robotic motion planning. Arrangements of coordinate subspaces in \mathbb{C}^m correspond bijectively to simplicial complexes K on the set $[m]$, and the complement of such an arrangement deformation retracts onto the corresponding moment-angle complex Z_K. In particular, the moment-angle complex and the complement of the arrangement have the same homotopy type. We therefore may use the results on moment-angle complexes to obtain a description of the cohomology groups and cup product structure of a coordinate subspace arrangement complement. The formula obtained for the cohomology groups is related to the general formula of Goresky–MacPherson [155] by means of Alexander duality.

Moment-angle complexes admit yet another interpretation as configuration spaces for mechanical linkages or ‘arachnoid mechanisms’. We do not include the corresponding results here and refer to the works of Izvest’ev [202] and Kamiyama–Tsuchida [207], [208] for the details.

The material of this chapter, with the exception of ‘Additional topics’, is mainly a freshened and modernised exposition of the results obtained by the authors and their collaborators in [66], [68], [27], [301].

Spaces with torus actions, or toric spaces, will be the main players throughout the rest of this book. (See Appendix B.4 for the key concepts of the theory of group actions on topological spaces.) The most basic example of a toric space is the complex m-dimensional space \mathbb{C}^m, on which the standard torus

$$\mathbb{T}^m = \left\{ t = (t_1, \ldots, t_m) \in \mathbb{C}^m : |t_i| = 1 \text{ for } i = 1, \ldots, m \right\}$$

acts coordinatewise. That is, the action is given by

$$\mathbb{T}^m \times \mathbb{C}^m \to \mathbb{C}^m, \quad (t_1, \ldots, t_m) \cdot (z_1, \ldots, z_m) = (t_1 z_1, \ldots, t_m z_m).$$
The quotient \mathbb{C}^m/T^m of this action is the positive orthant

$$\mathbb{R}^m_\geq = \{(y_1, \ldots, y_m) \in \mathbb{R}^m : y_i \geq 0 \text{ for } i = 1, \ldots, m\},$$

with the quotient projection given by

$$\mu : \mathbb{C}^m \rightarrow \mathbb{R}^m_\geq : (z_1, \ldots, z_m) \mapsto (|z_1|^2, \ldots, |z_m|^2)$$

(or by $(z_1, \ldots, z_m) \mapsto (|z_1|, \ldots, |z_m|)$, but the former is usually preferable).

We shall use the blackboard bold capital \mathbb{T} in the notation for the standard torus T^m, and use italic T^m to denote an abstract m-torus, i.e. a compact abelian Lie group isomorphic to a product of m circles. We shall also denote the standard unit circle by S or T occasionally, to distinguish it from an abstract circle S^1.

All homology and cohomology groups in this chapter are with integer coefficients, unless another coefficient group is explicitly specified.

4.1. Basic definitions

Moment-angle complex $Z_\mathcal{K}$. We consider the unit polydisc in the m-dimensional complex space \mathbb{C}^m:

$$\mathbb{D}^m = \{(z_1, \ldots, z_m) \in \mathbb{C}^m : |z_i|^2 \leq 1 \text{ for } i = 1, \ldots, m\}.$$

The polydisc \mathbb{D}^m is a T^m-invariant subspace of \mathbb{C}^m, and the quotient \mathbb{D}^m/T^m is identified with the standard unit cube $I^m \subset \mathbb{R}^m_\geq$.

Construction 4.1.1 (moment-angle complex). Let \mathcal{K} be a simplicial complex on the set $[m]$. We recall the cubical subcomplex $cc(\mathcal{K})$ in I^m from Construction 2.9.11, which subdivides cone \mathcal{K}. The moment-angle complex $Z_\mathcal{K}$ corresponding to \mathcal{K} is defined from the pullback square

$$
\begin{array}{ccc}
\mathbb{D}^m & \xrightarrow{\mu} & \mathbb{D}^m \\
\downarrow & & \downarrow \\
cc(\mathcal{K}) & \xrightarrow{\mu} & I^m
\end{array}
$$

Explicitly, $Z_\mathcal{K} = \mu^{-1}(cc(\mathcal{K}))$. By construction, $Z_\mathcal{K}$ is a T^m-invariant subspace in the polydisc \mathbb{D}^m, and the quotient $Z_\mathcal{K}/T^m$ is homeomorphic to $|\text{cone } \mathcal{K}|$.

Using the decomposition $cc(\mathcal{K}) = \bigcup_{i \in \mathcal{K}} C_I$ into faces, see (2.10), it follows that

$$Z_\mathcal{K} = \bigcup_{i \in \mathcal{K}} \mathcal{B}_I,$$

where

$$\mathcal{B}_I = \mu^{-1}(C_I) = \{(z_1, \ldots, z_m) \in \mathbb{D}^m : |z_j|^2 = 1 \text{ for } j \notin I\},$$

and the union in (4.1) is understood as the union of subsets inside the polydisc \mathbb{D}^m.

Note that \mathcal{B}_I is a product of $|I|$ discs and $m - |I|$ circles. Following our notational tradition, we denote a topological 2-disc (the underlying space of \mathbb{D}) by D^2. Then we may rewrite (4.1) as the following decomposition of $Z_\mathcal{K}$ into products of discs and circles:

$$Z_\mathcal{K} = \bigcup_{i \in \mathcal{K}} \left(\prod_{i \in I} D^2 \times \prod_{i \notin I} S^1 \right),$$

From now on we shall denote the space \mathcal{B}_I by $(D^2, S^1)^I$. Obviously, the union in (4.1) or (4.2) can be taken over the maximal simplices $I \in \mathcal{K}$ only.
Using the categorical language, we may consider the face category $\text{cat}(K)$, and define the functor (or diagram, see Appendix C.1)

$$\mathcal{D}_K(D^2, S^1): \text{cat}(K) \rightarrow \text{Top},$$

(4.3)

$$I \mapsto B_I = (D^2, S^1)^I,$$

which maps the morphism $I \subset J$ of $\text{cat}(K)$ to the inclusion of spaces $(D^2, S^1)^I \subset (D^2, S^1)^J$. Then we have

$$Z_K = \text{colim}_I \mathcal{D}_K(D^2, S^1) = \text{colim}(D^2, S^1)^I.$$

Example 4.1.2.

1. Let $K = \Delta^{m-1}$ be the full simplex. Then $cc(K) = I^m$ and $Z_K = D^m$.

2. Let K be a simplicial complex on $[m]$, and let K° be the complex on $[m+1]$ obtained by adding one ghost vertex $o = \{m+1\}$ to K. Then the cubical complex $cc(K^\circ)$ is contained in the facet $\{y_{m+1} = 1\}$ of the cube I^{m+1}, and

$$Z_K^\circ = Z_K \times S^1.$$

In particular, if K is the ‘empty’ simplicial complex on $[m]$, consisting of the empty simplex \emptyset only, then $cc(K)$ is the vertex $(1, \ldots, 1) \in I^m$ and $Z_K = \mu^{-1}(1, \ldots, 1) = T^m$ is the standard m-torus.

For arbitrary K on $[m]$, the moment-angle complex Z_K contains the m-torus T^m (corresponding to $K = \emptyset$) and is contained in the polydisc D^m (corresponding to $K = \Delta^{m-1}$).

3. Let K be the complex consisting of two disjoint points. Then

$$Z_K = (D^2 \times S^1) \cup (S^1 \times D^2) = \partial(D^2 \times D^2) \cong S^3,$$

the standard decomposition of a 3-sphere into the union of two solid tori.

4. More generally, if $K = \partial \Delta^{m-1}$ (the boundary of a simplex), then

$$Z_K = (D^2 \times \cdots \times D^2 \times S^1) \cup (D^2 \times \cdots \times S^1 \times D^2) \cup \cdots \cup (S^1 \times \cdots \times D^2 \times D^2) = \partial((D^2)^m) \cong S^{2m-1}.$$

5. Let $K = \begin{array}{cccc} 1 & 2 & 3 & 4 \\ \hline 1 & 2 & 3 & 4 \end{array}$, the boundary of a 4-gon. Then we have four maximal simplices $\{1, 3\}$, $\{2, 3\}$, $\{1, 4\}$ and $\{2, 4\}$, and

$$Z_K = (D^2 \times S^1 \times D^2 \times S^1) \cup (S^1 \times D^2 \times S^1 \times D^2) \cup (D^2 \times S^1 \times S^1 \times D^2) \cup (S^1 \times D^2 \times S^1 \times D^2)$$

$$= ((D^2 \times S^1) \cup (S^1 \times D^2)) \times D^2 \times S^1 \cup ((D^2 \times S^1) \cup (S^1 \times D^2)) \times S^1 \times D^2$$

$$= ((D^2 \times S^1) \cup (S^1 \times D^2)) \times ((D^2 \times S^1) \cup (S^1 \times D^2)) \cong S^3 \times S^3.$$

In the last example, K is the join of $\{1, 2\}$ and $\{3, 4\}$. More generally,

Proposition 4.1.3. Let $K = K_1 \ast K_2$; then

$$Z_K \cong Z_{K_1} \times Z_{K_2}.$$

Proof. By the definition of join (Construction 2.2.8), we have

$$Z_{K_1 \ast K_2} = \bigsqcup_{I_1 \in K_1, I_2 \in K_2} (D^2, S^1)^{I_1 \cup I_2} \cong \bigsqcup_{I_1 \in K_1, I_2 \in K_2} (D^2, S^1)^{I_1} \times (D^2, S^1)^{I_2}$$

$$= \left(\bigsqcup_{I_1 \in K_1} (D^2, S^1)^{I_1} \right) \times \left(\bigsqcup_{I_2 \in K_2} (D^2, S^1)^{I_2} \right) = Z_{K_1} \times Z_{K_2}. \square$$
The topological structure of Z_K is quite complicated even for simplicial complexes K with few vertices. Several different techniques will be developed to describe the topology of Z_K; this is one of the main subjects of the book. To get an idea of what Z_K may look like we included Exercises 4.2.9 and 4.2.10, in which the topological structure of Z_K is more complicated than in the examples above, but which are still accessible by relatively elementary topological methods. As we shall see below, the cohomology of Z_K may have arbitrary torsion (Corollary 4.5.9), as well as Massey products (Section 4.9).

Moment-angle complexes corresponding to triangulated spheres and manifolds are of particular interest:

Theorem 4.1.4 ([68]). Let K be a triangulation of an $(n - 1)$-dimensional sphere with m vertices. Then Z_K is a closed topological manifold of dimension $m + n$.

If K is a triangulated manifold, then $Z_K \setminus (1, \ldots, 1)$ is a non-compact manifold. Here $(1, \ldots, 1) \in \mathbb{R}^n$ is the cone vertex, and $\mu^{-1}(1, \ldots, 1) = \mathbb{T}^m$.

Proof. We first construct a decomposition of the polyhedron $\text{cone}(K')$ into ‘faces’ similar to the faces of a simple polytope (in the case of the nerve complex $K = K_P$, our faces will be exactly the faces of P). The vertices $i \in K$ are also vertices of the barycentric subdivision K', and we set

\begin{equation}
F_i = \text{st}_{K'} \{i\}, \quad 1 \leq i \leq m,
\end{equation}

(i.e. F_i is the star of the ith vertex of K in the barycentric subdivision K'). We refer to F_i as faces of our face decomposition, and define a face of codimension k as a nonempty intersection of a set of k faces. In particular, the vertices of our face decomposition are the barycentres of $(n - 1)$-dimensional simplices of K. Such a barycentre b corresponds to a maximal simplex $I = \{i_1, \ldots, i_n\}$ of K, and we denote by U_I the open subset in $\text{cone}(K')$ obtained by removing all faces not containing b.

We observe that any point of $\text{cone}(K')$ is contained in U_I for some $I \in K$.

Under the map $\text{cone}(i_c): \text{cone}(K') \to \mathbb{R}^m$ of Construction 2.9.11 the facet F_i is mapped to the intersection of $\text{cc}(K)$ with the ith coordinate plane $y_i = 0$. Therefore, the image of U_I under the map $\text{cone}(i_c)$ is given by

\begin{equation}
W_I = \text{cone}(i_c)(U_I) = \{(y_1, \ldots, y_m) \in \text{cc}(K): y_i \neq 0 \quad \text{for} \quad i \notin I\}.
\end{equation}

Assume now that K is a triangulated sphere. Then $\text{cone}(K')$ is homeomorphic to an n-dimensional disc D^n, and each U_I is homeomorphic to an open subset in \mathbb{R}^n preserving the dimension of faces. (This means that $\text{cone}(K')$ is a manifold with corners, see Section 7.1). By identifying $\text{cone}(K')$ with $\text{cc}(K)$ and further identifying $\text{cc}(K)$ with the quotient Z_K/\mathbb{T}^m, we obtain that each point of Z_K has a neighbourhood of the form $\mu^{-1}(W_I)$. It follows from (4.5) that the latter is homeomorphic to an open subset in $\mu^{-1}(\mathbb{R}^n) \times \mathbb{T}^{m-n} = \mathbb{C}^n \times \mathbb{T}^{m-n}$, where \mathbb{R}^n is the coordinate n-plane corresponding to i_1, \ldots, i_n, the map $\mu_n: \mathbb{C}^n \to \mathbb{R}^n$ is the restriction of $\mu: \mathbb{C}^m \to \mathbb{R}^n$ to the corresponding coordinate plane in \mathbb{C}^m, and the torus \mathbb{T}^{m-n} sits in the complementary coordinate $(m-n)$-plane in \mathbb{C}^m. An open subset in $\mathbb{C}^n \times \mathbb{T}^{m-n}$ with $n \geq 1$ can be regarded as an open subset in \mathbb{R}^{m+n}, and therefore Z_K is an $(m + n)$-dimensional manifold.

If K is a triangulated manifold, then $\text{cone}(K')$ is not a manifold because of the singularity at the cone vertex v. However, by removing this vertex we obtain a (non-compact) manifold whose boundary is $|K|$. Using the face decomposition defined by (4.4) we obtain that $\text{cone}(K') \setminus v$ is locally homeomorphic to \mathbb{R}^n preserving
the dimension of faces (i.e. $|\text{cone} \mathcal{K}'| \setminus v$ is a non-compact manifold with corners). Under the identification of $|\text{cone} \mathcal{K}'|$ with $cc(\mathcal{K})$ the vertex of the cone is mapped to the vertex $(1, \ldots, 1) \in \mathbb{P}^m$, and $\mu^{-1}(1, \ldots, 1) = \mathbb{T}^m$. Therefore,
$$\mu^{-1}(cc(\mathcal{K}) \setminus (1, \ldots, 1)) = \mathcal{Z}_\mathcal{K} \setminus \mu^{-1}(1, \ldots, 1)$$
is an $(m + n)$-dimensional non-compact manifold. \hfill \square

Remark. A pair of spaces (X, A) where A is a compact subset in X is called a Lefschetz pair if $X \setminus A$ is a (non-compact) manifold. We therefore obtain that $(\mathcal{Z}_\mathcal{K}, \mu^{-1}(1, \ldots, 1))$ is a Lefschetz pair whenever \mathcal{K} is a triangulated manifold.

We therefore refer to moment-angle complexes $\mathcal{Z}_\mathcal{K}$ corresponding to triangulated spheres as moment-angle manifolds. Polytopal moment-angle manifolds $\mathcal{Z}_{\mathcal{K}, P}$, corresponding to the nerve complexes \mathcal{K}, P of simple polytopes (see Example 2.2.4), are particularly important. As we shall see in Chapter 6, polytopal moment-angle manifolds are smooth. A smooth structure also exists on moment-angle manifolds $\mathcal{Z}_\mathcal{K}$ corresponding to starshaped spheres \mathcal{K} (i.e. underlying complexes of complete simplicial fans, see Section 2.5). In general, the smoothness of $\mathcal{Z}_\mathcal{K}$ is open.

The geometry of moment-angle manifolds is nice and rich; it is the subject of Chapter 6.

Real moment-angle complex $\mathcal{R}_\mathcal{K}$. The construction of the moment-angle complex $\mathcal{Z}_\mathcal{K}$ has a real analogue, in which the complex space \mathbb{C}^m is replaced by the real space \mathbb{R}^m, the complex polydisc \mathbb{D}^m is replaced by the ‘big’ cube
$$[-1, 1]^m = \{(u_1, \ldots, u_m) \in \mathbb{R}^m : |u_i|^2 \leq 1 \text{ for } i = 1, \ldots, m\},$$
the standard torus \mathbb{T}^m is replaced by the ‘real torus’ \mathbb{Z}_2^m (the product of m copies of the group $\mathbb{Z}_2 = \{-1, 1\}$), and the pair (D^2, S^1) is replaced by (D^1, S^0), where S^0 (a pair of points) is the boundary of the segment D^1. The group $(\mathbb{Z}_2)^m$ acts on the big cube $[-1, 1]^m$ coordinatewise, with quotient the standard ‘small’ cube \mathbb{I}^m.

The quotient projection $[-1, 1]^m \to \mathbb{I}^m$ may be described by the map
$$\rho: (u_1, \ldots, u_m) \mapsto (u_1^2, \ldots, u_m^2).$$

Construction 4.1.5 (real moment-angle complex). Given a simplicial complex \mathcal{K} on $[m]$, define the real moment-angle complex $\mathcal{R}_\mathcal{K}$ from the pullback square
\[
\begin{array}{ccc}
\mathcal{R}_\mathcal{K} & \to & [-1, 1]^m \\
\downarrow & & \downarrow \rho \\
cc(\mathcal{K}) & \to & \mathbb{I}^m \\
\end{array}
\]
Explicitly, $\mathcal{R}_\mathcal{K} = \rho^{-1}(cc(\mathcal{K}))$. By construction, $\mathcal{R}_\mathcal{K}$ is a \mathbb{Z}_2^m-invariant subspace in the ‘big’ cube $[-1, 1]^m$, and the quotient $\mathcal{R}_\mathcal{K}/\mathbb{Z}_2^m$ is homeomorphic to $|\text{cone} \mathcal{K}|$.

$\mathcal{R}_\mathcal{K}$ is a cubical subcomplex in $[-1, 1]^m$ obtained by reflecting the subcomplex $cc(\mathcal{K}) \subset \mathbb{I}^m = [0, 1]^m$ at all m coordinate hyperplanes of \mathbb{R}^m. If $\mathcal{K} = \mathcal{K}, P$ is the nerve complex of a simple polytope P, then $cc(\mathcal{K}, P)$ can be viewed as a cubical subdivision of P embedded piecewise linearly into \mathbb{R}^m (see Construction 2.9.7). In this case $\mathcal{R}_{\mathcal{K}, P}$ is obtained by reflecting the image of P at all coordinate planes.

By analogy with (4.2), we have
\[
\mathcal{R}_\mathcal{K} = \bigcup_{i \in \mathcal{K}} \left(\prod_{i \in I} D^1 \times \prod_{i \notin I} S^0 \right).
\]
Example 4.1.6.
1. Let $\mathcal{K} = \partial \Delta^{m-1}$ be the boundary of the standard simplex. Then $R_{\mathcal{K}} \cong S^{m-1}$ is the boundary of the cube $[-1,1]^m$. For $m = 3$ this complex is obtained by reflecting the complex shown in Figure 2.14 (b) at all 3 coordinate planes of \mathbb{R}^3.

2. Let \mathcal{K} consist of m disjoint points. Then $R_{\mathcal{K}}$ is the 1-dimensional skeleton (graph) of the cube $[-1,1]^m$. For $m = 3$ this complex is obtained by reflecting the complex shown in Figure 2.14 (a) at all 3 coordinate planes of \mathbb{R}^3.

3. More generally, let $\mathcal{K} = \{k^i \Delta^{m-1}\}$ be the i-dimensional skeleton of Δ^{m-1} (i.e. the set of all faces of Δ^{m-1} of dimension $\leq i$). Then $R_{\mathcal{K}}$ is the $(i+1)$-dimensional skeleton of the cube $[-1,1]^m$.

The following analogue of Theorem 4.1.4 holds, and is proved similarly:

Theorem 4.1.7. Let \mathcal{K} be a triangulation of an $(n-1)$-dimensional sphere with m vertices. Then $R_{\mathcal{K}}$ is a (closed) topological manifold of dimension n.

If \mathcal{K} is a triangulated manifold, then $R_{\mathcal{K}} \setminus \rho^{-1}(1, \ldots, 1)$ is a non-compact manifold, where $\rho^{-1}(1, \ldots, 1) = \{-1,1\}^m$.

The real moment-angle complexes corresponding to polygons can be identified easily (compare Exercise 4.2.10):

Proposition 4.1.8. Let \mathcal{K} be the boundary of an m-gon. Then $R_{\mathcal{K}}$ is homeomorphic to an oriented surface S_g of genus $g = 1 + (m-4)2^{m-3}$.

Proof. We observe that the manifold $R_{\mathcal{K}}$ is orientable (an exercise). Since it is 2-dimensional, its topological type is determined by the Euler characteristic. Now $R_{\mathcal{K}}$ is obtained by reflecting the m-gon embedded into \mathbb{R}^m at m coordinate hyperplanes, so that $R_{\mathcal{K}}$ is patched from 2^m polygons, with 4 of them meeting at each vertex. Therefore, the number of vertices is $m2^{m-2}$, the number of edges is $m2^{m-1}$, and the Euler characteristic is

$$\chi(R_{\mathcal{K}}) = 2^{m-2}(4-m) = 2 - 2g.$$

Remark. The polyhedral manifolds $R_{\mathcal{K}}$ corresponding to polygons feature as ‘regular topological skew polyhedra’ in the 1938 work of Coxeter [105], and the above calculation of genus can be found on page 57 of that paper. We thank Anthony Bahri and Alexander Suciu for drawing our attention to Coxeter’s work.

4.2. Polyhedral products

Decomposition (4.2) of $Z_{\mathcal{K}}$ which uses the disc and circle (D^2, S^1) is readily generalised to arbitrary pairs of spaces:

Construction 4.2.1 (polyhedral product). Let \mathcal{K} be a simplicial complex on $[m]$ and let

$$(X,A) = \{(X_1, A_1), \ldots, (X_m, A_m)\}$$

be a collection of m pairs of spaces, $A_i \subset X_i$. For each subset $I \subset [m]$ we set

$$(X,A)^I = \{(x_1, \ldots, x_m) \in \prod_{j=1}^m X_j: \ x_j \in A_j \text{ for } j \notin I\}$$

and define the polyhedral product of (X,A) corresponding to \mathcal{K} by

$$(X,A)^\mathcal{K} = \bigcup_{I \in \mathcal{K}} (X,A)^I = \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} X_i \times \prod_{i \notin I} A_i \right).$$
Using the categorical language, we can define the $\text{cat}(\mathcal{K})$-diagram
\begin{equation}
\mathcal{D}_\mathcal{K}(X, A): \text{cat}(\mathcal{K}) \to \text{TOP},
\end{equation}
which maps the morphism $I \subset J$ of $\text{cat}(\mathcal{K})$ to the inclusion of spaces $(X, A)^I \subset (X, A)^J$. Then we have
\[(X, A)^\mathcal{K} = \text{colim}_{I \in \mathcal{K}} \mathcal{D}_\mathcal{K}(X, A) = \text{colim}_{I \in \mathcal{K}} (X, A)^I.\]

In the case when all the pairs (X_i, A_i) are the same, i.e. $X_i = X$ and $A_i = A$ for $i = 1, \ldots, m$, we use the notation $(X, A)^\mathcal{K}$ for $(X, A)^\mathcal{K}$. Also, if each X_i is a pointed space and $A_i = pt$, then we use the abbreviated notation $X^\mathcal{K}$ for $(X, pt)^\mathcal{K}$, and $X^\mathcal{K}$ for $(X, pt)^\mathcal{K}$.

Remark. The decomposition of $Z^\mathcal{K}$ into a union of products of discs and circles first appeared in [65] (in the polytopal case) and in [67] (in general). The term ‘moment-angle complex’ for $Z^\mathcal{K} = (D^2, S^1)^\mathcal{K}$ was also introduced in [67], where several other examples of polyhedral products $(X, A)^\mathcal{K}$ were considered. The definition of $(X, A)^\mathcal{K}$ for an arbitrary pair of spaces (X, A) was suggested to the authors by N. Strickland (in a private communication, and also in an unpublished note) as a general framework for the constructions of [67]; it was also included in the final version of [67] and in [68]. Further generalisations of $(X, A)^\mathcal{K}$ to a set of pairs of spaces (X, A) were studied in the work of Grbić and Theriault [158], as well as Bahri, Bendersky, Cohen and Gitler [16] where the term ‘polyhedral product’ was introduced (following a suggestion of W. Browder). Since 2000, the terms ‘generalised moment-angle complex’, ‘\mathcal{K}-product’ and ‘partial product space’ have also been used to refer to the spaces $(X, A)^\mathcal{K}$.

Recall that a map of pairs $(X, A) \to (X', A')$ is a commutative diagram
\begin{equation}
\begin{array}{ccc}
A & \to & X \\
\downarrow & & \downarrow \\
A' & \to & X'.
\end{array}
\end{equation}
We refer to (X, A) as a monoid pair if X is a topological monoid (a space with a continuous associative multiplication and unit), and A is a submonoid. A map of monoid pairs is a map of pairs in which all maps in (4.8) are homomorphisms.

If (X, A) is a monoid pair, then a set map $\varphi: [l] \to [m]$ induces a map
\begin{equation}
\psi: \prod_{i=1}^l X \to \prod_{i=1}^m X, \quad (x_1, \ldots, x_l) \mapsto (y_1, \ldots, y_m),
\end{equation}
where
\[y_j = \prod_{i \in \varphi^{-1}(j)} x_i, \quad \text{for } j = 1, \ldots, m,
\]
and we set $y_j = 1$ if $\varphi^{-1}(j) = \emptyset$.

Proposition 4.2.2. If (X, A) is a monoid pair, then $(X, A)^\mathcal{K}$ is an invariant subspace of $\prod_{i=1}^m X$ with respect to the coordinatewise action of $\prod_{i=1}^m A$ on $\prod_{i=1}^m X$.

Proof. Indeed, $(X, A)^I \subset \prod_{i=1}^m X$ is an invariant subset for each $I \in \mathcal{K}$.

The following proposition describes the functorial properties of the polyhedral product in its \mathcal{K} and (X, A) arguments.
Proposition 4.2.3.

(a) A set of maps of pairs \((X, A) \rightarrow (X', A')\) induces a map of polyhedral products \((X, A)^K \rightarrow (X', A')^K\). If two sets of maps \((X, A) \rightarrow (X', A')\) are componentwise homotopic, then the induced maps \((X, A)^K \rightarrow (X', A')^K\) are also homotopic.

(b) An inclusion of a simplicial subcomplex \(\mathcal{L} \rightarrow K\) induces an inclusion of polyhedral products \((X, A)^\mathcal{L} \rightarrow (X, A)^K\).

(c) If \((X, A)\) is a monoid pair, then for any simplicial map \(\varphi: \mathcal{L} \rightarrow K\) of simplicial complexes on the sets \([l]\) and \([m]\) respectively, the map (4.9) restricts to a map of polyhedral products \(\varphi_Z: (X, A)^\mathcal{L} \rightarrow (X, A)^K\).

(d) If \((X, A)\) is a commutative monoid pair, then the restriction

\[\psi|_A: \prod_{i=1}^l A \rightarrow \prod_{i=1}^m A \]

of (4.9) is a homomorphism, and the induced map \(\varphi_Z: (X, A)^\mathcal{L} \rightarrow (X, A)^K\) is \(\psi|_A\)-equivariant, i.e.

\[\varphi_Z(a \cdot \mathbf{x}) = \psi|_A(a) \cdot \varphi_Z(\mathbf{x}) \]

for all \(a = (a_1, \ldots, a_l) \in \prod_{i=1}^l A\) and \(\mathbf{x} = (x_1, \ldots, x_l) \in (X, A)^\mathcal{L}\).

Proof. For (a), we observe that a set of maps \((X, A) \rightarrow (X', A')\) induces a map \((X, A)^I \rightarrow (X', A')^I\) for each \(I \in K\), and these maps corresponding to different \(I, J \in K\) are compatible on the intersections \((X, A)^I \cap (X, A)^J = (X, A)^{I \cap J}\). We therefore obtain a map \((X, A)^K \rightarrow (X', A')^K\). A componentwise homotopy between two maps \((X, A) \rightarrow (X', A')\) can be thought of as a map of pairs \((X \times \mathbb{I}, A \times \mathbb{I}) \rightarrow (X', A')\), where \(X \times \mathbb{I}\) consists of spaces \(X_i \times \mathbb{I}\). It therefore induces a map of polyhedral products

\[(X \times \mathbb{I}, A \times \mathbb{I})^K \rightarrow (X', A')^K \]

where \((X \times \mathbb{I}, A \times \mathbb{I})^K \cong (X, A)^K \times (\mathbb{I}, \mathbb{I})^K = (X, A)^K \times \mathbb{I}^m\). By restricting the resulting map \((X, A)^K \times \mathbb{I}^m \rightarrow (X', A')^K\) to the diagonal of the cube \(\mathbb{I}^m\) we obtain a homotopy between the two induced maps \((X, A)^K \rightarrow (X', A')^K\).

To prove (b) we just observe that if \(\mathcal{L}\) is a subcomplex of \(K\), then for each \(I \in \mathcal{L}\) we have \((X, A)^I \subset (X, A)^K\).

To prove (c) we observe that for any subset \(I \subset [m]\) we have \(\psi((X, A)^I) \subset (X, A)^{\phi(I)}\). Let \(I \in \mathcal{L}\), so that \((X, A)^I \subset (X, A)^\mathcal{L}\). Since \(\varphi\) is a simplicial map, we have \(\varphi(I) \subset K\) and \((X, A)^{\phi(I)} \subset (X, A)^K\). Therefore, the map \(\psi\) restricts to a map of polyhedral products \((X, A)^\mathcal{L} \rightarrow (X, A)^K\).

Statement (d) is proved by a direct calculation:

\[\varphi_Z(a \cdot \mathbf{x}) = \varphi_Z(a_1 x_1, \ldots, a_l x_l) = \left(\prod_{i \in \varphi^{-1}(1)} a_i x_i, \ldots, \prod_{i \in \varphi^{-1}(m)} a_i x_i \right) \]

\[= \left(\prod_{i \in \varphi^{-1}(1)} a_i x_i, \ldots, \prod_{i \in \varphi^{-1}(m)} a_i x_i \right) \cdot \left(\prod_{i \in \varphi^{-1}(1)} x_i, \ldots, \prod_{i \in \varphi^{-1}(m)} x_i \right) \]

\[= \psi|_A(a) \cdot \varphi_Z(\mathbf{x}). \]
Note that we have used the commutativity of X in the third identity. \hfill \square

We state an important particular case of Proposition 4.2.3 separately:

Proposition 4.2.4. A simplicial map $\mathcal{L} \to \mathcal{K}$ of simplicial complexes on the sets $[i]$ and $[m]$ gives rise to a map of moment-angle complexes $Z_\mathcal{L} \to Z_\mathcal{K}$ which is equivariant with respect to the induced homomorphism of tori $T^i \to T^m$.

The polyhedral product construction behaves nicely with respect to the join operation (the proof is exactly the same as that of Proposition 4.1.3):

Proposition 4.2.5. We have that

$$(X, A)^{K_1 \times K_2} \cong (X, A)^{K_1} \times (X, A)^{K_2}.$$

Example 4.2.6.

1. The moment-angle complex Z_{K} is the polyhedral product $(D^2, S^1)^K$ (when considered abstractly) or $(D, S)^K$ (when viewed as a subcomplex in D^m).

2. For the cubical complex of (2.13) we have

$$cc(K) = (I^1, 1)^K,$$

where $I^1 = [0, 1]$ is the unit interval and 1 is its end. The quotient map $Z_K \to \|coneK\|$ is the map of polyhedral products $(D^2, S^1)^K \to (I^1, 1)^K$ induced by the map of pairs $(D^2, S^1) \to (I^1, 1)$, which is the quotient map by the S^1-action.

3. For the real moment-angle complex we have

$$\mathcal{R}_K = (D^1, S^0)^K,$$

Where $D^1 = [-1, 1]$ is a 1-disc, and $S^0 = \{-1, 1\}$ is its boundary.

4. If K consists of m disjoint points and $A_i = pt$, then

$$(X, pt)^K = X^K = X_1 \vee X_2 \vee \cdots \vee X_m$$

is the wedge (or bouquet) of the X_i’s.

5. More generally, consider the sequence of inclusions of skeleta

$$sk^0 \Delta^{m-1} \subset \cdots \subset sk^{m-2} \Delta^{m-1} \subset sk^{m-1} \Delta^{m-1} = \Delta^{m-1}.$$

It gives rise to a filtration of the product $X_1 \times X_2 \times \cdots \times X_m$:

$$X^{sk^0 \Delta^{m-1}} \subset \cdots \subset X^{sk^{m-2} \Delta^{m-1}} \subset X^{sk^{m-1} \Delta^{m-1}} \subset X \Delta^{m-1}.$$

Its second-to-last term, $X \Delta^{m-1}$, is known to topologists as the fat wedge of the X_i’s. Explicitly, the fat wedge of a sequence of pointed spaces X_1, \ldots, X_m is

$$(X_1 \times \cdots \times X_{m-1} \times pt) \cup (X_1 \times \cdots \times pt \times X_m) \cup \cdots \cup (pt \times \cdots \times X_{m-1} \times X_m),$$

where the union is taken inside the product $X_1 \times X_2 \times \cdots \times X_m$.

The filtration above was considered by G. Porter [307], who obtained a decomposition of its loop spaces into a wedge in the case when each X_i is a suspension, generalising the Hilton–Milnor Theorem. We shall consider this decomposition in more detail in Section 8.3.
Exercises.

4.2.7. Show that if K is a triangulated sphere, then the manifold R_K is orientable. (Hint: use the fact that R_K is obtained by reflecting the n-ball $|\text{cone}K|$ at all m coordinate hyperplanes of \mathbb{R}^m to extend the orientation from $|\text{cone}K|$ to the whole of R_K.)

4.2.8. Show that if $K = sk^i \Delta^{m-1}$, then R_K is homotopy equivalent to a wedge of $(i+1)$-dimensional spheres (see Example 4.1.6.3). The number of spheres is given by $\sum_{k=i+2}^{m} \binom{m}{k} \binom{k-1}{i+1}$.

4.2.9. Let K be the complex consisting of three disjoint points. Show that Z_K is homotopy equivalent to the following wedge (bouquet) of spheres:

$$Z_K \cong S^3 \vee S^3 \vee S^3 \vee S^4 \vee S^4.$$ (Hint: compare the case $m = 3$, $i = 0$ of the previous exercise; it may also help to look at the realisation of Z_K as the complement of a coordinate subspace arrangement (up to homotopy), see Section 4.7.)

4.2.10. Let K be the boundary of a 5-gon. Show that the manifold Z_K is homeomorphic to $(S^3 \times S^3)^{\#5}$, a connected sum of 5 copies of $S^3 \times S^3$. (This may be a difficult one; the general statement is given in Theorem 4.6.12 below. The reader may return to this exercise after reading Section 6.2, see Exercise 6.2.16.)

4.2.11. If K is a triangulation of an $(n-1)$-sphere with m vertices, then for any $k > 0$ the polyhedral product $(D^k, S^{k-1})K$ is a manifold of dimension $m(k-1) + n$.

4.2.12. More generally, if $(M, \partial M)$ is a manifold with boundary and K is a triangulated sphere, then $(M, \partial M)^K$ is a manifold (without boundary). If $(M, \partial M)$ is a PL manifold, and K is a PL sphere, then the manifold $(M, \partial M)^K$ is also PL.

4.2.13. Let K_I be the full subcomplex corresponding to $I \subseteq \{m\}$. Then Z_{K_I} is a retract of Z_K.

4.3. Homotopical properties

Two key observations of this section constitute the basis for the subsequent applications of the commutative algebra apparatus of Chapter 3 to toric topology. First, the cohomology of the polyhedral product space $(CP^\infty)^K = (CP^\infty, pt)^K$ is isomorphic to the face ring $Z[K]$ (Proposition 4.3.1). Second, the moment-angle complex $Z_K = (D^2, S^1)^K$ is the homotopy fibre of the canonical inclusion $(CP^\infty)^K \hookrightarrow (CP^\infty, CP^\infty)^K = (CP^\infty)^m$ (Theorem 4.3.2).

The classifying space BS^1 of the circle S^1 is the infinite-dimensional complex projective space CP^∞. The classifying space BT^m of the m-torus T^m is the product $(CP^\infty)^m$ of m copies of CP^∞. The universal principal S^1-bundle is the infinite Hopf bundle $S^\infty \to CP^\infty$ (the direct limit of Hopf bundles $S^{2k+1} \to CP^k$), so the total space ET^m of the universal principal T^m-bundle over BT^m can be identified with the m-fold product of infinite-dimensional spheres S^∞.

The integral cohomology ring of BT^m is isomorphic to the polynomial ring $\mathbb{Z}[v_1, \ldots, v_m]$, $\deg v_i = 2$ (this explains our choice of grading). The space BT^m has the canonical cell decomposition, in which each factor CP^∞ has one cell in every even dimension. The polyhedral product

$$(CP^\infty)^K = \bigcup_{I \subseteq K} (CP^\infty, pt)^I$$
is a cellular subcomplex in $BT^m = (\mathbb{CP}^\infty)^m$.

Proposition 4.3.1. The cohomology ring of $(\mathbb{CP}^\infty)^K$ is isomorphic to the face ring $\mathbb{Z}[K]$. The inclusion of a cellular subcomplex

$$i: (\mathbb{CP}^\infty)^K \to (\mathbb{CP}^\infty)^m$$

induces the quotient projection in cohomology:

$$i^*: \mathbb{Z}[v_1, \ldots, v_m] \to \mathbb{Z}[v_1, \ldots, v_m]/I_K = \mathbb{Z}[K].$$

Proof. Since $(\mathbb{CP}^\infty)^m$ has only even-dimensional cells and $(\mathbb{CP}^\infty)^K$ is a cellular subcomplex, the cohomology of both spaces coincides with their cellular cochains. Let D_{2k}^j denote the $2k$-dimensional cell in the jth factor of $(\mathbb{CP}^\infty)^m$. The cellular cochain group $C^*((\mathbb{CP}^\infty)^m)$ has basis of cochains $(D_{2k}^j)_{j \in \mathbb{K}}^*$ dual to the products of cells $D_{2k_1}^j \times \cdots \times D_{2k_p}^j$. The cochain map

$$C^*((\mathbb{CP}^\infty)^m) \to C^*((\mathbb{CP}^\infty)^K)$$

induced by the inclusion $(\mathbb{CP}^\infty)^K \to (\mathbb{CP}^\infty)^m$ is an epimorphism with kernel generated by those cochains $(D_{2k_1}^j \cdots D_{2k_p}^j)_{j \in \mathbb{K}}^*$ for which $\{j_1, \ldots, j_p\} \notin \mathbb{K}$. Under the identification of $C^*((\mathbb{CP}^\infty)^m)$ with $\mathbb{Z}[v_1, \ldots, v_m]$, a cochain $(D_{2k_1}^j \cdots D_{2k_p}^j)_{j \in \mathbb{K}}^*$ is mapped to the monomial $v_{j_1}^{k_1} \cdots v_{j_p}^{k_p}$. Therefore, $C^*((\mathbb{CP}^\infty)^K)$ is identified with the quotient of $\mathbb{Z}[v_1, \ldots, v_m]$ by the subgroup generated by all monomials $v_{j_1}^{k_1} \cdots v_{j_p}^{k_p}$ with $\{j_1, \ldots, j_p\} \notin \mathbb{K}$. By Proposition 3.1.9, this quotient is exactly $\mathbb{Z}[K]$. \square

We consider the Borel construction $ET^m \times_T Z_K$ for the T^m-space Z_K (see Appendix B.4).

Theorem 4.3.2. The inclusion $i: (CP^\infty)^K \to (CP^\infty)^m$ factors into a composition of a homotopy equivalence

$$h: (CP^\infty)^K \xrightarrow{\simeq} ET^m \times_T Z_K$$

and the fibration $p: ET^m \times_T Z_K \to BT^m = (\mathbb{CP}^\infty)^m$ with fibre Z_K.

In particular, the moment-angle complex Z_K is the homotopy fibre of the canonical inclusion $i: (CP^\infty)^K \to (CP^\infty)^m$.

Proof. We use functoriality and homotopy invariance of the polyhedral product construction (Proposition 4.2.3). We have $Z_K = \bigcup_{l \in \mathbb{K}} (D^2, S^1)^l$, see (4.1), and each subset $(D^2, S^1)^l$ is T^m-invariant. We therefore obtain the following decomposition of the Borel construction as a polyhedral product:

$$ET^m \times_T Z_K = \bigcup_{l \in \mathbb{K}} (ET^m \times_T (D^2, S^1)^l) = \bigcup_{l \in \mathbb{K}} (S^\infty \times S^1, D^2, S^\infty \times S^1, S^1)^l$$

$$= (S^\infty \times S^1, D^2, S^\infty \times S^1, S^1)^X,$$

where $S^\infty = ET^1 = ES^1$.

Now consider the commutative diagram

$$\begin{array}{ccc}
pt & \longrightarrow & S^\infty \times S^1 \longrightarrow & pt \\
\downarrow & & \downarrow & \downarrow \\
\mathbb{CP}^\infty & \xrightarrow{j} & S^\infty \times S^1, D^2 & \longrightarrow & \mathbb{CP}^\infty,
\end{array}$$

(4.10)
where \(j \) is the inclusion of the zero section in a disc bundle (note that \(\mathbb{C}P^\infty = S^\infty/S^1 \)), and \(f \) is the projection map from the bundle to its Thom space,
\[
f: S^\infty \times S^1, D^2 \to (S^\infty \times S^1, D^2)/(S^\infty \times S^1, S^1) \cong \mathbb{C}P^\infty.
\]
Since \(S^\infty \times S^1, S^1 = S^\infty \) and \(D^2 \) are contractible, the composite maps \(f \circ j \) and \(j \circ f \) are homotopic to the identity. It follows that we have a homotopy equivalence of pairs \((\mathbb{C}P^\infty, pt) \to (S^\infty \times S^1, D^2, S^\infty \times S^1, S^1)\) which induces a homotopy equivalence of polyhedral products
\[
h: (\mathbb{C}P^\infty)^K \to (S^\infty \times S^1, D^2, S^\infty \times S^1, S^1)^K = ET^m \times T^m Z_K.
\]
In order to establish the factorisation \(i = p \circ h \) we consider the diagram
\[
\begin{array}{ccc}
pt & \longrightarrow & S^\infty \times S^1, S^1 \\
\downarrow & & \downarrow \\
\mathbb{C}P^\infty & \overset{j}{\longrightarrow} & S^\infty \times S^1, D^2 \\
& \overset{g}{\longrightarrow} & \mathbb{C}P^\infty,
\end{array}
\]
where \(g \) is the projection of the disc bundle onto its base (note that his map is different from the map \(f \) above). By passing to the induced maps of polyhedral products we obtain the factorisation of
\[
i: (\mathbb{C}P^\infty)^K \overset{h}{\longrightarrow} (S^\infty \times S^1, D^2, S^\infty \times S^1, S^1)^K \overset{p}{\longrightarrow} (\mathbb{C}P^\infty, \mathbb{C}P^\infty)^K
\]
into the composition of \(h \) and \(p \).

The following statement is originally due to Davis and Januszkiewicz [112, Theorem 4.8] (they used a different model for \(Z_K \), which will be discussed in Section 6.2).

Corollary 4.3.3. The equivariant cohomology ring of the moment-angle complex \(Z_K \) is isomorphic to the face ring of \(K \):
\[
H^*_T(Z_K) \cong \mathbb{Z}[K].
\]
In equivariant cohomology, the projection \(p: ET^m \times T^m Z_K \to BT^m \) induces the quotient projection
\[
p^*: \mathbb{Z}[v_1, \ldots, v_m] \to \mathbb{Z}[K] = \mathbb{Z}[v_1, \ldots, v_m]/\mathcal{I}_K.
\]

Proof. This follows from Theorem 4.3.2 and Proposition 4.3.1. \(\square \)

In view of this result, the Borel construction \(ET^m \times T^m Z_K \) is often called the *Davis–Januszkiewicz space* and denoted by \(DJ(K) \). According to Theorem 4.3.2 it is modelled (up to homotopy) on the polyhedral product \((\mathbb{C}P^\infty)^K\).

Example 4.3.4. Let \(K \) be the complex consisting of two disjoint points. Then \(Z_K \cong S^3 \) and \((\mathbb{C}P^\infty)^K = \mathbb{C}P^\infty \vee \mathbb{C}P^\infty \) (a wedge of two copies of \(\mathbb{C}P^\infty \)). The Borel construction \(ET^2 \times T^2 Z_K \) can be identified with the total space of the sphere bundle \(S(\eta \times \eta) \) associated with the product of two universal (Hopf) complex line bundles \(\eta \) over \(BT^3 = \mathbb{C}P^\infty \). By Theorem 4.3.2, the space \(ET^2 \times T^2 Z_K \) is homotopy equivalent to \(\mathbb{C}P^\infty \vee \mathbb{C}P^\infty \), and the bundle projection \(S(\eta \times \eta) \to \mathbb{C}P^\infty \times \mathbb{C}P^\infty \) induces the quotient projection \(\mathbb{Z}[v_1, v_2] \to \mathbb{Z}[v_1, v_2]/(v_1v_2) \) in cohomology.

Some basic information about the homotopy groups of \(Z_K \) is collected in the next proposition. We say that a simplicial complex \(K \) on \([m]\) is *q-neighbourly* if any subset of \([m]\) of cardinality \(q + 1 \) is a simplex of \(K \).
Proposition 4.3.5.

(a) If K is a simplicial complex on the vertex set $[m]$ (i.e. there are no ghost vertices), then the moment-angle complex Z_K is 2-connected (i.e. $\pi_1(Z_K) = \pi_2(Z_K) = 0$), and

$$\pi_i(Z_K) = \pi_i((\mathbb{C}P^\infty)^K) \quad \text{for } i \geq 3.$$

(b) If K is a q-neighbourly simplicial complex, then $\pi_i(Z_K) = 0$ for $i < 2q + 1$. Furthermore, $\pi_{2q+1}(Z_K)$ is a free abelian group of rank equal to the number of $(q + 1)$-element missing faces of K.

Proof. We observe that $(\mathbb{C}P^\infty)^m$ is the Eilenberg–Mac Lane space $K(\mathbb{Z}^m, 2)$, and the 3-dimensional skeleton of $(\mathbb{C}P^\infty)^K$ coincides with the 3-skeleton of $(\mathbb{C}P^\infty)^m$. If K is q-neighbourly, then the $(2q+1)$-skeletons of $(\mathbb{C}P^\infty)^K$ and $(\mathbb{C}P^\infty)^m$ agree. Now both statements follow from the homotopy exact sequence of the map $(\mathbb{C}P^\infty)^K \to (\mathbb{C}P^\infty)^m$ with homotopy fibre Z_K. □

Example 4.3.6. Let $K = sk_4\Delta^3$ (a complete graph on 4 vertices). Then K is 2-neighbourly and has 4 missing triangles, so Z_K is 4-connected and $\pi_5(Z_K) = \mathbb{Z}^4$.

Exercises.

4.3.7. By analogy with Proposition 4.3.1, show that

$$H^*(\mathbb{R}P^\infty)^K, \mathbb{Z}_2) \cong \mathbb{Z}_2[v_1, \ldots, v_m]/(v_i \cdots v_i : \{i_1, \ldots, i_k \notin K\}), \quad \deg v_i = 1.$$

4.3.8. Consider a sequence of pointed odd-dimensional spheres

$$S = (S^{2p_1-1}, \ldots, S^{2p_m-1}).$$

Show that there is an isomorphism of rings

$$H^*(S^K) \cong \Lambda[u_1, \ldots, u_m]/(u_i \cdots u_i : \{i_1, \ldots, i_k \notin K\}), \quad \deg u_i = 2p_i - 1.$$

This ring is known as the exterior face ring of K. In the case $p_1 = \cdots = p_m = 1$ we obtain $(S)^K = (S^1)^K$, which is a cell subcomplex in the torus T^m.

For a more general statement describing the cohomology of the polyhedral product X^K, see Theorem 8.3.7.

4.3.9 ([117, Lemma 2.3.1]). Assume given commutative diagrams

$$
\begin{array}{ccc}
F'_i & \longrightarrow & E'_i \longrightarrow B_i \\
\downarrow & & \downarrow \\
F_i & \longrightarrow & E_i \longrightarrow B_i
\end{array}
$$

of cell complexes where the horizontal arrows are fibrations and the vertical arrows are inclusions of cell subcomplexes, for $i = 1, \ldots, m$. Denote by (F, F'), (E, E') and (B, B) the corresponding sequences of pairs. Show that there is a fibration of polyhedral products

$$(F, F')^K \to (E, E')^K \to (B, B)^K$$

where $(B, B)^K = B_1 \times \cdots \times B_m$.

4.3.10. Use the previous exercise, the path-loop \(\Omega X \to PX \to X \) and homotopy invariance of the polyhedral product (Proposition 4.2.3) to show that the homotopy fibre of the inclusion \(X^K \to X^m \) is \((PX, \Omega X)^K\) or, equivalently, \((\text{cone } \Omega X, \Omega X)^K\). That is, construct a homotopy fibration
\[
(PX, \Omega X)^K \to (X, pt)^K \to (X, X)^K.
\]
When \(X_i = \mathbb{C}P^\infty \) we obtain the homotopy fibration \(\mathcal{Z}_K \to (\mathbb{C}P^\infty)^K \to (\mathbb{C}P^\infty)^m \) of Theorem 4.3.2.

4.3.11. When \(K \) is a pair of points and \(X = (X_1, X_2) \), show that \((PX, \Omega X)^K\) is homotopy equivalent to \(\Sigma \Omega X_1 \cap \Omega X_2 \). Deduce Ganea’s Theorem identifying the homotopy fibre of the inclusion \(X_1 \cap X_2 \to X_1 \times X_2 \) with \(\Sigma \Omega X_1 \cap \Omega X_2 \).

4.3.12. In the setting of Example 4.3.4, consider the diagonal circle \(S^1_\delta \subset T^2 \). Show that it acts freely on \(\mathcal{Z}_K \cong S^1 \). Deduce that the Borel construction \(ET^2 \times_{T^2} \mathcal{Z}_K \) is homotopy equivalent to \(ES^1 \times S^1 \mathbb{C}P^1 \), where \(\mathbb{C}P^1 = S^3/S^1 \) with \(S^1 \)-action given by \(t \cdot [z_0 : z_1] = [z_0 : tz_1] \). It follows that \(ES^1 \times S^1 \mathbb{C}P^1 \simeq \mathbb{C}P^\infty \vee \mathbb{C}P^\infty \). Show that \(ES^1 \times S^1 \mathbb{C}P^1 \) can be identified with the complex projectivisation \(\mathbb{C}P(\eta \oplus \bar{\eta}) \), where \(\eta \) is the tautological line bundle over \(\mathbb{C}P^\infty \) and \(\bar{\eta} \) is its complex conjugate. What can be said about the complex projectivisation \(\mathbb{C}P(\eta \oplus \bar{\eta}) \)?

4.4. Cell decomposition

We consider the following decomposition of the disc \(D \) into 3 cells: the point \(1 \in D \) is the 0-cell; the complement to 1 in the boundary circle is the 1-cell, which we denote by \(T \); and the interior of \(D \) is the 2-cell, which we denote by \(D \). By taking products we obtain a cellular decomposition of \(D \) whose cells are parametrised by pairs of subsets \(J, I \subset [m] \) with \(J \cap I = \emptyset \): the set \(J \) parametrises the \(T \)-cells in the product and \(I \) parametrises the \(D \)-cells. We denote the cell of \(D \) corresponding to a pair \(J, I \) by \(\varkappa(J, I) \); it is a product of \(|J| \) cells of \(T \)-type and \(|I| \) cells of \(D \)-type (the positions in \([m] \setminus I \cup J \) are filled by 0-cells). Then \(\mathcal{Z}_K \) embeds as a cellular subcomplex in \(D \); we have \(\varkappa(J, I) \subset \mathcal{Z}_K \) whenever \(I \in K \).

Let \(C^*(\mathcal{Z}_K) \) be the cellular cochains of \(\mathcal{Z}_K \). It has a basis of cochains \(\varkappa(J, I)^* \) dual to the corresponding cells. We introduce the bigrading by setting
\[
\text{bideg} \varkappa(J, I)^* = (-|J|, 2|I| + 2|J|),
\]
so that \(\text{bideg} D = (0, 2) \), \(\text{bideg} T = (-1, 2) \) and \(\text{bideg} 1 = (0, 0) \). Since the cellular differential preserves the second grading, the complex \(C^*(\mathcal{Z}_K) \) splits into the sum of its components with fixed second degree:
\[
(4.11) \quad C^*(\mathcal{Z}_K) = \bigoplus_{q=0}^{m} C^{*,-2q}(\mathcal{Z}_K).
\]

The cohomology of the moment-angle complex therefore acquires an additional grading, and we define the \textit{bigraded Betti numbers} of \(\mathcal{Z}_K \) by
\[
(4.12) \quad b^{-p,q}(\mathcal{Z}_K) = \text{rank } H^{-p,-2q}(\mathcal{Z}_K), \quad \text{for } 1 \leq p, q \leq m.
\]

The ordinary Betti numbers of \(\mathcal{Z}_K \) therefore satisfy
\[
(4.13) \quad b^k(\mathcal{Z}_K) = \sum_{-p+2q=k} b^{-p,2q}(\mathcal{Z}_K).
\]
The map of the moment-angle complexes $\tilde{Z}_K \to \tilde{Z}_\mathcal{L}$ induced by a simplicial map $K \to \mathcal{L}$ (see Proposition 4.2.4) is clearly a cellular map. We therefore obtain

Proposition 4.4.1. The correspondence $K \mapsto \tilde{Z}_K$ gives rise to a functor from the category of simplicial complexes and simplicial maps to the category of cell complexes with torus actions and equivariant maps. It also induces a natural transformation between the functor of simplicial cochains of K and the functor of cellular cochains of \tilde{Z}_K.

The map $\tilde{Z}_K \to \tilde{Z}_\mathcal{L}$ induced by a simplicial map $K \to \mathcal{L}$ preserves the cellular bigrading, so that the bigraded cohomology groups are also functorial.

4.5. Cohomology ring

The main result of this section, Theorem 4.5.4, establishes an isomorphism between the integral cohomology ring of the moment-angle complex \tilde{Z}_K and the Tor-algebra of the simplicial complex K. This result was first proved in [66] for field coefficients using the Eilenberg–Moore spectral sequence of the fibration $\tilde{Z}_K \to (C\mathbb{F}_p)^K \to (C\mathbb{F}_p)^m$ (this argument is outlined in Exercise 8.1.12). The proof given here is taken from [27] and [69]; it establishes the isomorphism over the integers and works with the cellular cochains.

One of the key steps in the proof is the construction of a cellular approximation of the diagonal map $\Delta: \tilde{Z}_K \to \tilde{Z}_K \times \tilde{Z}_K$ which is functorial with respect to maps of moment-angle complexes induced by simplicial maps. The resulting cellular cochain algebra is isomorphic to the algebra $R^*(K)$ from Construction 3.2.5 (obtained by factorising the Koszul algebra of the face ring $\mathbb{Z}[K]$ by an acyclic ideal); its cohomology is isomorphic to the Tor-algebra of K.

Another proof of Theorem 4.5.4 was given by Franz [141].

Algebraic model for cellular cochains. We recall the ring $R^*(K)$ from Construction 3.2.5:

$R^*(K) = \Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[K]/(v_i^2 = u_i v_i = 0, \ 1 \leq i \leq m),$ with the bigrading and differential given by

$$\text{bideg } u_i = (-1, 2), \quad \text{bideg } v_i = (0, 2), \quad du_i = v_i, \quad dv_i = 0.$$ The algebra $R^*(K)$ has finite rank as an abelian group, with a basis of monomials $u_J v_I$ where $J \subset [m], I \subset K$ and $I \cap J = \emptyset$.

Comparing the differential graded module structures in $R^*(K)$ and $C^*(\tilde{Z}_K)$ we observe that they coincide, as described in the following statement:

Lemma 4.5.1. The map $g: R^*(K) \to C^*(\tilde{Z}_K), \quad u_J v_I \mapsto \kappa(I, J)^*$, is an isomorphism of cochain complexes. Hence, there is an additive isomorphism $H(R^*(K)) \cong H^*(\tilde{Z}_K)$.

Proof. Since g arises from a bijective correspondence between bases of $R^*(K)$ and $C^*(\tilde{Z}_K)$, it is an isomorphism of bigraded modules (or groups). It also clearly commutes with the differentials:

$$\delta g(u_i) = \delta(T^*_i) = D^*_i = g(v_i) = g(du_i), \quad \delta g(v_i) = \delta(D^*_i) = 0 = g(dv_i),$$

where T_i denotes the cell $\kappa(i, \emptyset)$, and $D_i = \kappa(\emptyset, \{i\})$. \hfill \square
Having identified the algebra $R^*(K)$ with the cellular cochains of the moment-angle complex, we can give a topological interpretation to the quasi-isomorphism of Lemma 3.2.6. To do this we shall identify the Koszul algebra $\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[\mathcal{K}]$ with the cellular cochains of a space homotopy equivalent to \mathcal{Z}_K.

The infinite-dimensional sphere S^∞ is the direct limit (union) of standardly embedded odd-dimensional spheres. Each odd sphere S^{2k-1} can be obtained from S^{2k-1} by attaching two cells of dimensions $2k$ and $2k + 1$:

$$S^{2k+1} \equiv (S^{2k-1} \cup_f D^{2k}) \cup_g D^{2k+1}.$$

Here the map $f: \partial D^{2k} \to S^{2k-1}$ is the identity (and has degree 1), and the map $g: \partial D^{2k+1} = S^{2k} \to D^{2k}$ is the projection of the standard sphere onto its equatorial plane (and has degree 0). This implies that S^∞ is contractible and has a cell decomposition with one cell in each dimension; the boundary of an even cell is the closure of an odd cell, and the boundary of an odd cell is zero. The 2-dimensional skeleton of this cell decomposition is the disc D^2 decomposed into three cells as described in Section 4.4. The cellular cochain complex of S^∞ can be identified with the Koszul algebra

$$\Lambda[u] \otimes \mathbb{Z}[v], \quad \deg u = 1, \deg v = 2, \quad du = v, \quad dv = 0.$$

The functoriality of the polyhedral product (Proposition 4.2.3 (a)) implies that there is the following deformation retraction onto a cellular subcomplex:

$$\mathcal{Z}_K = (D^2,S^1)^K \hookrightarrow (S^\infty,S^1)^K \twoheadrightarrow (D^2,S^1)^K.$$

Furthermore, the cellular cochains of the polyhedral product $(S^\infty,S^1)^K$ are identified with the Koszul algebra $\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[\mathcal{K}]$, in the same way as $C^*(\mathcal{Z}_K)$ is identified with $R^*(K)$. Since $\mathcal{Z}_K \subset (S^\infty,S^1)^K$ is a deformation retract, the corresponding cellular cochain map

$$\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[\mathcal{K}] = C^*((S^\infty,S^1)^K) \twoheadrightarrow C^*(\mathcal{Z}_K) = R^*(K)$$

induces an isomorphism in cohomology. The above map is a homomorphism of algebras, so it is a quasi-isomorphism. In fact, the cochain homotopy map constructed in the proof of Lemma 3.2.6 is nothing but the cellular cochain map induced by the homotopy above.

Cellular diagonal approximation. Here we establish the cohomology ring isomorphism in Lemma 4.5.1. The difficulty of working with cellular cochains is that they do not admit a functorial associative multiplication. The diagonal map used in the definition of the cohomology product is not cellular, and a cellular approximation cannot be made functorial with respect to arbitrary cellular maps. Here we construct a canonical cellular diagonal approximation $\Delta: \mathcal{Z}_K \to \mathcal{Z}_K \times \mathcal{Z}_K$ which is functorial with respect to maps of \mathcal{Z}_K induced by simplicial maps of K, and show that the resulting product in the cellular cochains of \mathcal{Z}_K coincides with the product in $R^*(K)$.

The product in the cohomology of a cell complex X is defined as follows (see [293], [177]). Consider the composite map of cellular cochain complexes

$$C^*(X) \otimes C^*(X) \longrightarrow C^*(X \times X) \longrightarrow \Delta^*: C^*(X \times X) \longrightarrow C^*(X).$$

Here the map \times sends a cellular cochain $c_1 \otimes c_2 \in C^{q_1}(X) \otimes C^{q_2}(X)$ to the cochain $c_1 \times c_2 \in C^{q_1+q_2}(X \times X)$, whose value on a cell $e_1 \times e_2 \in X \times X$ is $(-1)^{q_1+q_2}c_1(e_1)c_2(e_2)$. The map Δ^* is induced by a cellular map Δ (a cellular diagonal approximation)
homotopic to the diagonal $\Delta: X \to X \times X$. In cohomology, the map (4.14) induces a multiplication $H^*(X) \otimes H^*(X) \to H^*(X)$ which does not depend on a choice of cellular approximation and is functorial. However, the map (4.14) itself is not functorial because the choice of a cellular approximation is not canonical.

Nevertheless, in the case $X = Z_\mathcal{K}$ we can use the following construction.

Construction 4.5.2 (cellular approximation for $\Delta: Z_\mathcal{K} \to Z_\mathcal{K} \times Z_\mathcal{K}$). Consider the map $\tilde{\Delta}: D \to D \times D$ given in the polar coordinates $z = \rho e^{i\varphi} \in D$, $0 \leq \rho \leq 1$, $0 \leq \varphi < 2\pi$, by the formula
\[
(4.15) \quad \rho e^{i\varphi} \mapsto \begin{cases}
(1 - \rho + \rho e^{2i\varphi}, 1) & \text{for } 0 \leq \varphi \leq \pi, \\
(1, 1 - \rho + \rho e^{2i\varphi}) & \text{for } \pi \leq \varphi < 2\pi.
\end{cases}
\]

It is easy to see that this is a cellular map homotopic to the diagonal $\Delta: D \to D \times D$, and its restriction to the boundary circle S is a diagonal approximation for S, as described by the following diagram:
\[
(4.16) \quad \begin{array}{ccc}
S & \longrightarrow & D \\
\downarrow \tilde{\Delta} & & \downarrow \tilde{\Delta} \\
S \times S & \longrightarrow & D \times D
\end{array}
\]

(explicit formulae for the homotopies involved can be found in Exercise 4.5.11). Taking the m-fold product we obtain a cellular approximation $\tilde{\Delta}: D^m \to D^m \times D^m$. Applying Proposition 4.2.3 (a) to the map of pairs $\tilde{\Delta}: (D, S) \to (D \times D, S \times S)$ and observing that $(D \times D, S \times S)^K \cong Z_\mathcal{K} \times Z_\mathcal{K}$, we obtain that $\tilde{\Delta}: D^m \to D^m \times D^m$ restricts to a cellular approximation of the diagonal map of $Z_\mathcal{K}$, as described in the following diagram:
\[
Z_\mathcal{K} \longrightarrow D^m \quad \begin{array}{ccc}
Z_\mathcal{K} \times Z_\mathcal{K} & \longrightarrow & D^m \times D^m \\
\downarrow \tilde{\Delta} & & \downarrow \tilde{\Delta}
\end{array}
\]

Finally, applying Proposition 4.2.3 (c) to diagram (4.16) we obtain that the approximation $\tilde{\Delta}$ is functorial with respect to the maps of moment-angle-complexes $Z_\mathcal{K} \to Z_\mathcal{L}$ induced by simplicial maps $\mathcal{K} \to \mathcal{L}$.

Lemma 4.5.3. The cellular cochain algebra $C^*(Z_\mathcal{K})$ with the product defined via the diagonal approximation $\tilde{\Delta}: Z_\mathcal{K} \to Z_\mathcal{K} \times Z_\mathcal{K}$ and the map (4.14) is isomorphic to the algebra $R^*(\mathcal{K})$. We therefore have an isomorphism of cohomology rings
\[
H(R^*(\mathcal{K})) \cong H^*(Z_\mathcal{K}).
\]

Proof. We first consider the case $\mathcal{K} = \Delta^0$, i.e. $Z_\mathcal{K} = D$. The cellular cochain complex has basis of cochains $1 \in C^0(D)$, $T^* \in C^1(D)$ and $D^* \in C^2(D)$ dual to the cells introduced in Section 4.4. The multiplication defined by (4.14) in $C^*(D)$ is trivial, so we have a ring isomorphism
\[
R^*(\Delta^0) = \Lambda[u] \otimes \Lambda[v]/(u^2 = uv = 0) \longrightarrow C^*(D).
\]

Taking an m-fold tensor product we obtain a ring isomorphism for $\mathcal{K} = \Delta^{m-1}$;
\[
f: R^*(\Delta^{m-1}) = \Lambda[u_1, \ldots, u_m] \otimes \Lambda[v_1, \ldots, v_m]/(u_i^2 = u_iv_i = 0) \longrightarrow C^*(D^m).
\]
Now for arbitrary K we have an inclusion $Z_K \subset \mathbb{D}^m = Z_{\Delta^{m-1}}$ of a cellular subcomplex and the corresponding ring homomorphism $q: \mathcal{C}^*(\mathbb{D}^m) \to \mathcal{C}^*(Z_K)$. Consider the commutative diagram
\[
\begin{array}{ccc}
R^*(\Delta^{m-1}) & \xrightarrow{f} & \mathcal{C}^*(\mathbb{D}^m) \\
p & & \downarrow q \\
R^*(K) & \xrightarrow{g} & \mathcal{C}^*(Z_K).
\end{array}
\]
Here the maps p, f and q are ring homomorphisms, and g is an isomorphism of groups by Lemma 4.5.1. We claim that g is also a ring isomorphism. Indeed, take $\alpha, \beta \in R^*(K)$. Since p is onto, we have $\alpha = p(\alpha')$ and $\beta = p(\beta')$. Then
\[
g(\alpha \beta) = gp(\alpha' \beta') = qf(\alpha' \beta') = qf(\alpha')qf(\beta') = gp(\alpha')gp(\beta') = g(\alpha)g(\beta),
\]
as claimed. Thus, g is a ring isomorphism.

Cohomology ring. By combining the results of Lemmata A.2.10, 3.2.6 and 4.5.3 we obtain the main result of this section:

Theorem 4.5.4. There are isomorphisms, functorial in K, of bigraded algebras
\[
H^{*,*}(Z_K) \cong \text{Tor}_{\mathbb{Z}[v_1, \ldots, v_m]}(\mathbb{Z}[K], \mathbb{Z}) \cong H(\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[K], d),
\]
where the bigrading and the differential on the right hand side are defined by
\[
\text{bideg} u_i = (-1, 2), \quad \text{bideg} v_i = (0, 2), \quad du_i = v_i, \quad dv_i = 0.
\]

The algebraic Betti numbers (3.2) of the face ring $\mathbb{Z}[K]$ therefore acquire a topological interpretation as the bigraded Betti numbers (4.12) of the moment-angle complex Z_K.

Now we combine results of Propositions 3.1.5, 3.2.2 and 4.4.1, Corollary 4.3.3 and Theorem 4.5.4 in the following statement describing the functorial properties of the correspondence $K \mapsto Z_K$.

Proposition 4.5.5. Consider the following functors:

(a) \mathcal{Z}, the covariant functor $K \mapsto Z_K$ from the category of finite simplicial complexes and simplicial maps to the category of spaces with torus actions and equivariant maps (the moment-angle complex functor);

(b) $k[\cdot]$, the contravariant functor $K \mapsto k[K]$ from simplicial complexes to graded k-algebras (the face ring functor);

(c) Tor-alg, the contravariant functor
\[
K \mapsto \text{Tor}_{k[v_1, \ldots, v_m]}(k[K], k)
\]
from simplicial complexes to bigraded k-algebras (the Tor-algebra functor; it is the composition of $k[\cdot]$ and $\text{Tor}_{k[v_1, \ldots, v_m]}(\cdot, k)$);

(d) H^*_T, the contravariant functor $X \mapsto H^*_T(X; k)$ from spaces with torus actions to k-algebras (the equivariant cohomology functor);

(e) H^*, the contravariant functor $X \mapsto H^*(X; k)$ from spaces to k-algebras (the ordinary cohomology functor).

Then we have the following identities, for any coefficient ring k:
\[
H^*_T \circ \mathcal{Z} = k[\cdot], \quad H^* \circ \mathcal{Z} = \text{Tor-alg}.
\]
The second identity implies that for any simplicial map \(\varphi: \mathcal{K} \to \mathcal{L} \) the corresponding cohomology map
\[
\varphi_*: H^\ast(Z_{\mathcal{L}}) \to H^\ast(Z_{\mathcal{K}})
\]
coincides with the induced homomorphism of Tor-algebras \(\varphi_{\text{Tor}} \) from Proposition 3.2.2. In particular, the map \(\varphi \) gives rise to a map
\[
H^{-q,2p}(Z_{\mathcal{L}}) \to H^{-q,2p}(Z_{\mathcal{K}})
\]
of bigraded cohomology.

In the case of Cohen–Macaulay complexes \(\mathcal{K} \) (see Section 3.3) we have the following version of Theorem 4.5.4.

Proposition 4.5.6. Let \(\mathcal{K} \) be an \((n-1)\)-dimensional Cohen–Macaulay complex, and let \(t \) be an hsvp in \(k[\mathcal{K}] \). Then we have the following isomorphism of algebras:
\[
H^\ast(Z_{\mathcal{K}}; k) \cong \text{Tor}_{k[w_1,\ldots,w_m]/(k[\mathcal{K}]/t, k)}.
\]

Proof. This follows from Theorem 4.5.4 and Lemma A.3.5. \(\square \)

Note that the algebra \(k[\mathcal{K}]/t \) is finite-dimensional as a \(k \)-vector space, unlike \(k[\mathcal{K}] \). In some circumstances this observation allows us to calculate the cohomology of \(Z_{\mathcal{K}} \) more effectively.

Description of the product in terms of full subcomplexes. The Hochster formula (Theorem 3.2.4) for the components of the Tor-algebra can be used to obtain an alternative description of the product structure in \(H^\ast(Z_{\mathcal{K}}) \).

We recall from Section 3.2 that the bigraded structure in the Tor-algebra can be refined to a multigrading, and the multigraded components of Tor can be calculated in terms of the full subcomplexes of \(\mathcal{K} \):
\[
\text{Tor}_Z^{i,2J}(Z[\mathcal{K}], Z) \cong \tilde{H}^{i,J-i-1}(\mathcal{K}_J),
\]
where \(J \subset [m] \), see Theorem 3.2.9. Furthermore, the product in the Tor-algebra defines a product in the direct sum \(\bigoplus_{J \subset [m]} H^{i,J}(\mathcal{K}_J) \) given by (3.11).

The bigraded structure in the cellular cochain complex of \(Z_{\mathcal{K}} \) defined in Section 4.4 can be also refined to a multigrading (a \(\mathbb{Z} \oplus \mathbb{Z}^m \)-grading):
\[
C^\ast(Z_{\mathcal{K}}) = \bigoplus_{J \subset [m]} C^{*,2J}(Z_{\mathcal{K}}),
\]
where \(C^{*,2J}(Z_{\mathcal{K}}) \) is the subcomplex spanned by the cochains \(\kappa(J/I, I) \ast \) with \(I \subset J \) and \(I \in \mathcal{K} \). The bigraded cohomology groups decompose as follows:
\[
H^{-i,J}(Z_{\mathcal{K}}) = \bigoplus_{J \subset [m]: J=I} H^{-i,2J}(Z_{\mathcal{K}}),
\]
where \(H^{-i,2J}(Z_{\mathcal{K}}) = H^{-i}(C^{*,2J}(Z_{\mathcal{K}})) \).

Theorem 4.5.7 (Baskakov [25]). There are isomorphisms
\[
\tilde{H}^{p-1}(\mathcal{K}_J) \cong H^{p-|J|,2J}(Z_{\mathcal{K}}),
\]
which are functorial with respect to simplicial maps and induce a ring isomorphism
\[
h: \bigoplus_{J \subset [m]} \tilde{H}^\ast(\mathcal{K}_J) \cong H^\ast(Z_{\mathcal{K}}).
\]
4.5. COHOMOLOGY RING

Proof. The statement about the additive isomorphisms follows from Theorems 3.2.9 and 4.5.4. In explicit terms, the cohomology isomorphisms are induced by the cochain isomorphisms given by

\[C^{p-1}(K_J) \to C^{p-|J|,2J}(Z_K), \]
\[\alpha_L \mapsto \varepsilon(L,J)\varphi(J \setminus L,L)^* \]
similar to (3.9), where \(\alpha_L \in C^{p-1}(K_J) \) is the cochain dual to a simplex \(L \in K_J \).

The ring isomorphism follows from Proposition 3.2.10 and Theorem 4.5.4. □

We summarise the results above in the following description of the cohomology groups and the product structure of \(H^*(Z_K) \) in terms of full subcomplexes of \(K \):

Theorem 4.5.8. There are isomorphisms of groups

\[H^{-i,2j}(Z_K) \cong \bigoplus_{J \subseteq [m] : |J| = j} \widetilde{H}^{j-i-1}(K_J), \quad H^\ell(Z_K) \cong \bigoplus_{J \subseteq [m]} \widetilde{H}^{\ell-|J|-1}(K_J). \]

These isomorphisms combine to form a ring isomorphism

\[H^*(Z_K) \cong \bigoplus_{J \subseteq [m]} \widetilde{H}^*(K_J), \]

where the ring structure on the right hand side is given by the canonical maps

\[H^{k-|J|-1}(K_J) \otimes H^{\ell-|J|-1}(K_J) \to H^{k+\ell-|J|-1}(K_{[I,J]}) \]

which are induced by simplicial maps \(K_{[I,J]} \to K_I * K_J \) for \(I \cap J = \emptyset \) and zero otherwise.

It follows that the cohomology of \(Z_K \) may have arbitrary torsion:

Corollary 4.5.9. Any finite abelian group can appear as a summand in a cohomology group of \(H^*(Z_K) \) for some \(K \).

Proof. It follows from the Theorem 4.5.8 that \(\widetilde{H}^*(K) \) is a direct summand in \(H^*(Z_K) \) (with appropriate shifts in dimension). Therefore, we can take \(K \) whose simplicial cohomology contains the appropriate torsion.

The case of general polyhedral product \((X,A)^K \) and \(R_K \). There is also a description of the cohomology of an arbitrary polyhedral product \((X,A)^K \) (together with the product structure) in terms of full subcomplexes of \(K \), generalising Theorem 4.5.8. For additive results, see Section 8.3. For the description of the product in the cohomology of \((X,A)^K \), we refer to [18].

Another important particular case is the real moment-angle complex \(R_K = (D^1,S^0)^K \). In this case we have additive isomorphisms

\[H^k(R_K) \cong \bigoplus_{J \subseteq [m]} \widetilde{H}^{k-1}(K_J) \]

(see Corollary 8.3.6), however the product structure in \(H^*(R_K) \) is more intricate. In particular, the product of elements in \(H^{k-1}(K_J) \) and \(H^{\ell-1}(K_J) \) may be nonzero even when \(I \cap J \neq \emptyset \). See [152, §3] and [80] for the concrete result.

According to [149, Theorem 3.1], there is an additive isomorphism between \(H^*(R_K; k) \) and \(\text{Tor}_{[K_{[1]},\ldots,K_{[m]}]}(k[K], k) \) with appropriate grading, for any coefficient
ring \(k\). More precisely, we have

\[
H^k(\mathcal{R}_K; k) \cong \bigoplus_{-i+j=k} \text{Tor}_{k[u_1, \ldots, u_m]}^{i,j}(k[K], k) = H^{-i,j}(\Lambda[u_1, \ldots, u_m] \otimes k[K], d),
\]

where \(\text{bideg} u_i = (-1, 1)\), \(\text{deg} v_i = (0, 1)\), \(du_i = v_i\), \(dv_i = 0\). However, \(H^*(\mathcal{R}_K; k)\) and \(\text{Tor}_{k[u_1, \ldots, u_m]}(k[K], k)\) differ as rings. There is a description of the cohomology algebra \(H^*(\mathcal{R}_K; k)\) as the cohomology of a differential graded algebra \([80]\), but it is more complicated than the Koszul complex \(\Lambda[u_1, \ldots, u_m] \otimes k[K]\).

Exercises.

4.5.10. Let \(S\) be the standard unit circle decomposed into two cells, where the 0-cell is the unit. The map

\[
\Delta: S \rightarrow S \times S, \quad e^{i\varphi} \mapsto \begin{cases} \left(e^{2i\varphi}, 1 \right) & \text{for } 0 \leq \varphi \leq \pi, \\ (1, e^{2i\varphi}) & \text{for } \pi \leq \varphi < 2\pi \end{cases}
\]

is a cellular diagonal approximation. It is obtained by restricting the map (4.15) to the boundary circle (\(\rho = 1\)). A homotopy \(F_t\) between the diagonal \(\Delta: S \rightarrow S \times S\) \((t = 0)\) and its cellular approximation \(\Delta(t = 1)\) is given by

\[
F_t: S \rightarrow S \times S, \quad e^{i\varphi} \mapsto \begin{cases} \left(e^{(1+t)i\varphi}, e^{(1-t)i\varphi}\right) & \text{for } 0 \leq \varphi \leq \pi, \\ (e^{(1-t)i\varphi+2\pi it}, e^{(1+t)i\varphi-2\pi it}) & \text{for } \pi \leq \varphi < 2\pi. \end{cases}
\]

4.5.11. Show that the formula

\[
\rho e^{i\varphi} \mapsto \begin{cases} (1 - \rho)t + \rho e^{i(1+t)i\varphi}, (1 - \rho)t + \rho e^{i(1-t)i\varphi} & \text{for } 0 \leq \varphi \leq \pi, \\ (1 - \rho)t + \rho e^{i(1-t)i\varphi+2\pi it}, (1 - \rho)t + \rho e^{i(1+t)i\varphi-2\pi it} & \text{for } \pi \leq \varphi < 2\pi. \end{cases}
\]

defines a homotopy \(G_t: \mathbb{D} \rightarrow \mathbb{D} \times \mathbb{D}\) between the diagonal \(\Delta: \mathbb{D} \rightarrow \mathbb{D} \times \mathbb{D}\) \((t = 0)\) and its approximation \(\Delta\) (4.16) \((t = 1)\). For \(\rho = 1\) the homotopy \(G_t\) restricts to the homotopy \(F_t\) of the previous exercise.

4.5.12. Give an example of \(K\) for which \(H^*(\mathcal{R}_K; k)\) and \(\text{Tor}_{\mathbb{Z}[u_1, \ldots, u_m]}(k[K], k)\) are not isomorphic as rings, for any coefficient ring \(k\).

4.6. Bigraded Betti numbers

Here we describe the properties of the bigraded Betti numbers (4.12) of moment-angle complexes and give some examples of explicit calculations.

Lemma 4.6.1. Let \(K\) be a simplicial complex of dimension \(n - 1\) with \(f_0 = m\) vertices and \(f_1\) edges, so that \(\dim Z_K = m + n\). We have

(a) \(b^{i,0}(Z_K) = b^i(Z_K) = 1\) and \(b^{i,2q}(Z_K) = 0\) for \(q \neq 0\);
(b) \(b^{-p,q} = 0\) for \(q > m\) or \(p > q\);
(c) \(b^1(Z_K) = b^2(Z_K) = 0\);
(d) \(b^3(Z_K) = b^{1,4}(Z_K) = \binom{m}{2} - f_1\);
(e) \(b^{-p,2q}(Z_K) = 0\) for \(p \geq q > 0\) or \(q > p > \alpha\);
(f) \(b^{m+n}(Z_K) = b^{-(m-n),2m}(Z_K) = \text{rank } H^{n-1}(K)\).

Proof. We consider the algebra \(R^*(K)\) whose cohomology is \(H^*(Z_K)\). Recall that \(R^*(K)\) has additive basis of monomials \(u_Iv_I\) with \(I \in K\) and \(I \cap J = \emptyset\). Since \(\text{bideg} u_i = (0, 2)\), \(\text{bideg} v_j = (-1, 2)\), the bigraded component \(R^{-p,2q}(K)\) has basis of monomials \(u_Iv_I\) with \(|I| = q - p\) and \(|J| = p\). In particular, \(R^{-p,2q}(K) = 0\) for
Figure 4.1. Locations of nonzero \(b^{-p,2q}(Z_K)\) are marked by *.

\[q > m \text{ or } p > q, \text{ which implies (b). To prove (a) we observe that } R^{0,0}(K) = k \text{ and } \]
\[\text{each } v_I \in R^{0,2q}(K) \text{ with } q > 0 \text{ is a coboundary, hence, } H^{0,2q}(Z_K) = 0 \text{ for } q > 0. \]

Now we prove (e). Let \(u_jv_I \in R^{-p,2q}(K) \); then \(|I| = q - p \) and \(I \in K \). Since \(\text{a simplex of } K \) has at most \(n \) vertices, \(R^{-p,2q}(K) = 0 \) for \(q - p > n \). We have \(b^{-p,2q}(Z_K) = 0 \) for \(p > q \) by (b) so we need only to check that \(b^{-p,2q}(Z_K) = 0 \) for \(q > 0 \). The group \(R^{-q,2q}(K) \) has basis of monomials \(u_I \) with \(|I| = q \). Since \(d(u_i) = v_i \), there are no nonzero cocycles in \(R^{-q,2q}(K) \) for \(q > 0 \), hence, \(H^{-q,2q}(Z_K) = 0 \).

Statement (c) follows from (e) and (4.13).

We also have \(H^3(Z_K) = H^{-1,4}(Z_K) \), by (e). There is a basis in \(R^{-1,4}(K) \) consisting of monomials \(u_jv_i \) with \(i \neq j \). We have \(d(u_jv_i) = v_i u_j \) and \(d(u_iu_j) = u_jv_i - u_i v_j \). Hence, \(u_jv_i \) is a cocycle if and only if \(\{i,j\} \notin K \); in this case the two cocycles \(u_jv_i \) and \(u_i v_j \) represent the same cohomology class. This proves (d).

It remains to prove (f). The total degree of a monomial \(u_jv_I \in R^*(K) \) is \(2|I| + |J| \), and there are constraints \(|I| + |J| \leq m \) and \(|I| \leq n \). Therefore, the maximum of the total degree is achieved for \(|I| = n \) and \(|J| = m - n \). This proves the first identity of (f), and the second follows from Theorem 4.5.8.

Lemma 4.6.1 shows that nonzero bigraded Betti numbers \(b_r^{<q}(Z_K) \) with \(r \neq 0 \) appear only in the strip bounded by the lines \(r = -1, q = m, r + q = 1 \) and \(r + q = n \) in the second quadrant, see Figure 4.1 (a).

The next result allows us to express the numbers of faces of \(K \) (i.e. its \(f \)- and \(h \)-vectors) via the bigraded Betti numbers. We consider the Euler characteristics of the complexes \(C_r^{<q}(Z_K) \) (see (4.11)),

\[\chi_q(Z_K) = \sum_{p=0}^{m} (-1)^p \operatorname{rank} C_r^{<q}(Z_K) = \sum_{p=0}^{m} (-1)^p b_r^{<q}(Z_K) \]

and define the generating series

\[\chi(Z_K; t) = \sum_{q=0}^{m} \chi_q(Z_K)t^{2q}. \]
Theorem 4.6.2. The following identity holds for an $(n-1)$-dimensional simplicial complex \mathcal{K} with m vertices:

$$\chi(\mathcal{Z}_\mathcal{K}; t) = (1 - t^2)^{m-n} (h_0 + h_1 t^2 + \cdots + h_n t^{2n}).$$

Here (h_0, h_1, \ldots, h_n) is the h-vector of \mathcal{K}.

Proof. The bigraded component $C^{-p,2q}(\mathcal{Z}_\mathcal{K})$ has basis of cellular cochains $\varepsilon(J, I)^*$ with $I \in \mathcal{K}$, $|I| = q - p$ and $|J| = p$. Therefore,

$$\text{rank} C^{-p,2q}(\mathcal{Z}_\mathcal{K}) = f_{q-p-1} \binom{m-q+p}{p},$$

where $(f_0, f_1, \ldots, f_{n-1})$ is the f-vector of \mathcal{K} and $f_{-1} = 1$. By substituting this into (4.17) we obtain

$$\chi_q(\mathcal{Z}_\mathcal{K}) = \sum_{j=0}^{m} (-1)^{q-j} f_{j-1} \binom{m-j}{q-j}.$$

Then

$$\chi(\mathcal{Z}_\mathcal{K}; t) = \sum_{q=0}^{m} \sum_{j=0}^{m} t^{2j} t^{2(q-j)} (-1)^{q-j} f_{j-1} \binom{m-j}{q-j}$$

$$= \sum_{j=0}^{m} f_{j-1} t^{2j} (1 - t^2)^{m-j} = (1 - t^2)^m \sum_{j=0}^{n} f_{j-1} (t^{-2} - 1)^{-j}.$$

Set $h(s) = h_0 + h_1 s + \cdots + h_n s^n$. Then it follows from (2.3) that

$$s^n h(s^{-1}) = (s - 1)^n \sum_{j=0}^{n} f_{j-1} (s - 1)^{-j}.$$

By substituting t^{-2} for s in the identity above we finally rewrite (4.18) as

$$\frac{\chi(\mathcal{Z}_\mathcal{K}; t)}{(1 - t^2)^{m}} = \frac{t^{-2n} h(t^2)}{(t^{-2} - 1)^m} = \frac{h(t^2)}{(1 - t^2)^m},$$

which is equivalent to the required identity. \hfill \Box

Corollary 4.6.3. If $\mathcal{K} \neq \Delta^{m-1}$, then the Euler characteristic of $\mathcal{Z}_\mathcal{K}$ is zero.

Proof. We have

$$\chi(\mathcal{Z}_\mathcal{K}) = \sum_{p,q=0}^{m} (-1)^{-p+2q} b_{-p,2q}(\mathcal{Z}_\mathcal{K}) = \sum_{q=0}^{m} \chi_q(\mathcal{Z}_\mathcal{K}) = \chi(\mathcal{Z}_\mathcal{K}; 1) = 0$$

by Theorem 4.6.2 (note that $\mathcal{K} \neq \Delta^{m-1}$ implies that $m > n$). \hfill \Box

We shall now describe the properties of bigraded Betti numbers for particular classes of simplicial complexes.

Definition 4.6.4. A finite simplicial complex \mathcal{K} is called a d-dimensional pseudomanifold if the following three conditions are satisfied:

(a) all maximal simplices of \mathcal{K} have dimension d (i.e. \mathcal{K} is pure d-dimensional);
(b) each $(d-1)$-simplex of \mathcal{K} is the face of exactly two d-simplices of \mathcal{K};
(c) if I and I' are d-simplices of \mathcal{K}, then there is a sequence $I = I_1, I_2, \ldots, I_k = I'$ of d-simplices of \mathcal{K} such that I_j and I_{j+1} have a common $(d-1)$-face for $1 \leq i \leq k - 1$.

If \mathcal{K} is a d-dimensional pseudomanifold, then either $H_d(\mathcal{K}) \cong \mathbb{Z}$ or 0 (an exercise). In the former case the pseudomanifold \mathcal{K} is called orientable.

Lemma 4.6.5. Let \mathcal{K} be an orientable pseudomanifold of dimension $n-1$ with m vertices. Then

$$H^{m+n}(\mathcal{Z}_d) = \tilde{H}^{n-1}(\mathcal{K}) \cong \mathbb{Z}.$$

Under the isomorphism $H^*(\mathcal{Z}_d) \cong H(R^*(\mathcal{K}))$, the group above is generated by the cohomology class of any monomial $u_j v_I \in R^*(\mathcal{K})$ of bidegree $(-m-n, 2m)$ such that $I \in \mathcal{K}$ and $J = [m] \setminus I$.

Proof. The isomorphism of groups follows from Theorem 4.5.8 and the fact that \mathcal{K} is orientable. We have $H^{m+n}(\mathcal{Z}_d) = H^{-(m-n), 2m}(\mathcal{Z}_d)$. The group $R^{-(m-n), 2m}(\mathcal{K})$ has basis of monomials $u_j v_I$ with $I \in \mathcal{K}$, $|I| = n$ and $J = [m] \setminus I$. Each of these monomials is a cocycle. Let I, I' be two $(n-1)$-simplices of \mathcal{K} having a common $(n-2)$-face. Consider the corresponding cocycles $u_j v_I$ and $u_j v_{I'}$ (where $J = [m] \setminus I$, $J' = [m] \setminus I'$):

$$u_j v_I = u_{j_1} u_{j_2} \cdots u_{j_{m-n}} v_{i_1} \cdots v_{i_{n-1}} v_i,$$

$$u_j v_{I'} = u_{i_1} u_{j_2} \cdots u_{j_{m-n}} v_{i_1} \cdots v_{i_{n-1}} v_{j_1}.$$

Since \mathcal{K} is a pseudomanifold, the $(n-2)$-face $\{i_1, \ldots, i_{n-1}\}$ is contained in exactly two $(n-1)$-faces, namely $I = \{i_1, \ldots, i_{n-1}, i_n\}$ and $I' = \{i_1, \ldots, i_{n-1}, j_1\}$. Therefore we have the following identity in $R^*(\mathcal{K})$:

$$d(u_{i_1} u_{j_1} u_{j_2} \cdots u_{j_{m-n}} v_{i_1} \cdots v_{i_{n-1}} v_i) =$$

$$= u_{j_1} u_{j_2} \cdots u_{j_{m-n}} v_{i_1} \cdots v_{i_{n-1}} v_i - u_{i_1} u_{j_2} \cdots u_{j_{m-n}} v_{i_1} \cdots v_{i_{n-1}} v_{j_1}.$$

Hence, $[u_j v_I] = [u_j v_{I'}]$ (as cohomology classes). Property (c) from the definition of a pseudomanifold implies that all monomials $u_j v_I \in R^{-(m-n), 2m}(\mathcal{K})$ represent the same cohomology class up to sign. The isomorphism (3.9) takes $u_j v_I$ to $\pm \alpha_I \in C^{n-1}(\mathcal{K})$, which represents a generator of $\tilde{H}^{n-1}(\mathcal{K}) \cong \mathbb{Z}$ (see Exercise 4.6.17). □

Remark. If \mathcal{K} is a non-orientable pseudomanifold, then the same argument shows that any monomial $u_j v_I \in R^*(\mathcal{K})$ as above represents the generator of $H^{m+n}(\mathcal{Z}_d) = H^{n-1}(\mathcal{K}) \cong \mathbb{Z}_2$.

Proposition 4.6.6. Let \mathcal{K} be a triangulated sphere of dimension $n-1$. Then Poincaré duality for the moment-angle manifold \mathcal{Z}_d respects the bigrading in cohomology. In particular,

$$b^{-p, 2q}(\mathcal{Z}_d) = b^{-(m-n)+p, 2(m-n)}(\mathcal{Z}_d) \quad \text{for } 0 \leq p \leq m-n, 0 \leq q \leq m.$$

Proof. The Poincaré duality maps (see Definition 3.4.3) are defined via the cohomology multiplication in $H^*(\mathcal{Z}_d)$, which respects the bigrading. We have $\dim \mathcal{Z}_d = m+n$, and

$$H^{m+n}(\mathcal{Z}_d) = \Tor_{\Z_2[v_1, \ldots, v_m]}^{-,(m-n), 2m}(\Z[K], \Z) \cong \Z,$$

by Lemma 4.6.5. This implies the required identity for the Betti numbers. □

Corollary 4.6.7. Let \mathcal{K} be a triangulated $(n-1)$-sphere and \mathcal{Z}_d the corresponding moment-angle manifold, $\dim \mathcal{Z}_d = m+n$. Then

(a) $b^{-p, 2q}(\mathcal{Z}_d) = 0$ for $p \geq m-n$, with the only exception $b^{-(m-n), 2m} = 1$;

(b) $b^{-p, 2q}(\mathcal{Z}_d) = 0$ for $q - p \geq n$, with the only exception $b^{-(m-n), 2m} = 1$.

It follows that if $|\mathcal{K}| \geq S^{n-1}$, then nonzero bigraded Betti numbers $b^{r,2q}(Z_{\mathcal{K}})$, except $b^{0,0}(Z_{\mathcal{K}})$ and $b^{-(m-n),2m}(Z_{\mathcal{K}})$, appear only in the strip bounded by the lines $r = -(m-n-1)$, $r = -1$, $r + q = 1$ and $r + q = n - 1$ in the second quadrant, see Figure 4.1 (b).

A space X is called a Poincaré duality space (over k) if $H^*(X;k)$ is a Poincaré algebra (see Definition 3.4.3). We have the following characterisation of moment-angle complexes with Poincaré duality, extending the result of Corollary 4.6.6.

Theorem 4.6.8. $Z_{\mathcal{K}}$ is a Poincaré duality space over a field k if and only \mathcal{K} is a Gorenstein complex over k.

Proof. Assume that \mathcal{K} is a Gorenstein complex. Consider the algebra T defined in Theorem 3.4.4, i.e. $T = \bigoplus_{i=0}^{d} T^i$, where $T^i = \text{Tor}_{k[m]}^i(k[\mathcal{K}], k)$ and $d = \max\{j: \text{Tor}_{k[m]}^j(k[\mathcal{K}], k) \neq 0\}$. Since T is Poincaré algebra, $k \cong T^0 \cong \text{Hom}_k(T^d, T^d)$, which implies that $T^d \cong k$. Since T has a bigrading, we obtain $T^d = T^{d,2q}$ for some $q \geq 0$. Since the multiplication in T respects the bigrading, the isomorphisms $T^i \cong \text{Hom}_k(T^{d-i}, T^d)$ from the definition of a Poincaré algebra split into isomorphisms

$$T^{i,2j} \cong \text{Hom}_k(T^{d-i,2(q-j)}, T^{d,2q}).$$

Let $H^k = H^k(Z_{\mathcal{K}}; k)$ and $H = \bigoplus_{i=0}^{d} H^k$; then $H^k = \bigoplus_{i+2j=k} T^{i,2j}$ and $r = d + 2q$. Therefore, we have isomorphisms

$$H^k = \bigoplus_{i+2j=k} T^{i,2j} \cong \bigoplus_{i+2j=k} \text{Hom}_k(T^{d-i,2(q-j)}, T^{d,2q}) = \text{Hom}_k(H^{r-k}, H^r),$$

which imply that H is a Poincaré algebra.

Now assume that $H = \bigoplus_{k=0}^{d} H^k$ is a Poincaré algebra. Then

$$k \cong H^r = \text{Tor}_{k[v_1, \ldots, v_m]}^{d,2q}(k[\mathcal{K}], k) = T^{d,2q}$$

for some $d, q \geq 0$. Since the multiplication in the cohomology of $Z_{\mathcal{K}}$ respects the bigrading, the isomorphisms $H^k \cong \text{Hom}_k(H^{r-k}, H^r)$ split into isomorphisms

$$H^{r-i,2j} = T^{i,2j} \cong \text{Hom}_k(T^{d-i,2(q-j)}, T^{d,2q}),$$

which in turn define isomorphisms

$$T^i = \bigoplus_{j} T^{i,2j} \cong \bigoplus_{j} \text{Hom}_k(T^{d-i,2(q-j)}, T^{d,2q}) = \text{Hom}_k(T^{d-i}, T^d).$$

Thus, T is a Poincaré algebra. \qed

Remark. We do not assume that $r = \max\{k: H^k(Z_{\mathcal{K}}; k) \neq 0\}$ is equal to $\dim Z_{\mathcal{K}} = m + n$ in Theorem 4.6.8. It follows from the proof above that $Z_{\mathcal{K}}$ is a Poincaré duality space with $r = \dim Z_{\mathcal{K}}$ if and only if \mathcal{K} is a Gorenstein complex.

Here are some explicit examples of calculations of $H^*(Z_{\mathcal{K}})$ using Theorem 4.5.4.

Example 4.6.9. Let $\mathcal{K} = \partial \Delta^{m-1}$. Then

$$Z[\mathcal{K}] = \mathbb{Z}[v_1, \ldots, v_m]/(v_1 \cdots v_m).$$

The cocycle $u_1 v_2 v_3 \cdots v_m \in A[u_1, \ldots, v_m] \otimes Z[\mathcal{K}]$ of bidegree $(-1, 2m)$ represents a generator of the top degree cohomology group of $Z_{\mathcal{K}} \cong S^{2m-1}$.
Example 4.6.10. Let \mathcal{K} be the boundary of 5-gon. We have $\dim \mathcal{Z}_\mathcal{K} = 7$. We enumerate the vertices of \mathcal{K} clockwise. The face ring of \mathcal{K} is given in Example 3.1.4.3. The group $H^3(\mathcal{Z}_\mathcal{K})$ has 5 generators corresponding to the diagonals of the 5-gon; these generators are represented by the cocycles $u_iv_{i+2} \in \mathbb{Z}[\mathcal{K}] \otimes \Lambda [u_1, \ldots, u_5]$, $1 \leq i \leq 5$ (the summation of indices is modulo 5). A direct calculation shows that $H^4(\mathcal{Z}_\mathcal{K})$ also has 5 generators, represented by the cocycles $u_ju_{j+1}v_{j+3}$, $1 \leq j \leq 5$. The Betti vector of $\mathcal{Z}_\mathcal{K}$ is therefore given by

$$(b^0(\mathcal{Z}_\mathcal{K}), b^1(\mathcal{Z}_\mathcal{K}), \ldots, b^7(\mathcal{Z}_\mathcal{K})) = (1, 0, 0, 5, 0, 0, 1).$$

By Lemma 4.6.5, the product of cocycles u_iu_{i+2} and $u_ju_{j+1}v_{j+3}$ represents a generator of $H^7(\mathcal{Z}_\mathcal{K})$ if and only if all the indices $i, i + 2, j, j + 1, j + 3$ are different. Hence, for each cohomology class $[u_iv_{i+2}] \in H^3(\mathcal{Z}_\mathcal{K})$ there is a unique class $[u_ju_{j+1}v_{j+3}] \in H^4(\mathcal{Z}_\mathcal{K})$ such that the product $[u_iv_{i+2}] \cdot [u_ju_{j+1}v_{j+3}]$ is nonzero. These calculations are summarised by an isomorphism of cohomology rings

$$H^*(\mathcal{Z}_\mathcal{K}) \cong H^* \left((S^3 \times S^4)^{\mathcal{K}}\right),$$

in accordance with Exercise 4.2.10.

Example 4.6.11. Now we calculate the Betti numbers and the cohomology product for $\mathcal{Z}_\mathcal{K}$ in the case when \mathcal{K} is a boundary of an m-gon with $m \geq 4$. It follows from Corollary 4.6.7 that the only nonzero bigraded Betti numbers of $\mathcal{Z}_\mathcal{K}$ are $b^{(p-1),2p} = 2$ for $2 \leq p \leq m - 2$ and $b^{1,0}(\mathcal{Z}_\mathcal{K}) = b^{(m-2),2m}(\mathcal{Z}_\mathcal{K}) = 1$. The ordinary Betti numbers are therefore given by

$$b^0(\mathcal{Z}_\mathcal{K}) = b^{m+2}(\mathcal{Z}_\mathcal{K}) = 1, \quad b^k(\mathcal{Z}_\mathcal{K}) = b^{-(k-2),2(k-1)}(\mathcal{Z}_\mathcal{K}) \quad \text{for} \quad 3 \leq k \leq m - 1.$$

To calculate $b^{-(k-2),2(k-1)}(\mathcal{Z}_\mathcal{K})$ for $3 \leq k \leq m - 1$ we use the algebra $R^* = R^*(\mathcal{K})$ of Construction 3.2.5. We have

(4.19) \hspace{1cm} b^{-(k-2),2(k-1)}(\mathcal{Z}_\mathcal{K}) = \text{rank} \ H^{-(k-2),2(k-1)}(R^*, d) = \text{rank} \ ker \ d : R^{-(k-2),2(k-1)} \to R^{-(k-3),2(k-1)} - \text{rank} \ dR^{-(k-1),2(k-1)}.

Since $H^{-(k-1),2(k-1)}(\mathcal{Z}_\mathcal{K}) = 0$ for $k > 1$, the differential d from $R^{-(k-1),2(k-1)}$ is monomorphic, and

$$\text{rank} \ dR^{-(k-1),2(k-1)} = \text{rank} \ R^{-(k-1),2(k-1)}.$$

Similarly, since $H^{-(k-2),2(k-3)}(\mathcal{Z}_\mathcal{K}) = 0$ for $k \leq m$, the differential from $R^{-(k-2),2(k-1)}$ is epimorphic, and

$$\text{rank} \ ker \ d : R^{-(k-2),2(k-1)} \to R^{-(k-3),2(k-1)} = \text{rank} \ R^{-(k-2),2(k-1)} - \text{rank} \ R^{-(k-3),2(k-1)}.$$

Substituting the above two expressions into (4.19) and using formula (3.3) for the dimensions of R^{p-2q}, we calculate

$$b^k(\mathcal{Z}_\mathcal{K}) = b^{-(k-2),2(k-1)}(\mathcal{Z}_\mathcal{K})$$

$$= \text{rank} \ R^{-(k-2),2(k-1)} - \text{rank} \ R^{-(k-3),2(k-1)} - \text{rank} \ R^{-(k-1),2(k-1)}$$

$$= m(m-1) - m(m-2) - m(m-3)$$

$$= (k-2)(m-k-1) + (m-k)(m-k-1) \quad \text{for} \quad 3 \leq k \leq m - 1.$$

Note that the cohomology of $\mathcal{Z}_\mathcal{K}$ does not have torsion in this example (this follows from Theorem 4.5.8).
The product of any three classes of positive degree in $H^*(Z_K)$ is zero (i.e., the cohomology product length of Z_K is 2). Indeed, if $\alpha_i \in H^{(p_i-1,2p_i)}(Z_K)$ for $i = 1, 2, 3$, then
$$\alpha_1 \alpha_2 \alpha_3 \in H^{-(p_1+p_2+p_3-3),2(p_1+p_2+p_3)}(Z_K),$$
which is zero by Lemma 4.6.1 (e) (note that $n = 2$ in this example). Hence all nontrivial products in $H^*(Z_K)$ arise from Poincaré duality.

The above calculations of the Betti numbers together with the observations about the cohomology product can be summarised by saying that Z_K cohomologically looks like a connected sum of sphere products, namely,

$$H^*(Z_K) \cong H^* \left(\frac{m-1}{\#} \left(S^k \times S^{m+2-k} \right) \# \left(\frac{m-2}{k-1} \right) \right),$$

as rings.

According to a result of McGavran [259], the cohomology isomorphism of (4.20) is induced by a homeomorphism of manifolds. This is true even in the more general situation when K is the boundary of a stacked polytope (see Definition 1.4.8).

Theorem 4.6.12 ([259], [41, Theorem 6.3]). Let K be the boundary of a stacked polytope of dimension n with $m > n + 1$ vertices. Then the corresponding moment-angle manifold is homeomorphic to a connected sum of sphere products,

$$Z_K \cong \frac{m-n+1}{\#} \left(S^k \times S^{m+n-k} \right) \# \left(\frac{m-n}{k-1} \right).$$

For $n = 2$ we obtain a homeomorphism of manifolds underlying the isomorphism (4.20) (note that any 2-polytope is stacked).

The bigraded Betti numbers for stacked polytopes can also be calculated:

Theorem 4.6.13 ([345], [90], [233]). Let K be as in Theorem 4.6.12 and $n \geq 3$. Then the nonzero bigraded Betti numbers of Z_K are given by

- $b^{0,0}(Z_K) = b^{-(m-n),2m}(Z_K) = 1$,
- $b^{i,2(i+1)}(Z_K) = i^{m-n}{i+1}$ for $1 \leq i \leq m - n - 1$,
- $b^{i,2(i+n-1)}(Z_K) = (m - n - i)\binom{m-n}{m-n+1-i}$ for $1 \leq i \leq m - n - 1$.

Exercises.

4.6.15. If K is a d-dimensional pseudomanifold, then either $H_d(K) \cong \mathbb{Z}$ or $H_d(K) \cong 0$. What happens for homology and cohomology with coefficients in a field k?

4.6.16. If K is an orientable d-dimensional pseudomanifold (i.e. $H_d(K) \cong \mathbb{Z}$) then $H^d(K) \cong \mathbb{Z}$, and if K is non-orientable then $H^d(K) \cong \mathbb{Z}_2$. What happens for cohomology with coefficients in a field k?

4.6.17. Let K be an orientable d-dimensional pseudomanifold. The homology group $H_d(K) \cong \mathbb{Z}$ is generated by the class of simplicial chain $\langle K \rangle = \sum_{I \in K, \dim I = d} I$ where the d-simplices $I \in K$ are oriented properly (the fundamental homology class of K). The cohomology group $H^d(K) \cong \mathbb{Z}$ is generated by the class of any cochain α_I taking value 1 on an oriented d-simplex $I \in K$ and vanishing on all other simplices.
4.6.18. Calculate $H^*(Z_K)$ where K is the boundary of a pentagon using Theorem 4.5.8 and the description of the cohomology product given in Proposition 3.2.10 (or in Exercise 3.2.14).

4.7. Coordinate subspace arrangements

Here we establish a homotopy equivalence between the moment-angle complex Z_K and the complement of the arrangement of coordinate subspaces in \mathbb{C}^m corresponding to a simplicial complex K. As a corollary we obtain an explicit description of the cohomology ring of the complement. In some cases, knowing the cohomology ring allows us to identify the homotopy type of complements of arrangements.

Coordinate subspace arrangements already appeared in Section 3.1 as affine algebraic varieties corresponding to face rings (see Proposition 3.1.12). Here we consider these objects from the general point of view.

A coordinate subspace in \mathbb{C}^m can be defined as

$$L_I = \{(z_1, \ldots, z_m) \in \mathbb{C}^m : z_{i_1} = \cdots = z_{i_k} = 0\},$$

where $I = \{i_1, \ldots, i_k\}$ is a subset of $[m]$.

Construction 4.7.1. We assign to a simplicial complex K the set of complex coordinate subspaces, or coordinate subspace arrangement, given by

$$\mathcal{A}(K) = \{L_I : I \notin \mathcal{K}\}.$$

We denote by $U(K)$ the complement to $\mathcal{A}(K)$ in \mathbb{C}^m, that is,

$$U(K) = \mathbb{C}^m \setminus \bigcup_{I \notin \mathcal{K}} L_I.$$

Observe that if $K' \subset K$ is a subcomplex, then $U(K') \subset U(K)$.

Proposition 4.7.2. The assignment $K \mapsto U(K)$ defines a bijective inclusion-preserving correspondence between simplicial complexes on the set $[m]$ and complements of coordinate subspace arrangements in \mathbb{C}^m.

Proof. We need to reconstruct a simplicial complex from the complement and check that it indeed defines the inverse correspondence. Let \mathcal{A} be a coordinate subspace arrangement in \mathbb{C}^m, and let U be its complement. Set

$$\mathcal{K}(U) = \{I \subset [m] : L_I \cap U \neq \emptyset\}.$$

It is easy to see that $\mathcal{K}(U)$ is a simplicial complex satisfying $U(\mathcal{K}(U)) = U$ and $\mathcal{K}(U(K)) = K$. \qed

If $\{i\}$ is a ghost vertex of K, then the coordinate subspace arrangement $\mathcal{A}(K)$ contains the hyperplane $\{z_i = 0\}$. The arrangement $\mathcal{A}(K)$ does not contain hyperplanes if and only the vertex set of K is the whole $[m]$.

The complement $U(K)$ is an example of a polyhedral product space (see Construction 4.2.1), as is shown by the next proposition:

Proposition 4.7.3. $U(K) = (\mathbb{C}, \mathbb{C}^\times)^K$, where $\mathbb{C}^\times = \mathbb{C} \setminus \{0\}$.

Proof. Given a point \(z = (z_1, \ldots, z_m) \in \mathbb{C}^m \), consider its zero set \(\omega(z) = \{ i \in [m] : z_i = 0 \} \subset [m] \). We have

\[
U(K) = \mathbb{C}^m \setminus \bigcup_{i \in \mathcal{K}} L_i = \mathbb{C}^m \setminus \bigcup_{i \in \mathcal{K}} \{ z : \omega(z) \supset I \} = \mathbb{C}^m \setminus \bigcup_{i \in \mathcal{K}} \{ z : \omega(z) \subset I \}
\]

\[
= \bigcup_{i \in \mathcal{K}} \{ z : \omega(z) = I \} = \bigcup_{i \in \mathcal{K}} \{ z : \omega(z)
\triangleq \omega(z) = \{ i \in [m] : z_i = 0 \} \}
\]

is the complement to all coordinate subspaces of codimension two.

4. More generally, if \(K \) is the \(i \)-dimensional skeleton of \(\Delta^{m-1} \), then \(U(K) \) is the complement to all coordinate subspaces of codimension \(i + 2 \).

Since each coordinate subspace is invariant under the standard action of \(T^m \) on \(\mathbb{C}^m \), the complement \(U(K) \) is also a \(T^m \)-invariant subset in \(\mathbb{C}^m \).

A deformation retraction of a space \(X \) onto a subspace \(A \) is a homotopy \(F_t : X \to X, t \in [0] \), such that \(F_0 = \text{id} \) (the identity map), \(F_1(X) = A \) and \(f_t|_A = \text{id} \) for all \(t \). The term ‘deformation retraction’ is often used only for the last map \(f = F_1 : X \to A \); this map is a homotopy equivalence.

Theorem 4.7.5. The moment-angle complex \(Z_K \) is a \(T^m \)-invariant subspace of \(U(K) \), and there is a \(T^m \)-equivariant deformation retraction

\[
Z_K \hookrightarrow U(K) \xrightarrow{\sim} Z_K.
\]

Proof. We have \(Z_K = (\mathbb{D}, S)^K \subset (\mathbb{C}, \mathbb{C}^\times)^K = U(K) \) by the functoriality of the polyhedral product, so the moment-angle complex \(Z_K \) is indeed contained in the complement \(U(K) \) as a \(T^m \)-invariant subset.

The deformation retraction \(U(K) \to Z_K \) will be constructed by induction. We remove simplices from \(\Delta^{m-1} \) until we obtain \(\mathcal{K} \), in such a way that we get a simplicial complex at each intermediate step.

The base of induction is clear: if \(K = \Delta^{m-1} \), then \(U(K) = \mathbb{C}^m \), \(Z_K = \mathbb{D}^m \), and the retraction \(\mathbb{C}^m \to \mathbb{D}^m \) is evident.

The orbit space \(Z_K / T^m \) is the cubical complex \(cc(K) = (\mathbb{I}, 1)^K \) (see Construction 2.9.11). The orbit space \(U(K) / T^m \) can be identified with

\[
U(K)_{\geq} = U(K) \cap \mathbb{R}^m_{\geq} = (\mathbb{R}_{\geq}, \mathbb{R}_{\geq})^K
\]

where \(\mathbb{R}^m_{\geq} \) is viewed as a subset in \(\mathbb{C}^m \).

We shall first construct a deformation retraction \(r : U(K)_{\geq} \to cc(K) \) of orbit spaces, and then cover it by a deformation retraction \(\bar{r} : U(K) \to Z_K \).

Now assume that \(K \) is obtained from a simplicial complex \(\mathcal{K} \) by removing one maximal simplex \(J = \{ j_1, \ldots, j_k \} \), i.e. \(\mathcal{K} \cup J = \mathcal{K}' \). Then the cubical complex \(cc(K') \) is obtained from \(cc(K) \) by adding a single \(k \)-dimensional face \(C_j = (\mathbb{I}, 1)^j \).

We also have \(U(K) = U(K') \setminus L_J \), so that

\[
U(K)_{\geq} = U(K')_{\geq} \setminus \{ y : y_{j_1} = \cdots = y_{j_k} = 0 \}.
\]
4.7. Coordinate Subspace Arrangements

We may assume by induction that there is a deformation retraction \(r': U(K') \rightarrow cc(K') \) such that \(\omega(r'(y)) = \omega(y) \), where \(\omega(y) \) is the set of zero coordinates of \(y \). In particular, \(r' \) restricts to a deformation retraction

\[
r': U(K') \setminus \{ y : y_{j_1} = \cdots = y_{j_k} = 0 \} \rightarrow cc(K') \setminus y_j
\]

where \(y_j \) is the point with coordinates \(y_{j_1} = \cdots = y_{j_k} = 0 \) and \(y_j = 1 \) for \(j \notin J \).

Since \(J \notin K \), we have \(y_j \notin cc(K) \). On the other hand, \(y_j \) belongs to the extra face \(C_J = (1,1)^d \) of \(cc(K') \). We therefore may apply the deformation retraction \(r_J \) shown in Figure 4.2 on the face \(C_J \), with centre at \(y_j \). In coordinates, a homotopy \(F_t \) between the identity map \(cc(K') \setminus y_j \rightarrow cc(K') \setminus y_j \) (for \(t = 0 \)) and the retraction \(r_J : cc(K') \setminus y_j \rightarrow cc(K) \) (for \(t = 1 \)) is given by

\[
F_t : cc(K') \setminus y_j \rightarrow cc(K') \setminus y_j,
\]

\[
(y_1, \ldots, y_m, t) \mapsto (y_1 + t\alpha_1 y_1, \ldots, y_m + t\alpha_m y_m)
\]

where

\[
\alpha_i = \begin{cases}
\frac{1 - \max_{j \in J} y_j}{\max_{j \in J} y_j}, & \text{if } i \in J, \\
0, & \text{if } i \notin J,
\end{cases} \quad \text{for } 1 \leq i \leq m.
\]

We observe that \(\omega(F_t(y)) = \omega(y) \) for any \(t \) and \(y \in cc(K') \). Now, the composition

\[
(4.23) \quad r : U(K') = U(K') \setminus \{ y : y_{j_1} = \cdots = y_{j_k} = 0 \} \xrightarrow{r'} cc(K') \setminus y_j \xrightarrow{r_J} cc(K)
\]

is a deformation retraction, and it satisfies \(\omega(r(y)) = \omega(y) \) as this is true for \(r_J \) and \(r' \). The inductive step is now complete. The required retraction \(\tilde{r} : U(K) \rightarrow Z_K \) covers \(r \) as shown in the following commutative diagram:

\[
\begin{array}{ccc}
Z_K & \xrightarrow{\mu} & U(K) & \xrightarrow{\tilde{r}} & Z_K \\
\mu \downarrow & & \mu \downarrow & & \mu \downarrow \\
cc(K) & \xrightarrow{\mu} & U\geq(K) & \xrightarrow{r} & cc(K)
\end{array}
\]

Explicitly, \(\tilde{r} \) is decomposed inductively in a way similar to (4.23),

\[
\tilde{r} : U(K) = U(K') \setminus L_J \xrightarrow{r'} Z_K \setminus (y_j) \xrightarrow{r_J} Z_K,
\]
where $\mu^{-1}(y_j) = \prod_{j \in J} \{0\} \times \prod_{j \notin J} S$, and \bar{r}_j is given in coordinates $(z_1, \ldots, z_m) = (\sqrt{y_1 e^{i\varphi_1}}, \ldots, \sqrt{y_m e^{i\varphi_m}})$ by

$$(\sqrt{y_1 e^{i\varphi_1}}, \ldots, \sqrt{y_m e^{i\varphi_m}}) \mapsto (\sqrt{y_1 + \alpha_1 y_1 e^{i\varphi_1}}, \ldots, \sqrt{y_m + \alpha_m y_m e^{i\varphi_m}})$$

with α_i as above. \hfill \Box

Since $U(K)$ and Z_K are homotopy equivalent, we can use the results on the cohomology of Z_K (such as Theorems 4.5.4 and 4.5.8) to describe the cohomology rings of coordinate subspace arrangement complements. The additive isomorphism $H^k(U(K)) \cong \bigoplus_{-i+j=k} \text{Tor}_{k}^{i,j}(k[K], k)$ has been also proved in [149].

Example 4.7.6. Let K be the set of m disjoint points. Then Z_K is homotopy equivalent to the complement $U(K)$ of Example 4.7.3, and

$$Z[K] = Z[v_1, \ldots, v_m]/(v_i v_j, \ i \neq j).$$

The subspace of cocycles in $R^*(K)$ has a basis of monomials

$$u_{i_1} u_{i_2} \cdots u_{i_k} v_{i_{k+1}} \quad \text{with} \quad i_p \neq i_q \text{ for } p \neq q.$$

Since the total degree of $u_{i_1} u_{i_2} \cdots u_{i_{k-1}} v_{i_k}$ is $k + 1$, the space of cocycles of degree $k + 1$ has dimension $m(m - 1)$. The subspace of coboundaries of degree $k + 1$ has basis of the elements of the form $d(u_{i_1} \cdots u_{i_k})$ and has dimension $(m \choose k)$. Therefore,

$$\text{rank } H^0(U(K)) = 1,$n
$$\text{rank } H^1(U(K)) = H^2(U(K)) = 0,$n
$$\text{rank } H^{k+1}(U(K)) = m(m - 1) - (m \choose k) = (k - 1) (m \choose k), \quad \text{for } 2 \leq k \leq m,$n

and the multiplication in the cohomology of $U(K)$ is trivial.

The calculation of the previous example shows that if K is the set of m points, then there is a cohomology ring isomorphism

$$H^*(U(K)) \cong H^* \left(\bigvee_{k=2}^m (S^{k+1})^{\vee(k-1)} {m \choose k} \right),$$

where $X^{\vee k}$ denotes the k-fold wedge of a space X. This cohomology isomorphism is induced by a homotopy equivalence, as is shown by the following result:

Theorem 4.7.7 ([157], [158, Corollary 9.5]). Let K be the i-dimensional skeleton of the simplex Δ^{m-1}, so that $U(K)$ is the complement to all coordinate planes of codimension $i + 2$ in \mathbb{C}^m. Then $U(K)$ is homotopy equivalent to a wedge of spheres:

$$U(K) \simeq \bigvee_{k=i+2}^m (S^{i+k+1})^{\vee(k-1)} {m \choose k+1}.$$
A coordinate subspace can be given either by setting some coordinates to zero, as in (4.21), or as the linear span of a subset of the standard basis e_1, \ldots, e_m. The latter approach leads to an alternative way of parametrising complements of coordinate subspace arrangements by simplicial complexes, which is related to the former one by Alexander duality.

Given a subset $I \subset [m]$ we set $S_I = \mathbb{C}\langle e_i : i \in I \rangle$ (the \mathbb{C}-span of the basis vectors corresponding to I), and use the notation $\hat{I} = [m] \setminus I$ and $\hat{K} = \{ I \subset [m] : I \notin K \}$ from Definition 2.4.1. Then the coordinate subspace arrangement corresponding to a simplicial complex K can be written in the following two ways:

$$\mathcal{A}(K) = \{ L_I : I \notin K \} = \{ S_{\hat{I}} : \hat{I} \in \hat{K} \}.$$

Using Alexander duality we can reformulate the description of the cohomology of $U(K)$ in terms of full subcomplexes of K (Theorem 4.5.8) as follows.

Proposition 4.7.8. There are isomorphisms

$$\overline{H}^q(U(K)) \cong \bigoplus_{I \in \hat{K}} \overline{H}^q_{2m-2|\hat{I}|+q-2}(\text{lk}_{\hat{K}} \hat{I}).$$

Proof. By Theorems 4.7.5 and 4.5.8,

$$H^q(U(K)) \cong \bigoplus_{I \subset [m]} H^q_{|I|-1}(K_I).$$

Nonempty simplices $I \in K$ do not contribute to the sum above, since the corresponding subcomplexes K_I are contractible. Since $H^{-1}(\varnothing) = \mathbb{Z}$, the empty simplex contributes \mathbb{Z} to $H^0(U(K))$. Therefore, we can rewrite the isomorphism above as

$$H^q(U(K)) \cong \bigoplus_{I \notin \hat{K}} H^q_{|I|-1}(K_I).$$

Using Alexander duality (Corollary 2.4.6) we calculate

$$\overline{H}^q_{|I|-1}(K_I) \cong \overline{H}_{|\hat{I}|-3+|I|-1}(\text{lk}_{\hat{K}} \hat{I}) = \overline{H}^q_{2m-2|\hat{I}|+q-2}(\text{lk}_{\hat{K}} \hat{I}),$$

where $\hat{I} = [m] \setminus I$ is a simplex of \hat{K}.

Proposition 4.7.8 is a particular case of the well-known Goresky–MacPherson formula [155, Chapter III], which calculates the (co)homology groups of the complement of an arrangement of affine subspaces in terms of its intersection poset. In the case of coordinate subspace arrangements $\mathcal{A}(K)$ the intersection poset is the face poset of the dual complex \hat{K}. For more on the relationships between general affine subspace arrangements and moment-angle complexes see [68, Chapter 8].

Exercises.

4.7.9. The affine algebraic variety $X(K)$ corresponding to the face ring $\mathbb{C}[K]$ (see Proposition 3.1.12) and the coordinate subspace arrangement $\mathcal{A}(K)$ of Construction 4.7.1 are related by the identity $X(\hat{K}) = \mathcal{A}(K)$, where $\hat{K} = \{ I \subset [m] : [m] \setminus I \notin K \}$ is the Alexander dual complex.

4.7.10. The deformation retraction $U(K) \to Z_K$ constructed in Theorem 4.7.5 can be defined by a single formula as follows. Given $z = (z_1, \ldots, z_m) \in \mathbb{C}^m$, set

$$\varepsilon(z) = \min_{I \notin K} \max_{j \notin I} |z_j|.$$
Note that \(\varepsilon(z) > 0 \) whenever \(z \in U(K) \). Now the formula
\[
F_t(z)_i = (1 - t)z_i + \frac{t z_i}{\max(|z_i|, \varepsilon(z))}, \quad i = 1, \ldots, m, \quad 0 \leq t \leq 1,
\]
defines a homotopy \(F_t \) between the identity map \(U(K) \rightarrow U(K) \) and a retraction \(U(K) \rightarrow Z_K \). This formula was suggested by A. Gaifullin.

4.7.11. Show directly that the complement to the 3 coordinate lines in \(\mathbb{C}^3 \) is homotopy equivalent to the wedge of spheres \(S^3 \vee S^3 \vee S^3 \vee S^4 \vee S^4 \); this corresponds to \(m = 3 \) in (4.24).

4.7.12. Show directly (without referring to Theorem 4.7.5 and Proposition 4.3.5) that the complement \(U(K) \) is 2-connected if \(K \) does not have ghost vertices, and that \(U(K) \) is \(2q \)-connected if \(K \) is \(q \)-neighbourly.
Moment-Angle Complexes: Additional Topics

4.8. Free and almost free torus actions on moment-angle complexes

Here we consider free and almost free actions of toric subgroups $T^k \subset \mathbb{T}^m$ on \mathcal{Z}_K. As usual, \mathcal{K} is an $(n-1)$-dimensional simplicial complex on $[m]$, and \mathcal{Z}_K is the corresponding moment-angle complex.

We start with a simple characterisation of the stabilisers of the standard \mathbb{T}^m-action on \mathcal{Z}_K. For each $I \subset [m]$ we consider the coordinate subtorus

$$T^I = \{ (t_1, \ldots, t_m) \in \mathbb{T}^m : t_j = 1 \text{ for } j \notin I \} = \prod_{i \notin I} \mathbb{T} \subset \mathbb{T}^m$$

(note that $T^I = (T, 1)^I$ in the notation of Construction 4.2.1).

Proposition 4.8.1. Let $z \in \mathcal{Z}_K$, and set $\omega(z) = \{ i \in [m] : z_i = 0 \} \in \mathcal{K}$. Then the stabiliser of z with respect to the \mathbb{T}^m-action is $T^{\omega(z)}$. Furthermore, each coordinate subtorus T^I for $I \subset \mathcal{K}$ is the stabiliser for a point $z \in \mathcal{Z}_K$.

Proof. An element $t = (t_1, \ldots, t_m) \in \mathbb{T}^m$ fixes z if and only if $t_i = 1$ whenever $z_i \neq 0$, which is equivalent to that $t \in T^{\omega(z)}$. The last statement is also clear: T^I is the stabiliser for any $z \in (\mathbb{D}, \mathbb{S})^I \subset \mathcal{Z}_K$ with $\omega(z) = I$.

Recall that an action of a group on a topological space is almost free if all stabilisers are finite.

Definition 4.8.2. We define the free toral rank of \mathcal{Z}_K, denoted by $\text{ftr} \, \mathcal{Z}_K$, as the maximal dimension of toric subgroups $T^k \subset \mathbb{T}^m$ acting on \mathcal{Z}_K freely. Similarly, the almost free toral rank of \mathcal{Z}_K, denoted by $\text{atr} \, \mathcal{Z}_K$, is the maximal dimension of toric subgroups $T^k \subset \mathbb{T}^m$ acting on \mathcal{Z}_K almost freely.

Proposition 4.8.3. Let \mathcal{K} be a simplicial complex of dimension $n-1$ on m vertices and $\mathcal{K} \neq \Delta^{m-1}$. The toral ranks of \mathcal{Z}_K satisfy the following inequalities:

$$1 \leq \text{ftr} \, \mathcal{Z}_K \leq \text{atr} \, \mathcal{Z}_K \leq m - n.$$

Proof. By Proposition 4.8.1, stabilisers for the \mathbb{T}^m-action on \mathcal{Z}_K are coordinate subgroups of the form T^I. The diagonal circle in \mathbb{T}^m intersects each of these coordinate subgroups trivially (since $I \neq [m]$), and therefore acts freely on \mathcal{Z}_K. This proves the first inequality. The second is obvious. To prove the third one, assume that $T^k \subset \mathbb{T}^m$ acts almost freely on \mathcal{Z}_K. Then the intersection of T^k with every \mathbb{T}^m-stationary subgroup T^I is a finite group. Choose a maximal simplex $I \in \mathcal{K}$, $|I| = n$. Then $T^I \cap T^k$ can be finite only if $k \leq m - n$.

The map $\mathbb{R}^m \to \mathbb{T}^m$, $(\varphi_1, \ldots, \varphi_m) \mapsto (e^{2\pi i \varphi_1}, \ldots, e^{2\pi i \varphi_m})$, identifies \mathbb{T}^m with the quotient $\mathbb{R}^m/\mathbb{Z}^m$. Subtori $T^k \subset \mathbb{T}^m$ of dimension k bijectively correspond to subgroups $L \subset \mathbb{Z}^m$ of rank k which are direct summands in \mathbb{Z}^m. The inclusion
$T^k \subset \mathbb{T}^m$ can be viewed as $L_\mathbb{R} / L \subset \mathbb{R}^m / \mathbb{Z}^m$, where $L_\mathbb{R}$ is the k-dimensional subspace in \mathbb{R}^m spanned by L.

Choosing a basis in L we obtain an integer $m \times k$-matrix $S = (s_{ij})$, $1 \leq i \leq m$, $1 \leq j \leq k$, so that L is identified with the image of $S: \mathbb{Z}^k \to \mathbb{Z}^m$. The k-torus T^k is the image of the corresponding monomorphism of tori $T^k \to \mathbb{T}^m$, namely,

$$T^k = \{(e^{2\pi i(s_{11}\psi_1 + \cdots + s_{1k}\psi_k)}, \ldots, e^{2\pi i(s_{m1}\psi_1 + \cdots + s_{mk}\psi_k)}) \} \subset \mathbb{T}^m,$$

where $(\psi_1, \ldots, \psi_k) \in \mathbb{R}^k$. Since L is a direct summand in \mathbb{Z}^m, the columns of S form part of the lattice \mathbb{Z}^m.

Lemma 4.8.4. Let T^k be a k-dimensional subtorus in \mathbb{T}^m and let $L \subset \mathbb{Z}^m$ be the corresponding direct summand subgroup of rank k. Let $S = (s_{ij})$, $1 \leq i \leq m$, $1 \leq j \leq k$, be a matrix defining L, so that T^k is given by (4.25).

(a) The torus T^k acts almost freely on \mathbb{Z}_K if and only if for each $I \in \mathcal{K}$, the intersection of subspaces $L_\mathbb{R}$ and \mathbb{R}^I in \mathbb{R}^m is zero. Equivalently, the $(m - |I|) \times k$-matrix S_I obtained by deleting from S the rows with numbers $i \notin I$ has rank k.

(b) The torus T^k acts freely on \mathbb{Z}_K if and only if for each $I \in \mathcal{K}$, the subgroup spanned by L and \mathbb{Z}^I in \mathbb{Z}^m is a direct summand of rank $k + |I|$. Equivalently, the columns of the $(m - |I|) \times k$-matrix S_I form part of a basis of $\mathbb{Z}^{m-|I|}$.

Proof. We prove (a) first. By Proposition 4.8.1, the T^k-action on \mathbb{Z}_K is almost free if and only if the intersection $T^k \cap \mathbb{T}^I \subset \mathbb{T}^m$ is finite for each $I \in \mathcal{K}$. This intersection can be identified with the kernel of the map $f: T^k \times \mathbb{T}^I \to \mathbb{T}^m$ (the product of the inclusion maps $T^k \to \mathbb{T}^m$ and $\mathbb{T}^I \to \mathbb{T}^m$). This kernel is finite if and only if the corresponding map of real spaces $L_\mathbb{R} \times \mathbb{R}^I \to \mathbb{R}^m$ is injective, which is equivalent to $L_\mathbb{R} \cap \mathbb{R}^I = \{0\}$. Let $I = \{i_1, \ldots, i_p\}$, then the matrix of f has the form $(S|e_{i_1} \cdots e_{i_p})$, where e_i is the ith standard basis column vector. Clearly, this matrix has rank $k + |I|$ if and only if the matrix S_I has rank k.

Now we prove (b). The T^k-action on \mathbb{Z}_K is free if and only if the kernel of $f: T^k \times \mathbb{T}^I \to \mathbb{T}^m$ is trivial for each $I \in \mathcal{K}$, i.e. $T^k \times \mathbb{T}^I$ embeds as a subtorus. This is equivalent to the conditions stated in (b). \qed

Let $t = (t_1, \ldots, t_n) \in \mathbb{Z}[\mathcal{K}]$ be a linear sequence given by

$$t_i = \lambda_{i1}v_1 + \cdots + \lambda_{im}v_m, \quad \text{for } 1 \leq i \leq n.$$

(4.26)

We consider the integer $n \times m$-matrix $\Lambda = (\lambda_{ij})$, $1 \leq i \leq n$, $1 \leq j \leq m$. It defines a homomorphism of lattices $\Lambda: \mathbb{Z}^m \to \mathbb{Z}^n$ and a homomorphism of tori $\Lambda: \mathbb{T}^m \to \mathbb{T}^n$.

Theorem 4.8.5. The following conditions are equivalent:

(a) the sequence given by (4.26) is an isop in the rational face ring $\mathbb{Q}[\mathcal{K}]$;

(b) the kernel $T_\Lambda = \ker(\Lambda: \mathbb{T}^m \to \mathbb{T}^n)$ is a product of an $(m - n)$-torus and a finite group, and T_Λ acts almost freely on \mathbb{Z}_K.

Proof. We first observe that under either of the conditions (a) or (b) the rational map $\Lambda: \mathbb{Q}^m \to \mathbb{Q}^n$ is surjective. For each simplex $I \in \mathcal{K}$ we consider the
diagram

\[
\begin{array}{c}
\begin{array}{c}
0 \\
\downarrow \iota_1
\end{array} \\
\begin{array}{c}
\mathbb{Q}^{m-n} \\
\downarrow \\
\mathbb{Q}^n
\end{array}
\end{array}
\rightarrow
\begin{array}{c}
\begin{array}{c}
\mathbb{Q}[I] \\
\downarrow \iota_2
\end{array} \\
\begin{array}{c}
\mathbb{Q}^m \\
\downarrow \Lambda
\end{array} \\
\begin{array}{c}
\mathbb{Q}^{m-|I|} \\
\downarrow
\end{array}
\end{array}
\rightarrow
\begin{array}{c}
0
\end{array}
\]

where \(\iota_2 \) is the inclusion of the coordinate subspace \(\mathbb{Q}[I] \rightarrow \mathbb{Q}^m \). The map \(\Lambda \iota_2 \) is given by the \(n \times |I| \) matrix \(\Lambda_I = (\lambda_{ij}) \), \(1 \leq i \leq n, j \in I \). By Lemma 3.3.2, the sequence \((t_1, \ldots, t_n) \) is a rational Isop if and only if the rank of \(\Lambda_I \) is \(|I| \) for each \(I \in \mathcal{K} \). Hence condition (a) of the theorem is equivalent to the injectivity of the map \(\Lambda \iota_2 \) for each \(I \in \mathcal{K} \).

On the other hand, by Lemma 4.8.4 (a), the action of the \((m-n)\)-torus \(T_\Lambda \) on \(Z_K \) is almost free if and only if \(\iota_2(\mathbb{Q}^{m-n}) \cap \mathbb{Q}^I = \{0\} \) for each \(I \in \mathcal{K} \). The latter condition is equivalent to \(\iota_1(\mathbb{Q}^{m-n}) \cap \text{Ker} \, p_2 = \{0\} \), i.e. that \(p_2 \iota_1 \) is injective. Hence condition (b) of the theorem is equivalent to the injectivity of the map \(p_2 \iota_1 \) for each \(I \in \mathcal{K} \). Now the theorem follows from Lemma 1.2.5. \(\square \)

The almost free toral rank of \(Z_K \) can now be easily determined:

Corollary 4.8.6. Let \(K \) be a simplicial complex of dimension \((n-1)\) on \([m]\). Then \(\text{atr} \, Z_K = m - n \). That is, there is an \((m-n)\)-dimensional subtorus in \(\mathbb{T}^m \) acting almost freely on \(Z_K \).

Proof. Choose a rational Isop in \(\mathbb{Q}[K] \) by Theorem A.3.10, and multiply it by a common denominator to get an integral sequence \((4.26) \). It is still an Isop in \(\mathbb{Q}[K] \) (although it may fail to be an Isop in \(\mathbb{Z}[K] \)), and therefore the \((m-n)\)-torus \(T_\Lambda \) acts almost freely on \(Z_K \) by Theorem 4.8.5. \(\square \)

There is an analogue of Theorem 4.8.5 for free torus actions:

Theorem 4.8.7. The following conditions are equivalent:

(a) the sequence \((t_1, \ldots, t_n) \) given by \((4.26) \) is an Isop in \(\mathbb{Z}[K] \);

(b) \(T_\Lambda = \text{Ker}(\Lambda: \mathbb{T}^m \rightarrow \mathbb{T}^n) \) is an \((m-n)\)-torus acting freely on \(Z_K \).

Proof. The argument is the same as in the proof of Theorem 4.8.5: Lemma 1.2.5 is now applied to the diagram of integral lattices instead of rational vector spaces. \(\square \)

There is no analogue of Corollary 4.8.6 for free torus actions, as integral Isop's may fail to exist. Indeed, the free toral rank of \(Z_K \) where \(K \) is the boundary of a cyclic \(n \)-polytope with \(m \geq 2^n \) vertices is strictly less than \(m - n \), as shown by Example 3.3.4. The free toral rank of \(Z_K \) is a combinatorial characteristic of \(K \), also known as the *Buchstaber invariant*. Its determination is a very subtle problem; see \[130\] and \[144\] for some partial results in this direction.
There is the following important conjecture of equivariant topology and rational homotopy theory concerning almost free torus action.

Conjecture 4.8.8 (Toral Rank Conjecture, Halperin [174]). Assume that a torus T^k acts almost freely on a finite-dimensional topological space X. Then
\[\dim H^*(X; \mathbb{Q}) \geq 2^k, \]

i.e. the total dimension of the cohomology of X is at least that of the torus T^k.

The Toral Rank Conjecture is valid for $k \leq 3$ and is open in general. See [312] and [353] for the discussion of the current status of this conjecture.

In the case of moment-angle complexes we have the following result:

Theorem 4.8.9 ([83], [352]). Let K be a simplicial complex of dimension $n-1$ with m vertices, and let Z_K be the corresponding moment-angle complex. Then
\[\text{rank } H^*(Z_K) = \sum_{k=0}^{m+n} \text{rank } H^k(Z_K) \geq 2^{m-n}. \]

The proof of this theorem given in [352] uses a construction of independent interest and a couple of technical lemmata. We include this proof below.

Corollary 4.8.10. The Toral Rank Conjecture is valid for subtori $T^k \subset \mathbb{T}^m$ acting almost freely on Z_K.

The following is a particular case of the so-called simplicial wedge construction [311]. It has been brought into toric topology by the work [17].

Construction 4.8.11 (Simplicial doubling). Let K be a simplicial complex on the vertex set $[m]$. The **double** of K is the simplicial complex $D(K)$ on the vertex set $[2m] = \{1, 1', 2, 2', \ldots, m, m'\}$ whose missing faces (minimal non-faces) are $\{i_1, i_2', \ldots, i_k, i_k'\}$ where $\{i_1, \ldots, i_k\}$ is a missing face of K. In other words, $D(K)$ is determined by its face ring given by
\[k[D(K)] = k[v_1, v_1', \ldots, v_m, v_m']/\langle \{v_{i_1} v_{i_2}' \cdots v_{i_k} v_{i_k}'\} : \{i_1, \ldots, i_k\} \notin K \rangle. \]

Example 4.8.12.
1. If $K = \Delta^{m-1}$ (the full simplex on m vertices), then $D(K) = \Delta^{2m-1}$.
2. If $K = \partial \Delta^{m-1}$, then $D(K) = \partial \Delta^{2m-1}$.

The doubling construction interacts nicely with the polyhedral product:

Theorem 4.8.13. Let (X, A) be a pair of spaces, let K be a simplicial complex on $[m]$ and $D(K)$ its double. Then
\[(X, A)^{D(K)} = (X \times X, X \times A \cup A \times X)^K. \]

Proof. Set $(Y, B) = (X \times X, X \times A \cup A \times X)$. Given a point $y = (y_1, \ldots, y_m) \in Y^m$, we set
\[\omega_Y(y) = \{ i \in [m] : y_i \notin B \} \subset [m]. \]
Similarly, given $x = (x_1, x_1', \ldots, x_m, x_m') \in X^{2m}$, we set
\[\omega_X(x) = \{ j \in \{1, 1', \ldots, m, m'\} : x_j \notin A \} \subset \{1, 1', \ldots, m, m'\}. \]

We identify y with x by the formula $(y_1, \ldots, y_m) = ((x_1, x_1'), \ldots, (x_m, x_m')) \in Y^m = X^{2m}$. It follows from the definition of the polyhedral product that $y \notin \omega_Y(y)$.
\((Y, B)^K\) if and only if \(\omega_Y(y) \notin K\). The latter is equivalent to the condition \(\omega_X(x) \notin D(\mathcal{K})\), as \(\omega_Y(y) = \{i_1, \ldots, i_k\}\) implies \(\omega_X(x) \supset \{i_1, i'_1, \ldots, i_k, i'_k\}\). Therefore,

\[
y \notin (Y, B)^K \iff x \notin (X, A)^{D(\mathcal{K})},
\]

which implies that \((X, A)^{D(\mathcal{K})} = (Y, B)^K\). \(\square\)

Remark. The simplicial wedge \([311], [17]\) is a generalisation of the doubling construction, in which the \(i\)th vertex of \(\mathcal{K}\) is replaced by a \(j_i\)-tuple of vertices, for some vector \(j = (j_1, \ldots, j_m)\) of natural numbers. The double corresponds to \(j = (2, \ldots, 2)\). There is an analogue of Theorem 4.8.13 in this setting, see [17, §7].

As an important consequence of Theorem 4.8.13 we obtain the following relationship between the moment-angle complex \(Z_{\mathcal{K}}\) and its real analogue \(R_{\mathcal{K}}\):

Corollary 4.8.14. We have \(Z_{\mathcal{K}} \cong R_{D(\mathcal{K})}\).

Proof. Apply Theorem 4.8.13 to the pair \((X, A) = (D^1, S^0)\), observing that \((D^1 \times D^1, D^1 \times S^0 \cup S^0 \times D^1) \cong (D^2, S^1)\). \(\square\)

Lemma 4.8.15. Let \((X, A)\) be a pair of cell complexes such that \(A\) has a collar neighbourhood \(U(A)\) in \(X\) (i.e. there is a homeomorphism of pairs \((U(A), A) \cong (A \times (0,1), A \times \{0\})\)). Let \(Y = X_1 \cup A X_2\) be the space obtained by attaching two copies of \(X\) along \(A\). Then

\[
\text{rank } H^*(Y) \geq \text{rank } H^*(A).
\]

Proof. The assumption on \((X, A)\) implies that we can apply the Mayer-Vietoris sequence to the decomposition \(Y = X_1 \cup A X_2\):

\[
\cdots \rightarrow H^{k-1}(A) \xrightarrow{\partial_{k-1}} H^k(Y) \xrightarrow{\alpha_k} H^k(X_1) \oplus H^k(X_2) \xrightarrow{\beta_k} H^k(A) \rightarrow \cdots.
\]

The map \(\beta_k\) is \(i_1^* \oplus (-i_2^*)\), where \(i_1 : A \to X_1\) and \(i_2 : A \to X_2\) are the inclusions. Since \(X_1 = X_2 = X\), and the inclusions \(i_1\) and \(i_2\) coincide, we have \(\text{rank Ker } \beta_k \geq \text{rank } H^k(X)\) and \(\text{rank } \text{Im } \beta_k \leq \text{rank } H^k(X)\). Using these inequalities we calculate

\[
\text{rank } H^k(Y) = \text{rank Ker } \alpha_k + \text{rank } \text{Im } \alpha_k = \text{rank } \text{Im } \delta_{k-1} + \text{rank Ker } \beta_k \geq \text{rank } H^{k-1}(A) - \text{rank } \text{Im } \beta_{k-1} + \text{rank } H^k(X) \geq \text{rank } H^{k-1}(A) - \text{rank } H^{k-1}(X) + \text{rank } H^k(X).
\]

The required inequality is obtained by summing up over \(k\). \(\square\)

Theorem 4.8.16. Let \(\mathcal{K}\) be a simplicial complex of dimension \(n-1\) with \(m\) vertices, and let \(R_{\mathcal{K}}\) be the corresponding real moment-angle complex. Then

\[
\text{rank } H^*(R_{\mathcal{K}}) \geq 2^{m-n'} \geq 2^{m-n},
\]

where \(n'\) is the minimum of the cardinality of maximal simplices of \(\mathcal{K}\) (so that \(n' = n = \text{dim } \mathcal{K} + 1\) if and only if \(\mathcal{K}\) is pure).

Proofs of Theorems 4.8.9 and 4.8.16. We first prove the inequality for \(R_{\mathcal{K}}\), by induction on the number of vertices \(m\). For \(m = 1\) the statement is clear. We embed \(R_{\mathcal{K}}\) as a subcomplex in the ‘big’ cube \([-1, 1]^m\) (see Construction 4.1.5) with coordinates \(u = (u_1, \ldots, u_m)\), \(-1 \leq u_i \leq 1\). Assume that the first vertex
of K belongs to an $(n'-1)$-dimensional maximal simplex of K, and consider the following subspaces of R_K:

$$X_+ = \{ u \in R_K : u_1 \geq 0 \}, \quad X_- = \{ u \in R_K : u_1 \leq 0 \},$$

$$A = X_+ \cap X_- = \{ u \in R_K : u_1 = 0 \}.$$

Applying Lemma 4.8.15 to the decomposition $R_K = X_+ \cup_A X_-$ we obtain

$$\text{rank } H^*(R_K) \geq \text{rank } H^*(A).$$

On the other hand, A is the disjoint union of 2^{m-m_1-1} copies of $R_{lk_K(1)}$, where m_1 is the number of vertices of $lk_K(1)$. Since $\{1\}$ is a vertex of a maximal simplex of K of minimal cardinality n', the minimal cardinality of maximal simplices in $lk_K(1)$ is $n'_1 = n' - 1$. Now using the inductive hypothesis we obtain

$$\text{rank } H^*(A) = 2^{m-m_1-1} \text{rank } H^*(R_{lk_K(1)}) \geq 2^{m-m_1-1}2^{m_1-n'_1} = 2^{m-n'}.$$

Theorem 4.8.16 is therefore proved.

To prove Theorem 4.8.9 we use the fact that $Z_K \cong R_{D(K)}$, and observe that the numbers $m - n$ (and $m - n'$) for K and $D(K)$ coincide.

Using Theorems 4.5.4 and 4.5.8 we may reformulate Theorem 4.8.9 in both algebraic and combinatorial terms:

Theorem 4.8.17. Let K be a simplicial complex of dimension $n-1$ with m vertices, and let k be a field. Then

$$\dim \text{Tor}_{k}[w_1, \ldots, w_m](k[K], k) = \sum_{J \subseteq [n], k \geq 0} \dim \bar{H}^{k-|J|}(K; k) \geq 2^{m-n}.$$

As a corollary we obtain that the weak Horrocks Conjecture (Conjecture A.2.12) holds for a particular class of rings:

Corollary 4.8.18. Let K be a Cohen–Macaulay simplicial complex (over a field k) of dimension $n-1$ with m vertices. Let $t = (t_1, \ldots, t_n)$ be an lsop in $k[K]$, so that $k[m]/t \cong k[w_1, \ldots, w_m-n]$ and $\dim k[K]/t < \infty$. Then

$$\dim \text{Tor}_{k[w_1, \ldots, w_{m-n}]}(k[K]/t, k) \geq 2^{m-n},$$

i.e. the weak Horrocks Conjecture holds for the rings $k[K]/t$.

Proof. This follows from the previous theorem and Proposition 4.5.6. \qed

Exercises.

4.8.19. Show that $\text{ftr } Z_K = 1$ if and only if $K = \partial \Delta^{m-1}$.

4.8.20. The Toral Rank Conjecture fails if $\dim X = \infty$.

4.8.21. Show that the doubling operation respects the join, that is, $D(K \ast L) = D(K) \ast D(L)$.

4.8.22. Assume that K is the boundary complex of a simplicial n-polytope $Q \subset \mathbb{R}^n$ with m vertices v_1, \ldots, v_m. Then $D(K)$ is the boundary of a simplicial polytope $D(Q)$ of dimension $m+n$ with $2m$ vertices, which can be obtained in the following way. We embed \mathbb{R}^n as the coordinate subspace in \mathbb{R}^{m+n} on the last n coordinates. For each vertex $v_i \in Q \subset \mathbb{R}^n$ take the line $l_i \subset \mathbb{R}^{m+n}$ through v_i parallel to the ith coordinate line of \mathbb{R}^{m+n}, for $1 \leq i \leq m$. Then replace each v_i by a pair of points
$v'_i, v''_i \in l_i$, such that v_i the centre of the segment with the vertices v'_i, v''_i. Then the boundary of

$$D(Q) = \text{conv}(v'_1, v''_1, \ldots, v'_m, v''_m) \subset \mathbb{R}^{m+n}$$

is $D(K)$.

4.8.23. There is the following generalisation of Theorem 4.8.13. Let

$$(\mathbf{X}, \mathbf{A}) = \{(X_1, A_1), (X_1', A_1'), \ldots, (X_m, A_m), (X_m', A_m')\}$$

be a set of $2m$ pairs of spaces. Define a new set $(\mathbf{Y}, \mathbf{B}) = \{(Y_1, B_1), \ldots, (Y_m, B_m)\}$ of m pairs, where

$$(Y_i, B_i) = (X_i \times X_i', X_i \times A_i' \cup A_i \times X_i').$$

Then

$$(\mathbf{X}, \mathbf{A})^{D(K)} \cong (\mathbf{Y}, \mathbf{B})^K.$$

Further generalisations can be found in [17, §7].

4.8.24. The inequality $\text{rank } H^*(\mathcal{R}_K) \geq 2^{m-n}$ of Theorem 4.8.16 (or the inequality $\text{rank } H^*(\mathcal{Z}_K) \geq 2^{m-n}$) turns into identity if and only if

$$K = \partial \Delta^{k_1-1} \ast \partial \Delta^{k_2-1} \ast \cdots \ast \partial \Delta^{k_p-1} \ast \Delta^{m-s-1},$$

where $s = k_1 + \cdots + k_p$ and the join factor Δ^{m-s-1} is void if $s = m$ (compare Exercise 3.3.23). In this case both \mathcal{R}_K and \mathcal{Z}_K are products of spheres and a disc.

4.9. Massey products in the cohomology of moment-angle complexes

Here we address the question of existence of nontrivial triple Massey products in the Koszul complex

$$\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[K], d$$

of the face ring, and therefore in the cohomology of \mathcal{Z}_K. The general definition of Massey products in the cohomology of a differential graded algebra is reviewed in Section A.4 of the Appendix. A geometrical approach to constructing nontrivial triple Massey products in the Koszul complex of the face ring was developed by Baskakov in [26] as an extension of the cohomology calculation in Theorem 4.5.7. It is well-known that nontrivial higher Massey products obstruct the formality of a differential graded algebra, which in our case leads to a family of nonformal moment-angle manifolds \mathcal{Z}_K (see Section B.2 for background material).

Construction 4.9.1 (Baskakov [26]). Let K_i be a triangulation of a sphere S^{m_i-1} with $|V_i| = m_i$ vertices, $i = 1, 2, 3$. Set $m = m_1 + m_2 + m_3, n = n_1 + n_2 + n_3,$

$$K = K_1 \ast K_2 \ast K_3, \quad \mathcal{Z}_K = \mathcal{Z}_{K_1} \times \mathcal{Z}_{K_2} \times \mathcal{Z}_{K_3}.$$

Then K is a triangulation of S^{n-1} and therefore \mathcal{Z}_K is an $(m+n)$-manifold.

We choose maximal simplices $I_1 \subset K_1, I_2, I_2' \subset K_2$ such that $I_2' \cap I_2 = \emptyset$, and $I_3 \subset K_3$. Set

$$\tilde{K} = ss_{I_1} \cup_I \tilde{s}_I (ss_{I_2'} \cup_3 I_3),$$

where ss_I denotes the stellar subdivision at I, see Definition 2.7.1. Then \tilde{K} is a triangulation of S^{n-1} with $m + 2$ vertices. Take generators

$$\beta_i \in \tilde{H}^{n_i-1}(\tilde{K}_{V_i}) \cong \tilde{H}^{n_i-1}(S^{n_i-1}), \quad \text{for } i = 1, 2, 3,$$

where \tilde{K}_{V_i} is the restriction of \tilde{K} to the vertex set of K_i, and set

$$\alpha_i = h(\beta_i) \in \tilde{H}^{n_i-m_i, 2m_i}(\tilde{Z}_K) \subset H^{m_i+n_i}(\tilde{Z}_K),$$
where \(h \) is the isomorphism of Theorem 4.5.7. Then
\[
\beta_1 \beta_2 \in H^{n_1+n_2-1}(\overline{K}_{V_1 \cup V_2}) \cong H^{n_1+n_2-1}(S^{n_1+n_2-1} \setminus \text{pt}) = 0,
\]
hence \(\alpha_1 \alpha_2 = h(\beta_1 \beta_2) = 0 \), and similarly \(\alpha_2 \alpha_3 = 0 \). Therefore, the triple Massey product \(\langle \alpha_1, \alpha_2, \alpha_3 \rangle \subset H^{m+n-1}(\overline{Z}_K) \) is defined. By definition, it is the set of cohomology classes represented by the cocycles \((-1)^{\text{deg} a_i+1} a_i f + e a_3 \) where \(a_i \) is a cocycle representing \(\alpha_i \), and \(e, f \) are cocohains satisfying \(de = a_1 a_2, df = a_2 a_3 \).

For the simplest example of this series, take \(K_i = S^0 \) (two points), so that \(K \) is the boundary of an octahedron, and \(\overline{K} \) is obtained by applying stellar subdivisions at two skew edges. We shall consider this example in more detail below.

Recall that a Massey product is trivial if it contains zero.

Theorem 4.9.2. The above defined triple Massey product
\[
\langle \alpha_1, \alpha_2, \alpha_3 \rangle \subset H^{m+n-1}(\overline{Z}_K)
\]
is nontrivial.

Proof. Consider the subcomplex of \(\overline{K} \) consisting of the two new vertices added to \(K \) in the process of stellar subdivision. By Proposition 4.2.3 (b), the inclusion of this subcomplex induces an embedding of a 3-dimensional sphere \(S^3 \hookrightarrow \overline{Z}_K \). Since the two new vertices are not joined by an edge in \(\overline{Z}_K \), the embedded 3-sphere defines a non-trivial class \(x \in H_3(\overline{Z}_K) \). Its Poincaré dual cohomology class in \(H^{m+n-1}(\overline{Z}_K) \) is contained in the Massey product \(\langle \alpha_1, \alpha_2, \alpha_3 \rangle \). We need only to check that this element cannot be turned into zero by adding elements from the indeterminacy of the Massey product, i.e. from the subspace
\[
\alpha_1 \cdot H^{m_2+m_3+n_2+n_3-1}(\overline{Z}_K) + \alpha_3 \cdot H^{m_1+m_2+n_1+n_2-1}(\overline{Z}_K).
\]
To do this we use the multigraded structure in \(H^*(\overline{Z}_K) \). The multigraded components of the group \(H^{m_2+m_3+n_2+n_3-1}(\overline{Z}_K) \) different from the component determined by the full subcomplex \(\overline{K}_{V_2 \cup V_3} \) do not affect the nontriviality of the Massey product, while the multigraded component corresponding to \(\overline{K}_{V_2 \cup V_3} \) is zero since \(\overline{K}_{V_2 \cup V_3} \cong S^{n_2+n_3-1} \setminus \text{pt} \) is contractible. The group \(H^{m_1+m_2+n_1+n_2-1}(\overline{Z}_K) \) is considered similarly. It follows that the Massey product contains a unique nonzero element in its multigraded component and therefore it is nontrivial. \(\square \)

Corollary 4.9.3. Let \(\overline{K} \) be a triangulated sphere obtained from another sphere \(K \) by applying two stellar subdivisions as described above. Then the corresponding 2-connected moment-angle manifold \(\overline{Z}_K \) is not formal.

In the proof of Theorem 4.9.2 the nontriviality of the Massey product is established geometrically. A parallel argument may be carried out algebraically using the Koszul complex or its quotient algebra \(R^*(K) \), as illustrated in the next example. To be precise, the nonformality of a manifold \(Z_K \) is equivalent to the nonformality of its singular cochain algebra \(C^*(Z_K; \mathbb{Q}) \) (or Sullivan’s algebra \(A_{PL}(Z_K) \)), while the rational Koszul complex or the algebra \(R^*(K) \otimes \mathbb{Q} \) are quasi-isomorphic to the cellular cochain algebra \(C^*(Z_K; \mathbb{Q}) \). However, this difference is irrelevant: it can be easily seen that the existence of a nontrivial triple Massey product for the cellular cochain algebra \(C^*(Z_K; \mathbb{Q}) \) implies that \(Z_K \) is nonformal (an exercise, or see [117, Proposition 5.6.1]).
Example 4.9.4. We consider the simplest case of Construction 4.9.1, when \(\overline{K} \) is obtained from the boundary of an octahedron by applying stellar subdivisions at two skew edges. Then \(\overline{K} = K_p \) is the nerve complex of a simple 3-polytope \(P \) obtained by truncating a cube at two edges as shown in Figure 4.3. The face ring is given by

\[
\mathcal{Z}[K_p] = \mathcal{Z}[v_1, \ldots, v_6, w_1, w_2]/\mathcal{I}_{K_p},
\]

where \(v_i, i = 1, \ldots, 6 \), are the generators coming from the facets of the cube and \(w_1, w_2 \) are the generators corresponding to the two new facets, and

\[
\mathcal{I}_{K_p} = (v_1v_2, v_3v_4, v_5v_6, w_1w_2, v_1v_3, v_4v_5, w_1v_5, w_1v_6, w_2v_2, w_2v_4).
\]

We denote the corresponding exterior generators of \(R^*(K_p) \) by \(u_1, \ldots, u_6, t_1, t_2 \); they satisfy \(du_i = v_i \) and \(dt_i = w_i \). Consider the cocycles

\[
a = v_1u_2, \quad b = v_3u_4, \quad c = v_5u_6
\]

and the corresponding cohomology classes \(\alpha, \beta, \gamma \in H^{−1,4}[R^*(K)] \). The equations

\[
ab = de, \quad bc = df
\]

have a solution \(e = 0, f = v_5u_3u_4u_6 \), so the triple Massey product \(\langle \alpha, \beta, \gamma \rangle \in H^{−4,12}[R^*(K)] \) is defined. This Massey product is represented by the cocycle

\[
af + ec = v_1v_5u_2u_3u_4u_6
\]

and is nontrivial. The differential graded algebra \(R^*(K_p) \) and the 11-dimensional manifold \(\mathcal{Z}_{K_p} \) are not formal.

Remark. We can truncate the polytope \(P \) from the previous example at another edge to obtain a 3-dimensional associahedron \(As^3 \), shown in Figure 1.6 (left). By considering similar nontrivial Massey products (now there will be three of them, corresponding to each pair of cut off edges) we deduce that the 12-dimensional moment-angle manifold corresponding to \(As^3 \) is also nonformal.

In view of Theorem 4.9.2, the question arises of describing the class of simplicial complexes \(K \) for which the algebra \(R^*(K) \) (equivalently, the Koszul algebra \(\Lambda[u_1, \ldots, u_m] \otimes \mathcal{Z}(K), d) \) is formal. For example, this is the case if \(K \) is the boundary of a polygon or, more generally, if \(K \) is of the form described in Theorem 4.6.12.
Triple Massey products in the cohomology of \mathcal{Z}_K were further studied in the work of Denham and Suciu [117]. According to [117, Theorem 6.1.1], there exists a nontrivial triple Massey product of 3-dimensional cohomology classes $\alpha, \beta, \gamma \in H^3(\mathcal{Z}_K)$ if and only if the 1-skeleton of \mathcal{K} contains an induced subgraph isomorphic to one of the five explicitly described ‘obstruction’ graphs. In [117, Example 8.5.1] there is also constructed an example of \mathcal{K} for which the corresponding \mathcal{Z}_K has an indecomposable triple Massey product in the cohomology (a triple Massey product is indecomposable if it does not contain a cohomology class that can be written as a product of two cohomology classes of positive dimension).

To conclude this section, we mention that the algebraic study of Massey products in the cohomology of Koszul complexes has a long history. It goes back to the work of Golod [153], who studied the Poincaré series of $\text{Tor}_R(k, k)$ for a Noetherian local ring R. In [153] the Poincaré series was calculated for the class of rings whose Koszul complexes have all Massey products vanishing (including the ordinary cohomology product). Such rings were called Golod in the monograph [173] of Gulliksen and Levin, where the reader can find a detailed exposition of Golod’s theorem together with several further applications.

Definition 4.9.5. We refer to a simplicial complex \mathcal{K} as Golod (over a ring k) if its face ring $k[\mathcal{K}]$ has the Golod property, i.e. if the multiplication and all higher Massey products in $\text{Tor}_{k[u_1, \ldots, u_n]}(k[\mathcal{K}], k) = H(\Lambda[u_1, \ldots, u_n] \otimes k[\mathcal{K}], d)$ are trivial.

Golod complexes were studied in [184], where several combinatorial criteria for Golodness were given. The appearance of moment-angle complexes added a topological dimension to the whole study. In particular, Theorem 4.5.4 implies that \mathcal{K} is Golod whenever \mathcal{Z}_K is homotopy equivalent to a wedge of spheres. This observation was used in [158, Theorems 9.1, 11.2] to produce new classes of Golod simplicial complexes, including skeleta of simplices considered in Theorem 4.7.7, and, more generally, all shifted complexes. For all such \mathcal{K} the corresponding moment-angle complex \mathcal{Z}_K is homotopy equivalent to a wedge of spheres. There are examples of Golod complexes \mathcal{K} for which \mathcal{Z}_K is not homotopy equivalent to a wedge of spheres (see Exercise 4.9.7 and [156, Example 3.3]). More explicit series of Golod complexes were constructed by Seyyed Fakhari and Welker in [327].

By a result of Berglund and Jöllenbeck [31, Theorem 5.1], the face ring $k[\mathcal{K}]$ is Golod if and only if the multiplication in $\text{Tor}_{k[u_1, \ldots, u_n]}(k[\mathcal{K}], k)$ is trivial (i.e. triviality of the cup-product implies that all higher Massey products are also trivial).

More details on the relationship between the Golod property for \mathcal{K} and the homotopy theory of moment-angle complexes \mathcal{Z}_K can be found in [158], [156], as well as in Section 8.5.

Exercises.

4.9.6. If the cellular cochain algebra $\mathcal{C}^*(\mathcal{Z}_K; \mathbb{Q})$ carries a nontrivial triple Massey product, then \mathcal{Z}_K is nonformal.

4.9.7. Let \mathcal{K} be the triangulation of $\mathbb{R}P^2$ from Example 3.2.12.4. Then \mathcal{K} is a Golod complex, but \mathcal{Z}_K is not homotopy equivalent to a wedge of spheres.

4.10. Moment-angle complexes from simplicial posets

Simplicial posets \mathcal{S} are a natural generalisation of abstract simplicial complexes (see Section 2.8). Algebraic properties of their face rings $k[\mathcal{S}]$ were discussed in...
Section 3.5. Following the categorical description of the moment-angle complex Z_K outlined at the end of Construction 4.1.1, it is easy to extend the definition of Z_K to simplicial posets. The resulting space Z_S carries a torus action, and its equivariant and ordinary cohomology is expressed in terms of the face ring $Z[S]$ in the same way as for the standard moment-angle complexes Z_K. Simplicial posets and associated moment-angle complexes therefore provide a broader context for studying the link between torus actions and combinatorial commutative algebra. These developments are originally due to Li and Panov [238].

Let S be a finite simplicial poset with the vertex set $V(S) = \{m\}$.

Construction 4.10.1 (moment-angle complex). We consider the face category $\text{cat}(S)$ whose objects are elements $\sigma \in S$ and which has a morphism from σ to τ whenever $\sigma \leq \tau$. For each element $\sigma \in S$ we define the following subset in the standard unit polydisc $D^m \subset \mathbb{C}^m$:

$$(D^2, S^1)^\sigma = \{(z_1, \ldots, z_m) \in D^m : |z_j|^2 = 1 \text{ for } j \notin \sigma\}. $$

Then $(D^2, S^1)^\sigma$ is homeomorphic to a product of $|\sigma|$ discs and $m - |\sigma|$ circles. We have an inclusion $(D^2, S^1)^\sigma \subset (D^2, S^1)^\tau$ whenever $\tau \leq \sigma$. Now define a diagram

$$D_S(D^2, S^1) : \text{cat}(S) \rightarrow \text{TOP},$$

$$\sigma \mapsto (D^2, S^1)^\sigma,$$

which maps a morphism $\sigma \leq \tau$ of $\text{cat}(S)$ to the inclusion $(D^2, S^1)^\sigma \subset (D^2, S^1)^\tau$ (see Appendix C.1 for the definition of diagrams and their colimits).

We define the moment-angle complex corresponding to S by

$$Z_S = \text{colim}_{\sigma \in S} D_S(D^2, S^1) = \text{colim}(D^2, S^1)^\sigma.$$

The space Z_S is therefore glued from the blocks $(D^2, S^1)^\sigma$ according to the poset relation in S. When S is (the face poset of) a simplicial complex K it becomes the standard moment-angle complex Z_K.

Since every subset $(D^2, S^1)^\sigma \subset D^m$ is invariant with respect to the coordinate-wise action of the m-torus \mathbb{T}^m, the moment-angle complex Z_S acquires a \mathbb{T}^m-action.

This definition extends to a set (X, A) of m pairs of spaces (see Construction 4.2.1), so we define the polyhedral product of (X, A) corresponding to S by

$$(X, A)^S = \text{colim}_{\sigma \in S} D_S(X, A) = \text{colim}(X, A)^\sigma.$$

The construction of the polyhedral product $(X, A)^S$ is functorial in all arguments: there are straightforward analogues of Propositions 4.2.3 and 4.2.4.

Example 4.10.2. Let S be the simplicial poset of Figure 3.3 (a). Then Z_S is obtained by gluing two copies of $D^2 \times D^2$ along their boundary $S^3 = D^2 \times S^1 \cup S^1 \times D^2$. Therefore, $Z_S \cong S^4$. Here, $K_S = \Delta^1$ (a segment), and the moment-angle complex map induced by the map $S \rightarrow K_S$ (2.9) folds S^4 onto D^4. Similarly, for S as in Figure 3.3 (b) we have $Z_S \cong S^6$. Note that even-dimensional spheres do not appear as moment-angle complexes Z_K for simplicial complexes K.

The join of simplicial posets S_1 and S_2 is the simplicial poset $S_1 \ast S_2$ whose elements are pairs (σ_1, σ_2), with $(\sigma_1, \sigma_2) \leq (\tau_1, \tau_2)$ whenever $\sigma_1 \leq \tau_1$ in S_1 and $\sigma_2 \leq \tau_2$ in S_2. The following properties of Z_S are similar to those of Z_K.

Theorem 4.10.3.
(a) $Z_{S_1 S_2} \cong Z_{S_1} \times Z_{S_2}$;
(b) the quotient Z_{S}/\mathbb{T}^m is homeomorphic to the cone over $|S|$;
(c) if $|S| \cong S^{n-1}$, then Z_{S} is a manifold of dimension $m + n$.

Proof. Statements (a) and (b) are proved in the same way as the corresponding statements for simplicial complexes, see Section 4.1. To prove (c) we use the 'dual' decomposition of the boundary of the n-ball cone $|S|$ into faces, in the same way as in the proof of Theorem 4.1.4.

Construction 4.10.4 (cell decomposition). We proceed by analogy with the construction of Section 4.4. The disc \mathbb{D} is decomposed into 3 cells: the point $1 \in \mathbb{D}$ is the 0-cell; the complement to 1 in the boundary circle is the 1-cell, which we denote by T; and the interior of \mathbb{D} is the 2-cell, which we denote by D. The polydisc \mathbb{D}^m then acquires the product cell decomposition, with each $(D^2, S^1)^{\sigma} \subset (\mathbb{D}^2, S^1)^{\tau}$ being an inclusion of cellular subcomplexes for $\sigma \leq \tau$. We therefore obtain a cell decomposition of Z_{S} (although this time it is not a subcomplex in \mathbb{D}^m in general).

Each cell in Z_{S} is determined by an element $\sigma \in S$ and a subset $\omega \in V(S)$ with $V(\sigma) \cap \omega = \emptyset$. Such a cell is a product of $|\sigma|$ cells of T-type, $|\omega|$ cells of T-type and the rest of 1-type. We denote this cell by $\kappa(\omega, \sigma)$.

The resulting cellular cochain complex $C^*(Z_{S})$ has an additive basis consisting of cochains $\kappa(\omega, \sigma)^*$ dual to the corresponding cells. We introduce a $\mathbb{Z} \oplus \mathbb{Z}^m$-grading on the cochains by setting

$$mdeg \kappa(\omega, \sigma)^* = (-|\omega|, 2V(\sigma) + 2\omega),$$

where we think of both $V(\sigma)$ and ω as vectors in $\{0, 1\}^m \subset \mathbb{Z}^m$. The cellular differential preserves the \mathbb{Z}^m-part of the multigrading, so we obtain a decomposition

$$C^*(Z_{S}) = \bigoplus_{a \in \mathbb{Z}^m} C^{*, 2a}(Z_{\kappa})$$

into a sum of subcomplexes. The only nontrivial subcomplexes are those for which a is in $\{0, 1\}^m$. The cellular cohomology of Z_{S} thereby acquires a multigrading, and we define the multigraded Betti numbers $b^{-i, 2a}(Z_{S})$ by

$$b^{-i, 2a}(Z_{S}) = \text{rank } H^{-i, 2a}(Z_{S}), \quad \text{for } 1 \leq i \leq m, \quad a \in \mathbb{Z}^m.$$

For the ordinary Betti numbers we have $b^i(Z_{S}) = \sum_{-i+2a = k} b^{-i, 2a}(Z_{S})$.

The map of moment-angle complexes $Z_{S_1} \to Z_{S_2}$ induced by a simplicial poset map $S_1 \to S_2$ is clearly a cellular map, and therefore the cellular cohomology is functorial with respect to such maps.

We now recall from Section 3.5 that the face ring $\mathbb{Z}[S]$ is a \mathbb{Z}^m-graded $\mathbb{Z}[v_1, \ldots, v_m]$-module via the map sending each v_i identically, and we have the $\mathbb{Z} \oplus \mathbb{Z}^m$-graded Tor-algebra of $\mathbb{Z}[S]$:

$$\text{Tor}_{\mathbb{Z}[v_1, \ldots, v_m]}(\mathbb{Z}[S], \mathbb{Z}) = \bigoplus_{i \geq 0, a \in \mathbb{Z}^m} \text{Tor}_{\mathbb{Z}[v_1, \ldots, v_m]}^{-i, 2a}(\mathbb{Z}[S], \mathbb{Z}).$$

Theorem 4.10.5. There is a graded ring isomorphism

$$H^*(Z_{S}) \cong \text{Tor}_{\mathbb{Z}[v_1, \ldots, v_m]}(\mathbb{Z}[S], \mathbb{Z}).$$
whose graded components are given by the group isomorphisms

\[(4.27) \quad H^p(Z_S) \cong \bigoplus_{-i+2\lvert a\rvert = p} \text{Tor}_{Z[v_1, \ldots, v_m]}^{-i, 2a}(Z[S], \mathbb{Z})\]

in each degree \(p\). Here \(\lvert a\rvert = j_1 + \cdots + j_m\) for \(a = (j_1, \ldots, j_m)\).

Using the Koszul complex we restate the above theorem as follows:

Theorem 4.10.6. There is a graded ring isomorphism

\[H^*(Z_S) \cong H(\Lambda[u_1, \ldots, u_m] \otimes Z[S], d),\]

where the \(\mathbb{Z} \oplus \mathbb{Z}^m\)-grading and the differential on the right hand side are defined by

\[\text{mdeg } u_i = (-1, 2e_i), \quad \text{mdeg } v_\sigma = (0, 2V(\sigma)), \quad du_i = v_i, \quad dv_\sigma = 0,\]

and \(e_i \in \mathbb{Z}^m\) is the \(i\)th basis vector, for \(i = 1, \ldots, m\).

Proof. The proof follows the lines of the proof of Theorem 4.5.4, but the analogues of Lemmata 3.2.6 and 4.5.3 are proved in a different way.

We first set up the quotient differential graded ring

\[R^*(S) = \Lambda[u_1, \ldots, u_m] \otimes Z[S]/\mathcal{I}_R\]

where \(\mathcal{I}_R\) is the ideal generated by the elements

\[u_i v_\sigma \quad \text{with } i \in V(\sigma), \quad \text{and } v_\sigma v_\tau \quad \text{with } \sigma \land \tau \neq \emptyset.\]

Note that the latter condition is equivalent to \(V(\sigma) \land V(\tau) \neq \emptyset\). The ring \(R^*(S)\) will serve as an algebraic model for the cellular cochains of \(Z_S\).

We need to prove an analogue of Lemma 3.2.6, i.e. show that the quotient map

\[g: \Lambda[u_1, \ldots, u_m] \otimes Z[S] \rightarrow R^*(S)\]

induces an isomorphism in cohomology. Instead of constructing a chain homotopy directly, we shall identify both \(R^*(S)\) and \(\Lambda[u_1, \ldots, u_m] \otimes Z[S]\) with the cellular cochains of homotopy equivalent spaces.

Theorem 3.5.7 implies that \(R^*(S)\) has basis of monomials \(u_\omega v_\sigma\) where \(\omega \subset V(S)\), \(\sigma \in S\), \(\omega \cap V(\sigma) = \emptyset\), and \(u_\omega = u_{i_1} \ldots u_{i_k}\) for \(\omega = \{i_1, \ldots, i_k\}\). In particular, \(R^*(S)\) is a free abelian group of finite rank. The map

\[(4.28) \quad g: R^*(S) \rightarrow C^*(Z_S), \quad u_\omega v_\sigma \mapsto \kappa(\omega, \sigma)^*\]

is an isomorphism of cochain complexes. Indeed, the additive bases of the two groups are in one-to-one correspondence, and the differential in \(R^*(S)\) acts (in the case \(\lvert \omega \rvert = 1\) and \(i \notin V(\sigma)\)) as

\[d(u_\omega v_\sigma) = v_i v_\sigma = \sum_{\eta \in \nu(\sigma)} v_\eta.\]

This is exactly how the cellular differential in \(C^*(Z_S)\) acts on \(\kappa(i, \sigma)^*\). The case of arbitrary \(\omega\) is treated similarly. It follows that we have an isomorphism of cohomology groups \(H^j[R^*(S)] \cong H^j(Z_S)\) for all \(j\).

The differential algebra \((\Lambda[u_1, \ldots, u_m] \otimes Z[S], d)\) also may be identified with the cellular cochains of a certain space. Namely, consider the polyhedral product \((S^\infty, S^1)^S\). Then we show in the same way as in Subsection 4.5 that there is an isomorphism of cochain complexes

\[g': \Lambda[u_1, \ldots, u_m] \otimes Z[S] \rightarrow C^*((S^\infty, S^1)^S).\]
Furthermore, the standard functoriality arguments give a deformation retraction
\[Z_S = (D^2, S^1)^\sigma \hookrightarrow (S^\infty, S^1)^\sigma \rightarrow (D^2, S^1)^\sigma \]
ono onto a cellular subcomplex. Hence the cochain map \(C^*(S^\infty, S^1)^\sigma \rightarrow C^*(Z_S) \) corresponding to the inclusion \(Z_S \hookrightarrow (S^\infty, S^1)^\sigma \) induces an isomorphism in cohomology.

Summarising the above observations we obtain the commutative square
\[
\begin{array}{ccc}
\Lambda[u_1, \ldots, u_m] \otimes Z[S] & \xrightarrow{\theta} & C^*((S^\infty, S^1)^\sigma) \\
\downarrow & & \downarrow \\
R^*(S) & \xrightarrow{g} & C^*(Z_S)
\end{array}
\]

in which the horizontal arrows are isomorphisms of cochain complexes, and the right vertical arrow induces an isomorphism in cohomology. It follows that the left arrow also induces an isomorphism in cohomology, as claimed.

The additive isomorphism of (4.27) now follows from (4.29). To establish the ring isomorphism we need to analyse the multiplication of cellular cochains.

We consider the diagonal approximation map \(\Delta: \mathbb{D}^m \rightarrow \mathbb{D}^m \times \mathbb{D}^m \) given on each coordinate by (4.15). It restricts to a map \((D^2, S^1)^\sigma \rightarrow (D^2, S^1)^\sigma \times (D^2, S^1)^\sigma \) for every \(\sigma \in S \) and gives rise to a map of diagrams
\[D_S(D^2, S^1)
\xrightarrow{\Delta} D_S(D^2, S^1) \times D_S(D^2, S^1). \]

By definition, the colimit of the latter is \(Z_S \times Z_S \), which is identified with \(Z_S \times Z_S \). We therefore obtain a cellular approximation \(\Delta: Z_S \rightarrow Z_S \times Z_S \) for the diagonal map of \(Z_S \). It induces a ring structure on the cellular cochains via the composition
\[C^*(Z_S) \otimes C^*(Z_S) \xrightarrow{\times} C^*(Z_S \times Z_S) \xrightarrow{\Delta^*} C^*(Z_S). \]

We claim that, with this multiplication on \(C^*(Z_S) \), the map (4.28) becomes a ring isomorphism. To see this we first observe that it is enough to consider product of two generators \(u_\omega v_\sigma \) and \(u_\psi v_\tau \), because (4.28) is a linear map. If any two of the subsets \(\omega, V(\sigma), \psi \) and \(V(\tau) \) have nonempty intersection, then \(u_\omega v_\sigma \cdot u_\psi v_\tau = 0 \) in \(R^*(S) \). Otherwise (if all four subsets are disjoint) we have
\[g(u_\omega v_\sigma \cdot u_\psi v_\tau) = g(u_\omega \psi \cdot \sum_{\eta \in \sigma \vee \tau} v_\eta) = \sum_{\eta \in \sigma \vee \tau} \kappa(\omega \cup \psi, \eta)^* \]
(4.30)

We also observe that for any cell \(\kappa(\chi, \eta) \) of \(Z_S \) (with \(\chi \cap V(\eta) = \emptyset \)) we have
\[\Delta^* \kappa(\chi, \eta) = \sum_{\omega \subseteq \psi \subseteq \chi \atop \sigma \vee \tau \supseteq \eta} \kappa(\omega, \sigma) \times \kappa(\psi, \tau). \]

Therefore,
\[
g(u_\omega v_\sigma) \cdot g(u_\psi v_\tau) = \kappa(\omega, \sigma)^* \cdot \kappa(\psi, \tau)^* = \Delta^* (\kappa(\omega, \sigma) \times \kappa(\psi, \tau))^* = \sum_{\eta \in \sigma \vee \tau} \kappa(\omega \cup \psi, \eta)^*. \]

Comparing this with (4.30) we deduce that (4.28) is a ring map. \(\square \)

Remark. Using the monoid structure on \(\mathbb{D} \) as in Proposition 4.2.4 one easily sees that the construction of \(Z_S \) is functorial with respect to maps of simplicial posets. This together with Proposition 3.5.12 makes the isomorphism of Theorem 4.10.5 functorial.
Using Hochster’s formula for simplicial posets (Theorem 3.5.14) we can calculate the cohomology of \(Z_S \) via the cohomology of full subposets \(S_J \subset S \). Here is an example of calculation using this method.

Example 4.10.7. Let \(S \) be the simplicial poset shown in Figure 4.4 (right). It has \(m = 5 \) vertices, 9 edges and 6 triangular faces. The dual 3-dimensional ‘ball with corners’ \(Q \) (see the proof of Theorem 4.10.3) is shown in Figure 4.4 (left). We denote its facets \(F_1, \ldots, F_5 \), edges \(e, f, g \) and the vertex \(\sigma = F_3 \cap f \) as shown. The corresponding moment-angle complex \(Z_S \) is an 8-dimensional manifold.

The face ring \(\mathbb{Z}[S] \) is the quotient of the polynomial ring

\[
\mathbb{Z}[S] = \mathbb{Z}[v_1, \ldots, v_5, v_e, v_f, v_g], \quad \deg v_i = 2, \quad \deg v_e = \deg v_f = \deg v_g = 4
\]

by the relations

\[
\begin{align*}
v_1v_2 &= v_e + v_f + v_g, \\
v_3v_4 &= v_3v_5 = v_4v_5 = v_3v_e = v_4v_e = v_5v_f = v_4v_f = v_5v_g = v_4v_g = v_3v_f = v_2v_f = 0.
\end{align*}
\]

The other generators and relations in the original presentation of \(\mathbb{Z}[S] \) can be derived from the above; e.g., \(v_\sigma = v_3v_f \).

Given \(J \subset [m] \) we define the following subset in the boundary of \(Q \):

\[
Q_J = \bigcup_{j \in J} F_j \subset Q.
\]

By analogy with Proposition 3.2.11 we prove that

\[
H^{-i, 2J}(Z_S) \cong \tilde{H}^{[J]}|^{i-1}(Q_J).
\]

Figure 4.4. ‘Ball with corners’ \(Q \) dual to the simplicial poset \(S \).
Using this formula we calculate the nontrivial cohomology groups of \(Z_S \) as follows:

\[
\begin{align*}
H^{0,(0,0,0,0)}(Z_S) &= \widetilde{H}^{-1}(\emptyset) = \mathbb{Z} & 1 \\
H^{-1,(0,0,2,0)}(Z_S) &= \widetilde{H}^0(F_3 \cup F_4) = \mathbb{Z} & u_3v_4 \\
H^{-1,(0,0,0,2)}(Z_S) &= \widetilde{H}^0(F_3 \cup F_5) = \mathbb{Z} & u_5v_3 \\
H^{-1,(0,0,0,2)}(Z_S) &= \widetilde{H}^0(F_4 \cup F_5) = \mathbb{Z} & u_4v_5 \\
H^{-2,(0,0,2,2)}(Z_S) &= \widetilde{H}^0(F_3 \cup F_4 \cup F_5) = \mathbb{Z} \oplus \mathbb{Z} & u_5^3u_4v_4, u_5^4v_4 \\
H^{0,(2,2,0,0)}(Z_S) &= \widetilde{H}^1(F_1 \cup F_2) = \mathbb{Z} \oplus \mathbb{Z} & v_e, v_f \\
H^{-1,(2,2,0,0)}(Z_S) &= \widetilde{H}^1(F_1 \cup F_2 \cup F_3) = \mathbb{Z} & u_3v_e \\
H^{-1,(2,2,0,0)}(Z_S) &= \widetilde{H}^1(F_1 \cup F_2 \cup F_4) = \mathbb{Z} & u_4v_f \\
H^{-1,(2,2,0,2)}(Z_S) &= \widetilde{H}^1(F_1 \cup F_2 \cup F_5) = \mathbb{Z} & u_5v_g \\
H^{-2,(2,2,2,2)}(Z_S) &= \widetilde{H}^2(F_1 \cup \cdots \cup F_5) = \mathbb{Z} & u_5^3u_4v_3v_f = u_5^4u_4v_4v_f
\end{align*}
\]

It follows that the ordinary (1-graded) Betti numbers of \(Z_S \) are given by the sequence \((1, 0, 0, 3, 4, 3, 0, 0, 1) \). In the right column of the table above we include the cocycles in the differential graded ring \(\Lambda[u_1, \ldots, u_5] \otimes \mathbb{Z}[S] \) representing generators of the corresponding cohomology group. This allows us to determine the ring structure in \(H^*(Z_S) \). For example,

\[
[u_5^3u_4v_4] \cdot [v_f] = [u_5^3u_4v_4v_f] = 0 = [u_5^4u_4v_3] \cdot [v_e].
\]

On the other hand,

\[
[u_5^3u_4v_4] \cdot [v_e] = -[u_3u_5v_4v_e] =-[u_3u_4v_5v_e] \\
= [u_3u_4v_5v_f] = [u_5^3u_4v_3v_f] = [u_5^4u_4v_3] \cdot [v_f].
\]

Here we have used the relations \(d(u_3u_4u_5v_e) = u_3u_4v_5v_e - u_3u_5v_4v_e \) and \(d(u_1u_3u_4v_2v_5) = u_3u_4v_5v_e + u_3u_4v_5v_f \). All nontrivial products come from Poincaré duality. These calculations are summarised by the cohomology ring isomorphism

\[
H^*(Z_S) \cong H^*((S^3 \times S^5)^\#3 \# (S^4 \times S^4)^\#2)
\]

where the manifold on the right hand side is the connected sum of three copies of \(S^3 \times S^5 \) and two copies of \(S^4 \times S^4 \). We expect that the isomorphism above is induced by a homeomorphism.

Exercises.

4.10.8. Generalise Proposition 4.3.1 to simplicial posets, i.e. establish a ring isomorphism \(H^*((CP^\infty, pt)^S) \cong \mathbb{Z}[S] \).

4.10.9. Construct a homotopy equivalence

\[
h : (CP^\infty, pt)^S \xrightarrow{\cong} ET^m \times Z_S
\]

by extending the argument of Theorem 4.3.2, and deduce that \(H^*_m(Z_S) \cong \mathbb{Z}[S] \).
CHAPTER 5

Toric Varieties and Manifolds

A toric variety is an algebraic variety on which an algebraic torus \((\mathbb{C}^\times)^n\) acts with a dense (Zariski open) orbit. An algebraic torus contains a compact torus \(T^n\), so toric varieties are toric spaces in our usual sense. Toric varieties are described by combinatorial-geometric objects, rational fans (see Section 2.1), and the combinatorics of the fan determines the orbit structure of the torus action.

Toric varieties were introduced in 1970 in the pioneering work of Demazure [116] on the Cremona group. The geometry of toric varieties, or toric geometry, very quickly became one of the most fascinating topics in algebraic geometry and found applications in many other mathematical sciences, sometimes distant from each other. We have already mentioned the proof for the necessity part of the g-theorem for simplicial polytopes given by Stanley. Other remarkable applications include counting lattice points and volumes of lattice polytopes; relations with Newton polytopes and the number of solutions of a system of algebraic equations (after Khovanskii and Kushnirenko); discriminants, resultants and hypergeometric functions (after Gelfand, Kapranov and Zelevinsky); reflexive polytopes and mirror symmetry for Calabi–Yau toric hypersurfaces and complete intersections (after Batyrev). Standard references on toric geometry include Danilov’s survey [108] and books by Oda [296], Fulton [146] and Ewald [131]. The most recent exhaustive account by Cox, Little and Schenck [104] covers many new applications, including those mentioned above. Without attempting to give another review of toric geometry, in this chapter we collect the basic definitions and constructions, and emphasise topological and combinatorial aspects of toric varieties.

We review the three main approaches to toric varieties in the appropriate sections: the ‘classical’ construction via fans, the ‘algebraic quotient’ construction, and the ‘symplectic reduction’ construction. The intersection of Hermitian quadrics appearing in the symplectic construction of toric varieties links toric geometry to moment-angle complexes. This link will be developed further in the next chapter.

A basic knowledge of algebraic geometry would be much help to the reader of this chapter, although it is not absolutely necessary.

5.1. Classical construction from rational fans

An algebraic torus is a commutative complex algebraic group isomorphic to a product \((\mathbb{C}^\times)^n\) of copies of the multiplicative group \(\mathbb{C}^\times = \mathbb{C} \setminus \{0\}\). It contains a compact torus \(T^n\) as a Lie (but not algebraic) subgroup.

We shall often identify an algebraic torus with the standard model \((\mathbb{C}^\times)^n\).

Definition 5.1.1. A toric variety is a normal complex algebraic variety \(V\) containing an algebraic torus \((\mathbb{C}^\times)^n\) as a Zariski open subset in such a way that the natural action of \((\mathbb{C}^\times)^n\) on itself extends to an action on \(V\).
It follows that \((\mathbb{C}^\times)^n\) acts on \(V\) with a dense orbit. Toric varieties originally appeared as equivariant compactifications of an algebraic torus, although non-compact (e.g., affine) examples are now of equal importance.

Example 5.1.2. The algebraic torus \((\mathbb{C}^\times)^n\) and the affine space \(\mathbb{C}^n\) are the simplest examples of toric varieties. A compact example is given by the projective space \(\mathbb{C}P^n\) on which the torus acts in homogeneous coordinates as follows:

\[
(t_1, \ldots, t_n) : (z_0 : z_1 : \ldots : z_n) = (z_0 : t_1 z_1 : \ldots : t_n z_n).
\]

Algebraic geometry of toric varieties is translated completely into the language of combinatorial and convex geometry. Namely, there is a bijective correspondence between rational fans in \(n\)-dimensional space (see Section 2.1) and complex \(n\)-dimensional toric varieties. Under this correspondence,

- cones \(\leftrightarrow\) affine varieties
- complete fans \(\leftrightarrow\) compact (complete) varieties
- normal fans of polytopes \(\leftrightarrow\) projective varieties
- regular fans \(\leftrightarrow\) nonsingular varieties
- simplicial fans \(\leftrightarrow\) orbifolds

We review this construction below; the details can be found in the sources mentioned above. Following the algebraic tradition, we use coordinate-free notation.

We fix a lattice \(\mathcal{N}\) of rank \(n\) (isomorphic to \(\mathbb{Z}^n\)), and denote by \(\mathcal{N}_\mathbb{R}\) its ambient \(n\)-dimensional real vector space \(N \otimes \mathbb{R} \cong \mathbb{R}^n\). Define the algebraic torus \(\mathcal{N}_\mathbb{C}^\times = \mathcal{N} \otimes \mathbb{C}^\times \cong (\mathbb{C}^\times)^n\). All cones and fans in this chapter are rational.

Construction 5.1.3. We first describe how to assign an affine toric variety to a cone \(\sigma \subset \mathcal{N}_\mathbb{R}\). Consider the dual cone \(\sigma^\vee \subset \mathcal{N}_\mathbb{R}^*\) (see (2.1)) and denote by

\[
S_\sigma = \sigma^\vee \cap \mathcal{N}^*\]

the set of its lattice points. Then \(S_\sigma\) is a finitely generated semigroup (with respect to addition). Let \(A_\sigma = \mathbb{C}[S_\sigma]\) be the semigroup ring of \(S_\sigma\). It is a commutative finitely generated \(\mathbb{C}\)-algebra, with a \(\mathbb{C}\)-vector space basis \(\{\chi^u : u \in S_\sigma\}\). The multiplication in \(A_\sigma\) is defined via the addition in \(S_\sigma\):

\[
\chi^u \cdot \chi^{u'} = \chi^{u+u'},
\]

so \(\chi^0\) is the unit. The **affine toric variety** \(V_\sigma\) corresponding to \(\sigma\) is the affine algebraic variety corresponding to \(A_\sigma\):

\[
V_\sigma = \text{Spec}(A_\sigma), \quad A_\sigma = \mathbb{C}[V_\sigma].
\]

By choosing a multiplicative generator set in \(A_\sigma\) we represent it as a quotient

\[
A_\sigma = \mathbb{C}[x_1, \ldots, x_r]/\mathcal{I};
\]

then the variety \(V_\sigma\) is the common zero set of polynomials from the ideal \(\mathcal{I}\). Each point of \(V_\sigma\) corresponds to a semigroup homomorphism \(\text{Hom}_\mathbb{g}(S_\sigma, \mathbb{C}_m)\), where \(\mathbb{C}_m = \mathbb{C}^\times \cup \{0\}\) is the multiplicative semigroup of complex numbers.

Now if \(\tau\) is a face of \(\sigma\), then \(\sigma^\vee \subset \tau^\vee\), and the inclusion of semigroup algebras \(\mathbb{C}[S_\sigma] \rightarrow \mathbb{C}[S_\tau]\) induces a morphism \(V_\tau \rightarrow V_\sigma\), which is an inclusion of a Zariski open subset. This allows us to glue the affine varieties \(V_\sigma\) corresponding to all cones \(\sigma\) in a fan \(\Sigma\) into an algebraic variety \(V_\Sigma\), referred to as the **toric variety** corresponding
to the fan Σ. More formally, V_Σ may be defined as the colimit of algebraic varieties V_σ over the partially ordered set of cones of Σ:

$$V_\Sigma = \operatorname{colim} V_\sigma.$$

Here is the crucial point: the fact that the cones σ patch into a fan Σ guarantees that the variety V_Σ obtained by gluing the pieces V_σ is Hausdorff in the usual topology. In algebraic geometry, the Hausdorffness is replaced by the related notion of separatedness: a variety V is separated if the image of the diagonal map $\Delta: V \to V \times V$ is Zariski closed. A separated variety is Hausdorff in the usual topology.

Lemma 5.1.4. If a collection of cones $\{\sigma\}$ forms a fan Σ, then the variety $V_\Sigma = \operatorname{colim}_{\sigma \in \Sigma} V_\sigma$ is separated.

Proof. Using the separatedness criterion of [328, Chapter V, §4.3] (see also [108, Proposition 5.4]), it is enough to verify the following: if cones σ and σ' intersect in a common face τ, then the diagonal map $V_\tau \to V_\sigma \times V_{\sigma'}$ is a closed embedding. This is equivalent to the assertion that the natural homomorphism $A_\tau \otimes A_{\sigma'} \to A_\tau$ is surjective. To prove this, we use the Separation Lemma (Lemma 2.1.2). According to it, there is a linear function u which is nonnegative on σ, nonpositive on σ' and the intersection of the hyperplane u^\perp with σ is τ. Now take $u' \in \tau^\perp$, i.e. u' is nonnegative on τ. Then there is an integer $k \geq 0$ such that $u' + ku$ is nonnegative on σ, i.e. $u' + ku \in \sigma^\perp$. Then $u' = (u' + ku) + (-ku) \in \sigma^\perp + \sigma'^\perp$. It follows that $S_\sigma \otimes S_{\sigma'} \to S_\sigma$ is a surjective map of semigroups, hence $A_\sigma \otimes A_{\sigma'} \to A_\tau$ is a surjective homomorphism.

We shall consider only separated varieties in what follows.

The variety V_σ carries an algebraic action of the torus $\mathbb{C}_N^\times = N \otimes \mathbb{Z} \mathbb{C}^\times$

$$(5.1) \quad \mathbb{C}_N^\times \times V_\sigma \to V_\sigma, \quad (t, x) \mapsto t \cdot x$$

which is defined as follows. A point $t \in \mathbb{C}_N$ is determined by a group homomorphism $N^* \to \mathbb{C}^\times$. In coordinates, the homomorphism $\mathbb{Z}^n = N^* \to \mathbb{C}^\times$ corresponding to $t = (t_1, \ldots, t_n)$ is given by

$$u = (u_1, \ldots, u_n) \mapsto t(u) = t_1^{u_1} \cdots t_n^{u_n}.$$

A point $x \in V_\sigma$ corresponds to a semigroup homomorphism $S_\sigma \to \mathbb{C}_m$. Then we define $t \cdot x$ as the point in V_σ corresponding to the semigroup homomorphism $S_\sigma \to \mathbb{C}_m$ given by

$$u \mapsto t(u)x(u).$$

The homomorphism of algebras $A_\sigma \to A_\sigma \otimes \mathbb{C}[N^*]$ dual to the action (5.1) maps χ^u to $\chi^u \otimes \chi^u$ for $u \in S_\sigma$. If $\sigma = \{0\}$, then we obtain the multiplication in the algebraic group \mathbb{C}_N^\times. The actions on the varieties V_σ are compatible with the inclusions of open sets $V_\tau \to V_\sigma$ corresponding to the inclusions of faces $\tau \subset \sigma$. Therefore, for each fan Σ we obtain a \mathbb{C}_N^\times-action on the variety V_Σ, which extends the \mathbb{C}_N^\times-action on itself.

Example 5.1.5. Let $N = \mathbb{Z}^n$ and let σ be the cone spanned by the first k basis vectors e_1, \ldots, e_k, where $0 \leq k \leq n$. The semigroup $S_\sigma = \sigma^\perp \cap N^*$ is generated by the dual elements e_1^*, \ldots, e_k^* and $\pm e_{k+1}^*, \ldots, \pm e_n^*$. Therefore,

$$A_\sigma \cong \mathbb{C}[x_1, \ldots, x_k, x_{k+1}, x_{k+1}^{-1}, \ldots, x_n, x_n^{-1}].$$
where we set \(x_i = \chi^{e_i^*} \). It follows that the corresponding affine variety is

\[
V_\sigma \cong \mathbb{C} \times \cdots \times \mathbb{C} \times \mathbb{C}^k \times \cdots \times \mathbb{C} = \mathbb{C}^k \times (\mathbb{C}^*)^{n-k}.
\]

In particular, for \(k = n \) we obtain an \(n \)-dimensional affine space, and for \(k = 0 \) (i.e. \(\sigma = \{0\} \)) we obtain the algebraic torus \((\mathbb{C}^*)^n\).

Example 5.1.6. Let \(\sigma \subset \mathbb{R}^2 \) be the cone generated by the vectors \(e_2 \) and \(2e_1 - e_2 \). These two vectors do not span \(\mathbb{Z}^2 \), so this cone is not regular. The dual cone \(\sigma^* \) is generated by \(e_1^* \) and \(e_1^* + 2e_2^* \). The semigroup \(S_\sigma \) is generated by \(e_1^*, e_1^* + e_2^* \) and \(e_1^* + 2e_2^* \), with one relation among them. Therefore,

\[
A_\sigma = \mathbb{C}[x, xy, xy^2] \cong \mathbb{C}[u, v, w]/(u^2 - uw)
\]

and \(V_\sigma \) is a quadratic cone (a singular variety).

Example 5.1.7. Let \(\Sigma \) be the complete fan in \(\mathbb{R}^2 \) with the following three maximal cones: the cone \(\sigma_0 \) generated by \(e_1 \) and \(e_2 \), the cone \(\sigma_1 \) generated by \(e_2 \) and \(-e_1 - e_2 \), and the cone \(\sigma_2 \) generated by \(-e_1 - e_2 \) and \(e_2 \), see Figure 5.1 (a). Then each affine variety \(V_{\sigma_i} \) is isomorphic to \(\mathbb{C}^2 \), with coordinates \((x, y) \) for \(\sigma_0 \), \((x^{-1}, x^{-1}y) \) for \(\sigma_1 \), and \((y^{-1}, xy^{-1}) \) for \(\sigma_2 \). These three affine charts glue together into the complex projective plane \(V_\Sigma = \mathbb{C}P^2 \) in the standard way: if \((z_0 : z_1 : z_2) \) are the homogeneous coordinates in \(\mathbb{C}P^2 \), then we have \(x = z_1/z_0 \) and \(y = z_2/z_0 \).

Example 5.1.8. Fix \(k \in \mathbb{Z} \) and consider the complete fan in \(\mathbb{R}^2 \) with the four two-dimensional cones generated by the pairs of vectors \((e_1, e_2)\), \((-e_1, -e_2)\), \((-e_1 + ke_2, -e_2)\) and \((-e_1 + ke_2, e_2)\), see Figure 5.1 (b). It can be shown that the corresponding toric variety \(F_k \) is the projectivisation \(\mathbb{C}P(\mathcal{O}(\Sigma)) \) of the sum of a trivial line bundle \(\mathcal{O} \) and the \(k \)th power \(\mathcal{O}(k) = \bar{\eta}^{\otimes k} \) of the conjugate tautological line bundle \(\bar{\eta} \) over \(\mathbb{C}P^1 \) (an exercise). These 2-dimensional complex varieties \(F_k \) are known as Hirzebruch surfaces.

Example 5.1.9. Let \(\mathcal{K} \) be a simplicial complex on \([m]\). The complement \(U(\mathcal{K}) \) of the coordinate subspace arrangement corresponding to \(\mathcal{K} \) (see (4.22)) is a \((\mathbb{C}^*)^m\)-invariant subset in \(\mathbb{C}^m \), and therefore it is a nonsingular toric variety. This variety is not affine in general; it is quasiflame (the complement to a Zariski closed subset in an affine variety).

The fan \(\Sigma_\mathcal{K} \) corresponding to \(U(\mathcal{K}) \) consists of the cones \(\sigma_I \subset \mathbb{R}^m \) generated by the basis vectors \(e_{i_1}, \ldots, e_{i_k} \), for all simplices \(I = \{i_1, \ldots, i_k\} \in \mathcal{K} \). The affine toric variety corresponding to \(\sigma_I \) is \((\mathbb{C}, \mathbb{C}^*)^I \), and the affine cover of \(U(\mathcal{K}) \) is its polyhedral product decomposition \(U(\mathcal{K}) = \bigcup_{I \in \mathcal{K}}(\mathbb{C}, \mathbb{C}^*)^I \) given by Proposition 4.7.3.
A toric variety V_Σ is a disjoint union of its orbits by the action of the algebraic
torus \mathbb{C}_\times^N. There is one such orbit O_σ for each cone $\sigma \in \Sigma$, and we have $O_\sigma \cong (\mathbb{C}_\times)^{n-k}$ if $\dim \sigma = k$. In particular, n-dimensional cones correspond to fixed
points, and the apex (the zero cone) corresponds to the dense orbit \mathbb{C}_\times^N. The orbit
closure \overline{O}_σ is a closed irreducible \mathbb{C}_\times^N-invariant subvariety of V_α, and it is itself a

toric variety. In fact, \overline{O}_σ consists of those orbits O_τ for which τ contains σ as a
face. Any irreducible invariant subvariety of V_Σ can be obtained in this way. In

particular, irreducible invariant divisors D_1, \ldots, D_m of V_Σ correspond to edges of Σ.

We recall from Section 2.1 that a fan is called simplicial (respectively, regular)
each if each of its cones is generated by part of a basis of the space $N_\mathbb{Z}$ (respectively, of
the lattice N), and a fan is called complete if the union of its cones is the whole $N_\mathbb{Z}$.

A toric variety V_Σ is compact (in usual topology) if and only if the fan Σ is
complete. If Σ is a simplicial fan, then V_Σ is an orbifold, that is, it is locally
isomorphic to a quotient of \mathbb{C}^n by a finite group action. A toric variety V_Σ is
nonsingular (smooth) if and only if the fan Σ is regular.

Exercises.

5.1.10. Let Σ be the ‘multifan’ in \mathbb{R}^1 consisting of two identical 1-dimensional
cones generated by e_1 and a 0-dimensional cone 0. Describe the algebraic variety
V_Σ obtained by gluing the affine varieties corresponding to this ‘multifan’ and show
that V_Σ is not separated (or non-Hausdorff in the usual topology).

5.1.11. Describe the toric variety corresponding to the fan with 3 one-
dimensional cones generated by the vectors e_1, e_2 and $-e_1 - e_2$.

5.1.12. Show that the toric variety of Example 5.1.8 is isomorphic to the Hirze-
bruch surface $F_k = \mathbb{C}P(\mathbb{C} \oplus O(k))$.

5.1.13. Show that the Hirzebruch surface F_k is homeomorphic to $S^2 \times S^2$ for
even k and is homeomorphic to $\mathbb{C}P^2 \# \overline{\mathbb{C}P}^2$ for odd k, where $\#$ denotes the connected
sum, and $\overline{\mathbb{C}P}^2$ is $\mathbb{C}P^2$ with the orientation reversed.

5.2. Projective toric varieties and polytopes

Projective toric varieties are produced from lattice polytopes; this construction
goes back to the work of Khovanskii [212] on Newton polyhedra.

Construction 5.2.1 (projective toric varieties). Let P be a convex polytope
with vertices in the dual lattice N^* (a lattice polytope), and let Σ_p be the normal fan
of P (see Construction 2.1.3). Since $P \subset N_\mathbb{Z}$, the fan Σ_p belongs to the space $N_\mathbb{Z}$.
It has a maximal cone σ_v for each vertex $v \in P$. The dual cone σ^*_v is the ‘vertex
cone’ at v, generated by all vectors pointing from v to other points of P.

Define the toric variety $V_P = V_{\Sigma_p}$. Since the normal fan Σ_p does not depend on
the linear size of the polytope, we may assume that for each vertex v the semigroup S_{σ_v} is generated by the lattice points of the polytope (this can always be achieved
by replacing P by kP with sufficiently large k). Since N^* is the lattice of characters
of the algebraic torus $\mathbb{C}_\times^N = N \otimes \mathbb{Z} \mathbb{C}_\times$ (that is, $N^* = \text{Hom}_\mathbb{Z}(\mathbb{C}_\times^N, \mathbb{C}_\times)$), the lattice
points of the polytope $P \subset N^*$ define an embedding

$$i_P : \mathbb{C}_\times^N \to (\mathbb{C}_\times)^{|N^* \cap P|},$$

where $|N^* \cap P|$ is the number of lattice points in P.

Proposition 5.2.2 (see [104, §2.2] or [146, §3.4]). The toric variety V_P is identified with the projective closure $i_P(C_N^X) \subset \mathbb{C}P^{N^* \cap P^*}$.

It follows that toric varieties arising from polytopes are projective, i.e. can be defined by a set of homogeneous equations in a projective space. The converse is also true: the fan corresponding to a projective toric variety is the normal fan of a lattice polytope.

A polytope carries more geometric information than its normal fan: different lattice polytopes with the same normal fan Σ correspond to different projective embeddings of the toric variety V_Σ.

Nonsingular projective toric varieties correspond to lattice polytopes P which are simple and Delzant (that is, for each vertex v, the normal vectors of facets meeting at v form a basis of the lattice N).

Constructions of Chapter 1 provide explicit series of Delzant polytopes and therefore nonsingular projective toric varieties. Basic examples include simplices and cubes in all dimensions. The product of two Delzant polytopes is obviously Delzant. If P is a Delzant polytope, then its face truncation $P \cap H_P$ (Construction 1.1.12) by an appropriately chosen hyperplane H is also Delzant (an exercise). All nestohedra (in particular, permutohedra and associahedra) admit Delzant realisations. This fact, first observed in [308, Proposition 7.10], can be proved either by using the sequence of face truncations described in Lemma 1.5.17 or directly from the presentation of nestohedra given in Proposition 1.5.11.

Example 5.2.3. The fan Σ described in Example 2.1.4 is regular, but cannot be obtained as the normal fan of a simple polytope. The corresponding 3-dimensional toric variety V_Σ is compact and nonsingular, but not projective.

We note that although the fan Σ from the previous example cannot be realised geometrically as the fan over the faces of a simplicial polytope (or, equivalently, as the normal fan of a simple polytope), its underlying simplicial complex K_Σ is nevertheless combinatorially equivalent to the boundary complex of a simplicial polytope (namely, an octahedron with a pyramid over one of its facets, see Figure 2.1). In other words, using the terminology of Section 2.5, the starshaped sphere triangulation K_Σ is polytopal (in the combinatorial sense).

There are, of course, nonpolytopal starshaped spheres, such as the Barnette sphere K (see Example 2.5.8). It is easy to see that a simplicial fan realising the Barnette sphere can be chosen to be rational. However, to realise a nonpolytopal sphere by a regular fan turned out to be a more difficult task. This question was finally settled by Suyama [342]; his example is obtained by subdividing a simplicial fan realising the Barnette sphere. This is also important for the study of quasitoric manifolds and other topological generalisations of toric varieties discussed in Chapter 7.

We observe that each combinatorial simple polytope admits a convex realisation as a lattice polytope. Indeed by a small perturbation of the defining inequalities in (1.1) we can make all of them rational (that is, with rational a_i and b_i). Such a perturbation does not change the combinatorial type, as the half-spaces defined by the inequalities are in general position. As a result, we obtain a simple polytope P' of the same combinatorial type with rational vertex coordinates. To get a lattice polytope (say, with vertices in the standard lattice \mathbb{Z}^n) we just take the magnified polytope kP' for appropriate $k \in \mathbb{Z}$. Similarly, by perturbing the vertices instead
of the hyperplanes, we can obtain a lattice realisation for an arbitrary simplicial polytope (and we can obtain a rational fan realisation of any starshaped sphere triangulation). However, this argument does not work for convex polytopes which are neither simple nor simplicial. In fact, there exist *nonrational* combinatorial polytopes, which cannot be realised with rational vertex coordinates, see [367, Example 6.21] and the discussion there.

Toric geometry, even in its topological part, does not translate to a purely combinatorial study of fans and polytopes: the underlying convex geometry is what really matters. This is illustrated by the simple observation that different realisations of a combinatorial polytope by lattice polytopes often produce different (even topologically) toric varieties:

Example 5.2.4. The complete regular fan Σ_k corresponding to the Hirzebruch surface F_k (see Figure 5.1 (b)) is the normal fan of a lattice quadrilateral (trapezoid). For example, when $k \geq 0$ one can take
\[P_k = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \geq 0, x_2 \geq 0, -x_1 + kx_2 \geq -1, -x_2 \geq -1\}. \]
The polytopes P_k corresponding to different k are combinatorially equivalent (as they are all quadrilaterals), but the topology of the corresponding toric varieties F_k is different for even and odd k (see Exercise 5.1.13).

Furthermore, there exist combinatorial simple polytopes that do not admit any lattice realisation P with smooth V_P:

Example 5.2.5 ([112, 1.22]). Let P be the dual of a 2-neighbourly simplicial n-polytope with $m \geq 2^n$ vertices (e.g., $P = (C^n(m))^*$, the dual of a cyclic polytope with $n \geq 4$, see Example 1.1.17). Then for any lattice realisation of P the corresponding normal fan Σ_P is not regular, and the toric variety V_P is singular. Indeed, assume that the normal fan Σ_P is regular. Since the 1-skeleton of K_P is a complete graph, each pair of primitive generators a_i, a_j of one-dimensional cones of Σ_P is a part of basis of \mathbb{Z}^n, and therefore a_i and a_j must be different modulo 2. This is a contradiction, since the number of different nonzero vectors in \mathbb{Z}_2^n is $2^n - 1$.

A stronger result was obtained in [160]: any lattice realisation of $P = (C^n(m))^*$ with $m \geq n + 3 \geq 7$ gives a singular toric variety.

Exercises.

5.2.6. Let P be a Delzant polytope and $G \subset P$ a face. Show that a hyperplane H cutting G from P (see Construction 1.1.12) can be chosen so that the truncated polytope $P \cap H_G$ is Delzant.

5.2.7. The presentation of a nestohedron P_8 from Proposition 1.5.11 is Delzant.

5.2.8. Describe explicitly a rational fan realising the Barnette sphere by writing down its primitive integral generator vectors.

5.2.9. Write down a system of homogeneous equations defining each Hirzebruch surface in a projective space. (Hint: use Construction 5.2.1.)

5.3. Cohomology of toric manifolds

A *toric manifold* is a smooth compact toric variety. (Compactness will be always understood in the sense of usual topology; it corresponds to algebraic geometers’ notion of completeness.) Toric manifolds V_{Σ} correspond to complete regular
fans Σ. Projective toric manifolds V_P correspond to lattice polytopes P whose normal fans are regular.

The cohomology of a toric manifold V_Σ can be calculated effectively from the fan Σ. The Betti numbers are determined by the combinatorics of Σ only, while the ring structure of $H^*(V_\Sigma)$ depends on the geometric data. The required combinatorial ingredients are the h-vector $h(K_\Sigma) = (h_0, h_1, \ldots, h_n)$ (see Definition 2.2.5) of the underlying simplicial complex K_Σ and its face ring $\mathbb{Z}[K_\Sigma]$ (Definition 3.1.1). The geometric data consist of the primitive generators a_1, \ldots, a_m of one-dimensional cones (edges) of Σ.

Theorem 5.3.1 (Danilov–Jurkiewicz). Let V_Σ be the toric manifold corresponding to a complete regular fan Σ in \mathbb{N}_R. The cohomology ring of V_Σ is given by

$$H^*(V_\Sigma) \cong \mathbb{Z}[v_1, \ldots, v_m]/I,$$

where $v_1, \ldots, v_m \in H^2(V_\Sigma)$ are the cohomology classes dual to the invariant divisors corresponding to the one-dimensional cones of Σ, and I is the ideal generated by elements of the following two types:

(a) $v_{i_1} \cdots v_{i_k}$ with $\{i_1, \ldots, i_k\} \notin K_\Sigma$ (the Stanley–Reisner relations);

(b) $\sum_{j=1}^m (a_j, u)v_j$, for any $u \in N^*$.

The homology groups of V_Σ vanish in odd dimensions, and are free abelian in even dimensions, with ranks given by

$$b_2(V_\Sigma) = h_i(K_\Sigma),$$

where $h_i(K_\Sigma)$, $i = 0, 1, \ldots, n$, are the components of the h-vector of K_Σ.

This theorem was proved by Jurkiewicz for projective toric manifolds and by Danilov [108, Theorem 10.8] in the general case. We shall give a topological proof of a more general result in Section 7.4 (see Theorem 7.4.35).

To obtain an explicit presentation of the ring $H^*(V_\Sigma)$ we choose a basis of N and write the vectors a_j in coordinates: $a_j = (a_{j1}, \ldots, a_{jn})^t$, $1 \leq j \leq m$. Then the ideal I_Σ is generated by the n linear forms

$$t_i = a_{i1}v_1 + \cdots + a_{im}v_m \in \mathbb{Z}[v_1, \ldots, v_m], \quad 1 \leq i \leq n.$$

By Lemma 3.3.2, the sequence t_1, \ldots, t_n is an isop in the Cohen–Macaulay ring $\mathbb{Z}[K_\Sigma]$, so it is a regular sequence. Hence, $\mathbb{Z}[K_\Sigma]$ is a free $\mathbb{Z}[t_1, \ldots, t_n]$-module, and the last statement of Theorem 5.3.1 concerning homology groups follows from the description of the cohomology ring and Theorem 3.1.10.

Remark. Theorem 5.3.1 remains valid for complete simplicial fans and corresponding toric orbifolds if the integer coefficients are replaced by the rationals [108].

The integral cohomology of toric orbifolds often has torsion, and the ring structure is subtle even in the simplest case of weighted projective spaces [211], [20].

It follows from Theorem 5.3.1 that the cohomology ring of V_Σ is generated by two-dimensional classes. This is the first property to check if one wishes to determine whether a given algebraic variety or smooth manifold has a structure of a toric manifold. For instance, this rules out flag varieties and Grassmannians different from projective spaces. Another important property of toric manifolds is that the Chow ring of V_Σ coincides with its integer cohomology ring [146, § 5.1].
Assume now that $\Sigma = \Sigma_P$ is the normal fan of a lattice polytope $P = P(A, b)$ given by (1.1). Let V_P be the corresponding projective toric variety, see Construction 5.2.1. If D_1, \ldots, D_m are the invariant divisors corresponding to the facets of P, then the linear combination $D_P = b_1 D_1 + \cdots + b_m D_m$ is an ample divisor on V_P (see, e.g., [146, Proposition 6.1.10]). This means that, when k is sufficiently large, kD_P is a hyperplane section divisor for a projective embedding $V_P \subset \mathbb{C}P^n$. In fact, the space of sections $H^0(V_P, kD_P)$ of (the line bundle corresponding to) kD_P has basis corresponding to the lattice points in kP. One may take k so that kP has 'enough lattice points' to get an embedding of V_P into the projectivisation of $H^0(V_P, kD_P)$; this is exactly the embedding described in Construction 5.2.1. Let $\omega = b_1 v_1 + \cdots + b_m v_m \in H^2(V_P; \mathbb{C})$ be the complex cohomology class of D_P.

Theorem 5.3.2 (Hard Lefschetz Theorem for toric orbifolds). Let P be a lattice simple polytope (1.1), let V_P be the corresponding projective toric variety, and let $\omega = b_1 v_1 + \cdots + b_m v_m \in H^2(V_P; \mathbb{C})$ be the class defined above. Then the maps

$$H^{n-i}(V_P; \mathbb{C}) \xrightarrow{\omega^i} H^{n+i}(V_P; \mathbb{C})$$

are isomorphisms for all $i = 1, \ldots, n$.

If V_P is smooth, then it is Kähler, and ω is the class of the Kähler 2-form.

The proof of the Hard Lefschetz Theorem is well beyond the scope of this book. In fact, it is a corollary of a more general version of the Hard Lefschetz Theorem for the intersection cohomology, which is valid for all projective varieties (not necessary orbifolds). See the discussion in [146, §5.2] or [146, §12.6].

Now we are ready to give Stanley’s argument for the ‘only if’ part of the g-thoerem for simple polytopes:

Proof of the necessity part of Theorem 1.4.14. We need to establish conditions (a)–(c) for a combinatorial simple polytope. Realise it by a lattice polytope $P \subset \mathbb{R}^n$ as described in the previous section. Let V_P be the corresponding toric variety. Part (a) is already proved (Theorem 1.3.4). It follows from Theorem 5.3.2 that the multiplication by $\omega \in H^2(V_P; \mathbb{Q})$ is a monomorphism $H^{2i-2}(V_P; \mathbb{Q}) \to H^{2i}(V_P; \mathbb{Q})$ for $i \leq \left\lfloor \frac{n}{2} \right\rfloor$. This together with part (a) of Theorem 5.3.1 gives that $h_{i-1} \leq h_i$ for $0 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor$, thus proving (b). To prove (c), define the graded commutative \mathbb{Q}-algebra $A = H^*(V_P; \mathbb{Q})/(\omega)$, where (ω) is the ideal generated by ω. Then $A^0 = \mathbb{Q}$, $A^{2i} = H^{2i}(V_P; \mathbb{Q})/(\omega \cdot H^{2i-2}(V_P; \mathbb{Q}))$ for $1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor$, and A is generated by degree-two elements (since so is $H^*(V_P; \mathbb{Q})$). It follows from Theorem 1.4.12 that the numbers $\dim A^{2i} = h_i - h_{i-1}$, $0 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor$, are the components of an M-vector, thus proving (c).

Remark. The Dehn–Sommerville equations can now be interpreted as Poincaré duality for V_P. (Even though V_P may not be smooth, the rational cohomology algebra of a toric orbifold satisfies Poincaré duality.)

The Hard Lefschetz Theorem holds for projective varieties only. Therefore, Stanley’s argument cannot be generalised to nonpolytopal spheres. However, the cohomology of toric varieties can be used to prove statements generalising the g-theorem in a different direction, namely, to the case of general (not necessarily simple or simplicial) convex polytopes. So suppose P is a convex lattice n-polytope, and V_P is the corresponding projective toric variety. If P is not simple then V_P has worse than orbifold-type singularities and its ordinary cohomology behaves badly.
The Betti numbers of \(V_P \) are not determined by the combinatorial type of \(P \) and do not satisfy Poincaré duality. On the other hand, the dimensions \(\check{h}_i = \dim H_2(V_P) \) of the intersection homology groups of \(V_P \) are combinatorial invariants of \(P \) (see the description in [334] or [104, §2.5]). The vector
\[
\check{h}(P) = (\check{h}_0, \check{h}_1, \ldots, \check{h}_n)
\]
is called the intersection \(h \)-vector, or the toric \(h \)-vector of \(P \). If \(P \) is simple, then the toric \(h \)-vector coincides with the standard \(h \)-vector, but in general \(\check{h}(P) \) is not determined by the face numbers of \(P \). The toric \(h \)-vector satisfies the ‘Dehn–Sommerville equations’ \(\check{h}_i = \check{h}_{n-i} \), and the Hard Lefschetz Theorem for intersection cohomology shows that it also satisfies the GLBC inequalities:
\[
\check{h}_0 \leq \check{h}_1 \leq \cdots \leq \check{h}_{[\frac{n}{2}]}
\]
In the case when \(P \) cannot be realised by a lattice polytope (i.e., when \(P \) is non-rational), the toric \(h \)-vector can still be defined combinatorially, but the GLBC inequalities require a separate proof. Partial results in this direction were obtained by several people, before the Hard Lefschetz Theorem for nonrational polytopes was eventually proved in the work of Karu [209]. This result also gives a purely combinatorial proof of the Hard Lefschetz Theorem for projective toric varieties.

Exercises.

5.3.3. The complex Grassmannian \(Gr_k(\mathbb{C}^n) \) of \(k \)-planes in \(\mathbb{C}^n \) with \(2 \leq k \leq n-2 \) does not support an algebraic torus action turning it into a toric variety.

5.4. **Algebraic quotient construction**

Along with the classical construction of toric varieties from fans, described in Section 5.1, there is an alternative way to define a toric variety: as the quotient of a Zariski open subset in \(\mathbb{C}^n \) (more precisely, the complement of a coordinate subspace arrangement) by an action of an abelian algebraic group (a product of an algebraic torus and a finite group). Different versions of this construction, which we refer to as simply the ‘quotient construction’, have appeared in the work of several authors since the early 1990s. In our exposition we mainly follow the work of Cox [103] (and also its modernised exposition in [104, Chapter 5]); more historical remarks can be also found in these sources.

Quotients in algebraic geometry. Taking quotients of algebraic varieties by algebraic group actions is tricky for both topological and algebraic reasons. First, as infinite algebraic groups are non-compact (as algebraic tori), their orbits may be not closed, and the quotients may be non-Hausdorff. Second, even if the quotient is Hausdorff as a topological space, it may fail to be an algebraic variety. This may be remedied to some extent by the notion of the categorical quotient. A systematic treatment of quotient constructions in algebraic geometry can be found in the survey of Popov and Vinberg [355], while the work of Schwarz [325] is a good account of topological aspects of the theory.

Let \(X \) be an algebraic variety with an action of an affine algebraic group \(G \). An algebraic variety \(Y \) is called a categorical quotient of \(X \) by the action of \(G \) if there exists a morphism \(\pi : X \to Y \) which is constant on \(G \)-orbits of \(X \) and has the following universal property: for any morphism \(\varphi : X \to Z \) which is constant
on G-orbits, there is a unique morphism $\tilde{\varphi}: Y \to Z$ such that $\tilde{\varphi} \circ \pi = \varphi$. This is described by the diagram

$$
\begin{array}{c}
X \\
\downarrow \pi \\
Y \\
\downarrow \varphi \\
Z
\end{array}
$$

A categorical quotient Y is unique up to isomorphism, and we denote it by $X//G$. Assume first that $X = \text{Spec } A$ is an affine variety, where $A = \mathbb{C}[X]$ is the algebra of regular functions on X. Let $\mathbb{C}[X]^G$ be the subalgebra of G-invariant functions (i.e. functions f such that $f(gx) = f(x)$ for any $g \in G$ and $x \in X$). If G is an algebraic torus (or any reductive affine algebraic group), then $\mathbb{C}[X]^G$ is finitely generated. The corresponding affine variety $\text{Spec } \mathbb{C}[X]^G$ is the categorical quotient $X//G$. The quotient morphism $\pi: X \to X//G$ is dual to the inclusion of algebras $\mathbb{C}[X]^G \to \mathbb{C}[X]$. The morphism π is surjective and induces a one-to-one correspondence between points of $X//G$ and closed G-orbits of X (i.e. $\pi^{-1}(x)$ contains a unique closed G-orbit for any $x \in X//G$, see [104, Proposition 5.0.7]).

Therefore, if all G-orbits of an affine variety X are closed, then the categorical quotient $X//G$ is identified as a topological space with the ordinary ‘topological’ quotient X/G. Quotients of this type are called geometric and also denoted by X/G.

Example 5.4.1. Let \mathbb{C}^\times act on $\mathbb{C} = \text{Spec } (\mathbb{C}[z])$ by scalar multiplication. There are two orbits: the closed orbit 0 and the open orbit \mathbb{C}^\times. The topological quotient $\mathbb{C}/\mathbb{C}^\times$ is a non-Hausdorff two-point space.

On the other hand, the categorical quotient $\mathbb{C}//\mathbb{C}^\times = \text{Spec } (\mathbb{C}[z][\mathbb{C}^\times])$ is a point, since any \mathbb{C}^\times-invariant polynomial is constant (and there is only one closed orbit).

Similarly, if \mathbb{C}^\times acts on $\mathbb{C}^n = \text{Spec } (\mathbb{C}[z_1, \ldots, z_n])$ diagonally, then an invariant polynomial satisfies $f(\lambda z_1, \ldots, \lambda z_n) = f(z_1, \ldots, z_n)$ for all $\lambda \in \mathbb{C}^\times$. Such a polynomial must be constant, hence $\mathbb{C}^n//\mathbb{C}^\times$ is a point.

In good cases categorical quotients of general (non-affine) varieties X may be constructed by ‘gluing from affine pieces’ as follows. Assume that G acts on X and $\pi: X \to Y$ is a morphism of varieties that is constant on G-orbits. If Y has an open affine cover $Y = \bigcup V_\alpha$ such that $\pi^{-1}(V_\alpha)$ is affine and V_α is the categorical quotient (that is, $\pi_{\pi^{-1}(V_\alpha)}: \pi^{-1}(V_\alpha) \to V_\alpha$ is the morphism dual to the inclusion of algebras $\mathbb{C}[[\pi^{-1}(V_\alpha)]]^G \to \mathbb{C}[[\pi^{-1}(V_\alpha)]]$), then Y is the categorical quotient $X//G$.

Example 5.4.2. Let \mathbb{C}^\times act on $\mathbb{C}^2 \setminus \{0\}$ diagonally, where $\mathbb{C}^2 = \text{Spec } (\mathbb{C}[z_0, z_1])$. We have an open affine cover $\mathbb{C}^2 \setminus \{0\} = U_0 \cup U_1$, where

$$
U_0 = \mathbb{C}^2 \setminus \{z_0 = 0\} = \mathbb{C}^\times \times \mathbb{C} = \text{Spec } (\mathbb{C}[z_0^{\pm 1}, z_1]),
$$
$$
U_1 = \mathbb{C}^2 \setminus \{z_1 = 0\} = \mathbb{C} \times \mathbb{C}^\times = \text{Spec } (\mathbb{C}[z_0, z_1^{\pm 1}]),
$$
$$
U_0 \cap U_1 = \mathbb{C}^2 \setminus \{z_0 z_1 = 0\} = \mathbb{C}^\times \times \mathbb{C}^\times = \text{Spec } (\mathbb{C}[z_0^{\pm 1}, z_1^{\pm 1}]).
$$

The algebras of \mathbb{C}^\times-invariant functions are

$$
\mathbb{C}[z_0^{\pm 1}, z_1]\mathbb{C}^\times = \mathbb{C}[z_1/z_0], \quad \mathbb{C}[z_1, z_1^{\pm 1}]\mathbb{C}^\times = \mathbb{C}[z_0/z_1], \quad \mathbb{C}[z_0^{\pm 1}, z_1, z_1^{\pm 1}]\mathbb{C}^\times = \mathbb{C}[(z_1/z_0)^{\pm 1}].
$$

It follows that $V_0 = U_0/\mathbb{C}^\times \cong \mathbb{C}$ and $V_1 = U_1/\mathbb{C}^\times \cong \mathbb{C}$ glue together along $V_0 \cap V_1 = (U_0 \cap U_1)/\mathbb{C}^\times \cong \mathbb{C}$ in the standard way to produce $\mathbb{C}P^1$. All \mathbb{C}^\times-orbits are closed in $\mathbb{C}^2 \setminus \{0\}$, hence $\mathbb{C}P^1 = (\mathbb{C}^2 \setminus \{0\})/\mathbb{C}^\times$ is the geometric quotient.

Similarly, $\mathbb{C}P^n = (\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^\times$ for the diagonal action of \mathbb{C}^\times.

Example 5.4.3. Now we let \mathbb{C}^\times act on $\mathbb{C}^2 \setminus \{0\}$ by $\lambda \cdot (z_0, z_1) = (\lambda z_0, \lambda^{-1} z_1)$. Using the same affine cover of $\mathbb{C}^2 \setminus \{0\}$ as in the previous example, we obtain the following algebras of \mathbb{C}^\times-invariant functions:

$$\mathbb{C}[z_0^{\pm 1}, z_1] = \mathbb{C}[z_0 z_1], \quad \mathbb{C}[z_0, z_1^{\pm 1}] = \mathbb{C}[[z_0 z_1]], \quad \mathbb{C}[z_0^{\pm 1}, z_1^{\pm 1}] = \mathbb{C}[[z_0 z_1]^{\pm 1}] = \mathbb{C}[[z_0, z_1]^{\pm 1}] .$$

This times gluing together V_0 and V_1 along $V_0 \cap V_1 \cong \mathbb{C}^\times$ gives the variety obtained from two copies of \mathbb{C} by identifying all nonzero points. This variety is nonseparated (the two zeros do not have nonintersecting neighbourhoods in the usual topology). Since we only consider separated varieties, this is not a categorical quotient.

A toric variety V_Σ will be described as the quotient of the ‘total space’ $U(\Sigma)$ by an action of a commutative algebraic group G, which we now proceed to describe.

The total space $U(\Sigma)$ and the acting group G. Let Σ be a rational fan in the n-dimensional space $N_\mathbb{R}$ with m one-dimensional cones generated by primitive vectors a_1, \ldots, a_m. We shall assume that the linear span of a_1, \ldots, a_m is the whole $N_\mathbb{R}$. (Equivalently, the toric variety V_Σ does not have torus factors, i.e. cannot be written as $V_\Sigma = V_{\Sigma^\times} \times \mathbb{C}^\times$. For the general case see [104, §5.1].)

We consider the map of lattices $A: \mathbb{Z}^m \to N$ sending the ith basis vector of \mathbb{Z}^m to $a_i \in N$. Our assumption implies that the corresponding map of algebraic tori,

$$A \otimes \mathbb{Z}^\times: (\mathbb{C}^\times)^m \to \mathbb{C}_N^\times$$

is surjective.

Define the group $G = G(\Sigma)$ as the kernel of the map $A \otimes \mathbb{Z}^\times$, which we denote by $\exp A$. We therefore have an exact sequence of groups

$$1 \rightarrow G \rightarrow (\mathbb{C}^\times)^m \xrightarrow{\exp A} \mathbb{C}_N^\times \rightarrow 1 .$$

Explicitly, G is given by

$$G = \{ (z_1, \ldots, z_m) \in (\mathbb{C}^\times)^m : \prod_{i=1}^m z_i^{(a_i, u)} = 1 \text{ for any } u \in N^* \} .$$

The group G is isomorphic to a product of $(\mathbb{C}^\times)^{m-n}$ and a finite abelian group. If Σ is a regular fan with at least one n-dimensional cone, then $G \cong (\mathbb{C})^{m-n}$.

Given a cone $\sigma \in \Sigma$, we set $g(\sigma) = \{ i_1, \ldots, i_k \} \subset [m]$ if σ is generated by a_{i_1}, \ldots, a_{i_k}, and consider the monomial $z_{\sigma} = \prod_{j \notin g(\sigma)} z_j$. The quasiaffine variety

$$U(\Sigma) = \mathbb{C}^m \setminus \{ z \in \mathbb{C}^m : z_{\sigma} = 0 \text{ for all } \sigma \in \Sigma \}$$

has the affine cover

$$U(\Sigma) = \bigcup_{\sigma \in \Sigma} U(\sigma) .$$

by affine varieties

$$U(\sigma) = \{ z \in \mathbb{C}^m : z_{\sigma} \neq 0 \} = \{ z \in \mathbb{C}^m : z_j \neq 0 \text{ for } j \notin g(\sigma) \} = (\mathbb{C}, \mathbb{C}^\times)^{g(\sigma)} .$$

Here we used the notation of Construction 4.2.1, so that $U(\sigma) \cong \mathbb{C}^k \times (\mathbb{C}^\times)^{m-k}$. Each subset $U(\sigma) \subset \mathbb{C}^m$ is invariant under the coordinatewise action of $(\mathbb{C}^\times)^m$ on \mathbb{C}^m, so that $U(\Sigma)$ is also invariant.
5.4. Algebraic Quotient Construction

By definition, $U(\Sigma)$ is the complement of a union of coordinate subspaces, so we know from Proposition 4.7.2 that it has the form

$$
U(K) = \mathbb{C}^m \setminus \bigcup_{\{i_1, \ldots, i_k\} \notin K} \{ z \in \mathbb{C}^m : z_{i_1} \cdots z_{i_k} = 0 \} = \mathcal{Z}_K(\mathbb{C}, \mathbb{C}^\times)
$$

for some simplicial complex K on $[m]$. What is this simplicial complex?

The answer is suggested by the decomposition (5.4). We define the simplicial complex K_Σ generated by all subsets $g(\sigma) \subset [m]$:

$$
K_\Sigma = \{ I : I \subset g(\sigma) \quad \text{for some } \sigma \in \Sigma \}.
$$

If Σ is a simplicial fan, then each $I \subset g(\sigma)$ is $g(\tau)$ for some $\tau \in \Sigma$, and we obtain the ‘underlying complex’ of Σ defined in Example 2.2.7. In particular, if Σ is simplicial and complete, then K_Σ is a triangulation of S^{n-1}; and if Σ is a normal fan of a simple polytope, then K_Σ is the boundary complex of the dual simplicial polytope. If Σ is the normal fan of a non-simple polytope P (i.e. the fan over the faces of the polar polytope P^\ast), then K_Σ is the nerve complex of P. It is obtained by replacing each face of P^\ast by a simplex with the same set of vertices; such a simplicial complex is not pure in general.

Proposition 5.4.4. We have $U(\Sigma) = U(K_\Sigma)$.

Proof. We have $(\mathbb{C}, \mathbb{C}^\times)^I \subset (\mathbb{C}, \mathbb{C}^\times)^{g(\sigma)}$ whenever $I \subset g(\sigma)$, hence,

$$
U(\Sigma) = \bigcup_{\sigma \in \Sigma} U(\sigma) = \bigcup_{\sigma \in \Sigma} (\mathbb{C}, \mathbb{C}^\times)^{g(\sigma)} = \bigcup_{\sigma \in \Sigma, I \subset g(\sigma)} (\mathbb{C}, \mathbb{C}^\times)^I = \bigcup_{I \in K_\Sigma} (\mathbb{C}, \mathbb{C}^\times)^I = U(K_\Sigma).
$$

We observe that the subset $U(\Sigma) \subset \mathbb{C}^m$ depends only on the combinatorial structure of the fan Σ, while the subgroup $G \subset (\mathbb{C}^\times)^m$ depends on the geometric data, namely, the primitive generators of one-dimensional cones.

Toric variety as a quotient. Since $U(\Sigma) \subset \mathbb{C}^m$ is invariant under the coordinatewise action of $(\mathbb{C}^\times)^m$, we obtain a G-action on $U(\Sigma)$ by restriction.

Theorem 5.4.5 (Cox [103, Theorem 2.1]). Assume that the linear span of one-dimensional cones of Σ is the whole space $N_\mathbb{R}$.

(a) The toric variety V_Σ is naturally isomorphic to the categorical quotient $U(\Sigma)//G$.

(b) V_Σ is the geometric quotient $U(\Sigma)/G$ if and only if the fan Σ is simplicial.

Proof. We first prove that the affine variety V_σ corresponding to a cone $\sigma \in \Sigma$ is the categorical quotient $U(\sigma)//G$. The algebra of regular functions $\mathbb{C}[U(\sigma)]$ is isomorphic to $\mathbb{C}[z_i, z_j^{-1} : 1 \leq i \leq m, j \notin g(\sigma)]$ and is generated by Laurent monomials $\prod_{i=1}^m z_i^{k_i}$ with $k_i \geq 0$ for $i \in g(\sigma)$.

It follows easily from (5.3) that a monomial $\prod_{i=1}^m z_i^{k_i}$ is invariant under the G-action on $U(\sigma)$ if and only if it has the form $\prod_{i=1}^m z_i^{u, a_i}$ for some $u \in \mathbb{N}^\sigma$.

Conditions $(u, a_i) \geq 0$ for $i \in g(\sigma)$ specify the dual cone $\sigma^\vee \subset N^\vee_\mathbb{R}$, see (2.1). Hence the invariant subalgebra $\mathbb{C}[U(\sigma)]^G$ is isomorphic to $\mathbb{C}[\sigma^\vee \cap \mathbb{N}^\sigma] = A_\sigma = \mathbb{C}[V_\sigma]$ (the isomorphism is given by $\prod_{i=1}^m y_i^{u, a_i} \mapsto \chi^u$). Thus, $U(\sigma)/G \cong V_\sigma$.

The next step is to glue the isomorphisms $U(\sigma)/G \cong V_\sigma$ together into an isomorphism $U(\Sigma)/G \cong V_\Sigma$. To do this we need to check that the isomorphisms
\[\mathbb{C}[U(\sigma)]^G \to \mathbb{C}[V_\sigma] \] are compatible when we pass to the faces of \(\sigma \). In other words, for each face \(\tau \subset \sigma \) we need to establish the commutativity of the diagram

\[
\begin{array}{ccc}
\mathbb{C}[U(\sigma)]^G & \longrightarrow & \mathbb{C}[U(\tau)]^G \\
\cong & & \cong \\
\mathbb{C}[V_\sigma] & \longrightarrow & \mathbb{C}[V_\tau].
\end{array}
\] (5.6)

By the definition of a face, we have \(\tau = \sigma \cap u^\perp \) for some \(u \in \sigma^\vee \cap N^* \), where \(u^\perp \) denotes the hyperplane in \(N_\mathbb{R} \) normal to \(u \). Consider the monomial \(z(u) = \prod_{i=1}^m z_i^{(u,a_i)} \). Since \(\tau = \sigma \cap u^\perp \), the monomial \(z(u) \) has positive exponent of \(z_i \) for \(i \in g(\sigma) \setminus g(\tau) \) and zero exponent of \(z_j \) for \(j \in g(\tau) \). It follows that the algebra \(\mathbb{C}[U(\tau)] \) is the localisation of \(\mathbb{C}[U(\sigma)] \) by the ideal generated by \(z(u) \), i.e. \(\mathbb{C}[U(\tau)] = \mathbb{C}[U(\sigma)]_{z(u)} \). Since \(z(u) \) is a \(G \)-invariant monomial, the localisation commutes with passage to invariant subalgebras, i.e. \(\mathbb{C}[U(\tau)]^G = \mathbb{C}[U(\sigma)]^G_{z(u)} \).

Similarly, \(\mathbb{C}[V_\tau] = A_\tau = (A_\sigma)_x^* \). Diagram (5.6) then takes the form

\[
\begin{array}{ccc}
\mathbb{C}[U(\sigma)]^G & \longrightarrow & \mathbb{C}[U(\sigma)]^G_{z(u)} \\
\cong & & \cong \\
\mathbb{C}[V_\sigma] & \longrightarrow & \mathbb{C}[V_\sigma]_{x^*},
\end{array}
\]

where the vertical arrows are localisation maps. It is obviously commutative.

Now using the affine cover (5.4) and the compatibility of the isomorphisms on affine varieties we obtain the isomorphism \(U(\Sigma)/G \cong V_\Sigma = \bigcup_{\sigma \in \Sigma} V_\sigma \). Statement (a) is therefore proved.

To verify (b) we need to check that all orbits of the \(G \)-action on \(U(\Sigma) \) are closed if and only if the fan \(\Sigma \) is simplicial.

Assume \(\Sigma \) is simplicial, and consider any \(G \)-orbit \(Gz, \ z \in U(\Sigma) \). We shall prove that \(Gz \) is closed in the usual topology, which is sufficient since the closures of the orbits in the usual and Zariski topologies coincide. We need to check that whenever a sequence \(\{w^{(k)}; k = 1, 2, \ldots\} \) of points of \(Gz \) has a limit \(w \in U(\Sigma) \), this limit is in \(Gz \). Write \(w^{(k)} = g^{(k)}z \) with \(g^{(k)} \in G \). Then it is enough to show that a subsequence of \(\{g^{(k)}\} \) converges to a point \(g \in G \), as in this case \(\lim_{k \to \infty} w^{(k)} = gz \in Gz \). We write

\[
g^{(k)} = (g_1^{(k)}, \ldots, g_m^{(k)}) = (e^{\alpha_1^{(k)} + i\beta_1^{(k)}}, \ldots, e^{\alpha_m^{(k)} + i\beta_m^{(k)}}) \in G \subset (\mathbb{C}^\times)^m
\]

where \(g_j^{(k)} \in \mathbb{C}^\times \) and \(\alpha_j^{(k)}, \beta_j^{(k)} \in \mathbb{R} \). Since \(e^{i\beta_j^{(k)}} \in S \) and the circle is compact, we may assume by passing to a subsequence that the sequence \(\{e^{i\beta_j^{(k)}}\} \) has a limit \(e^{i\beta_j} \) as \(k \to \infty \) for each \(j = 1, \ldots, m \). It remains to consider the sequences \(\{e^{\alpha_j^{(k)}}\} \).

By passing to a subsequence we may assume that each sequence \(\{\alpha_j^{(k)}\}, \ j = 1, \ldots, m, \) has a finite or infinite limit (including \(\pm \infty \)). Let

\[
I_+ = \{ j : \alpha_j^{(k)} \to +\infty \} \subset [m], \quad I_- = \{ j : \alpha_j^{(k)} \to -\infty \} \subset [m].
\]

Since the sequence \(\{w^{(k)} = g^{(k)}z\} \) is converging to \(w = (w_1, \ldots, w_m) \in U(\Sigma) \), we have \(z_j \to 0 \) for \(j \in I_+ \) and \(w_j \to 0 \) for \(j \in I_- \). Then it follows from the decomposition \(U(\Sigma) = \bigcup_{\ell \in K_\Sigma} (\mathbb{C}, \mathbb{C}^\times)^I \) that \(I_+ \) and \(I_- \) are disjoint simplices of \(K_\Sigma \). Let \(\sigma_+, \sigma_- \) be the corresponding cones of \(\Sigma \) (here we use the fact that \(\Sigma \) is simplicial). Then \(\sigma_+ \cap \sigma_- = \{0\} \) by definition of a fan. By Lemma 2.1.2, there is a linear
5.4. Algebraic Quotient Construction

function \(u \in N^* \) such that \(\langle u, a \rangle > 0 \) for any nonzero \(a \in \sigma_+ \), and \(\langle u, a \rangle < 0 \) for any nonzero \(a \in \sigma_- \). Now, since \(g^{(k)} \in G \), it follows from \((5.3)\) that

\[
(5.7) \quad \sum_{j=1}^{m} \alpha^{(k)}_j \langle u, a_j \rangle = 0.
\]

This implies that both \(I_+ \) and \(I_- \) are empty, as otherwise the sum above tends to infinity. Thus, each sequence \(\{\alpha^{(k)}_j\} \) has a finite limit \(\alpha_j \), and a subsequence of \(\{g^{(k)} \} \) converges to \((e^{\alpha_1+\beta_1}, \ldots, e^{\alpha_m+\beta_m})\). Passing to the limit in \((5.7)\) and in the similar equation for \(\beta_j^{(k)} \) as \(k \to \infty \) we obtain that \((e^{\alpha_1+\beta_1}, \ldots, e^{\alpha_m+\beta_m}) \in G\).

The fact that the \(G \)-action on \(U(\Sigma) \) with non-simplicial \(\Sigma \) has non-closed orbits is left as an exercise (alternatively, see [103, §2] or [104, Theorem 5.1.11]).

The quotient torus \(\mathbb{C}_N^\times = (\mathbb{C}^\times)^m/G \) acts on \(V_\Sigma = U(\Sigma)/G \) with a dense orbit.

Remark. Observe that \(U(\Sigma) \) is itself a toric variety by Example 5.1.9. The map \(A: \mathbb{R}^m \to N_\mathbb{R}, e_i \mapsto a_i \), projects the fan \(\Sigma_K \) corresponding to \(U(\Sigma) \) to the fan \(\Sigma \) corresponding to \(V_\Sigma \). This projection defines a morphism of toric varieties \(U(\Sigma) \to V_\Sigma \), which is exactly the quotient described above. Both fans \(\Sigma_K \) and \(\Sigma \) have the same underlying simplicial complex \(K \).

Another way to see that the orbits of the \(G \)-action on \(U(\Sigma) \) are closed is to use the fact that this action is almost free (see Exercise 5.4.14):

Proposition 5.4.6.

(a) If \(\Sigma \) is a simplicial fan, then the \(G \)-action on \(U(\Sigma) \) is almost free (i.e., all stabiliser subgroups are finite);

(b) If \(\Sigma \) is regular, then the \(G \)-action on \(U(\Sigma) \) is free.

Proof. The stabiliser of a point \(z \in \mathbb{C}^m \) under the action of \((\mathbb{C}^\times)^m\) is

\[
(\mathbb{C}^\times)^{\omega(z)} = \{(t_1, \ldots, t_m) \in (\mathbb{C}^\times)^m : t_i = 1 \text{ if } z_i \neq 0\},
\]

where \(\omega(z) \) is the set of zero coordinates of \(z \). The stabiliser of \(z \) under the \(G \)-action is \(G_z = (\mathbb{C}^\times)^{\omega(z)} \cap G \). Since \(G \) is the kernel of the map \(\exp A: (\mathbb{C}^\times)^m \to \mathbb{C}_N^\times \), induced by the map of lattices \(A: \mathbb{Z}^m \to N \), the subgroup \(G_z \) is the kernel of the composite map

\[
(\mathbb{C}^\times)^{\omega(z)} \twoheadrightarrow (\mathbb{C}^\times)^m \xrightarrow{\exp A} \mathbb{C}_N^\times.
\]

This homomorphism of tori is induced by the map of lattices \(\mathbb{Z}^{\omega(z)} \to \mathbb{Z}^m \to N \), where \(\mathbb{Z}^{\omega(z)} \to \mathbb{Z}^m \) is the inclusion of a coordinate subgroup.

Now let \(\Sigma \) be a simplicial fan and \(z \in U(\Sigma) \). Then \(\omega(z) = g(\sigma) \) for a cone \(\sigma \in \Sigma \). Therefore, the set of primitive generators \(\{a_i : i \in \omega(z)\} \) is linearly independent. Hence, the map \(\mathbb{Z}^{\omega(z)} \to \mathbb{Z}^m \to N \) taking \(e_i \) to \(a_i \) is a monomorphism, which implies that the kernel of \((5.8)\) is a finite group.

If the fan \(\Sigma \) is regular, then \(\{a_i : i \in \omega(z)\} \) is a part of basis of \(N \). In this case \((5.8)\) is a monomorphism and \(G_z = \{1\} \).

Remark. The closedness of orbits is a necessary condition for the topological quotient \(U(\Sigma)/G \) to be Hausdorff (Exercise B.4.8). The proof of Theorem 5.4.5 (b) above uses the Separation Lemma (Lemma 2.1.2); this is another example of a situation when convex-geometric separation translates into Hausdorffness.
We may consider the following more general setup. Let \(\mathbf{a}_1, \ldots, \mathbf{a}_m \) be a set of primitive vectors in \(N \), and let \(K \) be a simplicial complex on \([m]\). Assume further that for any \(I \in K \) the set of vectors \(\{ \mathbf{a}_i : i \in I \} \) is linearly independent. The latter set spans a simplicial cone, which we denote by \(\sigma_I \). The data \(\{ K, \mathbf{a}_1, \ldots, \mathbf{a}_m \} \) defines the coordinate subspace arrangement complement \(U(K) \subset \mathbb{C}^m \) and the group \(G \) (5.3). Furthermore, the action of \(G \) on \(U(K) \) is almost free (and it is free if all cones \(\sigma_I \) are regular; this is proved in the same way as Proposition 5.4.6). However, the quotient \(U(K)/G \) is Hausdorff precisely when the cones \(\{ \sigma_I : I \in K \} \) form a fan \(\Sigma \) (see [9, Proposition II.3.1.6] and use the previous remark). In this case \(K = K_\Sigma \) and \(U(K) = U(\Sigma) \).

To see that the quotient \(U(\Sigma)/G \) is Hausdorff in the case when \(\Sigma \) is a simplicial fan, it is not necessary to use the algebraic criterion of separatedness as in the proof of Lemma 5.1.4. Instead, we may modify the argument for the closedness of orbits in the proof of Theorem 5.4.5 and show that action of \(G \) on \(U(\Sigma) \) is proper (Exercise 5.4.15), which guarantees that \(U(\Sigma)/G \) is Hausdorff (Exercise 5.4.16).

Example 5.4.7. Let \(V_\sigma \) be the affine toric variety corresponding to an \(n \)-dimensional simplicial cone \(\sigma \). We may write \(V_\sigma = V_\sigma^\Sigma \) where \(\Sigma \) is the simplicial fan consisting of all faces of \(\sigma \). Then \(m = n \), \(U(\Sigma) = \mathbb{C}^n \), and \(A : \mathbb{Z}^n \rightarrow N \) is the monomorphism onto the full rank sublattice generated by \(\mathbf{a}_1, \ldots, \mathbf{a}_n \). Therefore, \(G \) is a finite group and \(V_\sigma = \mathbb{C}^n/G = \text{Spec} \mathbb{C}[z_1, \ldots, z_n]^G \).

In particular, if we consider the cone \(\sigma \) generated by \(2\mathbf{e}_1 - \mathbf{e}_2 \) and \(\mathbf{e}_2 \) in \(\mathbb{R}^2 \) (see Example 5.1.6), then \(G = \mathbb{Z}_2 \) embedded as \(\{(1,1), (-1,-1)\} \) in \((\mathbb{C}^\times)^2 \). The quotient construction realises the quadratic cone \(V_\sigma = \text{Spec} \mathbb{C}[z_1, z_2]^G = \text{Spec} \mathbb{C}[z_1^2, z_1z_2, z_2^2] \) as a quotient of \(\mathbb{C}^2 \) by \(\mathbb{Z}_2 \).

Example 5.4.8. Consider the complete fan of Example 5.1.7. Then
\[
U(\Sigma) = \mathbb{C}^3 \setminus \{ z_1 = z_2 = z_3 = 0 \} = \mathbb{C}^3 \setminus \{ \mathbf{0} \}
\]
The subgroup \(G \) defined by (5.2) is the diagonal \(\mathbb{C}^\times \) in \((\mathbb{C}^\times)^3 \). We therefore obtain \(V_\Sigma = U(\Sigma)/G = \mathbb{CP}^2 \).

Example 5.4.9. Consider the fan \(\Sigma \) in \(\mathbb{R}^2 \) with three one-dimensional cones generated by the vectors \(\mathbf{e}_1, \mathbf{e}_2 \) and \(-\mathbf{e}_1 - \mathbf{e}_2 \). This fan is not complete, but its one-dimensional cones generate \(\mathbb{R}^2 \), so we may apply Theorem 5.4.5. The simplicial complex \(K_\Sigma \) consists of three points and no edges. The space \(U(\Sigma) = U(K_\Sigma) \) is therefore the complement to 3 coordinate lines in \(\mathbb{C}^3 \):
\[
U(\Sigma) = \mathbb{C}^3 \setminus \{ z_1 = z_2 = 0 \} \cup \{ z_1 = z_3 = 0 \} \cup \{ z_2 = z_3 = 0 \}
\]
The group \(G \) is the diagonal \(\mathbb{C}^\times \) in \((\mathbb{C}^\times)^3 \). Hence \(V_\Sigma = U(\Sigma)/G \) is a quasiprojective variety obtained by removing three points from \(\mathbb{CP}^2 \).

Exercises.

5.4.10. The one-dimensional cones of a fan \(\Sigma \subset N_\mathbb{R} \) span \(N_\mathbb{R} \) if and only if the toric variety \(V_\Sigma \) does not have \(\mathbb{C}^\times \)-factors.

5.4.11. If \(\Sigma \) is a regular fan of full dimension, then \(G \equiv (\mathbb{C}^\times)^{m-n} \).

5.4.12. A \(G \)-invariant monomial has the form \(\prod_{i=1}^m z_i^{\langle u, \mathbf{a}_i \rangle} \) for some \(u \in N^* \).

5.4.13. If the fan \(\Sigma \) is non-simplicial, then there exists a non-closed orbit of the \(G \)-action on \(U(\Sigma) \).
5.4.14. Assume that the action of an algebraic group G on an algebraic variety X is almost free. Show that then all G-orbits are Zariski closed.

5.4.15. A G-action on X is called proper if the map $G \times X \to X \times X$, $(g, x) \mapsto (gx, x)$ is proper, i.e. the preimage of a compact subset is compact. Modify the argument in the proof of Theorem 5.4.5 (b) to show that the G-action on $U(\Sigma)$ is proper whenever Σ is simplicial. (Hint: show that if sequences $\{z^{(k)}\}$ and $\{g^{(k)} z^{(k)}\}$ have limits in $U(\Sigma)$, then a subsequence of $\{g^{(k)}\}$ has a limit in G.)

5.4.16. Show that the quotient X/G of a locally compact Hausdorff space (e.g., a manifold) X by a proper G-action is Hausdorff. Deduce that the quotient $U(\Sigma)/G$ corresponding to a simplicial fan Σ is Hausdorff. This gives an alternative topological proof of Lemma 5.1.4 (separatedness of toric varieties) in the simplicial case.

5.4.17. Let Σ be a regular fan whose one-dimensional cones span \mathbb{R}^2. Observe that $U(\Sigma)$ is 2-connected (see Exercise 4.7.12). Show by considering the homotopy exact sequence of the principal G-bundle $U(\Sigma) \to V_{\Sigma}$ that the nonsingular toric variety V_{Σ} is simply connected, and $H_2(V_{\Sigma}; \mathbb{Z})$ is naturally identified with the kernel of the map $A: \mathbb{Z}^m \to N$. Hence $H^2(V_{\Sigma}; \mathbb{Z}) = \mathbb{Z}^m/N^*$, which coincides with the Picard group of V_{Σ}, see [146, §3.4].

5.5. Hamiltonian actions and symplectic reduction

Here we describe projective toric manifolds as symplectic quotients of Hamiltonian torus actions on \mathbb{C}^n. This approach may be viewed as a symplectic geometry version of the algebraic quotient construction from the previous section, although historically the symplectic construction preceded the algebraic one.

Symplectic reduction. We review the background material on symplectic geometry, referring to monographs by Audin [14], Guillemin [167], Guillemin–Ginzburg–Karshon [168], Kirwan [216] and Marsden–Ratiu [248] for details.

A *symplectic manifold* is a pair (W, ω) consisting of a smooth manifold W and a closed differential 2-form ω which is nondegenerate at each point. The dimension of a symplectic manifold W is necessarily even.

Assume now that a (compact) torus T acts on W preserving the symplectic form ω. We denote the Lie algebra of the torus T by \mathfrak{t} (since T is commutative, its Lie algebra is trivial, but the construction can be generalised to noncommutative Lie groups). Given an element $v \in \mathfrak{t}$, we denote by X_v the corresponding T-invariant vector field on W. The torus action is called *Hamiltonian* if the 1-form $\omega(X_v, \cdot)$ is exact for any $v \in \mathfrak{t}$. In other words, an action is Hamiltonian if for any $v \in \mathfrak{t}$ there exist a function H_v on W (called a *Hamiltonian*) satisfying the condition

$$\omega(X_v, Y) = dH_v(Y)$$

for any vector field Y on W. The function H_v is defined up to addition of a constant. Choose a basis $\{e_i\}$ in \mathfrak{t} and the corresponding Hamiltonians $\{H_{e_i}\}$. Then the moment map

$$\mu: W \to \mathfrak{t}^*, \quad (x, e_i) \mapsto H_{e_i}(x)$$

(where $x \in W$) is defined. Observe that changing the Hamiltonians H_{e_i} by constants results in shifting the image of μ by a vector in \mathfrak{t}^*. According to a theorem of Atiyah [11] and Guillemin–Sternberg [169], the image $\mu(W)$ of the moment map is convex, and if W is compact then $\mu(W)$ is a convex polytope in \mathfrak{t}^*.

Example 5.5.1. The most basic example is $W = \mathbb{C}^m$ with symplectic form

$$\omega = i \sum_{k=1}^{m} dz_k \wedge d\bar{z}_k = 2 \sum_{k=1}^{m} dx_k \wedge dy_k,$$

where $z_k = x_k + iy_k$. The coordinatewise action of the torus T^m on \mathbb{C}^m is Hamiltonian. The moment map $\mu: \mathbb{C}^m \to \mathbb{R}^m$ is given by $\mu(z_1, \ldots, z_m) = (|z_1|^2, \ldots, |z_m|^2)$ (an exercise). The image of the moment map μ is the positive orthant \mathbb{R}^m_+.

Construction 5.5.2 (symplectic reduction). Assume given a Hamiltonian action of a torus T on a symplectic manifold W. Assume further that the moment map $\mu: W \to T^*$ is proper, i.e. $\mu^{-1}(V)$ is compact for any compact subset $V \subset T^*$ (this is always the case if W itself is compact). Let $u \in T^*$ be a regular value of the moment map, i.e. the differential $\mathcal{T}_u W \to T^*$ is surjective for all $x \in \mu^{-1}(u)$. Then the level set $\mu^{-1}(u)$ is a smooth compact T-invariant submanifold in W. Furthermore, the T-action on $\mu^{-1}(u)$ is almost free (an exercise).

Assume now that the T-action on $\mu^{-1}(u)$ is free. The restriction of the symplectic form ω to $\mu^{-1}(u)$ may be degenerate. However, the quotient manifold $\mu^{-1}(u)/T$ is endowed with is a unique symplectic form ω' such that

$$p^* \omega' = i^* \omega,$$

where $i: \mu^{-1}(u) \to W$ is the inclusion and $p: \mu^{-1}(u) \to \mu^{-1}(u)/T$ the projection.

We therefore obtain a new symplectic manifold $(\mu^{-1}(u)/T, \omega')$ which is referred to as the symplectic reduction, or the symplectic quotient of (W, ω) by T.

The construction of symplectic reduction works also under milder assumptions on the action (see [123] and more references there), but the generality described here will be enough for our purposes.

The toric case. The algebraic quotient construction describes a toric manifold V_{Σ} as the quotient of a noncompact set $U(\Sigma)$ by a noncompact group G. Using symplectic reduction, the projective toric manifold V_P corresponding to a simple lattice polytope P can be obtained as the quotient of a compact submanifold $Z_P \subset U(\Sigma_P)$ by a free action of a compact torus.

Let Σ be a complete regular fan in $\mathbb{N}^n \cong \mathbb{R}^n$ with m one-dimensional cones generated by a_1, \ldots, a_m. Consider the exact sequence of maximal compact subgroups (tori) corresponding to the exact sequence of algebraic tori (5.2):

$$(5.9) \quad 1 \to K \to T^m \xrightarrow{\exp A} T_N \to 1,$$

where $T_N = N \otimes \mathbb{S} \cong \mathbb{T}^n$, $\exp A : T^m \to T_N$ is the map of tori corresponding to the map of lattices $A : \mathbb{Z}^m \to N$, $e_i \mapsto a_i$, and $K = \text{Ker} \exp A$. The group K is isomorphic to \mathbb{T}^{m-n} because Σ is complete and regular.

We let $K \subset \mathbb{T}^m$ act on \mathbb{C}^m by restriction of the coordinatewise action of \mathbb{T}^m. This K-action on \mathbb{C}^m is also Hamiltonian, and the corresponding moment map is given by the composition

$$(5.10) \quad \mu_{\Sigma} : \mathbb{C}^m \xrightarrow{\mu} \mathbb{R}^m \to \mathfrak{t}^*,$$

where $\mathbb{R}^m \to \mathfrak{t}^*$ is the map of dual Lie algebras corresponding to the inclusion $K \to \mathbb{T}^m$. By choosing a basis in the weight lattice $L \subset \mathfrak{t}^*$ of the $(m-n)$-torus K we write the linear map $\mathbb{R}^m \to \mathfrak{t}^*$ by an integer $(m-n) \times m$-matrix $\Gamma = (\gamma_{jk})$.

The moment map (5.10) is then given by

\[(z_1, \ldots, z_m) \mapsto \left(\sum_{k=1}^{m} \gamma_{1k} |z_k|^2, \ldots, \sum_{k=1}^{m} \gamma_{m-n,k} |z_k|^2 \right),\]

and its level set \(\mu^{-1}_\Sigma(\delta)\) corresponding to a value \(\delta = (\delta_1, \ldots, \delta_{m-n}) \in \mathbb{R}^n\) is the intersection of \(m-n\) Hermitian quadrics in \(\mathbb{C}^m\):

\[
\sum_{k=1}^{m} \gamma_{jk} |z_k|^2 = \delta_j \quad \text{for } j = 1, \ldots, m-n.
\]

To apply the symplectic reduction we need to identify the regular values of the moment map \(\mu_\Sigma\). We recall from Section 2.1 that a polytope (1.1) is called Delzant if its normal fan is regular. If \(\Sigma = \Sigma_P\) is the normal fan of a Delzant polytope \(P\), then the \((m-n) \times m\)-matrix \(\Gamma\) above is the one considered in Construction 1.2.1. Namely, the rows of \(\Gamma\) form a basis of linear dependencies between the vectors \(a_i\).

Given a polytope (1.1), we denote by \(Z_P\) the intersection of quadrics (5.11) corresponding to \(\delta = \Gamma b_P\), where \(b_P = (b_1, \ldots, b_m)^t\):

\[
(5.12) \quad Z_P = \mu^{-1}_\Sigma(\Gamma b_P) = \left\{ z \in \mathbb{C}^m : \sum_{k=1}^{m} \gamma_{jk} \left(|z_k|^2 - b_k \right) = 0 \quad \text{for } j = 1, \ldots, m-n \right\}.
\]

Proposition 5.5.3. Assume that \(\Sigma = \Sigma_P\) is the normal fan of a simple polytope \(P\) given by (1.1). Then \(\delta = \Gamma b_P\) is a regular value of the moment map \(\mu_\Sigma\).

Proof. We only sketch the proof here; a more general statement will be proved as Theorem 6.3.1 in the next chapter. We need to check that this intersection is nondegenerate at each point \(z \in Z_P\), i.e. that \(Z_P\) is a smooth submanifold in \(\mathbb{C}^m\). This means that the \(m-n\) gradient vectors of the left hand sides of the quadratic equations (5.11) are linearly independent at each \(z \in Z_P\). This is equivalent to the polytope \(P\) defined by (1.1) being simple. \(\square\)

As we shall see in Section 6.2, the manifold \(Z_P\) is \(\mathbb{T}^m\)-equivariantly homeomorphic to the moment-angle manifold \(Z_{\mathcal{K}_P}\), where \(\mathcal{K}_P\) is the nerve complex of \(P\), or the underlying simplicial complex of the normal fan \(\Sigma_P\). Furthermore, we have \(Z_P \subset U(\Sigma_P)\). (The reader may either wait until Chapter 6, or view these two statements as exercises.)

We may therefore consider the symplectic quotient of \(\mathbb{C}^m\) by \(K \cong \mathbb{T}^{m-n}\), which is the \(2n\)-dimensional symplectic manifold \(\mu^{-1}_\Sigma(\Gamma b_P)/K = Z_P/K\).

Theorem 5.5.4. Let \(P\) be a lattice Delzant polytope with the normal fan \(\Sigma_P\), and let \(V_P\) be the corresponding projective toric manifold. The inclusion \(Z_P \subset U(\Sigma_P)\) induces a diffeomorphism

\[Z_P/K \xrightarrow{\cong} U(\Sigma_P)/G = V_P.\]

Therefore, any projective toric manifold \(V_P\) is obtained as the symplectic quotient of \(\mathbb{C}^m\) by the action of a torus \(K \cong \mathbb{T}^{m-n}\).

Proof. We sketch the proof given in [14, Proposition VI.3.1.1]; a different proof of a more general statement will be given in Section 6.6.

Consider the function

\[f : \mathbb{C}^m \to \mathbb{R}, \quad f(z) = \|\mu_\Sigma(z) - \Gamma b_P\|^2.\]
It is nonnegative and achieves its minimum on the set $Z_P = \mu^{-1}_N(\Gamma b_P)$. The only critical points of f in $U(\Sigma_P)$ are $z \in Z_P$. Hence, for any $z \in U(\Sigma_P)$, the gradient trajectory descending from z will reach a point in Z_P. Furthermore, any gradient trajectory is contained in a G-orbit. We therefore obtain that each G-orbit of $U(\Sigma_P)$ intersects Z_P. Finally, it can be shown that each G-orbit intersects Z_P at a unique K-orbit, i.e., for each $z \in Z_P$ we have that

$$G \cdot z \cap Z_P = K \cdot z.$$

The statement follows. \hfill \Box

The toric manifold V_P therefore acquires a symplectic structure as the symplectic quotient $\mu^{-1}_N(\Gamma b_P)/K$. On the other hand, the projective embedding of V_P defined by the lattice polytope P provides a symplectic form on V_P by restriction of the standard symplectic form on the complex projective space. It can be shown [167, Appendix 2] that the diffeomorphism from Theorem 5.5.4 preserves the cohomology class of the symplectic form, or equivalently, the two symplectic structures on V_P are T_N-equivariantly symplectomorphic.

The symplectic quotient $\mu^{-1}_N(\Gamma b_P)/K$ has a residual action of the quotient n-torus $T_N = T^n/K$, which is obviously Hamiltonian. This action is identified, via Theorem 5.5.4, with the action of the maximal compact subgroup $T_N \subset C_N$ on the toric variety V_P. We denote by $\mu_V : V_P \to \mathfrak{t}_N$ the moment map for the Hamiltonian action of T_N on V_P, where $\mathfrak{t}_N \cong \mathbb{R}^n$ is the Lie algebra of T_N. It follows from (5.9) that \mathfrak{t}_N embeds in \mathbb{R}^m by the map A^*.

Proposition 5.5.5. The image of the moment map $\mu_V : V_P \to \mathfrak{t}_N$ is the polytope P, up to translation.

Proof. Let ω be the standard symplectic form on \mathbb{C}^m and $\mu : \mathbb{C}^m \to \mathbb{R}^m$ the moment map for the standard action of \mathbb{T}^m (see Example 5.5.1). Let $p : Z_P \to V_P$ be the quotient projection by the action of K, and let $i : Z_P \to \mathbb{C}^m$ be the inclusion, so that the symplectic form ω' on V_P satisfies $p^*\omega' = i^*\omega$. Let $H_{e_i} : \mathbb{C}^m \to \mathbb{R}$ be the Hamiltonian of the \mathbb{T}^m-action on \mathbb{C}^m corresponding to the ith basis vector e_i (explicitly, $H_{e_i}(z) = |z_i|^2$), and let $H_{a_i} : V_P \to \mathbb{R}$ be the Hamiltonian of the T_N-action on V_P corresponding to $a_i \in \mathfrak{t}_N$. Denote by X_{e_i} the vector field on Z_P generated by e_i, and denote by Y_{a_i} the vector field on V_P generated by a_i. Observe that $p_*X_{e_i} = Y_{a_i}$. For any vector field Z on Z_P we have

$$dH_{e_i}(Z) = i^* \omega(X_{e_i}, Z) = p^* \omega'(X_{a_i}, Z) = \omega'(Y_{a_i}, p_* Z) = dH_{a_i}(p_* Z) = d(p^* H_{a_i})(Z),$$

hence $H_{e_i} = p^* H_{a_i}$, or $H_{e_i}(x) = H_{a_i}(p(x))$ up to constant. By definition of the moment map this implies that $\mu_V(V_P) \subset \mathfrak{t}_N \subset \mathbb{R}^m$ is identified with $\mu(Z_P) \subset \mathbb{R}^m$ up to shift by a vector in \mathbb{R}^m. The inclusion $\mathfrak{t}_N \subset \mathbb{R}^m$ is the map A^*, and $\mu(Z_P) = i_A^{-1}(P) = A^*(P) + b$ by definition of Z_P, see (1.7) and (5.12). We therefore obtain that there exists $c \in \mathbb{R}^m$ such that

$$A^*(\mu_V(V_P)) + c = A^*(P) + b,$$

i.e. $A^*(\mu_V(V_P))$ and $A^*(P)$ differ by $b - c \in A^*(\mathfrak{t}_N)$. Since A^* is monomorphic, the result follows. \hfill \Box
The symplectic quotient $V_P = \mu_{\Sigma}^{-1}(\Gamma b_P)/K$ with the Hamiltonian action of the n-torus \mathbb{T}^n/K is called the **Hamiltonian toric manifold** corresponding to a Delzant polytope P.

According to the theorem of Delzant [115], any $2n$-dimensional compact connected symplectic manifold W with an effective Hamiltonian action of an n-torus T is equivariantly symplectomorphic to a Hamiltonian toric manifold V_P, where P is the image of the moment map $\mu: W \to t^*$ (whence the name ‘Delzant polytope’).

Remark. There is a canonical lattice in the dual Lie algebra t^* (the weight lattice of the torus T), and the moment polytope $P = \mu(W) \subset t^*$ satisfies the Delzant condition with respect to this lattice.

Example 5.5.6. Let $P = \Delta^n$ be the standard simplex (see Example 1.2.2). The cones of the normal fan Σ_P are spanned by the proper subsets of the set of $n + 1$ vectors $\{e_1, \ldots, e_n, -e_1 - \cdots - e_n\}$. Then $G \cong \mathbb{C}^\times$ and $K \cong S^1$ are the diagonal subgroups in $(\mathbb{C}^\times)^{n+1}$ and \mathbb{T}^{n+1} respectively, and $U(\Sigma_P) = \mathbb{C}^{n+1} \setminus \{0\}$. The matrix Γ is a row of $n + 1$ units. The moment map (5.10) is given by

\[
\mu_{\Sigma}(z_1, \cdots, z_{n+1}) = |z_1|^2 + \cdots + |z_{n+1}|^2.
\]

Since $\Gamma b_P = 1$, the manifold $Z_P = \mu_{\Sigma}^{-1}(1)$ is the unit sphere $S^{2n+1} \subset \mathbb{C}^{n+1}$, and

\[
V_P = (\mathbb{C}^{n+1} \setminus \{0\})/G \cong S^{2n+1}/K
\]

is the complex projective space $\mathbb{C}P^n$.

Exercises.

5.5.7. The moment map $\mu: \mathbb{C}^m \to \mathbb{R}^m$ for the coordinatewise action of \mathbb{T}^m on \mathbb{C}^m is given by $\mu(z_1, \ldots, z_m) = (|z_1|^2, \ldots, |z_m|^2)$.

5.5.8. The T-action on $\mu^{-1}(u)$ is almost free.

5.5.9. The level set $Z_P = \mu_{\Sigma}^{-1}(\Gamma b_P)$ is \mathbb{T}^m-equivariantly homeomorphic to the moment-angle manifold Z_{Σ_P}.

5.5.10. Show that $Z_P \subset U(\Sigma_P)$.

CHAPTER 6

Geometric Structures on Moment-Angle Manifolds

In this chapter we study the geometry of moment-angle manifolds, in its convex, complex-analytic, symplectic and Lagrangian aspects.

As we have seen in Theorem 4.1.4, the moment-angle complex Z_K corresponding to a triangulated sphere K is a topological manifold. Moment-angle manifolds corresponding to simplicial polytopes or, more generally, complete simplicial fans, are smooth. In the polytopal case a smooth structure arises from the realisation of Z_K by a nondegenerate (transverse) intersection of Hermitian quadrics in \mathbb{C}^m, similar to a level set of the moment map in the construction of symplectic quotients (see Section 5.5). The relationship between polytopes and systems of quadrics is described in terms of Gale duality (see Sections 6.1 and 6.2).

Another way to give Z_K a smooth structure is to realise it as the quotient of an open subset in \mathbb{C}^m (the complement $U(K)$ of the coordinate subspace arrangement defined by K) by an action of the multiplicative group $\mathbb{R}_{>0}^{m-n}$. As in the case of the quotient construction of toric varieties (Section 5.4), the quotient of a non-compact manifold $U(K)$ by the action of a non-compact group $\mathbb{R}_{>0}^{m-n}$ is Hausdorff precisely when K is the underlying complex of a simplicial fan.

If $m-n = 2\ell$ is even, then the action of $\mathbb{R}_{>0}^{m-n}$ on $U(K)$ can be turned into a holomorphic action of a complex (but not algebraic) group isomorphic to \mathbb{C}^ℓ. In this way the moment-angle manifold $Z_K \cong U(K)/\mathbb{C}^\ell$ acquires a complex-analytic structure. The resulting family of non-Kähler complex manifolds generalises the well-known series of Hopf and Calabi-Eckmann manifolds [87], as well as IVM-manifolds. The latter is a family of complex manifolds arising in holomorphic dynamics as the transverse sets for certain complex foliations [237], [267]; these transverse sets can be realised by nondegenerate intersections of Hermitian quadrics.

The intersections of Hermitian quadrics defining polytopal moment-angle manifolds can be also used to construct new families of Lagrangian submanifolds in \mathbb{C}^m, $\mathbb{C}P^m$ and toric varieties, as described in Section 6.8.

Particularly interesting examples of geometric structures (nondegenerate intersections of quadrics, polytopal moment-angle manifolds, non-Kähler IVM-manifolds, Hamiltonian-minimal Lagrangian submanifolds) arise from Delzant polytopes. These polytopes are abundant in toric topology (see Section 5.2).

6.1. Intersections of quadrics

Here we describe the correspondence between convex polyhedra and intersections of quadrics. It will be used in the next section to define a smooth structure on moment-angle manifolds coming from polytopes.

From polyhedra to quadrics. The following construction originally appeared in [68, Construction 3.1.8] (see also [70, §3]):
6. GEOMETRIC STRUCTURES ON MOMENT-ANGLE MANIFOLDS

Conconstruction 6.1.1. Consider a presentation of a convex polyhedron

\[(6.1) \quad P = P(A, b) = \{ x \in \mathbb{R}^n : \langle a_i, x \rangle + b_i \geq 0 \quad \text{for} \quad i = 1, \ldots, m \}. \]

Assume that \(a_1, \ldots, a_m\) span \(\mathbb{R}^n\) (i.e., \(P\) has a vertex) and recall the map

\[i_{A, b} : \mathbb{R}^n \to \mathbb{R}^m, \quad i_{A, b}(x) = A^*x + b = (\langle a_1, x \rangle + b_1, \ldots, \langle a_m, x \rangle + b_m)^t\]

(see Construction 1.2.1). It embeds \(P\) into \(\mathbb{R}^m\). We define the space \(Z_{A, b}\) from the commutative diagram

\[
\begin{array}{ccc}
Z_{A, b} & \xrightarrow{i_z} & \mathbb{C}^m \\
\downarrow & & \downarrow \mu \\
P & \xrightarrow{i_{A, b}} & \mathbb{R}^m \end{array}
\]

where \(\mu(z_1, \ldots, z_m) = (|z_1|^2, \ldots, |z_m|^2)\). The torus \(\mathbb{T}^m\) acts on \(Z_{A, b}\) with quotient \(P\), and \(i_z\) is a \(\mathbb{T}^m\)-equivariant embedding.

We write the \(n\)-plane \(i_{A, b}(\mathbb{R}^n)\) by equations \(\Gamma y = \Gamma b\) in \(y \in \mathbb{R}^m\), as in (1.7). Replacing \(y_k\) by \(|z_k|^2\) in these equations we obtain an embedding of \(Z_{A, b}\) as the set of common zeros of \(m - n\) quadratic equations (Hermitean quadrics) in \(\mathbb{C}^m\):

\[(6.3) \quad i_z(Z_{A, b}) = \left\{ z \in \mathbb{C}^m : \sum_{k=1}^m \gamma_{jk} |z_k|^2 = \sum_{k=1}^m \gamma_{jk} b_k, \quad \text{for} \ 1 \leq j \leq m - n \right\}.

The following property of the space \(Z_{A, b}\) follows easily from its construction.

Proposition 6.1.2. Given a point \(z \in Z_{A, b}\), the \(j\)th coordinate of \(i_z(z) \in \mathbb{C}^m\) vanishes if and only if \(z\) projects to a point \(x \in P\) in the \(j\)th facet

\[F_j = \{ x \in P : \langle a_j, x \rangle + b_j = 0 \}.

We say that the intersection of Hermitian quadrics (6.3) is **nondegenerate** (or transverse) if the gradients of the quadrics are linearly independent at any point of their intersection. If the intersection of quadrics is nonempty and nondegenerate, then \(Z_{A, b}\) embeds as a real \((m + n)\)-dimensional submanifold in \(\mathbb{C}^m\). Furthermore, this embedding is \(\mathbb{T}^m\)-equivariantly framed (its normal bundle is trivialised); a trivialisation is defined by a choice of matrix \(\Gamma = (\gamma_{jk})\).

Theorem 6.1.3. The following conditions are equivalent:

(a) the presentation (6.1) determined by the data \((A, b)\) is generic;

(b) the intersection of quadrics in (6.3) is nonempty and nondegenerate.

Proof. For simplicity we identify the space \(Z_{A, b}\) with its embedded image \(i_z(Z_{A, b}) \subset \mathbb{C}^m\). We calculate the gradients of the \(m - n\) quadrics in (6.3) at a point \(z = (x_1, y_1, \ldots, x_m, y_m) \in Z_{A, b}\), where \(z_k = x_k + iy_k\):

\[(6.4) \quad 2 \left(\gamma_{j1} x_1, \gamma_{j1} y_1, \ldots, \gamma_{jm} x_m, \gamma_{jm} y_m \right), \quad 1 \leq j \leq m - n.

These gradients form the rows of the \((m - n) \times 2m\) matrix \(2\Gamma \Delta\), where

\[
\Delta = \begin{pmatrix}
x_1 & y_1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & x_m & y_m
\end{pmatrix}.
\]
6.1. INTERSECTIONS OF QUADRICS

Let \(I = \{i_1, \ldots, i_k\} = \{i : z_i = 0\} \) be the set of zero coordinates of \(z \). Then the rank of the gradient matrix \(2\Gamma \Delta \) at \(z \) is equal to the rank of the \((m - n) \times (m - k)\) matrix \(\Gamma' \) obtained by deleting the columns \(i_1, \ldots, i_k \) from \(\Gamma \).

Now let (6.1) be a generic presentation. By Proposition 6.1.2, a point \(z \) with \(z_{i_1} = \cdots = z_{i_k} = 0 \) projects to a point in \(F_{i_1} \cap \cdots \cap F_{i_k} \neq \emptyset \). Hence the vectors \(a_{i_1}, \ldots, a_{i_k} \) are linearly independent. By Theorem 1.2.4, the rank of \(\Gamma' \) is \(m - n \). Therefore, the intersection of quadrics (6.3) is nondegenerate.

On the other hand, if (6.1) is not generic, then there is a point \(z \in Z_{k,\delta} \) such that the vectors \(\{a_{i_1}, \ldots, a_{i_k} : z_{i_1} = \cdots = z_{i_k} = 0\} \) are linearly dependent. By Theorem 1.2.4, the columns of the corresponding matrix \(\Gamma' \) do not span \(\mathbb{R}^{m-n} \), so \(\text{rank } \Gamma' < m - n \) and the intersection of quadrics (6.3) is degenerate at \(z \). \(\square \)

From quadrics to polyhedra. This time we start with an intersection of \(m - n \) Hermitian quadrics in \(\mathbb{C}^m \):

(6.5) \(Z_{\gamma,\delta} = \{ z = (z_1, \ldots, z_m) \in \mathbb{C}^m : \sum_{k=1}^m \gamma_{jk}|z_k|^2 = \delta_j, \text{ for } 1 \leq j \leq m - n \} \).

The coefficients of the quadrics form an \((m - n) \times m\)-matrix \(\Gamma = (\gamma_{jk}) \), and we denote its column vectors by \(\gamma_1, \ldots, \gamma_m \). We also consider the column vector of the right hand sides, \(\delta = (\delta_1, \ldots, \delta_{m-n})^t \in \mathbb{R}^{m-n} \).

These intersections of quadrics are considered up to linear equivalence, which corresponds to applying a nondegenerate linear transformation of \(\mathbb{R}^{m-n} \) to \(\Gamma \) and \(\delta \). Obviously, such a linear equivalence does not change the set \(Z_{\gamma,\delta} \).

We denote by \(\mathbb{R}_{\geq} (\gamma_1, \ldots, \gamma_m) \) the cone generated by the vectors \(\gamma_1, \ldots, \gamma_m \) (i.e. the set of linear combinations of these vectors with nonnegative coefficients).

A version of the following proposition appeared in [236], and the proof below is a modification of the argument in [41, Lemma 0.3]. It allows us to determine the nondegeneracy of an intersection of quadrics directly from the data \((\Gamma, \delta)\):

Proposition 6.1.4. The intersection of quadrics \(Z_{\gamma,\delta} \) given by (6.5) is nonempty and nondegenerate if and only if the following two conditions are satisfied:

(a) \(\delta \in \mathbb{R}_{\geq} (\gamma_1, \ldots, \gamma_m) \);

(b) if \(\delta \in \mathbb{R}_{\geq} (\gamma_{i_1}, \ldots, \gamma_{i_k}) \), then \(k \geq m - n \).

Under these conditions, \(Z_{\gamma,\delta} \) is a smooth submanifold in \(\mathbb{C}^m \) of dimension \(m + n \), and the vectors \(\gamma_1, \ldots, \gamma_m \) span \(\mathbb{R}^{m-n} \).

Proof. First assume that (a) and (b) are satisfied. Then (a) implies that \(Z_{\gamma,\delta} \neq \emptyset \). Let \(z \in Z_{\gamma,\delta} \). Then the rank of the matrix of gradients of (6.5) at \(z \) is equal to \(\text{rk} \{ \gamma_k : z_k \neq 0 \} \). Since \(z \in Z_{\gamma,\delta} \), the vector \(\delta \) is in the cone generated by those \(\gamma_k \) for which \(z_k \neq 0 \). By the Carathéodory Theorem (see [367, \S 1.6]), \(\delta \) belongs to the cone generated by some \(m - n \) of these vectors, that is, \(\delta \in \mathbb{R}_{\geq} (\gamma_{k_1}, \ldots, \gamma_{k_{m-n}}) \), where \(z_{k_i} \neq 0 \) for \(i = 1, \ldots, m - n \). Moreover, the vectors \(\gamma_{k_1}, \ldots, \gamma_{k_{m-n}} \) are linearly independent (otherwise, again by the Carathéodory Theorem, we obtain a contradiction with (b)). This implies that the \(m - n \) gradients of quadrics in (6.5) are linearly independent at \(z \), and therefore \(Z_{\gamma,\delta} \) is smooth and \((m + n)\)-dimensional.

To prove the other implication we observe that if (b) fails, that is, \(\delta \) is in the cone generated by some \(m - n - 1 \) vectors of \(\gamma_1, \ldots, \gamma_m \), then there is a point
\[z \in Z_{\Gamma,\delta} \text{ with at least } n+1 \text{ zero coordinates. The gradients of quadrics in (6.5) cannot be linearly independent at such } z. \]

The torus \(\mathbb{T}^m \) acts on \(Z_{\Gamma,\delta} \), and the quotient \(Z_{\Gamma,\delta}/\mathbb{T}^m \) is identified with the set of nonnegative solutions of the system of \(m-n \) linear equations

\[
\sum_{k=1}^m \gamma_k y_k = \delta.
\]

This set can be described as a convex polyhedron \(P(A, b) \) given by (6.1), where \((b_1, \ldots, b_m)\) is any solution of (6.6) and the vectors \(a_1, \ldots, a_m \in \mathbb{R}^n \) form the transpose of a basis of solutions of the homogeneous system \(\sum_{k=1}^m \gamma_k y_k = 0 \). We refer to \(P(A, b) \) as the associated polyhedron of the intersection of quadrics \(Z_{\Gamma,\delta} \). If the vectors \(\gamma_1, \ldots, \gamma_m \) span \(\mathbb{R}^{m-n} \), then \(a_1, \ldots, a_m \) span \(\mathbb{R}^n \). In this case the two vector configurations are Gale dual.

We summarise the results and constructions of this section as follows:

Theorem 6.1.5. A presentation of a polyhedron

\[P = P(A, b) = \{ x \in \mathbb{R}^n : \langle a_i, x \rangle + b_i \geq 0 \text{ for } i = 1, \ldots, m \} \]

(with \(a_1, \ldots, a_m \) spanning \(\mathbb{R}^n \)) defines an intersection of Hermitian quadrics

\[Z_{\Gamma,\delta} = \{ z = (z_1, \ldots, z_m) \in \mathbb{C}^m : \sum_{k=1}^m \gamma_{jk} |z_k|^2 = \delta_j \text{ for } j = 1, \ldots, m-n \}. \]

(with \(\gamma_1, \ldots, \gamma_m \) spanning \(\mathbb{R}^{m-n} \)) uniquely up to a linear isomorphism of \(\mathbb{R}^{m-n} \), and an intersection of quadrics \(Z_{\Gamma,\delta} \) defines a presentation \(P(A, b) \) uniquely up to an isomorphism of \(\mathbb{R}^n \).

The systems of vectors \(a_1, \ldots, a_m \in \mathbb{R}^n \) and \(\gamma_1, \ldots, \gamma_m \in \mathbb{R}^{m-n} \) are Gale dual, and the vectors \(b \in \mathbb{R}^m \) and \(\delta \in \mathbb{R}^{m-n} \) are related by the identity \(\delta = \Gamma b \).

The intersection of quadrics \(Z_{\Gamma,\delta} \) is nonempty and nondegenerate if and only if the presentation \(P(A, b) \) is generic.

Example 6.1.6 (\(m = n+1 \): one quadric). If the presentation (6.1) is generic and \(P \) is bounded, then \(m \geq n+1 \). The case \(m = n+1 \) corresponds to a simplex. If \(P = P(A, b) \) is the standard simplex (see Example 1.2.2) we obtain

\[Z_{A,b} = \{ z \in \mathbb{C}^{n+1} : |z_1|^2 + \cdots + |z_{n+1}|^2 = 1 \} = S^{2n+1}. \]

More generally, a presentation (6.1) with \(m = n+1 \) and \(a_1, \ldots, a_n \) spanning \(\mathbb{R}^n \) can be taken by an isomorphism of \(\mathbb{R}^n \) to the form

\[P = \{ x \in \mathbb{R}^n : x_i + b_i \geq 0 \text{ for } i = 1, \ldots, n, \text{ and } -c_1 x_1 - \cdots - c_n x_n + b_{n+1} \geq 0 \}. \]

We therefore have \(\Gamma = (c_1 \cdots c_n 1) \), and \(Z_{A,b} \) is given by the single equation

\[c_1 |z_1|^2 + \cdots + c_n |z_n|^2 + |z_{n+1}|^2 = c_1 b_1 + \cdots + c_n b_n + b_{n+1}. \]

If the presentation is generic and bounded, then \(Z_{A,b} \) is nonempty, nondegenerate and bounded by Theorem 6.1.3. This implies that all \(c_i \) and the right hand side above are positive, and \(Z_{A,b} \) is an ellipsoid.
6.2. Moment-angle manifolds from polytopes

In this section we identify the polytopal moment-angle manifold Z_{K_P} (the moment-angle complex corresponding to the nerve complex K_P of a simple polytope P) with the intersections of quadrics $Z_{A,b}$ (6.3).

A \mathbb{T}^m-equivariant homeomorphism $Z_{K_P} \cong Z_{A,b}$ will be established using the following construction of an identification space, which goes back to the work of Vinberg [354] on Coxeter groups and was presented in the form described below in the work of Davis and Januszkiewicz [112].

Construction 6.2.1. Let $[m] = \{1, \ldots, m\}$ be the standard m-element set. For each $I \subset [m]$ we consider the coordinate subtorus

$$T^I = \{(t_1, \ldots, t_m) \in \mathbb{T}^m : t_j = 1 \text{ for } j \notin I\} \subset \mathbb{T}^m.$$

In particular, \mathbb{T}^I is the trivial subgroup $\{1\} \subset \mathbb{T}^m$.

Define the map $\mathbb{R}^m \times \mathbb{T} \to \mathbb{C}^m$ by $(y, t) \mapsto yt$. Taking product we obtain a map $\mathbb{R}^m \times \mathbb{T}^m \to \mathbb{C}^m$. The preimage of a point $z \in \mathbb{C}^m$ under this map is $y \times \omega(z)$, where $y_i = |z_i|$ for $1 \leq i \leq m$ and $\omega(z) = \{i : z_i = 0\} \subset [m]$ is the set of zero coordinates of z. Therefore, \mathbb{C}^m can be identified with the quotient space

$$(6.7) \quad \mathbb{R}^m \times \mathbb{T}^m / \sim \quad \text{where } (y, t_1) \sim (y, t_2) \text{ if } t_1^{-1}t_2 \in \mathbb{T}^\omega(y).$$

Given $x \in P$, set $I_x = \{i \in [m] : x \in F_i\}$ (the set of facets containing x).

Proposition 6.2.2. The space $Z_{A,b}$ given by the intersection of quadrics (6.3) corresponding to a presentation $P = P(A, b)$ is \mathbb{T}^m-equivariantly homeomorphic to the quotient

$$P \times \mathbb{T}^m / \sim \quad \text{where } (x, t_1) \sim (x, t_2) \text{ if } t_1^{-1}t_2 \in \mathbb{T}^{I_x}.$$

Proof. Using (6.2), we identify the space $Z_{A,b}$ with $i_{A,b}(P) \times \mathbb{T}^m / \sim$, where \sim is the equivalence relation from (6.7). A point $x \in P$ is mapped by $i_{A,b}$ to $y \in \mathbb{R}^m$ with $I_x = \omega(y)$.

An important corollary of this construction is that the topological type of the intersection of quadrics $Z_{A,b}$ depends only on the combinatorics of P.

Proposition 6.2.3. Assume given two generic presentations:

$$P = \{x \in \mathbb{R}^n : (A^*x + b), \geq 0\} \quad \text{and} \quad P' = \{x \in \mathbb{R}^n : (A'^*x + b'), \geq 0\}$$

such that P and P' are combinatorially equivalent simple polytopes.

(a) If both presentations are irredundant, then the corresponding manifolds $Z_{A,b}$ and $Z_{A',b'}$ are \mathbb{T}^m-equivariantly homeomorphic.

(b) If the second presentation is obtained from the first one by adding k redundant inequalities, then $Z_{A',b'}$ is homeomorphic to a product of $Z_{A,b}$ and a k-torus \mathbb{T}^k.

Proof. (a) We have $Z_{A,b} \cong P \times \mathbb{T}^m / \sim$ and $Z_{A',b'} \cong P' \times \mathbb{T}^m / \sim$. If both presentations are irredundant, then each $F_j = \{x \in P : (a_j, x) + b_j = 0\}$ is a facet of P, and the equivalence relation \sim depends only on the face structure of P. Therefore, any homeomorphism $P \to P'$ preserving the face structure extends to a \mathbb{T}^m-equivariant homeomorphism $P \times \mathbb{T}^m / \sim \to P' \times \mathbb{T}^m / \sim$.

(b) Suppose the first presentation has m inequalities, and the second has m' inequalities, so that $m' - m = k$. Let $J \subset [m']$ be the subset corresponding to
the added redundant inequalities; we may assume that \(J = \{ m + 1, \ldots, m' \} \). Since \(F_j = \emptyset \) for any \(j \in J \), we have \(I_\ast \cap J = \emptyset \) for any \(x \in P' \). Therefore, the equivalence relation \(\sim \) does not affect the factor \(\mathbb{T}^J \subset \mathbb{T}^{m'} \), and we have
\[
Z_{A', b'} \cong P' \times \mathbb{T}^{m'} / \sim \cong (P \times \mathbb{T}^m / \sim) \times \mathbb{T}^J \cong Z_{A, b} \times \mathbb{T}^k.
\]

Remark. A \(\mathbb{T}^m \)-homeomorphism in Proposition 6.2.3 (a) can be replaced by a \(\mathbb{T}^m \)-diffeomorphism (with respect to the smooth structures of Theorem 6.1.3), but the proof is more technical. It follows from the fact that two simple polytopes are combinatorially equivalent if and only if they are diffeomorphic as ‘smooth manifolds with corners’. For an alternative argument, see [41, Corollary 4.7].

Statement (a) remains valid without assuming that the presentation is generic or bounded, although \(Z_{A, b} \) is not a manifold in this case.

Now we recall the moment-angle manifold \(Z_{K, P} \) corresponding to the nerve complex \(K, P \) of a simple polytope \(P \) (see Section 4.1 and Example 2.2.4). Observe that in our formalism, redundant inequalities in a presentation of \(P \) correspond to ghost vertices of \(K, P \).

Theorem 6.2.4. Let (6.1) be a generic bounded presentation, so that \(P = P(A, b) \) is a simple \(n \)-polytope. The moment-angle manifold \(Z_{K, P} \) is \(\mathbb{T}^m \)-equivariantly homeomorphic to the intersection of quadrics \(Z_{A, b} \) given by (6.3).

Proof. Recall from Construction 4.1.1 that the moment-angle complex \(Z_{K, P} \) is defined from a diagram similar to (6.2), in which the bottom map is replaced by the piecewise linear embedding \(c_P: \overline{P} \to \mathbb{T}^m \) from Construction 2.9.7:
\[
\begin{array}{ccc}
Z_{K, P} & \longrightarrow & \mathbb{D}^m \\
\downarrow & & \downarrow \mu \\
\overline{P} & \longrightarrow & \mathbb{T}^m \\
\end{array}
\]

As we have seen in Proposition 6.2.2, the intersection of quadrics \(Z_{A, b} \) is \(\mathbb{T}^m \)-homeomorphic to the identification space
\[
P \times \mathbb{T}^m / \sim \quad \text{where} \quad (x, t_1) \sim (x, t_2) \quad \text{if} \quad t_1^{-1} t_2 \in \mathbb{T}^\ast.
\]

By restricting the equivalence relation (6.7) to \(\mathbb{D}^m \subset \mathbb{C}^m \) we obtain that
\[
\mathbb{D}^m \cong \mathbb{I}^m \times \mathbb{T}^m / \sim \quad \text{where} \quad (y, t_1) \sim (y, t_2) \quad \text{if} \quad t_1^{-1} t_2 \in \mathbb{T}^\omega (y).
\]

As in the proof of Proposition 6.2.2, the space \(Z_{K, P} \) is identified with \(c_P(P) \times \mathbb{T}^m / \sim \). A point \(x \in \overline{P} \) is mapped by \(c_P \) to \(y \in \mathbb{T}^m \) with \(I_\ast = \omega(y) = \{ i \in [m] : x \in F_i \} \). We therefore obtain that both \(Z_{K, P} \) and \(Z_{A, b} \) are \(\mathbb{T}^m \)-homeomorphic to \(P \times \mathbb{T}^m / \sim \). □

Corollary 6.2.5. The moment-angle manifold \(Z_{K, P} \) corresponding to the nerve complex \(K, P \) of a simple polytope \(P \) has a smooth structure in which the \(\mathbb{T}^m \)-action is smooth.

Definition 6.2.6. Given a bounded generic presentation (6.1) defining a simple polytope \(P \), we shall use the common notation \(Z_P \) for both the moment-angle manifold \(Z_{K, P} \) and the intersection of quadrics (6.3). We refer to \(Z_P \) as a *polytopal moment-angle manifold*. We endow \(Z_P \) with the smooth structure coming from the nondegenerate intersection of quadrics.
REMARK. As is shown in [41, Corollary 4.7] a \mathbb{T}^m-invariant smooth structure on \mathcal{Z}_P is unique. If the condition of invariance under the torus action is dropped, then a smooth structure on \mathcal{Z}_P is not unique, as is shown by examples of odd-dimensional spheres and products of spheres. It would be interesting to relate exotic smooth structures with the construction of moment-angle complexes.

REMARK. If the polytope $P = P(A, b)$ is not simple, then the moment-angle complex $\mathcal{Z}_\mathcal{K}_P$ corresponding to the nerve complex \mathcal{K}_P is not homeomorphic to the singular intersection of quadrics \mathcal{Z}_A, \mathcal{Z}_b. However, the two spaces are homotopy equivalent, see [41].

An intersection of quadrics representing \mathcal{Z}_P can be chosen more canonically:

Proposition 6.2.7. The moment-angle manifold \mathcal{Z}_P is \mathbb{T}^m-equivariantly diffeomorphic to a nondegenerate intersection of quadrics of the following form:

\[
\begin{aligned}
\{ \ z \in \mathbb{C}^m : & \quad \sum_{k=1}^m |z_k|^2 = 1, \\
& \quad \sum_{k=1}^m g_k |z_k|^2 = 0, \}
\end{aligned}
\]

where $(g_1, \ldots, g_m) \subset \mathbb{R}^{m-n-1}$ is a combinatorial Gale diagram of P^*.

Proof. It follows from Proposition 1.2.7 that \mathcal{Z}_P is given by

\[
\begin{aligned}
\{ \ z \in \mathbb{C}^m : & \quad \gamma_{11} |z_1|^2 + \cdots + \gamma_{1m} |z_m|^2 = c, \\
& \quad g_1 |z_1|^2 + \cdots + g_m |z_m|^2 = 0, \}
\end{aligned}
\]

where γ_{ik} and c are positive. Divide the first equation by c, and then replace each z_k by $\sqrt{\frac{\gamma_{ik}}{c}} z_k$. As a result, each g_k is multiplied by a positive number, so that (g_1, \ldots, g_m) is still a combinatorial Gale diagram for P^*.

By adapting Proposition 6.1.4 to the special case of quadrics (6.9), we obtain

Proposition 6.2.8. The intersection of quadrics given by (6.9) is nonempty and nondegenerate if and only if the following two conditions are satisfied:

1. $0 \in \text{conv}(g_1, \ldots, g_m)$;
2. if $0 \in \text{conv}(g_1, \ldots, g_m)$, then $k \geq m - n$.

Following [41], we refer to a nondegenerate intersection (6.9) of $m-n-1$ homogeneous quadrics with the unit sphere in \mathbb{C}^m as a link. We therefore obtain that the class of links coincides with the class of polytopal moment-angle manifolds.

Example 6.2.9 ($m = n + 1$: one quadric). As we have seen in Example 6.1.6, the moment-angle manifold corresponding to an n-simplex is diffeomorphic to the sphere S^{2n+1}. This is also the link of an empty system of homogeneous quadrics, corresponding to the case $m = n + 1$.

Example 6.2.10 ($m = n + 2$: two quadrics). A polytope P defined by $m = n + 2$ inequalities either is combinatorially equivalent to a product of two simplices (when there are no redundant inequalities), or is a simplex (when one inequality is redundant). In the case $m = n + 2$ the link (6.9) has the form

\[
\begin{aligned}
\{ \ z \in \mathbb{C}^m : & \quad |z_1|^2 + \cdots + |z_m|^2 = 1, \\
& \quad g_1 |z_1|^2 + \cdots + g_m |z_m|^2 = 0, \}
\end{aligned}
\]
where \(g_k \in \mathbb{R} \). Condition (b) of Proposition 6.2.8 implies that all \(g_k \) are nonzero; assume that there are \(p \) positive and \(q = m - p \) negative numbers among them. Then condition (a) implies that \(p > 0 \) and \(q > 0 \). Therefore, the link is the intersection of the cone over a product of two ellipsoids of dimensions \(2p - 1 \) and \(2q - 1 \) (given by the second quadric) with a unit sphere of dimension \(2m - 1 \) (given by the first quadric). Such a link is diffeomorphic to \(S^{2p-1} \times S^{2q-1} \). The case \(p = 1 \) or \(q = 1 \) corresponds to one redundant inequality. In the irredundant case, \(P \) is a product \(\Delta^{p-1} \times \Delta^{q-1} \); we obtain that \(Z_P \cong S^{2p-1} \times S^{2q-1} \).

The case of three quadrics was resolved by López de Medrano [236] in 1989. Here is a reformulation of his result in terms of moment-angle manifolds:

Theorem 6.2.11. Let \(Z_P \) be the moment-angle manifold given by a nonempty and nondegenerate intersection of three quadrics (6.9), i.e. \(m = n + 3 \). Then \(Z_P \) is diffeomorphic to a product of three odd-dimensional spheres or to a connected sum of products of spheres with two spheres in each product.

The proof of this theorem uses Gale duality, surgery theory and the \(h \)-cobordism Theorem. The original statement of [236] contained some restrictions on the types of quadrics, which later were lifted in [152]. The moment-angle manifold \(Z_P \) is diffeomorphic to a product of three odd-dimensional spheres precisely when \(P \) is combinatorially equivalent to a product of three simplices. In all other cases, the manifold \(Z_P \) given by three quadrics is diffeomorphic to a connected sum of the form \(\#_{k=3}^m (S^k \times S^{2m-3-k}) \# q_k \). The numbers \(q_k \) of products \(S^k \times S^{2m-3-k} \) in the connected sum can be described explicitly in terms of the planar Gale diagram of the associated \(n \)-polytope \(P \) with \(m = n + 3 \) facets.

Theorem 4.6.12 together with Theorem 6.2.11 and the previous examples gives a description of the topology of moment-angle manifolds \(Z_P \) corresponding to the following classes of simple \(n \)-polytopes \(P \): dual stacked polytopes (including polygons), polytopes with \(m \leq n + 3 \) facets, and products of them. More examples of polytopes \(P \) whose corresponding manifolds \(Z_P \) are diffeomorphic to a connected sum of sphere products were described in [152] (these include some dual cyclic polytopes). In general, the topology of moment-angle manifolds is much more complicated than in these series of examples (see Section 4.9 where examples of \(Z_P \) with nontrivial Massey products were constructed). On the other hand, no other explicit topological types of moment-angle manifolds \(Z_P \) are known. Furthermore, the following question remains open:

Problem 6.2.12. Does there exist a moment-angle manifold \(Z_P \) decomposable into a nontrivial connected sum where one of the summands is diffeomorphic to a product of more than two spheres?

Remark. An example of \(Z_P \) whose cohomology ring is isomorphic to that of a connected sum of sphere products with one product of three spheres was constructed in [133]. It is not clear yet if it is actually diffeomorphic to such a connected sum.

Here is an example illustrating how the structure of the moment-angle manifold \(Z_P \) changes when one truncates \(P \) at a vertex:

Example 6.2.13. Consider the following presentation of a polygon:

\[
P = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \geq 0, \; x_2 \geq 0, \\
\quad -x_1 + 1 + \delta \geq 0, \; -x_2 + 1 + \varepsilon \geq 0, \; -x_1 - x_2 + 1 \geq 0\},
\]

where \(\delta, \varepsilon \geq 0 \).
where \(\delta, \varepsilon \) are parameters. First we fix some small positive \(\delta \) and vary \(\varepsilon \). If \(\varepsilon \) is positive, then we get a presentation of a triangle with two redundant inequalities. The corresponding moment-angle manifold is diffeomorphic to \(S^5 \times S^1 \times S^1 \). If \(\varepsilon \) is negative, then we get a presentation of a quadrangle with one redundant inequality. The corresponding manifold is diffeomorphic to \(S^3 \times S^3 \times S^3 \). We see that when the hyperplane \(-x_2 + 1 + \varepsilon = 0\) crosses the vertex of the triangle, the corresponding moment-angle manifold \(Z_p \) undergoes a surgery turning \(S^5 \times S^1 \times S^1 \) into \(S^3 \times S^3 \times S^3 \). Now if we fix some small negative \(\varepsilon \) and decrease \(\delta \) so that the hyperplane \(-x_1 + 1 + \delta = 0\) crosses the vertex of the quadrangle, then the manifold \(Z_p \) undergoes a more complicated surgery turning the product \(S^3 \times S^3 \times S^3 \) into the connected sum \((S^3 \times S^4)^\#5 \) corresponding to the case \(n = 2, m = 5 \) in Theorem 4.6.12.

In the dual language of Gale diagrams, the surgeries described above happen when the origin crosses the “walls” inside the pentagonal Gale diagram corresponding to a presentation of a 2-polytope with 5 inequalities (see Figure 1.2). For more information about surgeries of moment-angle manifolds and their relation to “wall crossing”, see [68, §6.4], [41] and [152].

Exercises.

6.2.14. Let \(G \subset P \) be a face of codimension \(k \) in a simple \(n \)-polytope \(P \), let \(Z_p \) be the corresponding moment-angle manifold with the quotient projection \(p : Z_p \to P \). Show that \(p^{-1}(G) \) is a smooth submanifold of \(Z_p \) of codimension \(2k \).

Furthermore, \(p^{-1}(G) \) is diffeomorphic to \(Z_G \times T^k \), where \(Z_G \) is the moment-angle manifold corresponding to \(G \) and \(k \) is the number of facets of \(P \) not intersecting \(G \).

6.2.15. Let \(P = vt(F^3) \) be the polytope obtained by truncating a 3-cube at a vertex (see Construction 1.1.12). Write down intersection of quadrics (6.9) defining the corresponding 10-dimensional moment-angle manifold \(Z_p \). Use Theorem 4.5.4 or Theorem 4.5.7 to describe the cohomology ring \(H^*(Z_p) \). Deduce that \(Z_p \) cannot be diffeomorphic to a connected sum of sphere products (cf. [41, Example 11.5]).

6.2.16. Write down the quadratic equations defining the moment-angle manifolds \(S^5 \times S^1 \times S^1 \), \(S^3 \times S^3 \times S^3 \) and \((S^3 \times S^4)^\#5 \) from Example 6.2.13, and describe explicitly the surgeries between them.

6.3. Symplectic reduction and moment maps revisited

As we have seen in Section 5.5, particular examples of polytopal moment-angle manifolds \(Z_p \) appear as level sets for the moment maps in the construction of Hamiltonian toric manifolds. In this case, the left hand sides of the equations in (6.3) are quadratic Hamiltonians of a torus action on \(\mathbb{C}^m \). Here we investigate the relationship between symplectic quotients of \(\mathbb{C}^m \) and intersections of quadrics more thoroughly. As a corollary, we obtain that any symplectic quotient of \(\mathbb{C}^m \) by a torus action is a Hamiltonian toric manifold.

We want to study symplectic quotients of \(\mathbb{C}^m \) by torus subgroups \(T \subset \mathbb{T}^m \). Such a subgroup of dimension \(m - n \) has the form

\[
T_T = \{ (e^{2\pi i \gamma_1}, \ldots, e^{2\pi i \gamma_m}) \in \mathbb{T}^m \},
\]

where \(\varphi \in \mathbb{R}^{m-n} \) is an \((m-n)\)-dimensional parameter, and \(\Gamma = (\gamma_1, \ldots, \gamma_m) \) is a set of \(m \) vectors in \(\mathbb{R}^{m-n} \). In order that \(T_T \) be a torus, the configuration of vectors \(\gamma_1, \ldots, \gamma_m \) must be **rational**, i.e. their integer span \(L = \mathbb{Z}(\gamma_1, \ldots, \gamma_m) \) must be a full
rank discrete subgroup (a lattice) in \(\mathbb{R}^{m-n} \). The lattice \(L \) is identified canonically with \(\text{Hom}(T_T, \mathbb{S}^1) \) and is called the weight lattice of the torus (6.10). Let

\[L^* = \{ \lambda^* \in \mathbb{R}^{m-n} : \langle \lambda^*, \lambda \rangle \in \mathbb{Z} \text{ for all } \lambda \in L \} \]

be the dual lattice. We shall represent elements of \(T_T \) by \(\varphi \in \mathbb{R}^{m-n} \) occasionally, so that \(T_T \) is identified with the quotient \(\mathbb{R}^{m-n}/L^* \).

The restricted action of \(T_T \subset T^m \) on \(\mathbb{C}^m \) is obviously Hamiltonian, and the corresponding moment map is the composition

\[
\mu_T : \mathbb{C}^m \xrightarrow{\mu} \mathbb{R}^m \rightarrow t_T^*,
\]

where \(\mathbb{R}^m \rightarrow t_T^* \) is the map of the dual Lie algebras corresponding to \(T_T \rightarrow T^m \). The map \(\mathbb{R}^m \rightarrow t_T^* \) takes the \(k \)th basis vector \(e_k \in \mathbb{R}^m \) to \(\gamma_k \in t_T^* \). By identifying \(t_T^* \) with \(\mathbb{R}^{m-n} \) we write the map \(\mathbb{R}^m \rightarrow t_T^* \) by the matrix \(\Gamma = (\gamma_{jk}) \), where \(\gamma_{jk} \) is the \(j \)th coordinate of \(\gamma_k \). The moment map (6.11) is then given by

\[
(z_1, \ldots, z_m) \mapsto \left(\sum_{k=1}^{m} \gamma_{1k}|z_k|^2, \ldots, \sum_{k=1}^{m} \gamma_{m-n,k}|z_k|^2 \right).
\]

Its level set \(\mu_T^{-1}(\delta) \) corresponding to a value \(\delta = (\delta_1, \ldots, \delta_{m-n}) \in t_T^* \) is exactly the intersection of quadrics \(Z_{\Gamma,\delta} \) given by (6.5).

To apply symplectic reduction we need to identify when the moment map \(\mu_T \) is proper, find its regular values \(\delta \), and finally identify when the action of \(T_T \) on \(\mu_T^{-1}(\delta) = Z_{\Gamma,\delta} \) is free. In Theorem 6.3.1 below, all these conditions are expressed in terms of the polyhedron \(P \) associated with \(Z_{\Gamma,\delta} \) as described in Section 6.1.

It follows from Gale duality that \(\gamma_1, \ldots, \gamma_m \) span a lattice \(L \) in \(\mathbb{R}^{m-n} \) if and only if the dual configuration \(\mathbf{a}_1, \ldots, \mathbf{a}_m \) spans a lattice \(N = \mathbb{Z} \langle \mathbf{a}_1, \ldots, \mathbf{a}_m \rangle \) in \(\mathbb{R}^n \). We refer to a presentation (6.1) as rational if \(\mathbb{Z} \langle \mathbf{a}_1, \ldots, \mathbf{a}_m \rangle \) is a lattice.

A polyhedron \(P \) is called Delzant if it has a vertex and there is a rational presentation (6.1) such that for any vertex \(\mathbf{x} \in P \) the vectors \(\mathbf{a}_i \) normal to the facets meeting at \(\mathbf{x} \) form a basis of the lattice \(N = \mathbb{Z} \langle \mathbf{a}_1, \ldots, \mathbf{a}_m \rangle \) in \(\mathbb{R}^n \). In the case when \(P \) is bounded and irredundant we obtain the definition used before: a polytope \(P \) is Delzant when its normal fan is regular.

Now let \(\delta \in t_T^* \) be a value of the moment map \(\mu_T : \mathbb{C}^m \rightarrow t_T^* \), and \(\mu_T^{-1}(\delta) = Z_{\Gamma,\delta} \) the corresponding level set, which is an intersection of quadrics (6.5). We associate with \(Z_{\Gamma,\delta} \) a presentation (6.1) as described in Section 6.1 (see Theorem 6.1.5).

Theorem 6.3.1. Let \(T_T \subset T^m \) be a torus subgroup (6.10), determined by a rational configuration of vectors \(\gamma_1, \ldots, \gamma_m \).

(a) The moment map \(\mu_T : \mathbb{C}^m \rightarrow t_T^* \) is proper if and only if its level set \(\mu_T^{-1}(\delta) \) is bounded for some (and then for any) value \(\delta \in t_T^* \). Equivalently, the map \(\mu_T \) is proper if and only if the Gale dual configuration \(\mathbf{a}_1, \ldots, \mathbf{a}_m \) satisfies \(\alpha_1 \mathbf{a}_1 + \cdots + \alpha_m \mathbf{a}_m = \mathbf{0} \) for some positive numbers \(\alpha_i \).

(b) \(\delta \in t_T^* \) is a regular value of \(\mu_T \) if and only if the intersection of quadrics \(\mu_T^{-1}(\delta) = Z_{\Gamma,\delta} \) is nonempty and nondegenerate. Equivalently, \(\delta \) is a regular value if and only if the associated presentation \(P = P(A, \mathbf{b}) \) is generic.

(c) The action of \(T_T \) on \(\mu_T^{-1}(\delta) = Z_{\Gamma,\delta} \) is free if and only if the associated polyhedron \(P \) is Delzant.

Proof. (a) If \(\mu_T \) is proper then \(\mu_T^{-1}(\delta) \subset t_T^* \) is compact, so it is bounded.

Now assume that \(\mu_T^{-1}(\delta) = Z_{\Gamma,\delta} \) is bounded for some \(\delta \). Then the associated polyhedron \(P \) is also bounded. By Corollary 1.2.8, this is equivalent to vanishing of
a positive linear combination of a_1, \ldots, a_m. This condition is independent of δ, and we conclude that $\mu_{T_1}^{-1}(\delta)$ is bounded for any δ. Let $X \subset t^*_{T_1}$ be a compact subset.

Since $\mu_{T_1}^{-1}(X)$ is closed, it is compact whenever it is bounded. By Proposition 1.2.7 we may assume that, for any $\delta \in X$, the first quadric defining $\mu_{T_1}^{-1}(\delta) = Z_{T_1, \delta}$ is given by $\gamma_1|z_1|^2 + \cdots + \gamma_m|z_m|^2 = \delta_1$ with $\gamma_k > 0$. Let $c = \max_{\delta \in X} \delta_1$. Then $\mu_{T_1}^{-1}(X)$ is contained in the bounded set

$$\{ z \in \mathbb{C}^m : \gamma_1|z_1|^2 + \cdots + \gamma_m|z_m|^2 \leq c \}$$

and is therefore bounded. Hence $\mu_{T_1}^{-1}(X)$ is compact, and μ_T is proper.

(b) The first statement is the definition of a regular value. The equivalent statement is already proved as Theorem 6.1.3.

(c) We first need to identify the stabilisers of the T_1-action on $\mu_{T_1}^{-1}(\delta)$. Although the fact that these stabilisers are finite for a regular value δ follows from the general construction of symplectic reduction, we can prove it directly:

Given a point $z = (z_1, \ldots, z_m) \in Z_{T_1, \delta}$, we define the subgroup

$$L_z = Z(\gamma_i : z_i \neq 0) \subset L = Z(\gamma_1, \ldots, \gamma_m).$$

Lemma 6.3.2. The stabiliser subgroup of $z \in Z_{T_1, \delta}$ under the action of T_1 is given by L_z^*/L^*. Furthermore, if $Z_{T_1, \delta}$ is nondegenerate, then all these stabilisers are finite, i.e. the action of T_1 on $Z_{T_1, \delta}$ is almost free.

Proof. An element $(e^{2\pi i (\gamma_1, \varphi)}, \ldots, e^{2\pi i (\gamma_m, \varphi)}) \in T_1$ fixes a point $z \in Z_T$ if and only if $e^{2\pi i (\gamma, \varphi)} = 1$ whenever $z_k \neq 0$. In other words, $\varphi \in T_1$ fixes z if and only if $\langle \gamma_k, \varphi \rangle \in \mathbb{Z}$ whenever $z_k \neq 0$. The latter means that $\varphi \in L_z^*$. Since $\varphi \in L^*$ maps to $1 \in T_1$, the stabiliser of z is L_z^*/L^*.

Assume now that $Z_{T_1, \delta}$ is nondegenerate. In order to see that L_z^*/L^* is finite we need to check that the subgroup $\text{ker} L_z = Z(\gamma_i : z_i \neq 0) \subset L$ has full rank $m - n$. Indeed, $\text{rk} \{ \gamma_i : z_i \neq 0 \}$ is the rank of the matrix of gradients of quadrics in (6.5) at z. Since $Z_{T_1, \delta}$ is nondegenerate, this rank is $m - n$, as needed. \qed

Now we can finish the proof of Theorem 6.3.1 (c). Assume that P is Delzant. By Lemma 6.3.2, the T_1-action on $Z_{T_1, \delta}$ is free if and only if $L_z = L$ for any $z \in Z_{T_1, \delta}$. Let $i : \mathbb{Z}^k \to \mathbb{Z}^m$ be the inclusion of the coordinate subgroup spanned by those e_i for which $z_i = 0$, and let $p : \mathbb{Z}^m \to \mathbb{Z}^{m - k}$ be the projection sending every such e_i to zero. We also have the maps of lattices

$$\Gamma^* : L^* \to \mathbb{Z}^m, \quad l \mapsto (\langle \gamma_1, l \rangle, \ldots, \langle \gamma_m, l \rangle), \quad \text{and} \quad A : \mathbb{Z}^m \to N, \quad e_k \mapsto a_k.$$

Consider the diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & \mathbb{Z}^k & \overset{i}{\longrightarrow} & \mathbb{Z}^m & \overset{p}{\longrightarrow} & \mathbb{Z}^{m-k} & \longrightarrow & 0 \\
& & \downarrow \Gamma^* & & \downarrow & & \downarrow A & & \downarrow 0 \\
& & 0 & & N & & 0 & & \end{array}
\]

\[
(6.12)
\]
in which the vertical and horizontal sequences are exact. Then the Delzant condition is equivalent to the composition \(A \cdot i \) being split injective. The condition \(L_\sigma = L \) is equivalent to \(\Gamma \cdot p^* \) being surjective, or \(p \cdot \Gamma^* \) being split injective. These two conditions are equivalent by Lemma 1.2.5. \(\square \)

In the case of polytopes we obtain the following version of Proposition 5.5.3:

Corollary 6.3.3. Let \(P = P(A, b) \) be a Delzant polytope, \(\Gamma = (\gamma_1, \ldots, \gamma_m) \) the Gale dual configuration, and \(Z_P \) the corresponding moment-angle manifold. Then

(a) \(\delta = \Gamma b \) is a regular value of the moment map \(\mu_\Gamma : \mathbb{C}^m \to \mathfrak{t}_\Gamma \) for the Hamiltonian action of \(T_\Gamma \subset \mathbb{T}^m \) on \(\mathbb{C}^m \);

(b) \(Z_P \) is the regular level set \(\mu^{-1}_\Gamma(\Gamma b) \);

(c) the action of \(T_\Gamma \) on \(Z_P \) is free.

In Section 5.5 we defined the Hamiltonian toric manifold \(V_P \) corresponding to a Delzant polytope \(P \) as the symplectic quotient of \(\mathbb{C}^m \) by the torus subgroup \(K \subset \mathbb{T}^m \) determined by the normal fan of \(P \). By comparing the vertical exact sequence in (6.12) with (5.9) we obtain that \(K = T_\Gamma \), and the quotient \(n \)-torus \(\mathbb{T}^m/T_\Gamma \) acting on \(V_P = Z_P/T_\Gamma \) is \(T_N = N \otimes \mathbb{Z} \mathbb{S} = \mathbb{R}^n/N \).

Corollary 6.3.4. Any symplectic quotient of \(\mathbb{C}^m \) by a torus subgroup \(T \subset \mathbb{T}^m \) is a Hamiltonian toric manifold.

Example 6.3.5. Consider the case \(m - n = 1 \), i.e. \(T_\Gamma \) is 1-dimensional, and \(\gamma_k \in \mathbb{R} \). By Theorem 6.3.1 (a), the moment map \(\mu_\Gamma \) is proper whenever

\[
\mu^{-1}_\Gamma(\delta) = \{ z \in \mathbb{C}^m : \gamma_1|z_1|^2 + \cdots + \gamma_m|z_m|^2 = \delta \}
\]

is bounded for any \(\delta \in \mathbb{R} \). By Theorem 6.3.1 (b), \(\delta \) is a regular value whenever the quadratic hypersurface \(\gamma_1|z_1|^2 + \cdots + \gamma_m|z_m|^2 = \delta \) is nonempty and nondegenerate. These two conditions together imply that the hypersurface is an ellipsoid, and the associated polyhedron is an \(n \)-simplex (see Example 6.1.6). By Lemma 6.3.2, the \(T_\Gamma \)-action on \(\mu^{-1}_\Gamma(\delta) \) is free if and only if \(L_\sigma = L \) for any \(z \in \mu^{-1}_\Gamma(\delta) \). This means that each \(\gamma_k \) generates the same lattice as the whole set \(\gamma_1, \ldots, \gamma_m \), which implies that \(\gamma_1 = \cdots = \gamma_m \). The Gale dual configuration satisfies \(\mathbf{a}_1 + \cdots + \mathbf{a}_m = 0 \). Then \(T_\Gamma \) is the diagonal circle in \(\mathbb{T}^m \), the hypersurface \(\mu^{-1}_\Gamma(\delta) = Z_P \) is a sphere, and the associated polytope \(P \) is the standard simplex up to shift and magnification by a positive factor \(\delta \). The Hamiltonian manifold \(V_P = Z_P/T_\Gamma \) is the complex projective space \(\mathbb{C}P^n \).

6.4. Complex structures on intersections of quadrics

Bosio and Meersseman [41] identified polytopal moment-angle manifolds \(Z_P \) with a class of non-Kähler complex-analytic manifolds introduced in the works of López de Medrano, Verjovsky and Meersseman (LVM-manifolds). This was the starting point in the subsequent study of the complex geometry of moment-angle manifolds. We review the construction of LVM-manifolds and its connection to polytopal moment-angle manifolds here.

The initial data of the construction of an LVM-manifold is a link of a homogeneous system of quadrics similar to (6.9), but with complex coefficients:

\[
L = \left\{ z \in \mathbb{C}^m : \sum_{k=1}^{m} |z_k|^2 = 1, \sum_{k=1}^{m} \zeta_k|z_k|^2 = 0 \right\}.
\]
where \(\zeta_k \in \mathbb{C}^s \). We can obviously turn this link into the form (6.9) by identifying \(\mathbb{C}^s \) with \(\mathbb{R}^{2s} \) in the standard way, so that each \(\zeta_k \) becomes \(g_k \in \mathbb{R}^{m-n-1} \) with \(n = m - 2s - 1 \). We assume that the link is nondegenerate, i.e. the system of complex vectors \((\zeta_1, \ldots, \zeta_m)\) (or the corresponding system of real vectors \((g_1, \ldots, g_m)\)) satisfies the conditions (a) and (b) of Proposition 6.2.8.

Now define the manifold \(\mathcal{N} \) as the projectivisation of the intersection of homogeneous quadrics in (6.13):

\[
\mathcal{N} = \{ z \in \mathbb{C}P^{m-1} : \zeta_1|z_1|^2 + \cdots + \zeta_m|z_m|^2 = 0 \}, \quad \zeta_k \in \mathbb{C}^s.
\]

We therefore have a principal \(S^1 \)-bundle \(\mathcal{L} \to \mathcal{N} \).

Theorem 6.4.1 (Meersseman [267]). The manifold \(\mathcal{N} \) has a holomorphic atlas describing it as a compact complex manifold of complex dimension \(m - 1 - s \).

Sketch of proof. Consider a holomorphic action of \(\mathbb{C}^s \) on \(\mathbb{C}^m \) given by

\[
\mathbb{C}^s \times \mathbb{C}^m \to \mathbb{C}^m
\]

\[
(w, z) \mapsto (z_1 e^{(\zeta_1, w)}, \ldots, z_m e^{(\zeta_m, w)}),
\]

where \(w = (w_1, \ldots, w_s) \in \mathbb{C}^s \), and \((\zeta_k, w) = \zeta_k w_1 + \cdots + \zeta_k w_s \).

Let \(K \) be the simplicial complex consisting of zero-sets of points of the link \(\mathcal{L} \):

\[
K = \{ \omega(z) : z \in \mathcal{L} \}.
\]

Observe that \(K = K_P \), where \(P \) is the simple polytope associated with the link \(\mathcal{L} \). Let \(U = U(K) \) be the corresponding subspace arrangement complement given by (4.22). Note that Proposition 1.2.9 implies that \(U \) can be also defined as

\[
U = \{ (z_1, \ldots, z_m) \in \mathbb{C}^m : 0 \in \text{conv}(\zeta_j, z_j \neq 0) \}.
\]

An argument similar to the proof of Lemma 6.3.2 shows that the restriction of the action (6.15) to \(U \subset \mathbb{C}^m \) is free. Also, this restricted action of \(\mathbb{C}^s \) on \(U \) is proper (we shall prove this in a more general context in Theorem 6.6.3 below), so the quotient \(U/\mathbb{C}^s \) is Hausdorff. Using a holomorphic atlas transverse to the orbits of the free action of \(\mathbb{C}^s \) on the complex manifold \(U \) we obtain that the quotient \(U/\mathbb{C}^s \) has a structure of a complex manifold.

On the other hand, it can be shown that the function \(|z_1|^2 + \cdots + |z_m|^2 \) (the square of the distance to the origin in \(\mathbb{C}^m \)) has a unique minimum when restricted to an orbit of the free action of \(\mathbb{C}^s \) on \(U \). The set of these minima (i.e. the set of points closest to the origin in each orbit) can be described as

\[
\mathcal{T} = \{ z \in \mathbb{C}^m \setminus \{ 0 \} : \zeta_1|z_1|^2 + \cdots + \zeta_m|z_m|^2 = 0 \}.
\]

It follows that the quotient \(U/\mathbb{C}^s \) can be identified with \(\mathcal{T} \), and therefore \(\mathcal{T} \) acquires a structure of a complex manifold of dimension \(m - s \).

By projectivising the construction we identify \(\mathcal{N} \) with the quotient of a complement of coordinate subspace arrangement in \(\mathbb{C}P^{m-1} \) (the projectivisation of \(U \)) by a holomorphic action of \(\mathbb{C}^s \). In this way \(\mathcal{N} \) becomes a compact complex manifold. \(\square \)

The manifold \(\mathcal{N} \) with the complex structure of Theorem 6.4.1 is referred to as an \textit{LVM-manifold}. These manifolds were described by Meersseman [267] as a generalisation of the construction of López de Medrano and Verjovsky [237].

Remark. The embedding of \(\mathcal{T} \) in \(\mathbb{C}^m \) and of \(\mathcal{N} \) in \(\mathbb{C}P^{m-1} \) given by (6.14) is not holomorphic.
A polytopal moment-angle manifold \mathcal{Z}_P is diffeomorphic to a link (6.9), which can be turned into a complex link (6.13) whenever $m + n$ is odd. It follows that the quotient \mathcal{Z}_P/S^1 of an odd-dimensional moment-angle manifold has a complex-analytic structure as an LVM-manifold. By adding redundant inequalities and using the S^1-bundle $L \to \mathcal{N}$, Bosio–Meersseman observed that \mathcal{Z}_P or $\mathcal{Z}_P \times S^1$ has a structure of an LVM-manifold, depending on whether $m + n$ is even or odd.

We first summarise the effects that a redundant inequality in (6.1) has on different spaces appeared above:

Proposition 6.4.2. Assume that (6.1) is a generic presentation. The following conditions are equivalent:

(a) $(a_i, x) + b_i \geq 0$ is a redundant inequality in (6.1) (i.e. $F_i = \emptyset$);
(b) $\mathcal{Z}_P \subset \{ z \in \mathbb{C}^m : z_i \neq 0 \}$;
(c) $\{ i \}$ is a ghost vertex of K_P;
(d) $U(K_P)$ has a factor \mathbb{C}^\times on the ith coordinate;
(e) $0 \notin \text{conv}(g_k : k \neq i)$.

Proof. The equivalence of the first four conditions follows directly from the definitions. The equivalence (a) \Leftrightarrow (e) follows from Proposition 1.2.9. □

Theorem 6.4.3 (41). Let \mathcal{Z}_P be the moment angle manifold corresponding to an n-dimensional simple polytope (6.1) defined by m inequalities.

(a) If $m + n$ is even then \mathcal{Z}_P has a complex structure as an LVM-manifold.
(b) If $m + n$ is odd then $\mathcal{Z}_P \times S^1$ has a complex structure as an LVM-manifold.

Proof. (a) We add one redundant inequality of the form $1 \geq 0$ to (6.1), and denote the resulting manifold of (6.2) by \mathcal{Z}_P'. We have $\mathcal{Z}_P' \cong \mathcal{Z}_P \times S^1$. By Proposition 6.2.7, \mathcal{Z}_P is diffeomorphic to a link given by (6.9). Then \mathcal{Z}_P' is given by the intersection of quadrics

$$\begin{cases}
z \in \mathbb{C}^{m+1}, & |z_1|^2 + \cdots + |z_m|^2 + |z_{m+1}|^2 = 1, \\
g_1|z_1|^2 + \cdots + g_m|z_m|^2 = 0, \\
|z_{m+1}|^2 = 1,
\end{cases}$$

which is diffeomorphic to the link given by

$$\begin{cases}
z \in \mathbb{C}^{m+1}, & |z_1|^2 + \cdots + |z_m|^2 + |z_{m+1}|^2 = 1, \\
g_1|z_1|^2 + \cdots + g_m|z_m|^2 = 0, \\
|z_1|^2 + \cdots + |z_m|^2 - |z_{m+1}|^2 = 0.
\end{cases}$$

If we denote by $\Gamma^* = (g_1 \ldots g_m)$ the $(m - n - 1) \times m$-matrix of coefficients of the homogeneous quadrics for \mathcal{Z}_P, then the corresponding matrix for \mathcal{Z}_P' is

$$\Gamma^* = \begin{pmatrix} g_1 & \cdots & g_m \\ 1 & \cdots & 1 & -1 \end{pmatrix}.$$

Its height $m - n$ is even, so that we may think of its kth column as a complex vector ζ_k (by identifying \mathbb{R}^{m-n} with $\mathbb{C}^{\frac{m-n}{2}}$, for $k = 1, \ldots, m + 1$. Now define

$$N' = \{ z \in \mathbb{C}P^m : \zeta_1|z_1|^2 + \cdots + \zeta_{m+1}|z_{m+1}|^2 = 0 \}.$$

Then N' has a complex structure as an LVM-manifold by Theorem 6.4.1. On the other hand,

$$N' \cong \mathcal{Z}_P/S^1 = (\mathcal{Z}_P \times S^1)/S^1 \cong \mathcal{Z}_P,$$
so that \mathbb{Z}_P also acquires a complex structure.

(b) The proof here is similar, but we have to add two redundant inequalities $1 \geq 0$ to (6.1). Then $\mathbb{Z}_P \cong \mathbb{Z}_P \times S^1 \times S^1$ is given by

$$
\begin{align*}
& z \in \mathbb{C}^{m+2}: \quad \sum_{i=1}^{m+2} |z_i|^2 = 1, \\
& g_1 \sum_{i=1}^{m+2} |z_i|^2 + \ldots + g_m |z_{m+2}|^2 = 0,
\end{align*}
$$

The matrix of coefficients of the homogeneous quadrics is therefore

$$
\Gamma' = \begin{pmatrix}
g_1 & \cdots & g_m & 0 & 0 \\
1 & \cdots & 1 & -1 & 0 \\
1 & \cdots & 1 & 0 & -1
\end{pmatrix}.
$$

We think of its columns as a set of $m + 2$ complex vectors $\zeta_1, \ldots, \zeta_{m+2}$, and define

$$
\mathcal{N}' = \{ z \in \mathbb{C}P^{m+1}: \sum_{i=1}^{m+2} |z_i|^2 = 0 \}.
$$

Then \mathcal{N}' has a complex structure as an LVM-manifold. On the other hand,

$$
\mathcal{N}' \cong \mathbb{Z}_P/S^1 = (\mathbb{Z}_P \times S^1 \times S^1)/S^1 \cong \mathbb{Z}_P \times S^1,
$$

and therefore $\mathbb{Z}_P \times S^1$ has a complex structure. \square

In the next two sections we describe a more direct method of endowing \mathbb{Z}_P with a complex structure, without referring to projectivised quadrics and LVM-manifolds. This approach, developed in [904], works not only in the polytopal case, but also for the moment-angle manifolds \mathbb{Z}_K corresponding to underlying complexes K of complete simplicial fans.

6.5. Moment-angle manifolds from simplicial fans

Let $\mathcal{K} = \mathcal{K}_\Sigma$ be the underlying complex of a complete simplicial fan Σ, and $U(\mathcal{K})$ the complement of the coordinate subspace arrangement (4.22) defined by \mathcal{K}. Here we shall identify the moment-angle manifold $\mathbb{Z}_\mathcal{K}$ with the quotient of $U(\mathcal{K})$ by a smooth action of a non-compact group isomorphic to \mathbb{R}^{m-n}, thereby defining a smooth structure on $\mathbb{Z}_\mathcal{K}$. A modification of this construction will be used in the next section to endow $\mathbb{Z}_\mathcal{K}$ with a complex structure.

Let Σ be a simplicial fan in \mathbb{R}^n with generators a_1, \ldots, a_m. Recall that the underlying simplicial complex $\mathcal{K} = \mathcal{K}_\Sigma$ is the collection of subsets $I \subset [m]$ such that $\{a_i: i \in I\}$ spans a cone of Σ.

A simplicial fan Σ is therefore determined by two pieces of data:

- a simplicial complex \mathcal{K} on $[m]$;
- a configuration of vectors a_1, \ldots, a_m in \mathbb{R}^n such that for any simplex $I \in \mathcal{K}$ the subset $\{a_i: i \in I\}$ is linearly independent.

Then for each $I \in \mathcal{K}$ we can define the simplicial cone σ_I spanned by a_i with $i \in I$. The ‘bunch of cones’ $\{\sigma_I: I \in \mathcal{K}\}$ patches into a fan Σ whenever any two cones σ_I and σ_J intersect in a common face (which has to be $\sigma_{I \cap J}$). Equivalently, the relative interiors of cones σ_I are pairwise non-intersecting. Under this condition, we say that the data $\{\mathcal{K}, a_1, \ldots, a_m\}$ define a fan Σ.

We do allow ghost vertices in \mathcal{K}; they do not affect the fan Σ. The vector a_i corresponding to a ghost vertex $\{i\}$ can be zero as it does not correspond to a one-dimensional cone of Σ. This formalism will be important for the construction.
of a complex structure on \(Z_K \); it was also used in [28] under the name \textit{triangulated vector configurations}.

\textbf{Construction 6.5.1.} For a set of vectors \(a_1, \ldots, a_m \), consider the linear map
\begin{equation}
A: \mathbb{R}^m \to N_R, \quad e_i \mapsto a_i,
\end{equation}
where \(e_1, \ldots, e_m \) is the standard basis of \(\mathbb{R}^m \). Let
\[\mathbb{R}_m^m = \{(y_1, \ldots, y_m) \in \mathbb{R}^m : y_i > 0 \} \]
be the multiplicative group of \(m \)-tuples of positive real numbers, and define
\[R = \exp(\text{Ker} A) = \{(e^{y_1}, \ldots, e^{y_m}) : (y_1, \ldots, y_m) \in \text{Ker} A\} \]}
\begin{equation}
= \{(t_1, \ldots, t_m) \in \mathbb{R}_m^m : \prod_{i=1}^m t_i^{a_i} = 1 \textup{ for all } u \in N_R^m \}.
\end{equation}

We let \(\mathbb{R}_m^m \) act on the complement \(U(K) \subset C^m \) by coordinatewise multiplications and consider the restricted action of the subgroup \(R \subset \mathbb{R}_m^m \). Recall that a \(G \)-action on a space \(X \) is \textit{proper} if the group action map \(h: G \times X \to X \times X \), \((g, x) \mapsto (gx, x) \) is proper (the preimage of a compact subset is compact).

\textbf{Theorem 6.5.2 ([304]).} Assume given data \(\{K; a_1, \ldots, a_m\} \) where \(K \) is a simplicial complex on \([m] \) and \(a_1, \ldots, a_m \) is a configuration of vectors in \(\mathbb{R}^n \) such that for any simplex \(I \subset K \) the subset \(\{a_i : i \in I\} \) is linearly independent. Then
\begin{enumerate}[(a)]
\item the group \(R \cong \mathbb{R}^{m-n} \) given by (6.19) acts on \(U(K) \) freely;
\item if the data \(\{K; a_1, \ldots, a_m\} \) define a simplicial fan \(\Sigma \), then \(R \) acts on \(U(K) \) properly, so the quotient \(U(K)/R \) is a smooth Hausdorff \((m+n)\)-dimensional manifold;
\item if the fan \(\Sigma \) is complete, then \(U(K)/R \) is homeomorphic to the moment-angle manifold \(Z_K \).
\end{enumerate}

Therefore, \(Z_K \) can be smoothed whenever \(K = K_\Sigma \) for a complete simplicial fan \(\Sigma \).

\textbf{Proof.} Statement (a) is proved in the same way as Proposition 5.4.6. Indeed, a point \(z \in U(K) \) has a nontrivial stabiliser with respect to the action of \(\mathbb{R}_m^m \) only if some of its coordinates vanish. These \(\mathbb{R}_m^m \)-stabilisers are of the form \((\mathbb{R}_+, 1)^I \), see (4.6), for some \(I \subset K \). The restriction of \(\exp A \) to any such \((\mathbb{R}_+, 1)^I \) is an injection, because the set \(\{a_i : i \in I\} \) is linearly independent. Therefore, \(R = \exp(\text{Ker} A) \) intersects any \(\mathbb{R}_m^m \)-stabilisers only at the unit, which implies that the \(R \)-action on \(U(K) \) is free.

Let us prove (b) (compare the proof of Theorem 5.4.5 (b) and Exercise 5.4.15). Consider the map
\[h: R \times U(K) \to U(K) \times U(K), \quad (r, z) \mapsto (rz, z), \]
for \(r \in R \), \(z \in U(K) \). Let \(V \subset U(K) \times U(K) \) be a compact subset; we need to show that \(h^{-1}(V) \) is compact. Since \(R \times U(K) \) is metrisable, it suffices to check that any infinite sequence \(\{(r^{(k)}, z^{(k)}) : k = 1, 2, \ldots\} \) of points in \(h^{-1}(V) \) contains a convergent subsequence. Since \(V \subset U(K) \times U(K) \) is compact, by passing to a subsequence we may assume that the sequence
\[\{h(r^{(k)}, z^{(k)})\} = \{(r^{(k)}z^{(k)}, z^{(k)})\} \]
has limit in \(U(K) \times U(K) \). We set \(w^{(k)} = r^{(k)}z^{(k)} \), and assume that
\[\{w^{(k)}\} \to w = (w_1, \ldots, w_m), \quad \{z^{(k)}\} \to z = (z_1, \ldots, z_m) \]
for some \(w, z \in U(K) \). We need to show that a subsequence of \(\{ r^{(k)} \} \) has limit in \(R \). We write
\[
 r^{(k)} = (g_1^{(k)}, \ldots, g_m^{(k)}) = (e_{\alpha_1^{(k)}}, \ldots, e_{\alpha_m^{(k)}}) \in R \subset \mathbb{R}_+^m, \\
\alpha_j^{(k)} \in \mathbb{R}.
\]
By passing to a subsequence we may assume that each sequence \(\{ \alpha_j^{(k)} \} \), \(j = 1, \ldots, m \), has a finite or infinite limit (including \(\pm \infty \)). Let
\[
 I_+ = \{ j : \alpha_j^{(k)} \to +\infty \} \subset [m], \quad I_- = \{ j : \alpha_j^{(k)} \to -\infty \} \subset [m].
\]
Since the sequences \(\{ z^{(k)} \} \), \(\{ w^{(k)} = r^{(k)} z^{(k)} \} \) converge to \(z, w \in U(K) \) respectively, we have \(z_j = 0 \) for \(j \in I_+ \) and \(w_j = 0 \) for \(j \in I_- \). Then it follows from the decomposition \(U(K) = \bigcup_{I \in K} (\mathbb{C}, \mathbb{C}^\times)^I \) that \(I_+ \) and \(I_- \) are disjoint simplices of \(K \). Let \(\sigma_+, \sigma_- \) be the corresponding cones of the simplicial fan \(\Sigma \). Then \(\sigma_+ \cap \sigma_- = \{ 0 \} \) by definition of a fan. By Lemma 2.1.2, there exists a linear function \(u \in \mathbb{N}_m^\oplus \) such that \(\langle u, a \rangle > 0 \) for any nonzero \(a \in \sigma_+ \), and \(\langle u, a \rangle < 0 \) for any nonzero \(a \in \sigma_- \). Since \(r^{(k)} \in R \), it follows from (6.19) that
\[
(6.20) \quad \sum_{j=1}^m \alpha_j^{(k)} \langle u, a_j \rangle = 0.
\]
This implies that both \(I_+ \) and \(I_- \) are empty, as otherwise the latter sum tends to infinity. Thus, each sequence \(\{ \alpha_j^{(k)} \} \) has a finite limit \(\alpha_j \), and a subsequence of \(\{ r^{(k)} \} \) converges to \((e^{\alpha_1}, \ldots, e^{\alpha_m}) \). Passing to the limit in (6.20) we obtain that \((e^{\alpha_1}, \ldots, e^{\alpha_m}) \in R \). This proves the properness of the action. Since the Lie group \(R \) acts smoothly, freely and properly on the smooth manifold \(U(K) \), the orbit space \(U(K)/R \) is Hausdorff and smooth by a standard result [230, Theorem 9.16].

In the case of complete fan it is possible to construct a smooth atlas on \(U(K)/R \) explicitly. To do this, it is convenient to pre-factorize everything by the action of \(T^n \), as in the proof of Theorem 4.7.5. We have
\[
 U(K)/T^n = (\mathbb{R}_+, \mathbb{R}_>)^K = \bigcup_{I \in K} (\mathbb{R}_+, \mathbb{R}_>)^I.
\]
Since the fan \(\Sigma \) is complete, we may take the union above only over \(n \)-element simplices \(I = \{ i_1, \ldots, i_n \} \in K \). Consider one such simplex \(I \); the generators of the corresponding \(n \)-dimensional cone \(\sigma \in \Sigma \) are \(a_{i_1}, \ldots, a_{i_n} \). Let \(u_1, \ldots, u_n \) be the dual basis of \(\mathbb{N}_m^\oplus \) (which is a generator set of the dual cone \(\sigma^\circ \)). Then we have \(\langle a_{i_k}, u_j \rangle = \delta_{kj} \). Now consider the map
\[
 p_I : (\mathbb{R}_+, \mathbb{R}_>)^I \to \mathbb{R}_+^n, \\
(y_1, \ldots, y_m) \mapsto \left(\prod_{i=1}^m g_i^{\langle a_{i_1}, u_1 \rangle}, \ldots, \prod_{i=1}^m g_i^{\langle a_{i_n}, u_n \rangle} \right),
\]
where we set \(0^0 = 1 \). Note that zero does not occur with a negative exponent on the right hand side, hence \(p_I \) is well defined as a continuous map. Each \((\mathbb{R}_+, \mathbb{R}_>)^I \) is \(R \)-invariant, and it follows from (6.19) that \(p_I \) induces an injective map
\[
 q_I : (\mathbb{R}_+, \mathbb{R}_>)^I/R \to \mathbb{R}_+^n.
\]
This map is also surjective since every \((x_1, \ldots, x_n) \in \mathbb{R}_+^n \) is covered by \((y_1, \ldots, y_m) \) where \(y_{i_j} = x_j \) for \(1 \leq j \leq n \) and \(y_k = 1 \) for \(k \notin \{ i_1, \ldots, i_n \} \). Hence, \(q_I \) is a
homeomorphism. It is covered by a \mathbb{T}^m-equivariant homeomorphism

$$\varphi_i : (\mathbb{C}, \mathbb{C}^\times)^I / R \to \mathbb{C}^n \times \mathbb{T}^{m-n},$$

where \mathbb{C}^n is identified with the quotient $\mathbb{R}_2^n \times \mathbb{T}^n / \sim$, see (6.7). Since $U(\kappa)/R$ is covered by open subsets $(\mathbb{C}, \mathbb{C}^\times)^I / R$, and $\mathbb{C}^n \times \mathbb{T}^{m-n}$ embeds as an open subset in \mathbb{R}^{m+n}, the set of homeomorphisms $\{ \varphi_i : I \in \kappa \}$ provides an atlas for $U(\kappa)/R$. The change of coordinates transformations $\varphi_i \varphi_j^{-1} : \mathbb{C}^n \times \mathbb{T}^{m-n} \to \mathbb{C}^n \times \mathbb{T}^{m-n}$ are smooth by inspection; thus $U(\kappa)/R$ is a smooth manifold.

Remark. The set of homeomorphisms $\{ \varphi_i : (\mathbb{R}_2, \mathbb{R}_2)^I / R \to \mathbb{R}_2^n \}$ defines an atlas for the smooth manifold with corners $\mathbb{Z}_K/\mathbb{T}^m$. If $\kappa = k_P$, for a simple polytope P, then this smooth structure with corners coincides with that of P.

It remains to prove statement (c), that is, identify $U(\kappa)/R$ with \mathbb{Z}_K. If X is a Hausdorff locally compact space with a proper G-action, and $Y \subset X$ a compact subspace which intersects every G-orbit at a single point, then Y is homeomorphic to the orbit space X/G. Therefore, we need to verify that each R-orbit intersects $\mathbb{Z}_K \subset U(\kappa)$ at a single point. We first prove that the R-orbit of any $y \in U(\kappa) / \mathbb{T}^m = (\mathbb{R}_2, \mathbb{R}_2)^\kappa$ intersects $\mathbb{Z}_K / \mathbb{T}^m$ at a single point. For this we use the cubical decomposition $cc(K) = (\mathbb{I}, 1)^K$ of $\mathbb{Z}_K / \mathbb{T}^m$, see Example 4.2.6.2.

Assume first that $y \in \mathbb{R}^m_\leq$. The R-action on \mathbb{R}^m_\leq is obtained by exponentiating the linear action of $\text{Ker} A$ on \mathbb{R}^m. Consider the subset $(\mathbb{R}_\leq, 0)^K \subset \mathbb{R}^m$, where \mathbb{R}_\leq denotes the set of nonpositive reals. The exponential map $\exp : \mathbb{R}^m \to \mathbb{R}^m_\leq$ sends $(\mathbb{R}_\leq, 0)^K$ homeomorphically onto $cc(K) = ((0, 1], 1)^K \subset \mathbb{R}^m$, where $(0, 1]$ denotes the semi-interval $\{ y \in \mathbb{R} : 0 < y \leq 1 \}$. The map

$$A_{1(\mathbb{R}_\leq, 0)^K} : (\mathbb{R}_\leq, 0)^K \to N_R$$

takes every $(\mathbb{R}_\leq, 0)^I$ to $-\sigma$, where $\sigma \in \Sigma$ is the cone corresponding to $I \in \kappa$. Since Σ is complete, (6.21) is a homeomorphism.

The orbit of y under the action of R consists of points $w \in \mathbb{R}^m_\leq$ such that $\exp Aw = \exp Ay$. Since $Ay \in N_R$ and (6.21) is a homeomorphism, there is a unique point $y' \in (\mathbb{R}_\leq, 0)^K$ such that $Ay' = Ay$. Since $\exp Ay' \subset cc(K)$, the R-orbit of y intersects $cc(K)$ at a unique point. The R-orbit of y cannot have other common points with $cc(K)$, because none of the coordinates of y vanishes. So $Ry \cap cc(K)$ consists of a single point.

Now let $y \in (\mathbb{R}_>, \mathbb{R}_>)^K$ be an arbitrary point. Let $\omega(y) \in \kappa$ be the set of zero coordinates of y, and let $\sigma \in \Sigma$ be the cone corresponding to $\omega(y)$. The cones containing σ constitute a fan $st \sigma$ (called the star of σ) in the quotient space $N_R/\mathbb{R}(a_i : i \in \omega(y))$. The underlying simplicial complex of $st \sigma$ is the link $lk_K \omega(y)$ of $\omega(y)$ in κ. Now observe that the action of R on the set

$$\{(y_1, \ldots, y_m) \in (\mathbb{R}_>, \mathbb{R}_>)^K : y_i = 0 \text{ for } i \in \omega(y)\} \cong (\mathbb{R}_>, \mathbb{R}_>)^{lk \omega(y)}$$

coinsides with the action of the group $R_{st \sigma}$ (defined by the fan $st \sigma$). Now we can repeat the above arguments for the complete fan $st \sigma$ and the action of $R_{st \sigma}$ on $(\mathbb{R}_>, \mathbb{R}_>)^{lk \omega(y)}$. As a result, we obtain that every R-orbit intersects $cc(K)$ at a single point.
To finish the proof of (c) we consider the commutative diagram

\[
\begin{array}{ccc}
\mathcal{Z}_K & \longrightarrow & U(K) \\
\downarrow & & \downarrow \pi \\
\text{cc}(K) & \longrightarrow & (\mathbb{R}_+, \mathbb{R}_+)^K
\end{array}
\]

where the horizontal arrows are embeddings and the vertical ones are projections onto the quotients of \mathbb{T}^m-actions. Note that the projection π commutes with the R-actions on $U(K)$ and $(\mathbb{R}_+, \mathbb{R}_+)^K$, and the subgroups R and \mathbb{T}^m of $(\mathbb{C}^\times)^m$ intersect trivially. It follows that every R-orbit intersects the full preimage $\pi^{-1}(\text{cc}(K)) = \mathcal{Z}_K$ at a single point. Indeed, assume that z and rz are in \mathcal{Z}_K for some $z \in U(K)$ and $r \in R$. Then $\pi(z)$ and $\pi(rz) = r\pi(z)$ are in $\text{cc}(K)$, which implies that $\pi(z) = \pi(rz)$. Hence, $z = trz$ for some $t \in \mathbb{T}^m$. We may assume that $z \in (\mathbb{C}^\times)^m$, so that the action of both R and \mathbb{T}^m is free (otherwise consider the action on $U(\text{lk} \omega(z))$). It follows that $tr = 1$, which implies that $r = 1$, since $R \cap \mathbb{T}^m = \{1\}$. \qed

We do not know if Theorem 6.5.2 generalises to other sphere triangulations:

Problem 6.5.3. Describe the class of sphere triangulations K for which the moment-angle manifold \mathcal{Z}_K admits a smooth structure.

Remark. If \mathcal{Z}_K admits a smooth structure for a simplicial complex K not arising from a fan, then such a structure does not come from a quotient $U(K)/R$ determined by data $\{K; a_1, \ldots, a_m\}$. As in the toric case (see Section 5.4), the R-action on $U(K)$ is proper and the quotient $U(K)/R$ is Hausdorff precisely when $\{K; a_1, \ldots, a_m\}$ defines a fan, i.e. the simplicial cones generated by any two subsets $\{a_i; i \in I\}$ and $\{a_j; j \in J\}$ with $I, J \in K$ can be separated by a hyperplane. This observation is originally due to Bosio [40], see also [9, §II.3] and [28].

6.6. Complex structures on moment-angle manifolds

Let \mathcal{Z}_K be the moment-angle manifold corresponding to a complete simplicial fan Σ defined by data $\{K; a_1, \ldots, a_m\}$. We assume that the dimension $m + n$ of \mathcal{Z}_K is even, and set $m - n = 2\ell$. This can always be achieved by adding a ghost vertex with any corresponding vector to our data $\{K; a_1, \ldots, a_m\}$; topologically this results in multiplying \mathcal{Z}_K by a circle. Here we show that \mathcal{Z}_K admits a structure of a complex manifold. The idea is to replace the action of $R \cong \mathbb{R}^{m-n}$ on $U(K)$ (whose quotient is \mathcal{Z}_K) by a holomorphic action of \mathbb{C}^ℓ on the same space.

We identify \mathbb{C}^m (as a real vector space) with \mathbb{R}^{2m} using the map

\[
(z_1, \ldots, z_m) \mapsto (x_1, y_1, \ldots, x_m, y_m),
\]

where $z_k = x_k + iy_k$, and consider the \mathbb{R}-linear map

\[
\text{Re}: \mathbb{C}^m \to \mathbb{R}^m, \quad (z_1, \ldots, z_m) \mapsto (x_1, \ldots, x_m).
\]

In order to obtain a complex structure on the quotient $\mathcal{Z}_K \cong U(K)/R$ we replace the action of R by the action of a holomorphic subgroup $C \subset (\mathbb{C}^\times)^m$ by means of the following construction.

Construction 6.6.1. Let a_1, \ldots, a_m be a set of vectors that span $N_R \cong \mathbb{R}^n$, and assume that $m - n = 2\ell$. Some of the a_i may be zero. Recall the map

\[
A: \mathbb{R}^m \to N_R, \quad e_i \mapsto a_i.
\]
We choose a complex ℓ-dimensional subspace in \mathbb{C}^m which projects isomorphically onto the real $(m - n)$-dimensional subspace $\text{Ker} A \subset \mathbb{R}^m$. More precisely, let $\mathfrak{c} \cong \mathbb{C}^\ell$, and choose a \mathbb{C}-linear map $\Psi : \mathfrak{c} \to \mathbb{C}^m$ satisfying the two conditions:

(a) the composite map $\mathfrak{c} \xrightarrow{\Psi} \mathbb{C}^m \xrightarrow{\text{Re}} \mathbb{R}^m$ is a monomorphism;
(b) the composite map $\mathfrak{c} \xrightarrow{\Psi} \mathbb{C}^m \xrightarrow{\text{Re}} \mathbb{R}^m \xrightarrow{A} N_\mathbb{R}$ is zero.

These two conditions are equivalent to the following (an exercise):

(a') $\Psi(\mathfrak{c}) \cap \overline{\Psi(\mathfrak{c})} = \{0\}$;
(b') $\Psi(\mathfrak{c}) \subset \text{Ker}(A_C : \mathbb{C}^m \to N_\mathbb{C})$,

where $\overline{\Psi(\mathfrak{c})}$ is the complex conjugate space and $A_C : \mathbb{C}^m \to N_\mathbb{C}$ is the complexification of the real map $A : \mathbb{R}^m \to N_\mathbb{R}$. Consider the following commutative diagram:

$$
\begin{array}{ccc}
\mathfrak{c} & \xrightarrow{\Psi} & \mathbb{C}^m & \xrightarrow{\text{Re}} & \mathbb{R}^m & \xrightarrow{A} & N_\mathbb{R} \\
\downarrow{\exp} & & \downarrow{\exp} & & \downarrow{\exp} \\
(C^\times)^m & \xrightarrow{|\cdot|} & \mathbb{R}^m
\end{array}
$$

where the vertical arrows are the componentwise exponential maps, and $|\cdot|$ denotes the map $(z_1, \ldots, z_m) \mapsto (|z_1|, \ldots, |z_m|)$. Now set

$$
C_\Psi = \exp \Psi(\mathfrak{c}) = \{(e^{(\psi_1, w)}, \ldots, e^{(\psi_m, w)}) \in (C^\times)^m \}
$$

where $w \in \mathfrak{c}$ and $\psi_k \in \mathfrak{c}^*$ is given by the kth coordinate projection $\mathfrak{c} \xrightarrow{\Psi} \mathbb{C}^m \to \mathbb{C}$. Then $C_\Psi \cong \mathbb{C}^\ell$ is a complex (but not algebraic) subgroup in $(C^\times)^m$, and \mathfrak{c} is its Lie algebra. There is a holomorphic action of C_Ψ on \mathbb{C}^m and $U(K)$ by restriction.

Example 6.6.2. Let a_1, \ldots, a_m be the configuration of $m = 2\ell$ zero vectors. We supplement it by the empty simplicial complex K on $[m]$ (with m ghost vertices), so that the data $\{K; a_1, \ldots, a_m\}$ define a complete fan in 0-dimensional space. Then $A : \mathbb{R}^m \to \mathbb{R}^0$ is a zero map, and condition (b) of Construction 6.6.1 is void.

Condition (a) means that $\mathfrak{c} \xrightarrow{\Psi} \mathbb{C}^{2\ell} \xrightarrow{\text{Re}} \mathbb{R}^{2\ell}$ is an isomorphism of real spaces.

Consider the quotient $(C^\times)^m/C_\Psi$ (note that $U(K) = (C^\times)^m$ in our case). The exponential map $\mathbb{C}^m \to (C^\times)^m$ identifies $(C^\times)^m$ with the quotient of \mathbb{C}^m by the imaginary lattice $\Gamma = \mathbb{Z}(2\pi i e_1, \ldots, 2\pi i e_m)$. Condition (a) implies that the projection $p : \mathbb{C}^m \to (C^\times)^m/\Psi(\mathfrak{c})$ is nondegenerate on the imaginary subspace of \mathbb{C}^m. In particular, $p(\Gamma)$ is a lattice of rank $m = 2\ell$ in $\mathbb{C}^m/\Psi(\mathfrak{c}) \cong \mathbb{C}^\ell$. Therefore,

$$(C^\times)^m/C_\Psi \cong (C^m/\Psi(\mathfrak{c}))/\Psi(\mathfrak{c}) = (C^m/\Psi(\mathfrak{c}))/p(\Gamma) \cong \mathbb{C}^\ell/p(\Gamma)$$

is a compact complex ℓ-dimensional torus.

Any complex torus can be obtained in this way. Indeed, let $\Psi : \mathfrak{c} \to \mathbb{C}^m$ be given by a $2\ell \times \ell$-matrix $\begin{pmatrix} -B & I \end{pmatrix}$ where I is the unit matrix and B is a square matrix of size ℓ. Then $p : \mathbb{C}^m \to \mathbb{C}^m/\Psi(\mathfrak{c})$ is given by the matrix $(I B)$ in appropriate bases, and $(C^\times)^m/C_\Psi$ is isomorphic to the quotient of \mathbb{C}^ℓ by the lattice $\mathbb{Z}(e_1, \ldots, e_\ell, b_1, \ldots, b_\ell)$, where b_k is the kth column of B. (Condition (b) implies that the imaginary part of B is nondegenerate.)

For example, if $\ell = 1$, then $\Psi : \mathbb{C} \to \mathbb{C}^2$ is given by $w \mapsto (\beta w, w)$ for some $\beta \in \mathbb{C}$, so that the subgroup (6.23) is

$$C_\Psi = \{(e^{\beta w}, e^w)\} \subset (C^\times)^2.$$
Condition (a) implies that $\beta \notin \mathbb{R}$. Then $\exp \Psi \colon \mathbb{C} \to (\mathbb{C}^\times)^2$ is an embedding, and
\[(\mathbb{C}^\times)^2/C_\Psi \cong \mathbb{C}/(\mathbb{Z} + \beta \mathbb{Z}) = T^1_\beta(\beta)\]
is a complex 1-dimensional torus with lattice parameter $\beta \in \mathbb{C}$.

Theorem 6.6.3 ([304]). Assume that data $\{K, a_1, \ldots, a_n\}$ define a complete simplicial fan Σ in $N_\mathbb{R} \cong \mathbb{R}^n$, and $m = n + 2\ell$. Let $C_\Psi \cong \mathbb{C}^\ell$ be the group given by (6.23). Then

(a) the holomorphic action of C_Ψ on $U(K)$ is free and proper, and the quotient $U(K)/C_\Psi$ has a structure of a compact complex manifold;

(b) $U(K)/C_\Psi$ is diffeomorphic to the moment-angle manifold Z_K.

Therefore, Z_K has a complex structure, in which each element of \mathbb{T}^m acts by a holomorphic transformation.

Remark. A result similar to Theorem 6.6.3 was obtained by Tambour [344]. The approach of Tambour was somewhat different; he constructed complex structures on manifolds Z_K arising from *rationally* starshaped spheres K (underlying complexes of complete rational simplicial fans) by relating them to a class of generalised LVM-manifolds described by Bosio in [40] (LVMB-manifolds). Bosio’s approach was pursued further in the work of Cupi–Foutou and Zaffran [107], who identified LVMB manifolds corresponding to rational configurations with the total spaces of holomorphic fibre bundles over toric varieties, and related them to the algebraic quotient construction. Parallel results within our approach are considered in the next section.

Proof of Theorem 6.6.3. We first prove statement (a). The stabilisers of the $(\mathbb{C}^\times)^m$-action on $U(K)$ are of the form $(\mathbb{C}^\times, 1)^I$ for $I \in K$. In order to show that $C_\Psi \subset (\mathbb{C}^\times)^m$ acts freely we need to check that C_Ψ has trivial intersection with any stabiliser of the $(\mathbb{C}^\times)^m$-action. Since C_Ψ embeds into \mathbb{R}^m_+ by (6.22), it enough to check that the image of C_Ψ in \mathbb{R}^m_+ intersects the image of $(\mathbb{C}^\times, 1)^I$ in \mathbb{R}^m_+ trivially. The former image is R and the latter image is $(\mathbb{R}^+, 1)^I$; the triviality of their intersection follows from Theorem 6.5.2 (a).

Now we prove the properness of this action. Consider the projection $\pi : U(K) \to (\mathbb{R}^+, \mathbb{R}^+)^K$ onto the quotient of the \mathbb{T}^m-action, and the commutative square
\[
\begin{array}{ccc}
C_\Psi \times U(K) & \xrightarrow{h_C} & U(K) \times U(K) \\
\downarrow f \times \pi & & \downarrow \pi \times \pi \\
R \times (\mathbb{R}^+, \mathbb{R}^+)^K & \xrightarrow{h_R} & (\mathbb{R}^+, \mathbb{R}^+)^K \times (\mathbb{R}^+, \mathbb{R}^+)^K
\end{array}
\]
where h_C and h_R denote the group action maps, and $f : C_\Psi \to R$ is the isomorphism given by the restriction of $\cdot \mid : (\mathbb{C}^\times)^m \to \mathbb{R}^m$. The preimage $h_C^{-1}(V)$ of a compact subset $V \subset U(K) \times U(K)$ is a closed subset in $W = (f \times \pi)^{-1} \circ h_R^{-1} \circ (\pi \times \pi)(V)$. The image $(\pi \times \pi)(V)$ is compact, the action of R on $(\mathbb{R}^+, \mathbb{R}^+)^K$ is proper by Theorem 6.5.2 (b), and the map $f \times \pi$ is proper as the quotient projection for a compact group action. Hence, W is a compact subset in $C_\Psi \times U(K)$, and $h_C^{-1}(V)$ is compact as a closed subset in W.

The group $C_\Psi \cong \mathbb{C}^\ell$ acts holomorphically, freely and properly on the complex manifold $U(K)$, therefore the quotient manifold $U(K)/C_\Psi$ has a complex structure.

As in the proof of Theorem 6.5.2, it is possible to describe a holomorphic atlas of $U(K)/C_\Psi$. Since the action of C_Ψ on the quotient $U(K)/\mathbb{T}^m = (\mathbb{R}^+, \mathbb{R}^+)^K$ coincides
with the action of R on the same space, the quotient of $U(K)/C_\phi$ by the action of T^m has exactly the same structure of a smooth manifold with corners as the quotient of $U(K)/R$ by T^m (see the proof of Theorem 6.5.2). This structure is determined by the atlas $\{\eta_i : (\mathbb{R}_+^2, \mathbb{R}_+^2) / R \to \mathbb{R}_+^2\}$, which lifts to a covering of $U(K)/C_\phi$ by the open subsets $(C, \mathbb{C}^\times)^I/C_\phi$. For any $I \in \mathcal{K}$, the subset $(C, \mathbb{C}^\times)^I \subset (C, \mathbb{C}^\times)^I$ intersects each orbit of the C_ϕ-action on $(C, \mathbb{C}^\times)^I$ transversely at a single point. Therefore, every $(C, \mathbb{C}^\times)^I/C_\phi \cong (C, \mathbb{C}^\times)^I$ acquires a structure of a complex manifold. Since $(C, \mathbb{C}^\times)^I \cong \mathbb{C}^n \times (\mathbb{C}^\times)^{m-n}$, and the action of C_ϕ on the $(\mathbb{C}^\times)^{m-n}$ factor is free, the complex manifold $(C, \mathbb{C}^\times)^I/C_\phi$ is the total space of a holomorphic \mathbb{C}^n-bundle over the complex torus $(\mathbb{C}^\times)^{m-n}/C_\phi$ (see Example 6.6.2). Choosing trivialisations of these \mathbb{C}^n-bundles for every I, we obtain a holomorphic atlas for $U(K)/C_\phi$.

The proof of statement (b) follows the lines of the proof of Theorem 6.5.2 (b). We need to show that each C_ϕ-orbit intersects $\mathcal{Z}_K \subset U(K)$ at a single point. First we show that the C_ϕ-orbit of any point in $U(K)/T^m$ intersects $\mathcal{Z}_K/T^m = \text{cc}(K)$ at a single point; this follows from the fact that the actions of C_ϕ and R coincide on $U(K)/T^m$. Then we show that each C_ϕ-orbit intersects the preimage $\pi^{-1}(\text{cc}(K))$ at a single point, using the fact that C_ϕ and T^m have trivial intersection in $(\mathbb{C}^\times)^m$.

Example 6.6.4 (Hopf manifold). Let a_1, \ldots, a_{n+1} be a set of vectors which span $N_\Sigma \cong \mathbb{R}^n$ and satisfy a linear relation $\lambda_1a_1 + \cdots + \lambda_na_{n+1} = 0$ with all $\lambda_k > 0$. Let Σ be the complete simplicial fan in N_Σ whose cones are generated by all proper subsets of a_1, \ldots, a_{n+1}. To make $m - n$ even we add one more ghost vector a_{n+2}. Hence $m = n + 2$, $\ell = 1$, and we have one more linear relation $\mu_1a_1 + \cdots + \mu_na_{n+1} + a_{n+2} = 0$ with $\mu_k \in \mathbb{R}$. The subspace $\text{Ker} A \subset \mathbb{R}^{n+2}$ is spanned by $(\lambda_1, \ldots, \lambda_{n+1}, 0)$ and $(\mu_1, \ldots, \mu_{n+1}, 0)$.

Then $\mathcal{K} = \mathcal{K}_\Sigma$ is the boundary of an n-dimensional simplex with $n + 1$ vertices and one ghost vertex, $\mathcal{Z}_K \cong S^{2n+1} \times S^1$, and $U(K) = (\mathbb{C}^{n+1} \setminus \{0\}) \times \mathbb{C}^\times$.

Conditions (a) and (b) of Construction 6.6.1 imply that C_ϕ is a 1-dimensional subgroup in $(\mathbb{C}^\times)^m$ given in appropriate coordinates by

$$C_\phi = \{(e^{i\zeta_1w}, \ldots, e^{i\zeta_{n+1}w}, e^w) : w \in \mathbb{C}\} \subset (\mathbb{C}^\times)^m,$$

where $\zeta_k = \mu_k + \alpha\lambda_k$ for some $\alpha \in \mathbb{C} \setminus \mathbb{R}$. By changing the basis of $\text{Ker} A$ if necessary, we may assume that $\alpha = i$. The moment-angle manifold $\mathcal{Z}_K \cong S^{2n+1} \times S^1$ acquires a complex structure as the quotient $U(K)/C_\phi$:

$$\left(\mathbb{C}^{n+1} \setminus \{0\}\right) \times \mathbb{C}^\times/\left\{(z_1, \ldots, z_{n+1}, t) \sim (e^{i\zeta_1w}z_1, \ldots, e^{i\zeta_{n+1}w}z_{n+1}, e^{it})\right\} \cong \left(\mathbb{C}^{n+1} \setminus \{0\}\right)/\left\{(z_1, \ldots, z_{n+1}) \sim (e^{2\pi i\zeta_1}z_1, \ldots, e^{2\pi i\zeta_{n+1}}z_{n+1})\right\},$$

where $z \in \mathbb{C}^{n+1} \setminus \{0\}$. The latter is the quotient of $\mathbb{C}^{n+1} \setminus \{0\}$ by a diagonalisable action of \mathbb{Z}. It is known as a *Hopf manifold*. For $n = 0$ we obtain the complex torus of Example 6.6.2.

Theorem 6.6.3 can be generalised to the quotients of \mathcal{Z}_K by freely acting subgroups $H \subset T^m$, or partial quotients of \mathcal{Z}_K in the sense of [68, §7.5]. These include both toric manifolds and LVM-manifolds:

Construction 6.6.5. Let Σ be a complete simplicial fan in N_Σ defined by data $\{K, a_1, \ldots, a_m\}$, and let $H \subset T^m$ be a subgroup which acts freely on the corresponding moment-angle manifold \mathcal{Z}_K. Then H is a product of a torus and a finite group, and $h = \dim H \leq m - n$ by Proposition 5.4.6 (H must intersect trivially with an n-dimensional coordinate subtorus in T^m). Under an additional assumption
on H, we shall define a holomorphic subgroup D in $(\mathbb{C}^\times)^m$ and introduce a complex structure on Z_K/H by identifying it with the quotient $U(K)/D$.

The additional assumption is the compatibility with the fan data. Recall the map $A: \mathbb{R}^m \to N_\mathbb{R}$, $e_i \mapsto a_i$, and let $\mathfrak{h} \subset \mathbb{R}^m$ be the Lie algebra of $H \subset \mathbb{T}^m$. We assume that $\mathfrak{h} \subset \operatorname{Ker} A$. We also assume that $2\ell = m - n - h$ is even (this can be satisfied by adding a zero vector to a_1, \ldots, a_m). Let $T = \mathbb{T}^m/H$ be the quotient torus, \mathfrak{t} its Lie algebra, and $\rho: \mathbb{R}^m \to \mathfrak{t}$ the map of Lie algebras corresponding to the quotient projection $\mathbb{T}^m \to T$.

Let $\mathfrak{c} \cong \mathbb{C}^\ell$, and choose a linear map $\Omega: \mathfrak{c} \to \mathbb{C}^m$ satisfying the two conditions:

(a) the composite map $\mathfrak{c} \overset{\Omega}{\longrightarrow} \mathbb{C}^m \overset{\rho}{\longrightarrow} \mathbb{R}^m \overset{\mathbb{R}^{\mathbb{R}}}{\longrightarrow} \mathfrak{t}$ is a monomorphism;
(b) the composite map $\mathfrak{c} \overset{\Omega}{\longrightarrow} \mathbb{C}^m \overset{\rho}{\longrightarrow} \mathbb{R}^m \overset{A}{\longrightarrow} N_\mathbb{R}$ is zero.

Equivalently, choose a complex subspace $\mathfrak{c} \subset \mathfrak{t}_\mathbb{C}$ such that the composite map $\mathfrak{c} \to \mathfrak{t}_\mathbb{C} \overset{\mathbb{R}^{\mathbb{R}}}{\longrightarrow} \mathfrak{t}$ is a monomorphism.

As in Construction 6.6.1, $\exp \Omega(\mathfrak{c}) \subset (\mathbb{C}^\times)^m$ is a holomorphic subgroup isomorphic to \mathbb{C}^ℓ. Let $H_\mathbb{C} \subset (\mathbb{C}^\times)^m$ be the complexification of H (it is a product of $(\mathbb{C}^\times)^h$ and a finite group). It follows from (a) that the subgroups $H_\mathbb{C}$ and $\exp \Omega(\mathfrak{c})$ intersect trivially in $(\mathbb{C}^\times)^m$. We can define a complex $(h + \ell)$-dimensional subgroup

$$D_{H,\Omega} = H_\mathbb{C} \times \exp \Omega(\mathfrak{c}) \subset (\mathbb{C}^\times)^m.$$

Theorem 6.6.6 ([304, Theorem 3.7]). Let Σ, K and $D_{H,\Omega}$ be as above. Then

(a) the holomorphic action of the group $D_{H,\Omega}$ on $U(K)$ is free and proper, and the quotient $U(K)/D_{H,\Omega}$ has a structure of a compact complex manifold of complex dimension $m - h - \ell$;

(b) there is a diffeomorphism between $U(K)/D_{H,\Omega}$ and Z_K/H defining a complex structure on the quotient Z_K/H, in which each element of $T = \mathbb{T}^m/H$ acts by a holomorphic transformation.

The proof is similar to that of Theorem 6.6.3 and is omitted.

Example 6.6.7.

1. If H is trivial ($h = 0$) then we obtain Theorem 6.6.3.

2. Let H be the diagonal circle in \mathbb{T}^m. The condition $\mathfrak{h} \subset \operatorname{Ker} A_\mathbb{R}$ implies that the vectors a_1, \ldots, a_m sum up to zero, which can always be achieved by rescaling them (Σ is a complete fan). As a result, we obtain a complex structure on the quotient Z_K/S^1 by the diagonal circle in \mathbb{T}^m, provided that $m - n$ is odd. In the polytopal case $K = K_P$, the quotient Z_K/S^1 embeds into $\mathbb{C}^m \setminus \{0\}/\mathbb{C}^\times = \mathbb{C}P^{m-1}$ as an intersection of homogeneous quadrics (6.14), and the complex structure on Z_K/S^1 coincides with that of an LVM-manifold, see Section 6.4.

3. Let $h = \dim H = m - n$. Then $\mathfrak{h} = \operatorname{Ker} A$. Since \mathfrak{h} is the Lie algebra of a torus, the $(m - n)$-dimensional subspace $\operatorname{Ker} A \subset \mathbb{R}^m$ is rational. By Gale duality, this implies that the fan Σ is also rational. We have $\ell = 0$, $D_{H,\Omega} = H_\mathbb{C} \cong (\mathbb{C}^\times)^{m-n}$ and $U(K)/H_\mathbb{C} = Z_K/H$ is the toric variety corresponding to Σ.

An effective action of T^k on an m-dimensional manifold M is called **maximal** if there exists a point $x \in M$ whose stabiliser as dimension $m - k$; the two extreme cases are the free action of a torus on itself and the half-dimensional torus action on a toric manifold. As is shown by Ishida [196], any compact complex manifold with a maximal effective holomorphic action of a torus is biholomorphic to a quotient.
Z_K/H of a moment-angle manifold with a complex structure described by Theorem 6.6.6. The argument of [196] recovering a fan Σ from a maximal holomorphic torus action builds on the works [197] and [198], where the result was proved in particular cases. The main result of [198] provides a purely complex-analytic description of toric manifolds V_Σ:

Theorem 6.6.8 ([198, Theorem 1]). Let M be a compact connected complex manifold of complex dimension n, equipped with an effective action of T^n by holomorphic transformations. If the action has fixed points, then there exists a complete regular fan Σ and a T^n-equivariant biholomorphism of V_Σ with M.

Complex geometry of moment-angle manifolds Z_K and their partial quotients Z_K/H has been studied further in [305]. When the underlying simplicial fan is rational, the manifold Z_K is the total space of a holomorphic bundle over a toric variety with fibres compact complex tori T^ℓ_C; this situation is reviewed in the next section. In general, a complex moment-angle manifold Z_K is equipped with a canonical holomorphic ℓ-dimensional foliation F which admits a transversely Kähler metric (under some restriction on the combinatorial data). All complex submanifolds of positive dimension in a generic moment-angle manifold Z_K are moment-angle manifolds of smaller dimension, and there are only finitely many of them [305], unlike the situation with algebraic varieties or Kähler manifolds.

Exercises.

6.6.9. Conditions (a) and (b) in Construction 6.6.1 are equivalent to (a') and (b').

6.7. Holomorphic principal bundles and Dolbeault cohomology

In the case of rational simplicial normal fans Σ_P a construction of Meersseman–Verjovsky [268] identifies the corresponding projective toric variety V_P as the base of a holomorphic principal Seifert fibration, whose total space is the moment-angle manifold Z_P equipped with a complex structure of an LVM-manifold, and fibre is a compact complex torus of complex dimension $\ell = \frac{m-n}{2}$. (Seifert fibrations are generalisations of holomorphic fibre bundles to the case when the base is an orbifold.) If V_P is a projective toric manifold, then there is a holomorphic free action of a complex ℓ-dimensional torus T^ℓ_C on Z_P with quotient V_P.

Using the construction of a complex structure on Z_K described in the previous section, in [304] holomorphic (Seifert) fibrations with total space Z_K were defined for arbitrary complete rational simplicial fans Σ. By an application of the Borel spectral sequence to the holomorphic fibration $Z_K \to V_\Sigma$, the Dolbeault cohomology of Z_K can be described and some Hodge numbers can be calculated explicitly.

Here we make the additional assumption that the set of integral linear combinations of the vectors a_1, \ldots, a_m is a full-rank lattice (a discrete subgroup isomorphic to \mathbb{Z}^n) in $N_\mathbb{R} \cong \mathbb{R}^n$. We denote this lattice by $N_\mathbb{Z}$ or simply N. This assumption implies that the complete simplicial fan Σ defined by the data $\{K; a_1, \ldots, a_m\}$ is rational. We also continue assuming that $m-n$ is even and setting $\ell = \frac{m-n}{2}$.

Because of our rationality assumption, the algebraic group G is defined by (5.3). Furthermore, since we defined N as the lattice generated by a_1, \ldots, a_m, the group G is isomorphic to $(\mathbb{C}^\times)^{2\ell}$ (i.e. there are no finite factors). We also observe that C_Q lies in G as an ℓ-dimensional complex subgroup. This follows from condition (b') of Construction 6.6.1.
The quotient construction (Section 5.4) identifies the toric variety V_{Σ} with $U(K)/G$, provided that a_1, \ldots, a_m are primitive generators of the edges of Σ. In our data $\{K; a_1, \ldots, a_m\}$, the vectors a_1, \ldots, a_m are not necessarily primitive in the lattice N generated by them. Nevertheless, the quotient $U(K)/G$ is still isomorphic to V_{Σ}, see [9, Chapter II, Proposition 3.1.7]. Indeed, let $a'_i \in N$ be the primitive generator along a_i, so that $a_i = r_i a'_i$ for some positive integer r_i. Then we have a finite branched covering

$$U(K) \to U(K), \quad (z_1, \ldots, z_m) \mapsto (z'_1, \ldots, z'_m),$$

which maps the group G defined by a_1, \ldots, a_m to the group G' defined by a'_1, \ldots, a'_m, see (5.3). We therefore obtain a covering $U(K)/G \to U(K)/G'$ of the toric variety $V_{\Sigma} \cong U(K)/G \cong U(K)/G'$ over itself. Having this in mind, we can relate the quotients $V_{\Sigma} \cong U(K)/G$ and $Z_K \cong U(K)/C_\Psi$ as follows:

Proposition 6.7.1. Assume that data $\{K; a_1, \ldots, a_m\}$ define a complete simplicial rational fan Σ, and let G and C_Ψ be the groups defined by (5.3) and (6.23).

(a) The toric variety V_{Σ} is identified, as a topological space, with the quotient of Z_K by the holomorphic action of the complex compact torus G/C_Ψ.

(b) If the fan Σ is regular, then V_{Σ} is the base of a holomorphic principal bundle with total space Z_K and fibre the compact complex torus G/C_Ψ.

Proof. To prove (a) we just observe that

$$V_{\Sigma} = U(K)/G = \left(U(K)/C_\Psi\right)/(G/C_\Psi) \cong Z_K/(G/C_\Psi),$$

where we used Theorem 6.6.3. The quotient G/C_Ψ is a compact complex ℓ-torus by Example 6.6.2. To prove (b) we observe that the holomorphic action of G on $U(K)$ is free by Proposition 5.4.6, and the same is true for the action of G/C_Ψ on Z_K. A holomorphic free action of the torus G/C_Ψ gives rise to a principal bundle. \(\square\)

Remark. As in the projective situation of [268], if the fan Σ is not regular, then the quotient projection $Z_K \to V_{\Sigma}$ of Proposition 6.7.1 (a) is a holomorphic principal Seifert fibration for an appropriate orbifold structure on V_{Σ}.

Let M be a complex n-dimensional manifold. The space $\Omega^p_q(M)$ of complex differential forms on M decomposes into a direct sum of the subspaces of (p,q)-forms, $\Omega^p_q(M) = \bigoplus_{0 \leq p+q \leq n} \Omega^{p,q}(M)$, and there is the Dolbeault differential $\partial: \Omega^p_q(M) \to \Omega^{p,q+1}(M)$. The dimensions $h^{p,q}(M)$ of the Dolbeault cohomology groups $H^{p,q}_\partial(M)$, $0 \leq p, q \leq n$, are known as the Hodge numbers of M. They are important invariants of the complex structure of M.

The Dolbeault cohomology of a compact complex ℓ-torus T^ℓ is isomorphic to an exterior algebra on 2ℓ generators:

$$H^{p,q}_\partial(T^\ell) \cong \Lambda[\xi_1, \ldots, \xi_\ell, \eta_1, \ldots, \eta_\ell],$$

where $\xi_1, \ldots, \xi_\ell \in H^{1,0}(T^\ell)$ are the classes of basis holomorphic 1-forms, and $\eta_1, \ldots, \eta_\ell \in H^{0,1}(T^\ell)$ are the classes of basis antiholomorphic 1-forms. In particular, the Hodge numbers are given by $h^{p,q}(T^\ell) = \binom{\ell}{p} \binom{\ell}{q}$.

The de Rham cohomology of a toric manifold V_{Σ} admits a Hodge decomposition with only nontrivial components of bidegree (p,p), $0 \leq p \leq n$ [108, §12].
This together with Theorem 5.3.1 gives the following description of the Dolbeault cohomology:

\[(6.26)\]
\[H^{n,*}_{\bar{\partial}}(V_\Sigma) \cong \mathbb{C}[v_1, \ldots, v_m]/(\mathcal{I}_K + \mathcal{J}_\Sigma),\]

where \(v_i \in H^{1,1}_\partial(V_\Sigma)\) are the cohomology classes corresponding to torus-invariant divisors (one for each one-dimensional cone of \(\Sigma\)), the ideal \(\mathcal{I}_K\) is generated by the monomials \(v_{i_1} \cdots v_{i_k}\) for which \(a_{i_1}, \ldots, a_{i_k}\) do not span a cone of \(\Sigma\) (the Stanley-Reisner ideal of \(K\)), and \(\mathcal{J}_\Sigma\) is generated by the linear forms \(\sum_{j=1}^m (a_j, u)v_j, u \in N^*\).

For the Hodge numbers, \(h^{p,q}(V_\Sigma) = h_p\), where \((h_0, h_1, \ldots, h_n)\) is the \(h\)-vector of \(K\), and \(h^{p,q}(V_\Sigma) = 0\) for \(p \neq q\).

Theorem 6.7.2 ([304]): Assume that data \(\{K, a_1, \ldots, a_m\}\) define a complete rational regular fan \(\Sigma\) in \(N_\mathbb{R} \cong \mathbb{R}^n, m - n = 2\ell\), and let \(Z_K\) be the corresponding moment-angle manifold with a complex structure defined by Theorem 6.6.3. Then the Dolbeault cohomology algebra \(H^{n,*}_{\bar{\partial}}(Z_K)\) is isomorphic to the cohomology of the differential bigraded algebra

\[(6.27)\]
\[\Lambda[\xi_1, \ldots, \xi_\ell, \eta_1, \ldots, \eta_\ell] \otimes H^{n,*}_{\bar{\partial}}(V_\Sigma), d\]

with differential \(d\) of bidegree \((0, 1)\) defined on the generators as follows:

\[dv_i = dp_j = 0, \quad d\xi_j = c(\xi_j), \quad 1 \leq i \leq m, \quad 1 \leq j \leq \ell,\]

where \(c: H^{1,0}_\partial(T^\Sigma) \to H^2(V_\Sigma, \mathbb{C}) = H^{1,1}_\partial(V_\Sigma)\) is the first Chern class map of the principal \(T^\Sigma\)-bundle \(Z_K \to V_\Sigma\).

Proof. We use the notion of a minimal Dolbeault model of a complex manifold [137, §4.3]. Let \((B, d_B)\) be such a model for \(V_\Sigma\), i.e. \((B, d_B)\) is a minimal commutative bigraded differential algebra together with a quasi-isomorphism \(f: B^{*,*} \to \Omega^{*,*}(V_\Sigma)\). Consider the differential bigraded algebra

\[(6.28)\]
\[\Lambda[\xi_1, \ldots, \xi_\ell, \eta_1, \ldots, \eta_\ell] \otimes B, d, \quad \text{where}\]

\[d|_B = d_B, \quad d(\xi_j) = c(\xi_j) \in B^{1,1} = H^{1,1}_\partial(V_\Sigma), \quad d(\eta_i) = 0.\]

By [137, Corollary 4.66], this is a model for the Dolbeault cohomology algebra of the total space \(Z_K\) of the principal \(T^\Sigma\)-bundle \(Z_K \to V_\Sigma\), provided that \(V_\Sigma\) is strictly formal. Recall from [137, Definition 4.58] that a complex manifold \(M\) is strictly formal if there exists a differential bigraded algebra \((Z, \delta)\) together with quasi-isomorphisms

\[\begin{array}{ccc}
\Omega^{*,*} \otimes \partial & \cong & (Z, \delta) \\
\cong & (\Omega^{*,*}, d_{DR}) \\
\end{array}\]

\[\cong (H^{n,*}_{\partial}(M), 0)\]

linking together the de Rham algebra, the Dolbeault algebra and the Dolbeault cohomology.

According to Theorem 8.1.10, the toric manifold \(V_\Sigma\) is formal in the usual (de Rham) sense. Also, the above mentioned Hodge decomposition of [108, §12] implies that \(V_\Sigma\) satisfies the \(\partial\bar{\partial}\)-lemma [137, Lemma 4.24]. Therefore \(V_\Sigma\) is strictly formal by the same argument as [137, Theorem 4.59], and (6.28) is a model for its Dolbeault cohomology.
6.7. Holomorphic Principal Bundles and Dolbeault Cohomology

The usual formality of V_Σ implies the existence of a quasi-isomorphism $\varphi_B: B \to H^{1,0}_\partial(V_\Sigma)$, which extends to a quasi-isomorphism $\text{id} \otimes \varphi_B: (A[\xi_1, \ldots, \xi_r, \eta_1, \ldots, \eta_l] \otimes B, d) \to (A[\xi_1, \ldots, \xi_r, \eta_1, \ldots, \eta_l] \otimes H^{1,0}_\partial(V_\Sigma), d)$ by [136, Lemma 14.2]. Thus, the differential algebra on the right hand side above provides a model for the Dolbeault cohomology of Z_K, as claimed. □

Remark. If V_Σ is projective, then it is Kähler; in this case the model of Theorem 6.7.2 coincides with the model for the Dolbeault cohomology of the total space of a holomorphic torus principal bundle over a Kähler manifold [137, Theorem 4.65].

The first Chern class map c from Theorem 6.7.2 can be described explicitly in terms of the map Ψ defining the complex structure on Z_K. We recall the map $A_C: \mathbb{C}^m \to N_C$, $e_i \to a_i$ and the Gale dual $(m-n) \times m$-matrix $G = (\gamma_{jk})$ whose rows form a basis of linear relations between a_1, \ldots, a_m. By Construction 6.6.1, $\text{Im} \Psi \subset \text{Ker} A_C$. Denote by $\text{Ann} U$ the annihilator of a linear subspace $U \subset \mathbb{C}^m$, i.e. the subspace of linear functions on \mathbb{C}^m vanishing on U.

Lemma 6.7.3. Let k be the number of zero vectors among a_1, \ldots, a_m. The first Chern class map $c: H^{1,0}_\partial(T^\ell_C) \to H^2(V_\Sigma, \mathbb{C}) = H^1_{\bar{\partial}}(V_\Sigma)$ of the principal T^ℓ_C-bundle $Z_K \to V_\Sigma$ is given by the composition

$\text{Ann} \text{Im} \Psi / \text{Ann Ker} A_C \xrightarrow{i} \mathbb{C}^m / \text{Ann Ker} A_C \xrightarrow{p} \mathbb{C}^{m-k} / \text{Ann Ker} A_C$

where i is the inclusion and p is the projection forgetting the coordinates in \mathbb{C}^m corresponding to zero vectors.

Explicitly, the map c is given on the generators of $H^{1,0}_\partial(T^\ell_C)$ by

$c(\xi_j) = \mu_j v_1 + \cdots + \mu_j v_m, \quad 1 \leq j \leq \ell$,

where $M = (\mu_{ji})$ is an $\ell \times m$-matrix satisfying the two conditions:

(a) $\Gamma M^t: \mathbb{C}^\ell \to \mathbb{C}^{2\ell}$ is a monomorphism;

(b) $M \Psi = 0$.

Proof. Consider the map

$A^*_C: N^*_C \to \mathbb{C}^m, \quad u \mapsto ((a_1, u), \ldots, (a_m, u))$.

We have

$H^1(T^\ell_C; \mathbb{C}) = (\text{Ker} A_C)^* = \mathbb{C}^m / \text{Im} A^*_C, \quad H^2(V_\Sigma; \mathbb{C}) = \mathbb{C}^{m-k} / \text{Im} A^*_C$.

The first Chern class map $c: H^1(T^\ell_C; \mathbb{C}) \to H^2(V_\Sigma; \mathbb{C})$ (the transgression) is then given by $p: \mathbb{C}^m / \text{Im} A^*_C \to \mathbb{C}^{m-k} / \text{Im} A^*_C$. In order to separate the holomorphic part of c we need to identify the subspace of holomorphic differentials $H^{1,0}_\partial(T^\ell_C) \cong \mathbb{C}^\ell$ inside the space of all 1-forms $H^1(T^\ell_C; \mathbb{C}) \cong \mathbb{C}^{2\ell}$. Since

$T^\ell_C = G/C\Psi = (\text{Ker exp } A_C)/(\text{exp Im } \Psi)$,

holomorphic differentials on T^ℓ_C correspond to \mathbb{C}-linear functions on $\text{Ker} A_C$ which vanish on $\text{Im } \Psi$. The space of functions on $\text{Ker} A_C$ is $\mathbb{C}^m / \text{Im} A^*_C = \mathbb{C}^m / \text{Ann Ker} A_C$, and the functions vanishing on $\text{Im } \Psi$ form the subspace $\text{Ann } \text{Im } \Psi / \text{Ann Ker} A_C$. Condition (b) says exactly that the linear functions on \mathbb{C}^m corresponding to the rows of M vanish on $\text{Im } \Psi$. Condition (a) says that the rows of M constitute a basis for the complement of $\text{Ann Ker} A_C$ in $\text{Ann } \text{Im } \Psi$. □
It is interesting to compare Theorem 6.7.2 with the following description of the de Rham cohomology of \(Z_K \):

Theorem 6.7.4. Let \(Z_K \) and \(V_\Sigma \) be as in Theorem 6.7.2. The de Rham cohomology \(H^*(Z_K; \mathbb{R}) \) is isomorphic to the cohomology of the differential graded algebra

\[
\left(\Lambda[u_1, \ldots, u_{m-n}] \otimes H^*(V_\Sigma; \mathbb{R}), d \right),
\]

with \(\deg u_j = 1 \), \(\deg v_i = 2 \), and differential \(d \) defined on the generators as

\[
dv_1 = 0, \quad dv_j = \gamma_{j1} v_1 + \cdots + \gamma_{mj} v_m, \quad 1 \leq j \leq m - n.
\]

Proof. The de Rham cohomology of the manifold \(Z_K \) is isomorphic to its cellular cohomology (with coefficients in \(\mathbb{R} \)). By Theorem 4.5.4,

\[
H^*(Z_K; \mathbb{R}) \cong \text{Tor}_{\mathbb{R}[u_1, \ldots, u_m]}(\mathbb{R}[K], \mathbb{R})
\]

Since \(\Sigma \) is a complete fan, \(K = K_\Sigma \) is a sphere triangulation, and therefore the face ring \(\mathbb{R}[K] = \mathbb{R}[u_1, \ldots, v_m]/I_\Sigma \) is Cohen-Macaulay by Corollary 3.3.17. The ideal \(J_\Sigma \) is generated by a regular sequence, so we obtain by Lemma A.3.5,

\[
\text{Tor}_{\mathbb{R}[v_1, \ldots, v_m]}(\mathbb{R}[K], \mathbb{R}) \cong \text{Tor}_{\mathbb{R}[u_1, \ldots, u_m]/J_\Sigma}(\mathbb{R}[K]/J_\Sigma, \mathbb{R}).
\]

Since \(\mathbb{R}[v_1, \ldots, v_m]/J_\Sigma \) is a polynomial ring in \(m - n \) variables, Lemma A.2.10 implies that the Tor-algebra above is isomorphic to

\[
H\left(\Lambda[u_1, \ldots, u_{m-n}] \otimes \mathbb{R}[K]/J_\Sigma, d \right) \cong H\left(\Lambda[u_1, \ldots, u_{m-n}] \otimes H^*(V_\Sigma; \mathbb{R}), d \right)
\]

where the explicit form of the differential \(d \) follows from the definition of the Gale dual configuration \(\Gamma = (\gamma_1, \ldots, \gamma_m) \). \(\square \)

There are two classical spectral sequences for the Dolbeault cohomology. First, the **Borel spectral sequence** \([37]\) of a holomorphic bundle \(E \to B \) with a compact Kähler fibre \(F \), which has \(E_2 = H_\beta(B) \otimes H_\beta(F) \) and converges to \(H_\beta(E) \). Second, the **Fröhlicher spectral sequence** \([161, \S 3.5]\), whose \(E_1 \)-term is the Dolbeault cohomology of a complex manifold \(M \) and which converges to the de Rham cohomology of \(M \). Theorem 6.7.2 implies a collapse result for these spectral sequences:

Corollary 6.7.5.

(a) The Borel spectral sequence of the holomorphic principal bundle \(Z_K \to V_\Sigma \) collapses at the \(E_3 \)-term, i.e. \(E_3 = E_\infty \);

(b) The Fröhlicher spectral sequence of \(Z_K \) collapses at the \(E_2 \)-term.

Proof. To prove (a) we just observe that the differential algebra (6.27) is the \(E_2 \)-term of the Borel spectral sequence, and its cohomology is the \(E_3 \)-term.

By comparing the Dolbeault and de Rham cohomology algebras of \(Z_K \) given by Theorems 6.7.2 and 6.7.4 we observe that the elements \(\eta_1, \ldots, \eta_\ell \in E_1^{0,1} \) cannot survive to the \(E_\infty \)-term of the Fröhlicher spectral sequence. The only possible non-trivial differential on them is \(d_1 : E_1^{0,1} \to E_1^{1,1} \). By Theorem 6.7.4, the cohomology algebra of \([E_1, d_1]\) is exactly the de Rham cohomology of \(Z_K \), proving (b). \(\square \)

Theorem 6.7.4 can also be interpreted as a collapse result for the Leray–Serre spectral sequence of the principal \(T^{m-n} \)-bundle \(Z_K \to V_\Sigma \).

In order to proceed with calculation of Hodge numbers, we need the following bounds for the dimension of \(\text{Ker} \epsilon \) in Lemma 6.7.3:
Lemma 6.7.6. Let \(k \) be the number of zero vectors among \(a_1, \ldots, a_m \). Then
\[
k - \ell \leq \dim \ker c (H^0(T^\ell_C)) \leq \frac{k-\ell}{2}.
\]
In particular, if \(k \leq 1 \) then \(c \) is a monomorphism.

Proof. Consider the commutative diagram

\[
\begin{array}{ccc}
\text{Ann } \Psi / \text{Ann } \ker A_C & \overset{i}{\longrightarrow} & \mathbb{C}^m / \text{Ann } \ker A_C \\
\downarrow & & \downarrow \text{Re} \\
\mathbb{R}^{m-n} & \overset{p}{\longrightarrow} & \mathbb{R}^{m-n-k}
\end{array}
\]

The composition \(\text{Re} \circ i \) is an \(\mathbb{R} \)-linear isomorphism, as it has the form \(H^0_\partial(J^\ell_C) \rightarrow H^1(T^\ell_C, \mathbb{C}) \rightarrow H^1(T^\ell_C, \mathbb{R}) \), and any real-valued function on the lattice \(\Gamma \) defining the torus \(T^\ell_C = \mathbb{C}^\ell/\Gamma \) is the real part of the restriction to \(\Gamma \) of a \(\mathbb{C} \)-linear function on \(\mathbb{C}^\ell \).

By the commutativity of the diagram above, the kernel of \(c = p \circ i \) has real dimension at most \(k \), which implies the upper bound on its complex dimension. For the lower bound,
\[
\dim \ker c \geq \dim H^1_\partial(J^\ell_C) - \dim H^1_\partial(V_\mathcal{K}) = \ell - (2\ell - k) = k - \ell. \quad \square
\]

Theorem 6.7.7. Let \(\mathcal{K} \) be as in Theorem 6.7.2, and let \(k \) be the number of zero vectors among \(a_1, \ldots, a_m \). Then the Hodge numbers \(h^{p,q} = h^{p,q}(\mathcal{K}) \) satisfy
\[
\begin{align*}
\text{(a)} & \quad (k - \ell) \leq h^{p,0} \leq \binom{k}{p}; \text{ in particular, } h^{p,0} = 0 \text{ for } p > 0 \text{ if } k \leq 1; \\
\text{(b)} & \quad h^{0,q} = \binom{\ell}{q}; \\
\text{(c)} & \quad h^{1,q} = (\ell - k)\binom{\ell}{q-1} + h^{1,0}\binom{\ell + 1}{q} \text{ for } q \geq 1; \\
\text{(d)} & \quad \frac{\ell(3\ell + 1)}{2} - h_2(K) - \ell k + (\ell + 1)h^{2,0} \leq h^{2,1} \leq \frac{(3\ell + 1)}{2} - \ell k + (\ell + 1)h^{2,0}.
\end{align*}
\]

Proof. Let \(A^{p,q} \) denote the bidegree \((p, q) \) component of the differential algebra from Theorem 6.7.2, and let \(Z^{p,q} \subset A^{p,q} \) denote the subspace of cocycles. Then \(d^{1,0}; A^{1,0} \rightarrow Z^{1,1} \) coincides with the map \(c \), and the required bounds for \(h^{1,0} = \ker d^{1,0} \) are already established in Lemma 6.7.6. Since \(h^{p,0} = \dim \ker d^{p,0} \), and \(\ker d^{p,0} \) is the \(p \)th exterior power of the space \(\ker d^{1,0} \), statement (a) follows.

The differential is trivial on \(A^{0,q} \), hence \(h^{0,q} = \dim A^{0,q} \), proving (b).

The space \(Z^{1,1} \) is spanned by the cocycles \(v_i, \xi_1, \eta_j \), where \(\xi_i \in \ker d^{1,0} \). Hence \(\dim Z^{1,1} = 2\ell - k + h^{1,0} \ell \). Also, \(\dim d(A^{1,0}) = \ell - h^{1,0} \ell \), therefore, \(h^{1,1} = \ell - k + h^{1,0}(\ell + 1) \). Similarly, \(\dim Z^{1,q} = (2\ell - k)\binom{\ell}{q-1} + h^{1,0}\binom{\ell + 1}{q} \) (with basis consisting of \(v_i\eta_{j_1} \cdots \eta_{j_q} \) and \(\xi_i \eta_{j_1} \cdots \eta_{j_q} \), where \(\xi_i \in \ker d^{1,0}, j_1 < \cdots < j_q \)), and \(d: A^{1,q-1} \rightarrow Z^{1,q} \) has a subspace of dimension \((\ell - h^{1,0})\binom{\ell}{q-1} \). This proves (c).

We have \(A^{2,1} = U \oplus W \), where \(U \) has basis of monomials \(\xi_i \eta_j \) and \(W \) has basis of monomials \(\xi_j \eta_k \). Therefore,
\[
(6.29) \quad h^{2,1} = \dim U - \dim dU + \dim W - \dim dW.
\]

Now \(\dim U = \ell(2\ell - k), 0 \leq \dim dU \leq h_2(K) \) (since \(dU \subset H^2_\partial(V_\mathcal{K}) \)), \(\dim W = \dim \ker d|_W = \ell h^{2,0} \), and \(\dim dA^{2,0} = \binom{\ell}{2} - h^{2,0} \). By substituting these expressions into (6.29) we obtain the inequalities of (d). \(\square \)

Remark. We need to add at most one ghost vertex to \(\mathcal{K} \) to make \(\dim Z_\mathcal{K} = m + n \) even. Since \(h^{0,0}(\mathcal{K}) = 0 \) when \(k \leq 1 \), the manifold \(Z_\mathcal{K} \) does not have holomorphic forms of any degree in this case.
If \mathcal{Z}_K is a torus (so that K is empty), then $m = k = 2\ell$, and $h^{1,0}(\mathcal{Z}_K) = h^{0,1}(\mathcal{Z}_K) = \ell$. Otherwise Theorem 6.7.7 implies that $h^{1,0}(\mathcal{Z}_K) < h^{0,1}(\mathcal{Z}_K)$, and therefore \mathcal{Z}_K is not Kähler.

Example 6.7.8. Let $\mathcal{Z}_K \cong S^1 \times S^{2n+1}$ be a Hopf manifold of Example 6.6.4. Our rationality assumption is that a_1, \ldots, a_{n+2} span an n-dimensional lattice N in \mathbb{R}^n; in particular, the fan Σ defined by the proper subsets of \mathcal{Z}_K is rational. We assume further that Σ is regular (this is equivalent to the condition $a_1 + \cdots + a_{n+1} = 0$), so that Σ is the normal fan of a Delzant n-dimensional simplex Δ^n. We have $V_\Sigma \cong \mathbb{C}P^n$, and (6.26) describes its cohomology as the quotient of $\mathbb{C}[v_1, \ldots, v_{n+2}]$ by the two ideals: I generated by $v_1 \cdots v_{n+1}$ and v_{n+2}, and J generated by $v_1 - v_{n+1}, \ldots, v_n - v_{n+1}$. The differential algebra of Theorem 6.7.2 is therefore given by

$$\Lambda[\xi, \eta] \otimes \mathbb{C}[t]/t^{n+1}, d), \quad dt = d\eta = 0, \quad d\xi = t,$$

for a proper choice of t. The nontrivial cohomology classes are represented by the cocycles $1, \eta, \xi t^n$ and $\xi \eta t^n$, which gives the following nonzero Hodge numbers of \mathcal{Z}_K:

$$h^{0,0} = h^{0,1} = h^{n+1,n} = h^{n+1,n+1} = 1.$$

Observe that the Dolbeault cohomology and Hodge numbers do not depend on a choice of complex structure (the map Ψ).

Example 6.7.9 (Calabi–Eckmann manifold). Let $\{K, a_1, \ldots, a_{n+2}\}$ be the data defining the normal fan of the product $P = \Delta^p \times \Delta^q$ of two Delzant simplices with $p + q = n$, $1 \leq p \leq q \leq n - 1$. That is, $a_1, \ldots, a_p, a_{p+2}, \ldots, a_{n+1}$ is a basis of the lattice N and there are two relations $a_1 + \cdots + a_{p+1} = 0$ and $a_{p+2} + \cdots + a_{n+1} = 0$. The corresponding toric variety V_Σ is $\mathbb{C}P^p \times \mathbb{C}P^q$ and its cohomology ring is isomorphic to $\mathbb{C}[x, y]/(x^{p+1}, y^{q+1})$. Consider the map

$$\Psi: \mathbb{C} \to \mathbb{C}^{n+2}, \quad w \mapsto (w, \ldots, w, \alpha w, \ldots, \alpha w),$$

where $\alpha \in \mathbb{C} \setminus \mathbb{R}$ and αw appears q times. The map Ψ satisfies the conditions of Construction 6.6.1. The resulting complex structure on $\mathcal{Z}_P \cong S^{2p+1} \times S^{2q+1}$ is that of a *Calabi–Eckmann manifold*. We denote complex manifolds obtained in this way by $CE(p, q)$ (the complex structure depends on the choice of Ψ, but we do not reflect this in the notation). Each manifold $CE(p, q)$ is the total space of a holomorphic principal bundle over $\mathbb{C}P^p \times \mathbb{C}P^q$ with fibre the complex 1-torus $\mathbb{C}/(\mathbb{Z} \oplus \alpha \mathbb{Z})$.

Theorem 6.7.2 and Lemma 6.7.3 provide the following description of the Dolbeault cohomology of $CE(p, q)$:

$$H^*_{\partial} (CE(p, q)) \cong \Lambda[\xi, \eta] \otimes \mathbb{C}[x, y]/(x^{p+1}, y^{q+1}), d),$$

where $dx = dy = d\eta = 0$ and $d\xi = x - y$ for an appropriate choice of x, y. We therefore obtain

$$H^*_{\partial} (CE(p, q)) \cong \Lambda[\omega, \eta] \otimes \mathbb{C}[x]/(x^{p+1}),$$

where $\omega \in H^{p+1,q}_{\partial} (CE(p, q))$ is the cohomology class of the cocycle $\xi \frac{x^{p+1}-y^{q+1}}{x-y}$. This calculation is originally due to [37, §9]. We note that the Dolbeault cohomology of a Calabi–Eckmann manifold depends only on p, q and does not depend on the complex parameter α (or the map Ψ).
6.8. Hamiltonian-minimal Lagrangian submanifolds

In this last section we apply the accumulated knowledge on topology of moment-angle manifolds in a somewhat different area, Lagrangian geometry. Systems of real quadrics, which we used in Sections 6.1 and 6.2 to define moment-angle manifolds, also give rise to a family of Hamiltonian-minimal Lagrangian submanifolds in a complex space or, more generally, in toric varieties.

Hamiltonian minimality (H-minimality for short) for Lagrangian submanifolds is a symplectic analogue of minimality in Riemannian geometry. A Lagrangian immersion is called H-minimal if the variations of its volume along all Hamiltonian vector fields are zero. This notion was introduced in the work of Y.-G. Oh [297] in connection with the celebrated Arnold conjecture on the number of fixed points of a Hamiltonian symplectomorphism. The simplest example of an H-minimal Lagrangian submanifold is the coordinate torus [297] $S^1_{r_1} \times \cdots \times S^1_{r_m} \subset \mathbb{C}^m$, where $S^1_{r_k}$ denotes the circle of radius $r_k > 0$ in the kth coordinate subspace of \mathbb{C}^m. More examples of H-minimal Lagrangian submanifolds in a complex space were constructed in the works [85], [183], [8], among others.

In [273] Mironov suggested a general construction of H-minimal Lagrangian immersions $N \hookrightarrow \mathbb{C}^m$ from intersections of real quadrics. These systems of quadrics are the same as those we used to define moment-angle manifolds, and therefore one can apply toric methods for analysing the topological structure of N. In [274] an effective criterion was obtained for $N \hookrightarrow \mathbb{C}^m$ to be an embedding: the polytope corresponding to the intersection of quadrics must be Delzant. As a consequence, any Delzant polytope gives rise to an H-minimal Lagrangian submanifold $N \subset \mathbb{C}^m$. As in the case of moment-angle manifolds, the topology of N is quite complicated even for low-dimensional polytopes: for example, a Delzant 5-gon gives rise to a manifold N which is the total space of a bundle over a 3-torus with fibre a surface of genus 5. Furthermore, by combining Mironov’s construction with symplectic reduction, a new family of H-minimal Lagrangian submanifolds of toric varieties was defined in [275]. This family includes many previously constructed explicit examples in \mathbb{C}^m and $\mathbb{C}P^{m-1}$.

Preliminaries. Let (M, ω) be a symplectic manifold of dimension $2n$. An immersion $i: N \hookrightarrow M$ of an n-dimensional manifold N is called Lagrangian if $i^*(\omega) = 0$. If i is an embedding, then $i(N)$ is a Lagrangian submanifold of M. A vector field X on M is Hamiltonian if the 1-form $\omega(X, \cdot)$ is exact.

Now assume that M is Kähler, so that it has compatible Riemannian metric and symplectic structure. A Lagrangian immersion $i: N \hookrightarrow M$ is called Hamiltonian minimal (H-minimal) if the variations of the volume of $i(N)$ along all Hamiltonian
vector fields with compact support are zero, that is,
\[
\frac{d}{dt} \text{vol}(i_t(N)) \big|_{t=0} = 0,
\]
where \(i_t(N)\) is a deformation of \(i(N)\) along a Hamiltonian vector field, \(i_0(N) = i(N)\), and \(\text{vol}(i_t(N))\) is the volume of the deformed part of \(i_t(N)\). An immersion \(i\) is minimal if the variations of the volume of \(i(N)\) along all vector fields are zero.

Our basic example is \(M = \mathbb{C}^m\) with the Hermitian metric \(2 \sum_{k=1}^m d\bar{z}_k \otimes dz_k\). Its imaginary part is the symplectic form of Example 5.5.1. In the end we consider a more general case when \(M\) is a toric manifold.

The construction. We consider an intersection of quadrics similar to (6.5), but in the real space:

\[
(6.31) \quad \mathcal{R} = \left\{ u = (u_1, \ldots, u_m) \in \mathbb{R}^m : \sum_{k=1}^m \gamma_{jk} u_k^2 = \delta_j, \quad \text{for } 1 \leq j \leq m - n \right\}.
\]

We assume the nondegeneracy and rationality conditions on the coefficient vectors \(\gamma_i = (\gamma_{1i}, \ldots, \gamma_{m-n,i})^t \in \mathbb{R}^{m-n}, i = 1, \ldots, m:\)

(a) \(\delta \in \mathbb{R}_{\geq}^{(\gamma_1, \ldots, \gamma_m)}\);
(b) if \(\delta \in \mathbb{R}_{>}(\gamma_1, \ldots, \gamma_n)\), then \(k \geq m - n\);
(c) the vectors \(\gamma_1, \ldots, \gamma_m\) generate a lattice \(L \cong \mathbb{Z}^{m-n}\) in \(\mathbb{R}^{m-n}\).

These conditions guarantee that \(\mathcal{R}\) is a smooth \(n\)-dimensional submanifold in \(\mathbb{R}^m\) (by the argument of Proposition 6.1.4) and that

\[
T_F = \left\{ \left(e^{2\pi i \gamma_1 \phi}, \ldots, e^{2\pi i \gamma_m \phi}\right) \in \mathbb{T}^m \right\}
\]
is an \((m-n)\)-dimensional torus subgroup in \(\mathbb{T}^m\). We identify the torus \(T_F\) with \(\mathbb{R}^{m-n}/L^*\) and represent its elements by \(\phi \in \mathbb{R}^{m-n}\). We also define

\[
D_F = \left(\frac{1}{2} L^*/L^* \right) \cong (\mathbb{Z}_2)^{m-n}.
\]

Note that \(D_F\) embeds canonically as a subgroup in \(T_F\).

Now we view the intersection \(\mathcal{R}\) as a subset in the intersection \(\mathcal{Z}\) of Hermitian quadrics given by (6.5), or as a subset in the whole space \(\mathbb{C}^m\). Then we ‘spread’ \(\mathcal{R}\) by the action of \(T_F\), that is, consider the set of \(T_F\)-orbits through \(\mathcal{R}\). More precisely, we consider the map

\[
j : \mathcal{R} \times T_F \to \mathbb{C}^m,
\]

\[
(u, \phi) \mapsto u \cdot \phi = (u_1 e^{2\pi i \gamma_1 \phi}, \ldots, u_m e^{2\pi i \gamma_m \phi})
\]
and observe that \(j(\mathcal{R} \times T_F) \subset \mathcal{Z}\). We let \(D_F\) act on \(\mathcal{R} \times T_F\) diagonally; this action is free, since it is free on the second factor. The quotient

\[N = \mathcal{R} \times D_F / T_F\]
is an \(m\)-dimensional manifold.

For any \(u = (u_1, \ldots, u_m) \in \mathcal{R}\), we have the subgroup

\[
L_u = \mathbb{Z} \langle \gamma_k : u_k \neq 0 \rangle \subset L = \mathbb{Z} \langle \gamma_1, \ldots, \gamma_m \rangle.
\]

The set of \(T_F\)-orbits through \(\mathcal{R}\) is an immersion of \(N:

Lemma 6.8.1.

(a) The map \(j : \mathcal{R} \times T_F \to \mathbb{C}^m\) induces an immersion \(i : N \to \mathbb{C}^m\).
(b) The immersion \(i\) is an embedding if and only if \(L_u = L\) for any \(u \in \mathcal{R}\).
6.8. Hamiltonian-minimal Lagrangian submanifolds

Proof. Take \(u \in R, \varphi \in T_R \) and \(g \in D_R \). We have \(u \cdot g \in R \), and \(j(u \cdot g, g \varphi) = u \cdot g^2 \varphi = u \cdot \varphi = j(u, \varphi) \). Hence, the map \(j \) is constant on \(D_R \)-orbits, and therefore induces a map of the quotient \(N = (R \times T_R)/D_R \), which we denote by \(i \).

Assume that \(j(u, \varphi) = j(u', \varphi') \). Then \(L_u = L_{u'} \) and

\[
(6.32) \quad u_k e^{2\pi i (\gamma_k \varphi)} = u_k' e^{2\pi i (\gamma_k \varphi')} \quad \text{for } k = 1, \ldots, m.
\]

Since both \(u_k \) and \(u'_k \) are real, this implies that \(e^{2\pi i (\gamma_k \varphi - \varphi')} = \pm 1 \) whenever \(u_k \neq 0 \), or, equivalently, \(\varphi - \varphi' \in \left(\frac{1}{2} L^*_u \right) / L^* \). In other words, (6.32) implies that \(u' = u \cdot g \) and \(\varphi' = g \varphi \) for some \(g \in \left(\frac{1}{2} L^*_u \right) / L^* \). The latter is a finite group by Lemma 6.3.2; hence the preimage of any point of \(C^m \) under \(j \) consists of a finite number of points. If \(L_u = L \), then \(\left(\frac{1}{2} L^*_u \right) / L^* = \left(\frac{1}{2} L^* \right) / L^* = D_R \); hence \((u, \varphi) \) and \((u', \varphi') \) represent the same point in \(N \). Statement (b) follows; to prove (a), it remains to observe that we have \(L_u = L \) for generic \(u \) (with all coordinates nonzero). \(\square \)

Theorem 6.8.2 ([273, Theorem 1]). The immersion \(i: N \leftrightarrow C^m \) is H-minimal Lagrangian. Moreover, if \(\sum_{k=1}^m \gamma_k = 0 \), then \(i \) is a minimal Lagrangian immersion.

Proof. We only prove that \(i \) is a Lagrangian immersion here. Let

\[
(z, \varphi) \mapsto (x, \varphi) = \left(u_1(x) e^{2\pi i (\gamma_1 \varphi)}, \ldots, u_m(x) e^{2\pi i (\gamma_m \varphi)} \right)
\]

be a local coordinate system on \(N = R \times T_R \), where \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) and \(\varphi = (\varphi_1, \ldots, \varphi_{m-n}) \in \mathbb{R}^{m-n} \). Let \(\langle \xi, \eta \rangle_C = \sum_{i=1}^m \xi_i \eta_i = \langle \xi, \eta \rangle + i \omega(\xi, \eta) \) be the Hermitian scalar product of \(\xi, \eta \in C^m \). Then

\[
\langle \frac{\partial u}{\partial x_k}, \frac{\partial u}{\partial \varphi_j} \rangle_C = 2\pi i \left(\gamma_{j1} u_1 \frac{\partial u_1}{\partial x_k} + \cdots + \gamma_{jm} u_m \frac{\partial u_m}{\partial x_k} \right) = 0
\]

where the second identity follows by differentiating the equations of quadrics (6.31). Also, \(\langle \frac{\partial u}{\partial x_k}, \frac{\partial \varphi}{\partial \varphi_j} \rangle_C \in \mathbb{R} \) and \(\langle \frac{\partial \varphi}{\partial \varphi_k}, \frac{\partial \varphi}{\partial \varphi_j} \rangle_C \in \mathbb{R} \). It follows that

\[
\omega \left(\frac{\partial u}{\partial x_k}, \frac{\partial u}{\partial \varphi_j} \right) = \omega \left(\frac{\partial u}{\partial x_k}, \frac{\partial u}{\partial \varphi_j} \right) = \omega \left(\frac{\partial \varphi}{\partial \varphi_k}, \frac{\partial \varphi}{\partial \varphi_j} \right) = 0,
\]

i.e. the restriction of the symplectic form to the tangent space of \(N \) is zero. \(\square \)

Remark. The identity \(\sum_{k=1}^m \gamma_k = 0 \) cannot hold for a compact \(R \) (or \(N \)).

We recall from Theorem 6.1.5 that a nondegenerate intersection of quadrics (6.5) or (6.31) defines a simple polyhedron (1.1), and \(Z \) is identified with the moment-angle manifold \(\mathcal{Z}_P \). Now we can summarise the results of the previous sections in the following criterion for \(i: N \rightarrow C^m \) to be an embedding:

Theorem 6.8.3. Let \(Z \) and \(R \) be the intersections of Hermitian and real quadrics defined by (6.5) and (6.31), respectively, satisfying conditions (a)–(e) above. Let \(P \) be the associated simple polyhedron, and \(N = R \times D_R T_R \). The following conditions are equivalent:

(a) \(i: N \rightarrow C^m \) is an embedding of an H-minimal Lagrangian submanifold;
(b) \(L_u = L \) for any \(u \in R \);
(c) the torus \(T_R \) acts freely on the moment-angle manifold \(Z = \mathcal{Z}_P \);
(d) \(P \) is a Delzant polyhedron.

Proof. Equivalence (a) \(\iff \) (b) follows from Lemma 6.8.1 and Theorem 6.8.2. Equivalence (b) \(\iff \) (c) is Lemma 6.3.2, and (c) \(\iff \) (d) is Theorem 6.3.1 (c). \(\square \)
Topology of Lagrangian submanifolds \(N \subset \mathbb{C}^m \). We start by reviewing three simple properties linking \(N \) to the intersections of quadrics \(Z \) and \(R \).

Proposition 6.8.4.
(a) The immersion of \(N \) in \(\mathbb{C}^m \) factors as \(N \hookrightarrow Z \hookrightarrow \mathbb{C}^m \);
(b) \(N \) is the total space of a bundle over the torus \(T^m \) with fibre \(R \);
(c) if \(N \to \mathbb{C}^m \) is an embedding, then \(N \) is the total space of a principal \(T^m \)-bundle over the \(n \)-dimensional manifold \(R/D_T \).

Proof. Statement (a) is clear. Since \(D_T \) acts freely on \(T_T \), the projection \(N = R \times_D T_T \to T_T/D_T \) onto the second factor is a fibre bundle with fibre \(R \) over \(T_T/D_T \cong T^{m-n} \), therefore proving (b).

If \(N \to \mathbb{C}^m \) is an embedding, then \(T_T \) acts freely on \(Z \) by Theorem 6.8.3 and the action of \(D_T \) on \(R \) is also free. Therefore, the projection \(N = R \times_D T_T \to R/D_T \) onto the first factor is a principal \(T_T \)-bundle, which proves (c).

Remark. The quotient \(R/D_T \) is a real toric variety, or a small cover, over the corresponding polytope \(P \), see [112] and [68].

Example 6.8.5 (one quadric). Suppose that \(R \) is given by a single equation
\[(6.33) \quad \gamma_1 u_1^2 + \cdots + \gamma_m u_m^2 = \delta \]
in \(\mathbb{R}^m \). We assume that \(R \) is compact, so that \(\gamma_i \) and \(\delta \) are positive reals, \(R \cong S^{m-1} \), and the corresponding polytope \(P \) is an \(n \)-simplex \(\Delta^n \). Then \(N \cong S^{m-1} \times \mathbb{Z}_2 S^1 \), where the generator of \(\mathbb{Z}_2 \) acts by the standard free involution on \(S^1 \) and by a certain involution \(\tau \) on \(S^{m-1} \). The topological type of \(N \) depends on \(\tau \). Namely,
\[N \cong \begin{cases} S^{m-1} \times S^1 & \text{if } \tau \text{ preserves the orientation of } S^{m-1}, \\ K^m & \text{if } \tau \text{ reverses the orientation of } S^{m-1}, \end{cases} \]
where \(K^m \) is known as the \(m \)-dimensional Klein bottle.

Proposition 6.8.6. Let \(m - n = 1 \) (one quadric). We obtain an \(H \)-minimal Lagrangian embedding of \(N \cong S^{m-1} \times \mathbb{Z}_2 S^1 \) in \(\mathbb{C}^m \) if and only if \(\gamma_1 = \cdots = \gamma_m \) in (6.33). In this case, the topological type of \(N = N(m) \) depends only on the parity of \(m \) and is given by
\[N(m) \cong \begin{cases} S^{m-1} \times S^1 & \text{if } m \text{ is even}, \\ K^m & \text{if } m \text{ is odd}. \end{cases} \]

Proof. Since there exists \(u \in R \) with only one nonzero coordinate, Theorem 6.8.3 implies that \(N \) embeds in \(\mathbb{C}^m \) if only if \(\gamma_i \) generates the same lattice as the whole set \(\gamma_1, \ldots, \gamma_m \) for each \(i \). Therefore, \(\gamma_1 = \cdots = \gamma_m \). In this case \(D_T \cong \mathbb{Z}_2 \) acts by the standard antipodal involution on \(S^{m-1} \), which preserves orientation if \(m \) is even and reverses orientation otherwise.

Both examples of \(H \)-minimal Lagrangian embeddings given by Proposition 6.8.6 are well known. The Klein bottle \(K^m \) with even \(m \) does not admit Lagrangian embeddings in \(\mathbb{C}^m \) (see [287] and [359]).

Example 6.8.7 (two quadrics). In the case \(m - n = 2 \), the topology of \(R \) and \(N \) can be described completely by analysing the action of the two commuting involutions on the intersection of quadrics. We consider the compact case here.
Using Proposition 1.2.7, we write R in the form

\begin{equation}
\gamma_{11}u_1^2 + \cdots + \gamma_{1m}u_m^2 = c,
\end{equation}
\begin{equation}
\gamma_{21}u_1^2 + \cdots + \gamma_{2m}u_m^2 = 0,
\end{equation}

where $c > 0$ and $\gamma_{1i} > 0$ for all i.

Proposition 6.8.8. There is a number p, $0 < p < m$, such that $\gamma_{2i} > 0$ for $i = 1, \ldots, p$ and $\gamma_{2i} < 0$ for $i = p + 1, \ldots, m$ in (6.34), possibly after reordering the coordinates u_1, \ldots, u_m. The corresponding manifold $R = R(p, q)$, where $q = m - p$, is diffeomorphic to $S^{p-1} \times S^{q-1}$. Its associated polytope P either coincides with Δ^{m-2} (if one of the inequalities in (1.1) is redundant) or is combinatorially equivalent to the product $\Delta^{p-1} \times \Delta^{q-1}$ (if there are no redundant inequalities).

Proof. We observe that $\gamma_{2i} \neq 0$ for all i in (6.34), as $\gamma_{2i} = 0$ implies that the vector $\delta = \begin{pmatrix} c \\ 0 \end{pmatrix}$ is in the cone generated by $\gamma_i = \begin{pmatrix} \gamma_{1i} \\ 0 \end{pmatrix}$, which contradicts Proposition 6.1.4 (b). By reordering the coordinates, we can achieve that the first p of γ_{2i} are positive and the rest are negative. Then $1 < p < m$, because otherwise (6.34) is empty. Now, (6.34) is the intersection of the cone over the product of two ellipsoids of dimensions $p-1$ and $q-1$ (given by the second quadric) with an $(m-1)$-dimensional ellipsoid (given by the first quadric). Therefore, $R(p, q) \cong S^{p-1} \times S^{q-1}$. The statement about the polytope follows from the combinatorial fact that a simple p-polytope with up to $n + 2$ facets is combinatorially equivalent to a product of simplices; the case of one redundant inequality corresponds to $p = 1$ or $q = 1$. \qed

An element $\varphi \in D_F = \frac{1}{2}L^* / L^* \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ acts on $R(p, q)$ by

$$
(u_1, \ldots, u_m) \mapsto (\varepsilon_1(\varphi)u_1, \ldots, \varepsilon_m(\varphi)u_m),
$$

where $\varepsilon_k(\varphi) = e^{2\pi i (\gamma_{1k} - \gamma_{2k})} = \pm 1$ for $1 \leq k \leq m$.

Lemma 6.8.9. Suppose that D_F acts freely on $R(p, q)$ and $\varepsilon_i(\varphi) = 1$ for some $\varphi \in D_F$ and i, $1 \leq i \leq p$. Then $\varepsilon_i(\varphi) = -1$ for all l with $p + 1 \leq l \leq m$.

Proof. Assume the opposite, that is, $\varepsilon_i(\varphi) = 1$ for some $1 \leq i \leq p$ and $\varepsilon_j(\varphi) = 1$ for some $p + 1 \leq j \leq m$. Then $\gamma_{2i} > 0$ and $\gamma_{2j} < 0$ in (6.34), so we can choose $u \in R(p, q)$ whose only nonzero coordinates are u_i and u_j. The element $\varphi \in D_F$ fixes this u, leading to a contradiction. \qed

Lemma 6.8.10. Suppose D_F acts freely on $R(p, q)$. Then there exist two generating involutions $\varphi_1, \varphi_2 \in D_F \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ whose action on $R(p, q)$ is described by either (a) or (b) below, possibly after reordering the coordinates:

(a) $\varphi_1: (u_1, \ldots, u_m) \mapsto (u_1, \ldots, u_k, -u_{k+1}, \ldots, -u_p, -u_{p+1}, \ldots, -u_m)$;

(b) $\varphi_2: (u_1, \ldots, u_m) \mapsto (-u_1, \ldots, -u_k, u_{k+1}, \ldots, u_p, -u_{p+1}, \ldots, -u_m)$;

where $0 \leq k \leq p$ and $0 \leq l \leq q$.

Proof. By Lemma 6.8.9, for each of the three nonzero elements $\varphi \in D_F$, we have either $\varepsilon_i(\varphi) = -1$ for $1 \leq i \leq p$ or $\varepsilon_i(\varphi) = -1$ for $p + 1 \leq i \leq m$. Therefore, we may choose two different nonzero elements $\varphi_1, \varphi_2 \in D_F$ such that either $\varepsilon_i(\varphi_j) = -1$ for $j = 1, 2$ and $p + 1 \leq i \leq m$, or $\varepsilon_i(\varphi_j) = -1$ for $j = 1, 2$ and $1 \leq i \leq p$. This corresponds to the cases (a) and (b) above, respectively. In
the former case, after reordering the coordinates, we may assume that \(\varphi_1 \) acts as in (a). Then \(\varphi_2 \) also acts as in (a), since otherwise the composition \(\varphi_1 \circ \varphi_2 \) cannot act freely by Lemma 6.8.9. The second case is treated similarly. \(\square \)

Each of the actions of \(D_F \) described in Lemma 6.8.10 can be realised by a particular intersection of quadrics (6.34). For example, the system of quadrics

\[
\begin{align*}
2u_1^2 + \cdots + 2u_k^2 + u_{k+1}^2 + \cdots + u_p^2 + u_{p+1}^2 + \cdots + u_m^2 &= 3, \\
u_1^2 + \cdots + u_k^2 + 2u_{k+1}^2 + \cdots + 2u_p^2 - u_{p+1}^2 - \cdots - u_m^2 &= 0
\end{align*}
\]

(6.35)

gives the first action of Lemma 6.8.10; the second action is realised similarly. Note that the lattice \(L \) corresponding to (6.35) is a sublattice of index 3 in \(\mathbb{Z}^2 \). We can rewrite (6.35) as

\[
\begin{align*}
u_1^2 + \cdots + u_k^2 + u_{k+1}^2 + \cdots + u_p^2 &= 1, \\
u_1^2 + \cdots + u_k^2 + u_{k+1}^2 + \cdots + u_m^2 &= 2,
\end{align*}
\]

(6.36)
in which case \(L = \mathbb{Z}^2 \). The action of the two involutions \(\psi_1, \psi_2 \in D_F = (\frac{1}{2}\mathbb{Z}^2)/\mathbb{Z}^2 \) corresponding to the standard basis vectors of \(\frac{1}{2}\mathbb{Z}^2 \) is given by

\[
\psi_1: (u_1, \ldots, u_m) \mapsto (-u_1, \ldots, -u_k, -u_{k+1}, \ldots, -u_p, u_{p+1}, \ldots, u_m), \\
\psi_2: (u_1, \ldots, u_m) \mapsto (-u_1, \ldots, -u_k, u_{k+1}, \ldots, u_p, -u_{p+1}, \ldots, -u_m).
\]

(6.37)

We denote the manifold \(N \) corresponding to (6.36) by \(N_k(p, q) \). We have

\[
N_k(p, q) \cong (S^{p-1} \times S^{q-1}) \times \mathbb{Z}_2 \times \mathbb{Z}_2 (S^1 \times S^1),
\]

(6.38)

where the action of the two involutions on \(S^{p-1} \times S^{q-1} \) is given by \(\psi_1, \psi_2 \) above. Note that \(\psi_1 \) acts trivially on \(S^{q-1} \) and acts antipodally on \(S^{p-1} \). Therefore,

\[
N_k(p, q) \cong N(p) \times \mathbb{Z}_2 (S^{q-1} \times S^1),
\]

where \(N(p) \) is the manifold from Proposition 6.8.6. If \(k = 0 \) then the second involution \(\psi_2 \) acts trivially on \(N(p) \), and \(N_0(p, q) \) coincides with the product \(N(p) \times N(q) \) of the two manifolds from Example 6.8.5. In general, the projection

\[
N_k(p, q) \to S^{q-1} \times \mathbb{Z}_2 S^1 = N(q)
\]
describes \(N_k(p, q) \) as the total space of a fibration over \(N(q) \) with fibre \(N(p) \).

We summarise the above facts and observations in the following topological classification result for compact \(H \)-minimal Lagrangian submanifolds \(N \subset \mathbb{C}^m \) obtained from intersections of two quadrics.

THEOREM 6.8.11. Let \(N \to \mathbb{C}^m \) be the embedding of the \(H \)-minimal Lagrangian submanifold corresponding to a compact intersection of two quadrics. Then \(N \) is diffeomorphic to some \(N_k(p, q) \) given by (6.38), where \(p + q = m \), \(0 < p < m \) and \(0 \leq k \leq p \). Moreover, every such triple \((k, p, q) \) can be realised by \(N \).

In the case of up to two quadrics considered above, the topology of \(\mathcal{R} \) is relatively simple, and in order to analyse the topology of \(N \), one only needs to describe the action of involutions on \(\mathcal{R} \). When the number of quadrics is greater than two, the topology of \(\mathcal{R} \) becomes an issue as well.

EXAMPLE 6.8.12 (three quadrics). In the case \(m - n = 3 \), the topology of the compact manifolds \(\mathcal{R} \) and \(Z \) was fully described in [236, Theorem 2]. Each of these manifolds is diffeomorphic to a product of three spheres or to a connected sum of products of spheres with two spheres in each product.
Note that, for \(m - n = 3 \), the manifolds \(\mathcal{R} \) (or \(\mathcal{Z} \)) can be distinguished topologically by looking at the planar Gale diagrams of the corresponding simple polytopes \(P \) (see Section 1.2). This chimes with the classification of simple \(n \)-polytopes with \(n + 3 \) facets, well-known in combinatorial geometry [367, §6.5].

The smallest polytope with \(m - n = 3 \) is a pentagon. It has many Delzant realisations, for instance,

\[
P = \left\{ (x_1, x_2) \in \mathbb{R}^2 : x_1 \geq 0, x_2 \geq 0, -x_1 + 2 \geq 0, -x_2 + 2 \geq 0, -x_1 - x_2 + 3 \geq 0 \right\}.
\]

In this case, \(\mathcal{R} \) is an oriented surface of genus 5 (see Proposition 4.18), and the moment-angle manifold \(\mathcal{Z} \) is diffeomorphic to a connected sum of 5 copies of \(S^3 \times S^4 \).

We therefore obtain an \(H \)-minimal Lagrangian submanifold \(N \subset \mathbb{C}^5 \), which is the total space of a bundle over \(T^3 \) with fibre a surface of genus 5.

Now assume that the polytope \(P \) associated with an intersection of quadrics (6.31) is a polygon (i.e. \(n = 2 \)). If there are no redundant inequalities, then \(P \) is an \(m \)-gon and \(\mathcal{R} \) is an orientable surface \(S_g \) of genus \(g = 1 + 2^{m-k}(m - 4) \) by Proposition 4.18. If there are \(k \) redundant inequalities, then \(P \) is an \((m - k)\)-gon.

In this case \(\mathcal{R} \cong \mathcal{R}' \times (S^0)^k \), where \(\mathcal{R}' \) corresponds to an \((m - k)\)-gon without redundant inequalities. That is, \(\mathcal{R} \) is a disjoint union of \(2^k \) surfaces of genus \(1 + 2^{m-k}(m - k - 4) \).

The corresponding \(H \)-minimal submanifold \(N \subset \mathbb{C}^m \) is the total space of a bundle over \(T^{m-2} \) with fibre \(S_g \). This is an aspherical manifold for \(m \geq 4 \).

Generalisation to toric manifolds. Consider two sets of quadrics:

\[
\mathcal{Z}_R = \left\{ z \in \mathbb{C}^m : \sum_{k=1}^m \gamma_k |z_k|^2 = c \right\}, \quad \gamma_k, c \in \mathbb{R}^{m-n};
\]

\[
\mathcal{Z}_\Delta = \left\{ z \in \mathbb{C}^m : \sum_{k=1}^m \delta_k |z_k|^2 = d \right\}, \quad \delta_k, d \in \mathbb{R}^{m-\ell};
\]

such that \(\mathcal{Z}_R, \mathcal{Z}_\Delta \) and \(\mathcal{Z}_R \cap \mathcal{Z}_\Delta \) satisfy the nondegeneracy and rationality conditions (a)-(c) from the beginning of this section. Assume also that the polyhedra corresponding to \(\mathcal{Z}_R, \mathcal{Z}_\Delta \) and \(\mathcal{Z}_R \cap \mathcal{Z}_\Delta \) are Delzant.

The idea is to use the first set of quadrics to produce a toric manifold \(V \) via symplectic reduction (as described in Section 5.5), and then use the second set of quadrics to define an \(H \)-minimal Lagrangian submanifold in \(V \).

Construction 6.8.13. Define the real intersections of quadrics \(\mathcal{R}_R, \mathcal{R}_\Delta \), the tori \(T_R \cong \mathbb{T}^{m-n}, T_\Delta \cong \mathbb{T}^{m-\ell} \), and the groups \(D_R \cong \mathbb{Z}^{m-n}, D_\Delta \cong \mathbb{Z}^{m-\ell} \) as before.

We consider the toric variety \(V \) obtained as the symplectic quotient of \(\mathbb{C}^m \) by the torus corresponding to the first set of quadrics: \(V = \mathcal{Z}_R / T_R \). It is a Kähler manifold of real dimension \(2n \). The quotient \(\mathcal{R}_R / D_R \) is the set of real points of \(V \) (the fixed point set of the complex conjugation, or a real toric manifold); it has dimension \(n \). Consider the subset of \(\mathcal{R}_R / D_R \) defined by the second set of quadrics:

\[
\mathcal{S} = (\mathcal{R}_R \cap \mathcal{R}_\Delta) / D_R,
\]

we have \(\dim \mathcal{S} = n + \ell - m \). Finally, define the \(n \)-dimensional submanifold of \(V \):

\[
N = \mathcal{S} \times_{D_\Delta} T_\Delta.
\]

Theorem 6.8.14. \(N \) is an \(H \)-minimal Lagrangian submanifold in the toric manifold \(V \).
Proof. Let \(\tilde{V} \) be the symplectic quotient of \(V \) by the torus corresponding to the second set of quadrics, that is, \(\tilde{V} = (V \cap Z_\Delta)/T_\Delta = (Z_T \cap Z_\Delta)/(T_T \times T_\Delta) \). It is a toric manifold of real dimension \(2(n + \ell - m) \). Its submanifold of real points \(\tilde{N} = N/T_\Delta = (R_T \cap R_\Delta)/(D_T \times D_\Delta) \hookrightarrow (Z_T \cap Z_\Delta)/(T_T \times T_\Delta) = \tilde{V} \) is the fixed point set of the complex conjugation, hence it is a totally geodesic submanifold. In particular, \(\tilde{N} \) is a minimal submanifold in \(\tilde{V} \). Therefore, we are in the situation of [122, Corollary 2.7], according to which \(N \) is an \(H \)-minimal submanifold in \(V \).

Example 6.8.15.

1. If \(m - n = 0 \), then the set of quadrics defining \(Z_T \) is void, so \(Z_T = V = \mathbb{C}^m \) and we obtain the original construction of \(H \)-minimal Lagrangian submanifolds \(N \) in \(\mathbb{C}^m \).

2. If \(m - \ell = 0 \), then the set of quadrics defining \(Z_\Delta \) is void, so \(N = S = R_T/D_T \) is set of real points of \(V = Z_T/T_T \). The submanifold \(\tilde{N} \) is minimal (totally geodesic) in \(V \).

3. If \(m - n = 1 \) and \(Z_T \) is compact, then \(Z_T \cong S^{2m-1} \), and we obtain \(H \)-minimal Lagrangian submanifolds in \(V = Z_T/T_T = \mathbb{C}P^{m-1} \). This includes the families of projective examples constructed in [272], [242] and [276].
CHAPTER 7

Half-Dimensional Torus Actions

In this chapter we consider different topological generalisations of toric varieties. All of them are smooth manifolds with an action of a compact torus, or T-manifolds for short. Most of the results here concern the case when the dimension of the acting torus is half the dimension of the manifold.

A compact nonsingular toric variety (or toric manifold) V_Σ of real dimension $2n$ has an action of an n-dimensional torus T^n obtained by restricting the action of the algebraic torus $(\mathbb{C}^*)^n$. The action of T^n on V_Σ is locally standard, that is, it locally looks like the standard coordinatewise action of T^n on \mathbb{C}^n (more precise definitions are given below). If the variety V_Σ is projective, then the quotient V_Σ/T^n can be identified with a simple convex n-polytope P via the moment map. In general, the quotient V_Σ/T^n may not be a polytope, even combinatorially, but it still has a face structure of a manifold with corners, which is dual to the face structure of the simplicial fan Σ. In particular, the fixed points of the T^n-action on V_Σ correspond to the vertices of the quotient V_Σ/T^n. These basic properties of the torus action can be taken as the starting point for topological generalisations of toric manifolds.

Several classes of such 'generalised toric manifolds' are considered in this chapter. Their inter-relations are described in Section 7.6, and the reader could refer to Figure 7.5 for a schematic description of these inter-relations.

A quasitoric manifold is a $2n$-dimensional manifold M with a locally standard action of T^n such that the quotient M/T^n can be identified with a simple n-polytope P. This class of manifolds was introduced in the seminal paper [112] of Davis and Januszkiewicz. They showed, among other things, that the cohomology ring structure of a quasitoric manifold is exactly the same as that of a toric manifold (see Theorem 5.3.1). Quasitoric manifolds have been studied intensively since the late 1990s, and the work [66] summarised these early developments and emphasised the role of moment-angle manifolds Z_P.

Around the same time, an alternative way to generalise toric varieties was developed in the works of Masuda [249] and Hattori–Masuda [179], which led to a wider class of torus manifolds. Along with the usual conditions on the T^n-action such as smoothness and effectiveness, the crucial point in the definition of a torus manifold is the non-emptiness of the fixed point set. Torus manifolds also admit a combinatorial treatment similar to that of toric varieties in terms of fans and polytopes. Namely, torus manifolds may be described by multi-fans and multi-polytopes; a multi-fan is a collection of cones parametrised by a simplicial complex, where some cones may overlap unlike in a usual fan. The cohomology ring of a torus manifold has a more complicated structure than that of a (quasi)toric manifold; in particular, it may no longer be generated by two-dimensional classes. Face rings of simplicial posets (as described in Section 3.5) arise naturally in this context.

247
Another interesting generalisation of toric manifolds was suggested in the work [197] of Ishida, Fukukawa and Masuda under the name topological toric manifolds. The idea is to consider not only the actions of a compact torus, but rather two commuting actions of T^n and \mathbb{R}^∞_+, which patch together to a smooth $(\mathbb{C}^*)^n$-action on a manifold. This smooth $(\mathbb{C}^*)^n$-action is what replaces the algebraic $(\mathbb{C}^*)^n$-action on a toric manifold. The resulting class of manifolds, when properly defined, turns out to be both wide and tractable, and admits a combinatorial description in terms of (generalised) fans in a way similar to toric varieties. The topological characteristics of topological toric manifolds, including their integral cohomology rings and characteristic classes, also have much similarity with those of toric manifolds.

In Section 7.1 we discuss the notion of a locally standard torus action and related combinatorics of orbits; it features in many subsequent generalisations of toric manifolds. Section 7.2 is a brief account of topological properties of the (compact) torus action on toric manifolds, these properties are taken as the base for subsequent topological generalisations. Sections 7.3, 7.4 and 7.5 describe the classes of quasitoric manifolds, torus manifolds and topological toric manifolds, respectively. Section 7.4 can be also viewed as an account of topological properties of locally standard T^n-manifolds, because the existence of a fixed point (required in the definition of a torus manifold) often is a consequence of other topological restrictions on a locally standard T^n-manifold M; for example, a fixed point automatically exists when the odd-degree cohomology of M vanishes. Similarly, a torus manifold M with $H^{odd}(M) = 0$ is necessarily locally standard. In Section 7.6 we describe the relationship between the different classes of half-dimensional torus actions. In Section 7.7 we discuss an important class of examples of projective toric manifolds obtained as spaces of bounded flags in a complex space. These manifolds illustrate nicely many previous constructions with toric and quasitoric manifolds, and will also feature in the last chapter on toric cobordism. Another class of examples, Bott towers, is the subject of Section 7.8. The study of Bott towers has become an important part of toric topology, and many interesting open questions arise here. In the last Section 7.9 we explore connections with another active area, the theory of GKM-manifolds and GKM-graphs, and also study blow-ups of T-manifolds and their related combinatorial objects. As usual, more specific introductory remarks are available at the beginning of each section.

7.1. Locally standard actions and manifolds with corners

We have collected here background material on locally standard T^n- and \mathbb{Z}^2_+-actions and combinatorial structures on their orbit spaces. The latter include the notions of manifolds with faces and manifolds with corners, which have been studied in differential topology since the 1960s in the works of Jüntch [203], Bredon [47], Davis [110], Davis-Januszkiewicz [112], Izvestiev [201], among others.

As usual, we denote by \mathbb{Z}_2 (respectively, by \mathbb{S} or \mathbb{T}) the multiplicative group of real (respectively, complex, compact) numbers of absolute value one. In this section we denote by G one of the groups \mathbb{Z}_2 or $\mathbb{S} = \mathbb{T}$, and denote by F its ambient field \mathbb{R} or \mathbb{C} respectively. We refer to the coordinate-wise action of G^n on \mathbb{F}^n given by

$$(g_1, \ldots, g_n) \cdot (z_1, \ldots, z_n) = (g_1 z_1, \ldots, g_n z_n)$$

as the standard action or the standard representation.
DEFINITION 7.1.1. Let M be a manifold with an action of G^n. A \textit{standard chart} on M is a triple (U, f, ψ), where $U \subset M$ is a G^n-invariant open subset, ψ is an automorphism of G^n, and f is a ψ-equivariant homeomorphism $f : U \to W$ onto a G^n-invariant open subset $W \subset \mathbb{F}^n$. (Recall from Appendix B.4 that the latter means that $f(t \cdot y) = \psi(t)f(y)$ for all $t \in G^n$. $y \in U$.) A G^n-action on M is said to be \textit{locally standard} if M has a standard atlas, i.e. if any point of M belongs to a standard chart.

The dimension of a manifold with a locally standard G^n-action is n if $G = \mathbb{Z}_2$ and $2n$ if $G = \mathbb{T}$. The orbit space of the standard G^n-action on \mathbb{F}^n is the orthant
\[\mathbb{R}^n_\geq = \{ \mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n : x_i \geq 0 \ \text{for} \ i = 1, \ldots, n \}. \]

Therefore, the orbit space of a locally standard action is locally modelled by \mathbb{R}^n_\geq. There are two different ways to formalise this property, depending on whether we work in the topological or smooth category.

DEFINITION 7.1.2. A \textit{manifold with faces} (of dimension n) is a topological manifold Q with boundary ∂Q together with a covering of ∂Q by closed connected subsets $\{F_i\}_{i \in \mathcal{S}}$, called \textit{faces}, satisfying the following properties:

(a) any facet F_i is an $(n-1)$-dimensional submanifold (with boundary) of ∂Q;
(b) for any finite subset $I \subset \mathcal{S}$, the intersection $\bigcap_{i \in I} F_i$ is either empty or a disjoint union of submanifolds of codimension $|I|$; in the latter case we refer to a connected component of the intersection $\bigcap_{i \in I} F_i$ as a \textit{face} of Q;
(c) for any point $q \in Q$, there exist an open neighbourhood $U \ni q$ and a homeomorphism $\varphi : U \to W$ onto an open subset $W \subset \mathbb{R}^n_\geq$ such that
\[\varphi^{-1}(W \cap \{x_j = 0\}) = U \cap F_i \]
for some $i \in \mathcal{S}$.

Observe that the set \mathcal{S} has to be countable, hence the set of faces in a manifold with faces Q is also countable. If Q is compact, then both these sets are finite.

The orthant \mathbb{R}^n_\geq itself has the canonical structure of a manifold with faces; each face has the form $\mathbb{R}^n_\geq \setminus \{x_j \leq 0 \}$, where $\mathbb{R}^n_\geq \setminus \{x_j \leq 0 \} = \{ \mathbf{x} \in \mathbb{R}^n_\geq : x_j = 0 \ \text{for} \ j \notin I \}$. The \textit{codimension} $c(\mathbf{x})$ of point $\mathbf{x} \in \mathbb{R}^n_\geq$ is the number of zero coordinates of \mathbf{x}. A point of Q has codimension k if it belongs to a face of codimension k and does not belong to a face of codimension $k + 1$.

DEFINITION 7.1.3. A \textit{manifold with corners} (of dimension n) is a topological manifold Q with boundary together with an atlas $\{U_i, \varphi_i\}$ consisting of homeomorphisms $\varphi_i : U_i \to W_i$ onto open subsets $W_i \subset \mathbb{R}^n_\geq$ such that $\varphi_i \varphi_j^{-1} : \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j)$ is a diffeomorphism for all i, j. (A homeomorphism between open subsets in \mathbb{R}^n_\geq is called a \textit{diffeomorphism} if it can be obtained by restriction of a diffeomorphism of open subsets in \mathbb{R}^n.)

For any $q \in Q$, its codimension $c(q)$ is well defined. An \textit{open face} of Q of codimension k is a connected component of $c^{-1}(k)$. A \textit{closed face} (or simply a \textit{face}) of Q is the closure of an open face. A \textit{facet} is a face of codimension 1.

A manifold with corners Q is said to be \textit{nice} if the covering of Q by its facets satisfies condition (c) of Definition 7.1.2 (conditions (a) and (b) are satisfied automatically). Equivalently, a manifold with corners is nice if and only if each of its faces of codimension 2 is contained in exactly 2 facets (an exercise).
Remark. Our definitions of faces differ from those of [10] and [20]; the reason is that we want our faces to be connected.

Example 7.1.4.
1. The 2-disc with a single ‘corner point’ on its boundary is a manifold with corners which is not nice. All other examples in this list will be nice.
2. A smooth manifold \(Q \) with boundary is a manifold with corners, whose facets are connected components of \(\partial Q \), and there are no other faces.
3. A direct product of manifolds with corners is a manifold with corners. In particular, a product of smooth manifolds with boundary is a manifold with corners.
4. Let \(P \) be a simple polytope. For each vertex \(v \in P \) we denote by \(U_v \) the open subset in \(P \) obtained by removing all faces of \(P \) that do not contain \(v \). The subset \(U_v \) is affinely isomorphic to a neighbourhood of zero in \(\mathbb{R}^n \). Therefore \(P \) is a compact manifold with corners, with atlas \(\{ U_v \} \).

The orbit space \(Q = M/G^m \) of a locally standard action is a manifold with faces. As we shall see in Proposition 7.4.13, if the action is smooth, then \(Q \) is a nice manifold with corners.

Exercises.

7.1.5. A manifold with corners \(Q \) is nice if an only if any face of codimension two is contained in exactly two facets.

7.1.6. Two simple polytopes are diffeomorphic as manifolds with corners if and only if they are combinatorially equivalent (see [11] for a more general statement).

7.2. Toric manifolds and their quotients

By way of motivation, here we take a closer look at the action of the (compact) torus \(T_N \cong T^m \) on a toric manifold \(V_\Sigma \). The topological properties of the quotient projection \(\pi : V_\Sigma \to V_\Sigma/T_N \) will be taken as the starting point for subsequent topological generalisations of toric manifolds.

We first recall from Sections 5.5 and 6.3 that a projective (or Hamiltonian) toric manifold \(V_P \) can be identified with the symplectic quotient of \(\mathbb{C}^m \) by an action of \(K \cong T^{m-n} \), i.e. with the quotient manifold \(Z_P/K \) where \(Z_P \) is the moment-angle manifold corresponding to \(P \). Therefore, the quotient of \(V_P \) by the action of the \(n \)-torus \(T_N = T^m/K \) coincides with the quotient of \(Z_P \) by \(T^m \). Both quotients are identified with the Delzant polytope \(P \); in fact, the moment map \(\mu_P : V_P \to P \) is the quotient projection (see Proposition 5.5.5). In the non-projective smooth case, there is no moment map, and there is no canonical way to identify the quotient \(V_\Sigma/T_N \) with a convex polytope. However, there is a face decomposition (stratification) of \(V_\Sigma/T_N \) according to orbit types, and this face structure is very similar to that of a simple polytope.

Following Davis-Januszkiewicz [112], we can describe a projective toric manifold \(V_P \) as an identification space similar to (6.7).

As usual, for each \((I \subset [m])\) we denote by \(T^I = \prod_{i \in I} T \) the corresponding coordinate subgroup in \(T^m \). Given \(x \in P \), set \(I_x = \{ i \in [m] : x \in F_i \} \) (the set of facets containing \(x \)). We recall the map \(A : \mathbb{R}^m \to N_{\mathbb{R}} \), \(e_i \to a_i \), and its exponential \(\exp A : T^m \to T_N \). For each \(x \in P \) define the subtorus \(T_x = (\exp A)(\mathbb{T}^m) \subset T_N \). If \(x \) is a vertex then \(T_x = T_N \), and if \(x \) is an interior point of \(P \) then \(T_x = \{1\} \).
Proposition 7.2.1. A projective toric manifold V_P is T_N-equivariantly homeomorphic to the quotient

\begin{equation}
 P \times T_N / \approx \text{ where } (x, t_1) \approx (x, t_2) \text{ if } t_1^{-1} t_2 \in T_x.
\end{equation}

Proof. Using Proposition 6.2.2, we obtain

$$V_P = Z_P / K = (P \times (T^n / K)) / \approx = (P \times (\exp A)(T^n)) / \approx = P \times T_N / \approx.$$

The projection $\pi : V_P = P \times T_N / \approx \rightarrow P$ is the quotient map for the T_N-action, and its fibre $\pi^{-1}(x)$ is the stabiliser of the T_N-orbit corresponding to x. The T_N-action on V_P is therefore free over the interior of the polytope, vertices of the polytope correspond to fixed points, and points in the relative interior of a codimension-k face correspond to orbits with the same k-dimensional stabiliser.

Construction 7.2.2. Let Σ be a simplicial fan and V_{Σ} the corresponding toric variety. Consider the affine cover $\{ V_\sigma : \sigma \in \Sigma \}$ (see Construction 5.1.3). The quotient $(V_\sigma)_{\approx} = V_{\sigma} / T_N$ can be identified with the set of semigroup homomorphisms from S_σ to the semigroup R_{\geq} of nonnegative real numbers:

$$V_\sigma / T_N = \text{Hom}_{R_{\geq}}(S_\sigma, R_{\geq}), \quad \sigma \in \Sigma,$$

(the details of this construction can be found in [146, §4.1]).

If the fan Σ is regular, then $V_\sigma \cong \mathbb{C}^k \times (\mathbb{C}^\times)^{n-k}$ where $k = \dim \sigma$, see Example 5.1.5. It follows easily that the T_N-action on a nonsingular toric variety V_{Σ} is locally standard, and the cover $\{ V_\sigma : \sigma \in \Sigma \}$ provides an atlas of standard charts (see Section 7.1). Furthermore, $(V_\sigma)_{\approx} \cong R_{\geq}^k \times \mathbb{R}^{n-k}$ and the orbit space $Q = V_{\Sigma} / T_N$ is a manifold with corners, with atlas $\{(V_\sigma)_{\approx} : \sigma \in \Sigma\}$.

In the singular case the varieties V_σ may be not isomorphic to $\mathbb{C}^k \times (\mathbb{C}^\times)^{n-k}$ and the T_N-action on V_{Σ} may fail to be locally standard. Nevertheless, the cover $\{(V_\sigma)_{\approx} : \sigma \in \Sigma\}$ defines a structure of a manifold with faces on $Q = V_{\Sigma} / T_N$.

If Σ is a complete simplicial fan, then the face decomposition of the manifold with corners $Q = V_{\Sigma} / T_N$ is Poincaré dual to the sphere triangulation defined by the simplicial complex K_{Σ}. There is also a projection $Q \times T_N \rightarrow V_{\Sigma}$ defining a homeomorphism $V_{\Sigma} \cong Q \times T_N / \approx$, by analogy with (7.1).

We finish by summarising the observations of this section as follows:

Proposition 7.2.3.
(a) The action of the torus T_N on a nonsingular toric variety V_{Σ} is locally standard.

(b) If V_P is a projective toric manifold then the quotient V_P / T_N is diffeomorphic to the simple polytope P as a manifold with corners.

If a toric manifold V_{Σ} is not projective, then the manifold with corners $Q = V_{\Sigma} / T_N$ may be not homeomorphic to a simple polytope (see Section 7.6).

7.3. Quasitoric manifolds

Quasitoric manifolds were introduced by Davis and Januszkiewicz as a topological alternative to (nonsingular projective) toric varieties. Originally, the term ‘toric manifolds’ was used in [112] to describe this class of manifolds, but later it is was replaced by ‘quasitoric’, as ‘toric manifold’ is often used by algebraic and symplectic geometors as a synonym for ‘non-singular complete toric variety’.

Any quasitoric manifold over P can be obtained as a quotient of the moment-
angle manifold Z_P by a freely acting subtorus. This can be viewed as a topological
version of the symplectic quotient construction of projective toric manifolds (see
Section 5.5). As a result we obtain a canonical smooth structure on a quasitoric
manifold, in which the torus action is smooth.

Unlike toric manifolds, quasitoric manifolds are not complex varieties in general,
and they may even not admit an almost complex structure. However, an equivariant
stable complex structure always exists on a quasitoric manifold M and is defined
canonically by the underlying combinatorial data. These structures will be used in
Chapter 9 to define quasitoric representatives in complex cobordism classes.

Definition and basic constructions.

Definition 7.3.1. Let P be a combinatorial simple polytope of dimension n. A
quasitoric manifold over P is a smooth $2n$-dimensional manifold M with a smooth
action of the torus T^n satisfying the two conditions:

(a) the action is locally standard (see Definition 7.1.1);

(b) there is a continuous projection $\pi: M \to P$ whose fibres are T^n-orbits.

Property (a) implies that the quotient M/P is a manifold with corners, and property
(b) implies that the quotient is homeomorphic, as a manifold with corners, to the
simple polytope P.

It follows from the definition that the projection $\pi: M \to P$ maps a k-
dimensional orbit of the T^n-action to a point in the relative interior of a k-
dimensional face of P. In particular, the action is free over the interior of the
polytope, while vertices of P correspond to fixed points of the torus action on M.

Proposition 7.3.2. A nonsingular projective toric variety V_P is a quasitoric
manifold over P.

Proof. This follows from Proposition 7.2.3. \hfill \qed

Example 7.3.3. The complex projective space $\mathbb{C}P^n$ with the action of $T^n \subset
(\mathbb{C}^*)^n$ described in Example 5.1.2 is a quasitoric manifold over the simplex Δ^n.
The projection $\pi: \mathbb{C}P^n \to \Delta^n$ is given by

$$(z_0 : z_1 : \cdots : z_n) \mapsto \frac{1}{\sum_{i=0}^n |z_i|^2}(|z_1|^2, \ldots, |z_n|^2).$$

Remark. For any 2- or 3-dimensional polytope P there exists a quasitoric
manifold over P. For $n \geq 4$, there exist n-dimensional polytopes which do not arise
as quotients of quasitoric manifolds. (See Exercises 7.3.30 and 7.3.31.)

Let $F = \{F_1, \ldots, F_m\}$ be the set of facets of P. Consider the preimages

$$M_j = \pi^{-1}(F_j), \quad 1 \leq j \leq m.$$

Points in the relative interior of a facet F_j correspond to orbits with the same one-
dimensional stabiliser subgroup, which we denote by T_{F_j}. It follows that M_j is a
connected component of the fixed point set of the circle subgroup $T_{F_j} \subset T^n$. This
implies that M_j is a T^n-invariant submanifold of codimension 2 in M, and M_j is a
quasitoric manifold over F_j with the action of the quotient torus $T^n/T_{F_j} \cong T^{n-1}$.
Following [112], we refer to M_j as the characteristic submanifold corresponding to
the jth face $F_j \subset P$. The mapping

$$\lambda: F_j \to T_{F_j}, \quad 1 \leq j \leq m,$$

(7.2)
is called the *characteristic function* of the quasitoric manifold M.

Now let G be a codimension-k face of P. We can write it as an intersection of k facets: $G = F_{j_1} \cap \cdots \cap F_{j_k}$. Then $M_G = \pi^{-1}(G)$ is a T^n-invariant submanifold of codimension $2k$ in M, and M_G is fixed under each circle subgroup $T(F_{j_k})$, $1 \leq p \leq k$.

By considering any vertex $v \in G$ and using the local standardness of the T^n-action on M near v, we observe that the characteristic submanifolds M_{j_1}, \ldots, M_{j_k} intersect transversely at the submanifold M_G, and the map
\[
T_{F_{j_1}} \times \cdots \times T_{F_{j_k}} \to T^n
\]
is a monomorphism onto the k-dimensional stabiliser of M_G. The mapping
\[
G \mapsto \text{the stabiliser of } M_G
\]
extends the characteristic function (7.2) to a map from the face poset of P to the poset of torus subgroups in T^n.

Definition 7.3.4. Let P be a combinatorial n-dimensional simple polytope and let λ be a map from the set of facets of P to the set of circle subgroups of the torus T^n. We refer to (P, λ) as a *characteristic pair* if the map $\lambda(F_{j_1}) \times \cdots \times \lambda(F_{j_k}) \to T^n$ is a monomorphism whenever $F_{j_1} \cap \cdots \cap F_{j_k} \neq \emptyset$.

If (P, λ) is a characteristic pair, then the map λ extends to the face poset of P, and we have a torus subgroup $T_G = \lambda(G) \subset T^n$ for each face $G \subset P$.

As we shall see below, a quasitoric manifold can be reconstructed from its characteristic pair (P, λ) up to a weakly T-equivariant homeomorphism.

Construction 7.3.5 (canonical model $M(P, \lambda)$). Assume given a characteristic pair (P, λ). For any point $x \in P$, we denote by $G(x)$ the smallest face containing x. By analogy with (7.1), we define the identification space
\[
M(P, \lambda) = P \times T^n / \sim \quad \text{where } (x, t_1) \sim (x, t_2) \text{ if } t_1^{-1}t_2 \in \lambda(G(x)).
\]
The free action of T^n on $P \times T^n$ descends to an action on $P \times T^n / \sim$. This action is free over the interior of the polytope (since no identifications are made over int P), and the fixed points correspond to the vertices. The space $P \times T^n / \sim$ is covered by the open subsets $U_v \times T^n / \sim$, indexed by the vertices $v \in P$ (see Example 7.1.4.4), and each $U_v \times T^n / \sim$ is equivariantly homeomorphic to $\mathbb{C}^n = \mathbb{R}^n \times T^n / \sim$. This implies that the canonical model $M(P, \lambda)$ is a (topological) manifold with a locally standard T^n-action and quotient P. As we shall see from Definition 7.3.14, $M(P, \lambda)$ has a canonical smooth structure, so it is a quasitoric manifold over P.

Proposition 7.3.6 ([112, Lemma 1.4]). There exists a weakly T^n-equivariant homeomorphism
\[
M(P, \lambda) = P \times T^n / \sim \to M
\]
covering the identity map on P.

Proof. One first constructs a weakly T^n-equivariant map $f : P \times T^n \to M$ such that f maps $x \times T^n$ onto $\pi^{-1}(x)$ for any point $x \in P$. Such a map f induces a weakly T^n-equivariant map $\hat{f} : M(P, \lambda) = P \times T^n / \sim \to M$ covering the identity on P. Furthermore, the map \hat{f} is one-to-one on T^n-orbits, so it is a homeomorphism.

It remains to construct a map $f : P \times T^n \to M$. The argument of Davis–Januszkiewicz which we present here actually works for a more general class of locally standard T^n-manifolds M. There is the manifold with boundary \tilde{M} obtained
by consecutive blowing up the singular strata of \(M \) consisting of non-principal \(T^n \)-orbits. The \(T^n \)-action on \(\tilde{M} \) is free and \(\tilde{M} \) is equivariantly diffeomorphic to the complement in \(M \) of the union of tubular neighbourhoods of the singular strata (the latter are characteristic submanifolds \(M_j \) in our case). There is the following canonical inductive procedure for constructing \(\tilde{M} \) from \(M \). One begins by removing a minimal stratum (a fixed point in our case) from \(M \) and replacing it by the sphere bundle of its normal bundle. One continues in this fashion, blowing up minimal strata, until only the top stratum is left. There is the canonical projection from the union of sphere bundles to the union of their base spaces (i.e. to the union of singular strata of \(M \)). Using the construction of [109, p. 344] one extends this projection to a map \(\tilde{M} \to M \) which is the identity over the top stratum. Now if \(M \) is locally standard, then the quotient \(\tilde{M}/T^n \) is canonically identified with \(M/T^n \).

In our particular case the latter is a simple polytope \(P \). Since \(P \) is acyclic together with all its faces, the resulting principal \(T^n \)-bundle \(\tilde{\pi}: \tilde{M} \to P \) is trivial. Therefore, there is an equivariant diffeomorphism \(\tilde{f}: P \times T^n \to \tilde{M} \) inducing the identity on \(P \).

Composing \(\tilde{f} \) with the collapse map \(\tilde{M} \to M \), we obtain the map \(f \).

\[\text{Remark.} \text{ Note that existence of a map } f: P \times T^n \to M \text{ in the proof above is equivalent to existence of a section } s: P \to M \text{ of the quotient projection } \pi: M \to P. \text{ Indeed, given a section } s, \text{ one defines } f(x, t) = t \cdot s(x) \text{ for } x \in P \text{ and } t \in T^n. \text{ Conversely, given a map } f, \text{ one defines a section by } s(x) = f(x, 1). \]

It may seem that constructing a section \(s: P \to M \) is an easier task than constructing a map \(f \), taking into account that \(P \) is contractible. However, this turns out to be subtle; it would be interesting to find a more explicit way to construct a section \(s \).

Definition 7.3.7 (equivalences). Quasitoric manifolds \(M_1 \) and \(M_2 \) over the same polytope \(P \) are said to be \textit{equivalent over} \(P \) if there exists a weakly \(T^n \)-equivariant homeomorphism \(f: M_1 \to M_2 \) covering the identity map on \(P \).

Two characteristic pairs \((P, \lambda_1) \) and \((P, \lambda_2) \) are said to be \textit{equivalent} if there exists an automorphism \(\psi: T^n \to T^n \) such that \(\lambda_2 = \psi \cdot \lambda_1 \).

Proposition 7.3.8 ([112, Proposition 1.8]). There is a one-to-one correspondence between equivalence classes of quasitoric manifolds and characteristic pairs. In particular, for any quasitoric manifold \(M \) over \(P \) with characteristic function \(\lambda \), there is a homeomorphism \(M \cong M(P, \lambda) \).

Proof. Obviously, if two quasitoric manifolds are equivalent over \(P \), then their characteristic pairs are also equivalent. To establish the other implication, it is enough to show that a quasitoric manifold \(M \) is equivalent to the canonical model \(M(P, \lambda) \). This follows from Proposition 7.3.6.

Omniorientations and combinatorial quasitoric data. Here we elaborate on the combinatorial description of quasitoric manifolds \(M \). Characteristic pairs \((P, \lambda) \) are replaced by more naturally defined \textit{combinatorial quasitoric pairs} \((P, A) \) consisting of an oriented simple polytope and an integer matrix of special type. Compared with the characteristic pair, the pair \((P, A) \) carries some additional information, which is equivalent to a choice of orientation for the manifold \(M \) and its characteristic submanifolds. The terminology and constructions described here were introduced in [74] and [70].
DEFINITION 7.3.9. An omniorientation of a quasitoric manifold \(M \) consists of a choice of orientation for \(M \) and each characteristic submanifold \(M_j, 1 \leq j \leq m \).

In general, an omniorientation on \(M \) cannot be chosen canonically. However, if \(M \) admits a \(T^n \)-invariant almost complex structure (see Definition B.6.1), then a choice of such structure provides canonical orientations for \(M \) and the invariant submanifolds \(M_j \). We therefore obtain an omniorientation associated with the invariant almost complex structure. In the case when \(M \) has an invariant almost complex structure (for example, when \(M \) is a toric manifold), we always choose the associated omniorientation. Otherwise we choose an omniorientation arbitrarily.

The stabiliser \(T_{F_j} \) of a characteristic submanifold \(M_j \subset M \) can be written as

\[
T_{F_j} = \{ (e^{2\pi i \lambda_{1,j}}, \ldots, e^{2\pi i \lambda_{m,j}}) \in T^n \},
\]

where \(\varphi \in \mathbb{R} \) and \(\lambda_j = (\lambda_{1,j}, \ldots, \lambda_{m,j})^t \in \mathbb{Z}^n \) is a primitive vector. (In the coordinate-free notation used in Chapter 5, the vector \(\lambda_j \) belongs to the lattice \(N \) of one-parameters subgroups of the torus.) This vector is determined by the subgroup \(T_{F_j} \) up to sign. A choice of this sign (and therefore an unambiguous choice of the vector) defines a parametrisation of the circle subgroup \(T_{F_j} \).

An omniorientation of \(M \) provides a canonical way to choose the vectors \(\lambda_j \). Indeed, the action of a parametrised circle \(T_{M_j} \subset T^n \) defines an orientation in the normal bundle \(\nu_j \) of the embedding \(M_j \subset M \). An omniorientation also defines an orientation on \(\nu_j \) by means of the following decomposition of the tangent bundle:

\[
\mathcal{T}M|_{M_j} = \mathcal{T}M_j \oplus \nu_j.
\]

Now we choose the direction of the primitive vector \(\lambda_j \) so that these two orientations coincide.

Having fixed an omniorientation, we can extend correspondence (7.2) to a map of lattices

\[
A: \mathbb{Z}^m \to \mathbb{Z}^n, \quad e_j \mapsto \lambda_j,
\]

which we refer to as a directed characteristic function. A characteristic function is assumed to be directed whenever an omniorientation is chosen.

We can think of a directed characteristic function as an integer \(n \times m \)-matrix \(A \) with the following property: if the intersection of facets \(F_{j_1}, \ldots, F_{j_k} \) is nonempty, then the vectors \(\lambda_{j_1}, \ldots, \lambda_{j_k} \) form part of a basis of the lattice \(\mathbb{Z}^n \) (this is equivalent to the injectivity of the map (7.3)). We refer to such matrices as characteristic. In particular, we can write any vertex \(v \in P \) as an intersection of \(n \) facets: \(v = F_{j_1} \cap \cdots \cap F_{j_n} \), and consider the maximal minor \(A_v = A_{j_1, \ldots, j_n} \) formed by the columns \(j_1, \ldots, j_n \) of matrix \(A \). Then

\[
(7.5) \quad \det A_v = \pm 1.
\]

Since \(M \cong M(P, (\lambda)) = P \times T^n / \sim \), and no identifications are made over the interior of \(P \), a choice of an orientation for \(M \) is equivalent to a choice of an orientation for the polytope \(P \) (once we assume that the torus \(T^n \) is oriented canonically).

DEFINITION 7.3.10. Let \(P \) be an oriented combinatorial simple \(n \)-polytope with \(m \) facets, and let \(A \) be an integer \(n \times m \)-matrix satisfying condition (7.5) for any vertex \(v \in P \). Then \((P, A)\) is called a combinatorial quasitoric pair.

An equivalence of omnioriented quasitoric manifolds is assumed to preserve the omniorientation; in this case the automorphism \(\psi: T^n \to T^n \) in Definition 7.3.7 is orientation-preserving. Similarly, two combinatorial quasitoric pairs \((P, A_1)\) and
\((P, A_2)\) are said to be \textit{equivalent} if the orientations of \(P\) coincide and there exists a square integer matrix \(\Psi\) with determinant 1 such that \(A_2 = \Psi \cdot A_1\).

We can summarise the observations above in the following refined version of Proposition 7.3.8:

Proposition 7.3.11. There is a one-to-one correspondence between equivalence classes of omnioriented quasitoric manifolds and combinatorial quasitoric pairs.

We shall denote the omnioriented quasitoric manifold corresponding to a combinatorial quasitoric pair \((P, A)\) by \(M(P, A)\).

Let \(\text{chf}(P)\) denote the set of directed characteristic functions \(\lambda\) for \(P\). The group \(GL(n, \mathbb{Z})\) of automorphisms of the torus \(T^n\) acts on the set \(\text{chf}(P)\) from the left. Proposition 7.3.11 establishes a one-to-one correspondence

\[
GL(n, \mathbb{Z}) \backslash \text{chf}(P) \leftrightarrow \{\text{equivalence classes of omnioriented } M \text{ over } P\}.
\]

If the facets of \(P\) are ordered in such a way that the first \(n\) of them meet at a vertex \(v\), i.e. \(F_1 \cap \cdots \cap F_n = v\), then each coset from \(GL(n, \mathbb{Z}) \backslash \text{chf}(P)\) contains a unique directed characteristic function given by a matrix of the form

\[
\Lambda = (I | A_*) = \begin{pmatrix}
1 & 0 & \cdots & 0 & \lambda_{1,n+1} & \cdots & \lambda_{1,m} \\
0 & 1 & \cdots & 0 & \lambda_{2,n+1} & \cdots & \lambda_{2,m} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \\
0 & 0 & \cdots & 1 & \lambda_{n,n+1} & \cdots & \lambda_{n,m}
\end{pmatrix}
\]

where \(I\) is the unit matrix and \(A_*\) is an \(n \times (m - n)\)-matrix. We refer to (7.7) as a \textit{refined} characteristic matrix, and to \(\Lambda\), as its \textit{refined submatrix}. If a characteristic matrix is given in a non-refined form \(\Lambda = (A | B)\), where \(A\) has size \(n \times n\), then its refined representative is given by \((I | A^{-1}B)\).

Example 7.3.12. Not any combinatorial simple polytopes admits a characteristic function \(\lambda\) or a characteristic matrix \(\Lambda\). For example, there is no characteristic function for the dual cyclic polytope \((C^n(m))^*\) with \(m \geq 2^n\) and \(n \geq 4\), by the same argument as in Example 5.2.5. Consequently, there is no quasitoric manifold over any such \((C^n(m))^*\).

On the other hand, the existence of quasitoric manifold over a given \(P\) is a weaker condition that the existence of a lattice realisation of \(P\) with regular normal fan. For example, any lattice realisation of the polytope \(P = (C^4(7))^*\) has singular normal fan by the result of [160]. On the other hand, it is easy to construct a characteristic matrix for \((C^4(7))^*\) (an exercise).

Smooth and stably complex structures. Let \((P, A)\) be a combinatorial quasitoric pair. The matrix \(\Lambda\) defines an epimorphism of tori \(\exp: \mathbb{T}^n \rightarrow \mathbb{T}^n\), whose kernel we denote by \(K = K(\Lambda)\). Condition (7.5) implies that \(K \cong \mathbb{T}^{m-n}\). We therefore have an exact sequence of tori similar to (5.9). Also, there is the moment-angle manifold \(Z_P\) corresponding to the polytope \(P\) (see Section 6.2).

Proposition 7.3.13. The group \(K(\Lambda) \cong \mathbb{T}^{m-n}\) acts freely and smoothly on \(Z_P\). There is a \(T^n\)-equivariant homeomorphism \(Z_P/K(\Lambda) \xrightarrow{\cong} M(P, A)\) between the quotient \(Z_P/K(\Lambda)\) and the canonical model \(M(P, A)\).
7.3. Quasitoric Manifolds

Proof. The fact that K acts freely on Z_P is proved in the same way as Proposition 5.4.6 (a) and Theorem 6.5.2 (a). The stabiliser of a point $z \in Z_P$ with respect to the T^m-action is a coordinate subtorus T^I for some $I \in K_P$. Namely, if $z \in Z_P$ projects to $x \in P$, then $I = I_x = \{ i \in [m] : x \in F_i \}$. Condition (7.5) implies that the restriction of the homomorphism $\exp A : T^m \to T^n$ to any such subtorus T^I is injective, and therefore the kernel K intersects each T^I, $I \in K_P$, trivially. Hence K acts freely on Z_P, and the quotient Z_P/K is a $2n$-dimensional manifold with an action of the torus $T^m/K \cong T^n$.

To prove the second statement, we identify Z_P with the quotient $P \times T^m/\sim$, see Section 6.2. Then the projection $Z_P \to Z_P/K$ becomes the projection

$$Z_P = P \times T^m/\sim \to P \times T^n/\sim,$$

induced by the homomorphism $\exp A : T^m \to T^n$. By Construction 7.3.5, the quotient $P \times T^n/\sim$ is the canonical quasitoric manifold $M(P, A)$. □

Definition 7.3.14. Using Proposition 7.3.13 we obtain a smooth structure on the canonical model $M(P, A)$ as the quotient of the smooth manifold Z_P by the smooth action of $K(A)$, with the induced smooth action of the n-torus $T^m/K(A)$. We refer to this smooth structure on $M(P, A)$ and on any quasitoric manifold equivalent to it as canonical.

Now let $p : Z_P \to P$ be the projection, and consider the submanifolds $p^{-1}(F_i) \subset Z_P$ corresponding to facets F_i of P (see Exercise 6.2.14). The submanifold $p^{-1}(F_i)$ is fixed by the ith coordinate subcircle in T^m. Denote by C_i the space of the 1-dimensional complex representation of the torus T^m induced from the standard representation in \mathbb{C}^m by the projection $\mathbb{C}^m \to C_i$ onto the ith coordinate. Let $Z_P \times C_i \to Z_P$ be the trivial complex line bundle; we view it as an equivariant T^m-bundle with the diagonal action of T^m. Then the restriction of the bundle $Z_P \times C_i \to Z_P$ to the invariant submanifold $p^{-1}(F_i)$ is T^m-isomorphic to the normal bundle of the embedding $p^{-1}(F_i) \subset Z_P$. By taking the quotient with respect to the diagonal action of $K = K(A)$ we obtain a T^n-equivariant complex line bundle

$$\rho_i : Z_P \times_K C_i \to Z_P/K = M(P, A) \quad (7.8)$$

over the quasitoric manifold $M = M(P, A)$. The restriction of the bundle ρ_i to the characteristic submanifold $p^{-1}(F_i)/K = M_i$ is isomorphic to the normal bundle of $M_i \subset M$ (an exercise). The resulting complex structure on this normal bundle is the one defined by the omniorientation of $M(P, A)$.

Theorem 7.3.15 ([112, Theorem 6.6]). There is the following isomorphism of real T^n-bundles over $M = M(P, A)$:

$$TM \oplus \mathbb{R}^{2(m-n)} \cong \rho_1 \oplus \cdots \oplus \rho_m; \quad (7.9)$$

here $\mathbb{R}^{2(m-n)}$ denotes the trivial real $2(m - n)$-dimensional T^n-bundle over M.

Proof. We give an argument that actually reproduces the proof of Szczarba’s Theorem B.4.4 in a particular case. We use the equivariant framing of Z_P coming from its realisation as an intersection of quadrics, see Section 6.2. Let $i_Z : Z_P \to \mathbb{C}^m$ be the T^m-equivariant embedding given by (6.2). We have a T^m-equivariant decomposition

$$TZ_P \oplus \nu(i_Z) = Z_P \times \mathbb{C}^m \quad (7.10)$$
obtained by restricting the tangent bundle $\mathcal{T}\mathbb{C}^m$ to \mathcal{Z}_p. The normal bundle $\nu(i_{\mathcal{Z}})$ is \mathbb{T}^n-equivariantly trivial by Theorem 6.1.3, and $\mathcal{Z}_p \times \mathbb{C}^m$ is isomorphic, as a \mathbb{T}^m-bundle, to the sum of line bundles $\mathcal{Z}_p \times \mathbb{C}_i$, $1 \leq i \leq m$. Further, we have
\[(7.11) \quad \mathcal{T}\mathcal{Z}_p = q^*(\mathcal{M}) \oplus \mathcal{T}_F(q), \]
where $\mathcal{T}_F(q)$ is the tangent bundle along the fibres of the principal K-bundle $q: \mathcal{Z}_p \to \mathcal{Z}_p/K = M$. As K is abelian, the bundle $\mathcal{T}_F(q)$ is trivial (see Exercise B.4.12). Taking the quotient of the identity (7.10) by the action of K and using (7.11), we obtain a decomposition
\[(7.12) \quad \mathcal{T}\mathcal{M} \oplus (\mathcal{T}_F(q)/K) \oplus (\nu(i_{\mathcal{Z}})/K) \cong \mathcal{Z}_p \times \mathcal{K} \mathbb{C}^m. \]
Both $\mathcal{T}_F(q)$ and $\nu(i_{\mathcal{Z}})$ are trivial \mathbb{T}^m-bundles, so that $(\mathcal{T}_F(q)/K) \oplus (\nu(i_{\mathcal{Z}})/K) \cong \mathbb{R}^{2(m-n)}$. On the other hand, $\mathcal{Z}_p \times \mathcal{K} \mathbb{C}^m \cong \rho_1 \oplus \cdots \oplus \rho_m$ as \mathbb{T}^n-bundles. \(\square\)

The isomorphism of Theorem 7.3.15 gives us an isomorphism of the stable tangent bundle of M with a complex vector bundle: this is the setup for a stably complex structure (see Definition B.6.1).

Corollary 7.3.16. An omnioriented quasitoric manifold M has a canonical T^n-invariant stably complex structure c_T defined by the isomorphism of (7.9).

The corresponding bordism classes $[M] \in \Omega^n_M$ will be studied in Section 9.5.

Example 7.3.17. Let us see which stably complex structures we can obtain from different omniorientations on the simplest quasitoric manifold S^2 over the segment I^1 using Theorem 7.3.15. The standard complex structure of CP^1 has the characteristic matrix $(1 -1)$. The group K is the diagonal circle $\{(t,t) \in \mathbb{T}^2\}$, and (7.12) becomes the standard decomposition
\[\mathcal{T}\mathbb{C}^1 \oplus \mathbb{C} \cong S^1 \times K \mathbb{C}^2 = \bar{\eta} \oplus \bar{\eta}, \]
where η is the conjugate tautological line bundle, see Example B.4.5.

On the other hand, there is an omniorientation of S^2 corresponding to the characteristic matrix $(1 1)$. Then $K = \{(t^{-1}, t) \in \mathbb{T}^2\}$, and (7.12) becomes
\[\mathcal{T}\mathbb{S}^2 \oplus \mathbb{R}^2 \cong S^3 \times K \mathbb{C}^2 = \eta \oplus \bar{\eta}, \]
which is the trivial stably complex structure on S^2, compare Example B.4.6.

Weights and signs at fixed points. A fixed point v of the T^n-action on a quasitoric manifold M can be obtained as an intersection $M_{j_k} \cap \cdots \cap M_{j_1}$ of n characteristic submanifolds and corresponds to a vertex $F_{j_k} \cap \cdots \cap F_{j_1}$ of the polytope P. The tangent space to M at v decomposes into the sum of normal spaces to M_{j_k} for $1 \leq k \leq n$:
\[(7.13) \quad \mathcal{T}_v M = (\rho_{j_1} \oplus \cdots \oplus \rho_{j_n})|_{v}. \]

We use this decomposition to identify $\mathcal{T}_v M$ with \mathbb{C}^n; then the tangent space to M_{j_k} is given in the corresponding coordinates (z_1, \ldots, z_n) by the equation $z_k = 0$. The tangential representation of T^n at v is determined by the weights $w_k(v) \in \mathbb{Z}^n$, $1 \leq k \leq n$. Namely, for $t = (e^{2\pi i\varphi_1}, \ldots, e^{2\pi i\varphi_n}) \in \mathbb{T}^n$ and $z = (z_1, \ldots, z_n) \in \mathcal{T}_v M$,
\[t \cdot z = (e^{2\pi i(w_1(v),\varphi)}z_1, \ldots, e^{2\pi i(w_n(v),\varphi)}z_n), \]
where $\varphi = (\varphi_1, \ldots, \varphi_n) \in \mathbb{R}^n$. The weights can be found from the combinatorial quasitoric pair (P, A) using the following assertion:
Proposition 7.3.18. Let $M = M(P, \Lambda)$ be a quasitoric manifold. The weights $w_1(v), \ldots, w_n(v)$ of the tangent representation of T^n at a fixed point $v = M_{j_1} \cap \cdots \cap M_{j_n}$ are given by the columns of the square matrix W_v, satisfying the identity

$$W_v^t \Lambda_v = I.$$

In other words, $\{w_1(v), \ldots, w_n(v)\}$ is the lattice basis conjugate to $\{\lambda_{j_1}, \ldots, \lambda_{j_n}\}$.

Proof. First, note that the local standardness of the action implies that $\{w_1(v), \ldots, w_n(v)\}$ is a lattice basis. (The fact that $\{\lambda_{j_1}, \ldots, \lambda_{j_n}\}$ is a lattice basis is expressed by identity (7.5).)

Since the one-parameter subgroup $T_{(j_k)_{1 \leq k \leq n}} \subset T^n$ (see (7.4)) fixes the hyperplane $z_k = 0$ tangent to M_{j_k}, we obtain that $\langle w_i(v), \lambda_{j_k} \rangle = 0$ for $i \neq k$. Therefore, $W_v^t \Lambda_v$ is a diagonal matrix. Now, the columns of both W_v and Λ_v are lattice bases, which implies $\langle w_k(v), \lambda_{j_k} \rangle = \pm 1$ for $1 \leq k \leq n$.

On the other hand, the complex structure on the line bundle ρ_{j_k} comes from the orientation induced by the action of the one-parameter subgroup of T^n corresponding to the vector λ_{j_k}. Hence $\langle w_k(v), \lambda_{j_k} \rangle > 0$ for $1 \leq k \leq n$. \hfill \Box

The signs of the fixed points defined by the T^n-invariant stably complex structure on M (see Definition B.6.2) can be calculated in terms of the combinatorial quasitoric pair (P, Λ) as follows:

Lemma 7.3.19. Let $v = M_{j_1} \cap \cdots \cap M_{j_n}$ be a fixed point.

(a) In terms of decomposition (7.13), we have $\sigma(v) = 1$ if the orientation of the space $\mathcal{T}_v M$ determined by the orientation of M coincides with the orientation of the space $(\rho_{j_1} \oplus \cdots \oplus \rho_{j_n})|_v$ determined by the orientation of the line bundles ρ_{j_k}, $1 \leq k \leq n$. Otherwise, $\sigma(v) = -1$.

(b) In terms of the combinatorial quasitoric pair (P, Λ), we have

$$\sigma(v) = \text{sign}(\det(\lambda_{j_1}, \ldots, \lambda_{j_n}) \det(a_{j_1}, \ldots, a_{j_n})),$$

where a_{j_1}, \ldots, a_{j_n} are inward-pointing normals to the facets F_{j_1}, \ldots, F_{j_n}.

Proof. To prove (a), we note that the complex line bundle ρ_i is trivial over the complement to M_i in M. Therefore, the nontrivial part of the T^n-representation $(\rho_1 \oplus \cdots \oplus \rho_m)|_v$ is exactly $(\rho_{j_1} \oplus \cdots \oplus \rho_{j_n})|_v$. This implies that the composite map in Definition B.6.2 is given by

$$(7.14) \quad \mathcal{T}_v M \to (\rho_{j_1} \oplus \cdots \oplus \rho_{j_n})|_v.$$

To prove (b), we write the map (7.14) in coordinates. To do this, we identify \mathbb{C}^m with \mathbb{R}^{2m} by mapping a point $(z_1, \ldots, z_m) \in \mathbb{C}^m$ to $(x_1, \ldots, x_m, y_1, \ldots, y_m) \in \mathbb{R}^{2m}$, where $z_k = x_k + iy_k$. Using decomposition (7.12), we obtain that the map

$$\mathcal{T}_v M \to \mathcal{T}_v M \oplus \mathbb{R}^{2(m-n)} \xrightarrow{\epsilon_T} (\rho_1 \oplus \cdots \oplus \rho_m)|_v \cong \mathbb{R}^{2m}$$

from Definition B.6.2 is given by the $2m \times 2n$-matrix

$$\begin{pmatrix}
A^t & 0 \\
0 & A^t
\end{pmatrix}$$

where A denotes the $n \times m$-matrix with columns vectors a_j defined by the presentation (1.1) of the polytope P (compare Example B.6.4). The map (7.14) is obtained by restricting to the submatrices of A^t and A^t formed by rows with numbers j_1, \ldots, j_n, which implies the required formula for the sign. \hfill \Box
Example 7.3.20. Let V_P be the projective toric manifold corresponding to a simple lattice polytope P given by (1.1). Then $\lambda_i = a_i$ for $1 \leq i \leq m$. Proposition 7.3.18 implies that the weights $w_1(v), \ldots, w_n(v)$ of the tangent representation of the torus at a fixed point $v \in V_P$ are the primitive vectors along the edges of P pointing out of v. Furthermore, Lemma 7.3.19 implies that $\sigma(v) = 1$ for all v.

For a general quasitoric manifold, the weights $w_1(v), \ldots, w_n(v)$ are not vectors along edges. However, by Proposition 7.3.18, there is a natural one-to-one correspondence

\begin{equation}
\{\text{oriented edges of } P\} \leftrightarrow \{\text{weights of the tangential } T^n\text{-representations at fixed points}\}.
\end{equation}

Under this correspondence, an edge e coming out of a vertex $v = F_{j_1} \cap \cdots \cap F_{j_n} \in P$ maps to $w_k(v)$, where F_{j_k} is the unique facet containing v and not containing e and $w_k(v)$ is the kth vector of the conjugate basis of $\lambda_{j_1}, \ldots, \lambda_{j_n}$.

Lemma 7.3.21. Let l_1, \ldots, l_n be vectors along the edges coming out of a vertex $v \in P$, and let $w_1(v), \ldots, w_n(v)$ be the corresponding weights. Then there is the following formula for the sign of the vertex:

$$
\sigma(v) = \text{sign} (\det(w_1(v), \ldots, w_n(v)) \det(l_1, \ldots, l_n)).
$$

Proof. This follows from Lemma 7.3.19 and the fact that $\{w_1(v), \ldots, w_n(v)\}$ is the conjugate basis of $\{\lambda_{j_1}, \ldots, \lambda_{j_n}\}$, while the vectors $\{l_1, \ldots, l_n\}$ can be scaled so as to form the conjugate basis of $\{a_{j_1}, \ldots, a_{j_n}\}$. \hfill \Box

Remark. The formulae of Lemmata 7.3.19 and 7.3.21 can be rephrased as the following practical rule for calculation of signs, which will be used below. Write the vectors $\lambda_{j_1}, \ldots, \lambda_{j_n}$ (respectively, $w_1(v), \ldots, w_n(v)$) as a square matrix in the order given by the orientation of P, that is, in such a way that inward-pointing normals of the corresponding facets (respectively, vectors along the corresponding edges) form a positive basis of \mathbb{R}^n. Then the determinant of this matrix is $\sigma(v)$. In other words, assuming that the weights $w_1(v), \ldots, w_n(v)$ are ordered so that vectors along their corresponding edges form a positive basis, we can rewrite the formula of Lemma 7.3.21 as

\begin{equation}
\sigma(v) = \det (w_1(v), \ldots, w_n(v)).
\end{equation}

Example 7.3.22. The complex projective plane $\mathbb{C}P^2$ has the standard stably complex complex structure coming from the bundle isomorphism

$$
\mathcal{T}(\mathbb{C}P^2) \oplus \mathbb{C} \cong \eta + \bar{\eta} + \bar{\eta},
$$

where η is the tautological line bundle. The orientation is determined by the complex structure. The toric manifold $\mathbb{C}P^2$ corresponds to the lattice 2-simplex Δ^2 with vertices $(0, 0), (1, 0)$ and $(0, 1)$. The column vectors $\lambda_1, \lambda_2, \lambda_3$ of the matrix Λ are the primitive inward-pointing normals to the facets (i.e. they coincide with the vectors a_1, a_2, a_3 for the standard presentation of Δ^2). The weights of the tangential T^2-representation at a fixed point are the primitive vectors along the edges coming out of the corresponding vertex. This is shown in Figure 7.1. We have $\sigma(v_1) = \sigma(v_2) = \sigma(v_3) = 1$.

Example 7.3.23. Now consider $\mathbb{C}P^2$ with the omniorientation defined by the three vectors $\lambda_1, \lambda_2, \lambda_3$ in Figure 7.2. This omniorientation differs from the previous one by the sign of λ_3. The stably complex structure is defined by the isomorphism

$$\mathcal{T}(\mathbb{C}P^2) \oplus \mathbb{R}^2 \cong \bar{\eta} \oplus \bar{\eta} \oplus \eta.$$

Using formula (7.16), we calculate

$$\sigma(v_1) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1, \quad \sigma(v_2) = \begin{vmatrix} -1 & 1 \\ 1 & 0 \end{vmatrix} = -1, \quad \sigma(v_3) = \begin{vmatrix} 0 & 1 \\ 1 & -1 \end{vmatrix} = -1.$$

If the omniorientation of M comes from a T^n-invariant almost complex structure, then all signs of fixed points are positive because the two orientations in (7.13) coincide. As we shall see below in this section, the top Chern number of the stably
complex structure of an omnioriented quasitoric manifold M is equal to the sum of signs of the fixed points: $c_n[M] = \sum_{v \in M} \sigma(v)$. On the other hand, the Euler characteristic $\chi(M)$ is equal to the number of fixed points. Therefore, the positivity of all signs is equivalent to the condition $c_n[M] = \chi(M)$. According to a classical result of Thomas [348], this condition is sufficient for a stably complex manifold M to be almost complex. The following result of Kustarev shows that this almost complex structure can be made T^n-invariant:

Theorem 7.3.24 ([225]). A quasitoric manifold M admits a T^n-invariant almost complex structure if and only if it admits an omniorientation in which all signs of fixed points are positive.

Theorem 7.3.24 allows one to construct an invariant almost complex quasitoric manifold which is not toric (see Exercise 7.3.38 below). Such an almost complex structure cannot be integrable. Indeed, according to a result of Ishida-Karshon [198] (Theorem 6.6.8, see also [199]), a quasitoric manifold with an invariant complex structure is biholomorphic to a compact toric variety.

Cohomology ring and characteristic classes. The cohomology ring $H^*(M)$ of a quasitoric manifold M has the same structure as the cohomology ring of a nonsingular compact toric variety (see Theorem 5.3.1). In particular, the ring $H^*(M)$ is generated by two-dimensional classes v_i dual to the characteristic submanifolds (or equivalently, by the first Chern classes of line bundles ρ_i from Theorem 7.3.15). The elements v_i satisfy two types of relations: monomial relations coming from the face ring of the polytope P and linear relations coming from the characteristic matrix A.

Let $M = M(P, A)$ be an omnioriented quasitoric manifold, and let $\pi: M \to P$ be the projection onto the orbit space. We start by describing a canonical cell decomposition of M with only even-dimensional cells. It was first constructed by Khovanski [213] for toric manifolds.

Construction 7.3.25. Recall the ‘Morse-theoretic’ arguments used in the proof of the Dehn-Sommerville relations (Theorem 1.3.4). There we turned the 1-skeleton of P into an oriented graph and defined the index $\text{ind}(v)$ of a vertex $v \in P$ as the number of incoming edges. The incoming edges of v span a face G_v of dimension $\text{ind}(v)$. Denote by \tilde{G}_v the subset obtained by removing from G_v all faces not containing v. Then \tilde{G}_v is homeomorphic to $\mathbb{R}_{\geq}^{\text{ind}(v)}$ and is contained in the open set $U_v \subset P$ from Example 7.1.4. The preimage $e_v = \pi^{-1} \tilde{G}_v$ is homeomorphic to $\mathbb{C}^{\text{ind}(v)}$ and the union of subsets $e_v \subset M$ over all vertices $v \in P$ defines a cell decomposition of M. Observe that all cells have even dimension, and the closure of the cell e_v is the quasitoric submanifold $\pi^{-1}(G_v) \subset M$.

Proposition 7.3.26. The integral homology groups of a quasitoric manifold $M = M(P, A)$ vanish in odd dimensions, and therefore are free abelian in even dimensions. Their ranks (the Betti numbers) are given by

$$b_{2i}(M) = h_i(P),$$

where $h_i(P)$, $i = 0, 1, \ldots, n$, are the components of the h-vector of P.

Proof. The rank of $H_{2i}(M; \mathbb{Z})$ is equal to the number of $2i$-dimensional cells in the above cell decomposition. This number is equal to the number of vertices of index i, which is $h_i(P)$ by the argument from the proof of Theorem 1.3.4. \qed
Now consider the face ring $\mathbb{Z}[P]$ (see Section 3.1) and define its elements
\begin{equation}
t_i = \lambda_{i1}v_1 + \cdots + \lambda_{im}v_m \in \mathbb{Z}[P], \quad 1 \leq i \leq n,
\end{equation}
corresponding to the rows of the characteristic matrix A.

Lemma 7.3.27. The elements t_1, \ldots, t_n form a linear regular sequence (an isop) in the ring $\mathbb{Z}[P]$. Conversely, any isop (7.17) in the ring $\mathbb{Z}[P]$ defines a combinatorial quasitoric pair (P, A).

Proof. Since $\mathbb{Z}[P]$ is a Cohen-Macaulay ring (Corollary 3.3.17), any isop is a regular sequence by Proposition A.3.12. So it is enough to show that t_1, \ldots, t_n is an isop. Condition (7.5) implies that for any vertex $v = F_{j1} \cap \cdots \cap F_{jn}$ the restrictions of the elements t_1, \ldots, t_n form a basis in the linear part of the polynomial ring $\mathbb{Z}[v_{j1}, \ldots, v_{jn}]$. By Lemma 3.3.1, this condition specifies isop's in the ring $\mathbb{Z}[P]$. □

Theorem 7.3.28 ([112]). Let $M = M(P, A)$ be a quasitoric manifold with $A = (\lambda_{ij})$, $1 \leq i \leq n$, $1 \leq j \leq m$. The cohomology ring of M is given by
\[H^*(M) = \mathbb{Z}[v_1, \ldots, v_m]/\mathcal{I}, \]
where $v_i \in H^2(M)$ is the class dual to the characteristic submanifold M_i, and \mathcal{I} is the ideal generated by elements of the following two types:

(a) $v_{i1} \cdot \cdots \cdot v_{ik}$ whenever $M_{i1} \cap \cdots \cap M_{ik} = \emptyset$ (the Stanley-Reisner relations);

(b) the linear forms $t_i = \lambda_{i1}v_1 + \cdots + \lambda_{im}v_m$, $1 \leq i \leq n$.

In other words, $H^*(M)$ is the quotient of the face ring $\mathbb{Z}[P]$ by the ideal generated by linear forms (7.17). We shall prove a more general result, covering both Theorem 5.3.1 and Theorem 7.3.28, in the next section (see Theorem 7.4.35).

If the matrix A has refined form (7.7), then the linear relations between the cohomology classes can be written as
\begin{equation}
v_i = -\lambda_{i,n+1}v_{n+1} - \cdots - \lambda_{i,m}v_m, \quad 1 \leq i \leq n.
\end{equation}

It follows that the classes v_{n+1}, \ldots, v_m multiplicatively generate the ring $H^*(M)$.

If the cohomology ring of a manifold is not generated by two-dimensional classes, then the manifold does not support a torus action turning it into a quasitoric manifold. For example, complex Grassmannians (except complex projective spaces) are not quasitoric.

The Chern classes of the stably complex structure on M (see Corollary 7.3.16) can also be described easily:

Theorem 7.3.29. Let (M, c_T) be a quasitoric manifold with the canonical stably complex structure defined by an omniorientation. Then, in the notation of Theorem 7.3.28, we have the following expression for the total Chern class:
\[c(M) = 1 + c_1(M) + \cdots + c_n(M) = (1 + v_1) \cdots (1 + v_m) \in H^*(M). \]

The homology class dual to $c_k(M) \in H^{2k}(M)$ is represented by the sum of the submanifolds $\pi^{-1}(G) \subset M$ corresponding to all $(n-k)$-dimensional faces $G \subset P$.

Proof. The first statement holds since the stably complex structure on M is defined by the isomorphism with the complex bundle $\rho_1 \oplus \cdots \oplus \rho_m$, and $c(\rho_i) = 1 + v_i$, $1 \leq i \leq m$. To prove the second statement, note that
\[c_k(M) = \sum_{1 \leq j_1 < \cdots < j_k \leq m} v_{j_1} \cdots v_{j_k} \in H^{2k}(M). \]
Here summands $v_{j_1} \cdots v_{j_k}$ for which $F_{j_1} \cap \cdots \cap F_{j_k} = \emptyset$ are zero by Theorem 7.3.28, and the remaining summands are dual to the submanifolds $\pi^{-1}(G)$, where $G = F_{j_1} \cap \cdots \cap F_{j_k}$ is a $(n - k)$-dimensional face. \hfill \Box

Exercises.

7.3.30. For any 2- or 3-dimensional simple polytope P, there exists a quasitoric manifold over P. (Hint: use the model $M(P, \lambda)$ and the 4-colour Theorem, cf. [112].)

7.3.31. Let P be the dual of a 2-neighbourly simplicial polytope of dimension $n \geq 4$ with $m \geq 2^n$ vertices. Then there is no quasitoric manifold over P.

7.3.32. Construct a characteristic matrix for the dual cyclic polytope $(C^4(7))^*$.

7.3.33. Let $M = M(P, \lambda)$ be a quasitoric manifold and ρ_1 the complex line bundle over M defined by (7.8). Show that the restriction of ρ_1 to the characteristic submanifold M_i is isomorphic to the normal bundle of M_i, and the restriction of ρ_1 to the complement $M \setminus M_i$ is trivial.

7.3.34. Calculate the signs of the fixed points for the two orientation on S^2 in Example 7.3.17 and compare this with the sign calculation from Example B.6.4.

7.3.35. Let M be a quasitoric manifold over an n-polytope P and let Z_P be the corresponding moment-angle manifold. Show that the Borel constructions $ET^n \times_{T^m} M$ and $ET^m \times_{T^n} Z_P$ are homotopy equivalent. Deduce that the equivariant cohomology $H^*_T(M)$ is isomorphic to the face ring $\mathbb{Z}[P]$.

7.3.36. Show that a quasitoric manifold $M = M(P, \lambda)$ is the homotopy fibre of the composite map

$$(\mathbb{C}P^\infty)^K \longrightarrow (\mathbb{C}P^\infty)^m = BT^m \overset{H^\lambda}{\longrightarrow} BT^n.$$

7.3.37. Use the spectral sequence of the fibration $M \to (\mathbb{C}P^\infty)^K \to BT^n$ from the previous exercise to prove Theorem 7.3.28. (Hint: both M and $(\mathbb{C}P^\infty)^K$ have only even-dimensional cells, so the spectral sequence collapses at the E_2 term and the map $\mathbb{Z}[K] = H^*((\mathbb{C}P^\infty)^K) \to H^*(M)$ is onto. Its kernel is the ideal generated by the image of $H^*(BT^n)$ in $\mathbb{Z}[K]$, i.e. by the elements t_1, \ldots, t_n of (7.17).)

7.3.38. Let (P, λ) be the quasitoric pair shown in Figure 7.3. Show that the corresponding quasitoric manifold $M(P, \lambda)$ admits a T^2-invariant almost complex structure, but is not homeomorphic to a toric variety. (Hint: read Section 9.5.)

7.3.39. The complex Grassmannian $Gr_k(\mathbb{C}^n)$ of k-planes in \mathbb{C}^n with $2 \leq k \leq n - 2$ does not support a torus action turning it into a quasitoric manifold.
7.3.40. Let M be an omni-oriented quasitoric manifold over a polytope P. Let $x = F_1 \cap \cdots \cap F_n$ be a vertex of P written as an intersection of n facets; it corresponds to a fixed point x of M. Show that
\[
\langle v_1, v_2, \cdots, v_n, [M] \rangle = \sigma(x),
\]
where $v_i \in H^2(M)$ is the generator corresponding to F_i (see Theorem 7.3.28), $[M] \in H_{2n}(M)$ is the fundamental homology class of the oriented manifold M, and $\sigma(x)$ is the sign of x (see Lemma 7.3.19).

7.3.41. The top Chern number of M is given by $c_n(M) = \sum_{v \in P} \sigma(v)$ where the sum is taken over all vertices v of P. (Hint: use Theorem 7.3.29.)

7.3.42. Show that if M is a toric manifold, then $c_1(M) \neq 0$. Give an example of an omni-oriented quasitoric manifold M with $c_1(M) = 0$.

7.4. Locally standard T-manifolds and torus manifolds

In this section we consider two closely related classes of half-dimensional torus actions on even-dimensional manifolds.

Definition 7.4.1. A **locally standard T-manifold** is a smooth connected closed orientable $2n$-dimensional manifold M with a locally standard action of an n-dimensional torus $T = T^n$.

The orbit space $Q = M/T$ of a locally standard T-manifold is a manifold with corners, but, unlike the case of quasitoric manifolds, it may fail to be a simple polytope. For example, a free smooth T-action with $\dim M = 2 \dim T$ is locally standard, but the quotient Q does not have faces at all. The richer the combinatorics of Q, the more information about the topology of M can be retrieved from this combinatorics. The easiest way to make the combinatorics of the orbit space Q ‘rich enough’ is to require the existence of T-fixed points, or 0-faces of Q; then the local standardness condition would also imply the existence of faces of all dimensions between 0 and n. We therefore arrive at the following definition:

Definition 7.4.2. A **torus manifold** is a smooth connected closed orientable $2n$-dimensional manifold M with an effective smooth action of an n-torus T such that the fixed point set M^T is nonempty.

Since M is connected, the T-action is effective and $\dim M = 2 \dim T$, it follows that the fixed point set M^T is isolated. Indeed, the tangential T^n-representation at a fixed point is faithful (Exercise B.4.11), which implies that this normal space has dimension at least $2n$. Furthermore, M^T is finite because M is compact. So the last condition in the definition above only excludes the possibility that the number of fixed points is zero.

Torus manifolds were introduced and studied in the works [249], [179], [180] of Hattori and Masuda. Homological aspects of this study which we present here were developed in [252] and [246].

The classes of locally standard T-manifolds and torus manifolds contain both toric and quasitoric manifolds in their intersection (see Section 7.6). Quasitoric manifolds are examples with the most regular structure of the orbit space: a simple polytope is contractible as a topological space, and the topology of the manifold is described fully in terms of the combinatorics of faces. In general, the topology of a locally standard T-manifold depends not only on the combinatorics of the orbit
space, but also on its topology. However, even orbit spaces with trivial topology may have combinatorics more complicated than that of a polytope. Examples are simplicial posets reviewed in Sections 2.8 and 3.5.

Even in the case of toric manifolds, we have encountered combinatorial structures more general than simple polytopes. As we have seen in Section 7.2, the orbit space $Q = V/T$ of a nonsingular compact toric variety V is a manifold with corners in which all faces, including Q itself, are acyclic, and all nonempty intersections of faces are connected. We refer to such a manifold with corners as a homology polytope. It is a genuine polytope when the toric manifold is projective, but in general Q may be not combinatorially equivalent to a convex polytope (see the discussion in Section 7.6). As a result, the class of quasitoric manifolds does not include all nonsingular compact toric varieties (toric manifolds), which is not very convenient. At the same time, one could expect that all topological properties characterising quasitoric manifolds also hold in the more general situation when the orbit space is a homology (rather than combinatorial) polytope. This is indeed the case, as follows from the results of this section.

The cohomology ring of a locally standard T-manifold M is generated by its degree-two elements if and only if the orbit space Q is a homology polytope (Theorem 7.4.41). In this case, the cohomology ring has the structure familiar from toric geometry: $H^*(M)$ is isomorphic to the quotient of the face ring of the orbit space Q by the ideal generated by certain linear forms.

More generally, we consider T-manifolds M whose cohomology vanishes in odd dimensions. Such a T-manifold necessarily has a fixed point (Lemma 7.4.4), and is locally standard whenever $\dim M = 2 \dim T$ (Theorem 7.4.14). Therefore, under the condition $H^{\text{odd}}(M) = 0$, the classes of locally standard T-manifolds and torus manifolds coincide. In this case, the equivariant cohomology of M is a free finitely generated module over the T-equivariant cohomology of a point, i.e. over the polynomial ring $H^*(BT) \cong \mathbb{Z}[t_1, \ldots, t_n]$. In other words, $H^*_T(M)$ is a Cohen–Macaulay ring. The orbit space of a T-manifold with vanishing odd-degree cohomology is not necessarily a homology polytope, as is seen from a simple example of a half-dimensional torus action on an even-dimensional sphere (Example 7.4.11). There is a more general notion of a face-acyclic manifold with corners Q, in which all faces are acyclic, but the intersections of faces are not necessarily connected. The odd-degree cohomology of a T-manifold M vanishes if and only if the orbit space Q is face-acyclic (Theorem 7.4.46). The equivariant cohomology of such M is isomorphic to the face ring of the simplicial poset of faces of Q, although this ring may no longer be generated in degree two, see Section 3.5.

The proofs use several results from the theory of GKM-manifolds and related GKM-graphs, whose foundations were laid in the work [154] of Goresky, Kottwitz and MacPherson. The relationship between this theory and torus manifolds is explored further in Section 7.9.

Preliminaries: cohomology and fixed points. Here we obtain some preliminary results about torus actions, without assuming that the action is locally standard. In this subsection M is a closed connected smooth orientable manifold equipped with an effective smooth action of a torus T of arbitrary dimension.

We denote by M^T the set of T-fixed points of M, which is a disjoint union of finitely many connected submanifolds.

Lemma 7.4.3. There exists a circle subgroup $S \subset T$ such that $M^S = M^T$.
PROOF. There is only a finite number of orbit types of the T-action on M, i.e. only finitely many subgroups of T appear as the stabilisers of the action (see [47, Theorem IV.10.3]). We have $M^S = M^T$ whenever S is not contained in any proper stabiliser subgroup $G \subset T$. This condition is satisfied for a generic circle $S \subset T$. □

Lemma 7.4.4. If $H^{\text{odd}}(M; \mathbb{Q}) = 0$, then M has a T-fixed point.

Proof. Choose a generic circle $S \subset T$ satisfying $M^S = M^T$ (see Lemma 7.4.3). If M does not have T-fixed points, then it also does not have S-fixed points, which implies that the Euler characteristic $\chi(M)$ is zero. On the other hand, if $H^{\text{odd}}(M; \mathbb{Q}) = 0$, then $\chi(M) > 0$: a contradiction. □

The inclusion $M^T \to M$ induces the restriction map in equivariant cohomology:

$$r: H^*_T(M) \to H^*_T(M^T) = H^*(BT) \otimes H^*(M^T).$$

The equivariant cohomology $H^*_T(M)$ is a $H^*(BT)$-module. We denote by $H^+_*(BT)$ the positive-degree part of $H^*(BT)$. We shall need the following version of the ‘localisation theorem’.

Theorem 7.4.5. The restriction map $r: H^*_T(M) \to H^*_T(M^T)$ becomes an isomorphism when localised at $H^+(BT)$.

For the proof, see [191, p. 40] or [170, Theorem 11.44].

Corollary 7.4.6. The kernel of the restriction map $r: H^*_T(M) \to H^*_T(M^T)$ is an $H^*(BT)$-torsion module.

Since $H^*(BT) \cong \mathbb{Z}[t_1, \ldots, t_n]$, we obtain that $H^*_T(M)$ is a free $H^*(BT)$-module if and only if $H^*_T(M)$ is a Cohen-Macaulay ring (note that the $H^*(BT)$-module $H^*_T(M)$ is finitely generated, as M is compact). The next statement gives a topological characterisation of T-manifolds with this property:

Lemma 7.4.7. Assume that M^T is finite. Then $H^*_T(M)$ is a free $H^*(BT)$-module if and only if $H^{\text{odd}}(M) = 0$. In this case, $H^*_T(M) \cong H^*(BT) \otimes H^*(M)$ as $H^*(BT)$-modules.

Proof. Assume that $H^{\text{odd}}(M) = 0$. Then $H^*(M)$ is torsion-free (an exercise) and the Serre spectral sequence of the bundle $\rho: ET \times_T M \to BT$ collapses at E_2. It follows that $H^*_T(M) = H^*(ET \times_T M)$ is isomorphic, as a $H^*(BT)$-module, to the tensor product $H^*(BT) \otimes H^*(M)$, and therefore it is a free $H^*(BT)$-module. Assume now that $H^*_T(M)$ is a free $H^*(BT)$-module. Consider the Eilenberg-Moore spectral sequence of the bundle $\rho: ET \times_T M \to BT$ (see Theorem B.3.4). It converges to $H^*(M)$ and has

$$E_2^{*,*} = \text{Tor}^*_H(H^*(M), \mathbb{Z}).$$

Since $H^*_T(M)$ is a free $H^*(BT)$-module,

$$\text{Tor}^*_H(H^*(M), \mathbb{Z}) = \text{Tor}^*_H(H^*(M), \mathbb{Z}) = H^*_T(M) \otimes H^*(BT) \mathbb{Z} = H^*_T(M)/(\rho^*(H^+(BT))).$$

Hence $E_0^{*,*} = H^*_T(M)/(\rho^*(H^+(BT)))$ and $E_2^{*,*} = 0$ for $p > 0$. It follows that the spectral sequence collapses at E_2, and

$$H^*(M) = H^*_T(M)/(\rho^*(H^+(BT))).$$
Since \(H^*_T(M) \) is a free \(H^*(BT) \)-module, the restriction map (7.19) is a monomorphism (see Corollary 7.4.6). As \(M^T \) is finite, \(H^*_T(M^T) \) is a sum of polynomial rings, hence \(H^*_T(M) = 0 \). This together with (7.20) implies \(H^*_{odd}(M) = 0 \). \(\square \)

We shall be interested in two special classes of \(T \)-manifolds \(M \): those with vanishing odd-degree cohomology, and those with the cohomology ring generated by degree-two classes. Both these cohomological properties are inherited by the fixed point set \(M^H \) with respect to the action of any torus subgroup \(H \subset T \). This fact is proved in the next two lemmata; it enables us to use inductive arguments.

Lemma 7.4.8. Let \(H \) be a torus subgroup of \(T \), and let \(N \) be a connected component of \(M^H \). If \(H^*_{odd}(M) = 0 \), then \(H^*_{odd}(N) = 0 \).

Proof. Choose a generic circle subgroup \(S \subset H \) with \(M^S = M^H \), as in Lemma 7.4.3. Let \(G \subset S \) be a subgroup of prime order \(p \). The action of \(G \) on \(H^*(M) \) is trivial, because \(G \) is contained in a connected group \(S \). By [47, Theorem VII.2.2], \(\dim H^*_{odd}(M^G; \Z_p) \leq \dim H^*_{odd}(M; \Z_p) \). Hence \(H^*_{odd}(M^G; \Z_p) = 0 \). Repeating the same argument for the set \(M^G \) with the induced action of the quotient group \(S/G \) (which is again a circle), we conclude that \(H^*_{odd}(M^K; \Z_p) = 0 \) for any \(p \)-subgroup \(K \) of \(S \). However, \(M^K = M^S = M^H \) if the order of \(K \) is sufficiently large, so we obtain \(H^*_{odd}(M^H; \Z_p) = 0 \). Since \(p \) is an arbitrary prime, we conclude that \(H^*_{odd}(M^H) = 0 \). \(\square \)

Lemma 7.4.9. Let \(M, H, N \) be as in Lemma 7.4.8. If the ring \(H^*(M) \) is generated by its degree-two part, then the restriction map \(H^*(M) \to H^*(N) \) is surjective; in particular, the ring \(H^*(N) \) is also generated by its degree-two part.

Proof. It suffices to prove that the restriction map \(H^*(M; \Z_p) \to H^*(N; \Z_p) \) is surjective for any prime \(p \), because \(H^*_{odd}(N) = 0 \) by Lemma 7.4.8.

The argument below is similar to that used in [47, Theorem VII.3.1]. As in the proof of Lemma 7.4.8, let \(S \subset H \) be a generic circle with \(M^S = M^H \) and let \(G \subset S \) be a subgroup of prime order \(p \). By [47, Theorem VII.1.5], the restriction map \(H^*_G(M; \Z_p) \to H^*_G(M^G; \Z_p) \) is an isomorphism for sufficiently large \(k \). Hence, for any connected component \(N' \) of \(M^G \), the restriction \(r: H^*_G(M; \Z_p) \to H^*_G(N'; \Z_p) \) is surjective when \(k \) is large. Now consider the commutative diagram

\[
\begin{array}{ccc}
H^*_G(M; \Z_p) & \xrightarrow{r} & H^*_G(N'; \Z_p) \\
\downarrow & & \downarrow \\
H^*(M; \Z_p) & \xrightarrow{s} & H^*(N'; \Z_p)
\end{array}
\]

As in the proof of Lemma 7.4.8, \(H^*_{odd}(M; \Z_p) = H^*_{odd}(M^G; \Z_p) = 0 \), which together with \(\chi(M) = \chi(M^T) = \chi(M^G) \) implies \(\sum_i \dim H^i(M; \Z_p) = \sum_i \dim H^i(M^G; \Z_p) \). By [47, Theorem VII.1.6], the Serre spectral sequence of the bundle \(EG \times_G M \to BG \) collapses at \(E_2 \). Therefore \(H^*_G(M; \Z_p) = H^*(BG; \Z_p) \otimes H^*(M; \Z_p) \) as \(H^*(BG; \Z_p) \)-modules and the left vertical map in the above diagram is surjective.

Choose a basis \(v_1, \ldots, v_d \in H^2(M; \Z_p) \); then these elements multiplicatively generate \(H^*(M; \Z_p) \). Set \(w_j = s(v_j) \in H^*(N'; \Z_p) \).

Now let \(a \in H^*(N'; \Z_p) \) be an arbitrary element. Then \(t^i a \) is in the image of \(r \) when \(i \) is large enough, so we have

\[
t^i a = r(P_0(v_1, \ldots, v_d) + \cdots + t^i P_t(v_1, \ldots, v_d)) = r(P(t, v_1, \ldots, v_d))
\]
for some polynomials \(P_i(v_1, \ldots, v_d) \in H^*(M; \mathbb{Z}_p) \). We have \(H^1(N'; \mathbb{Z}_p) = 0 \) by Lemma 7.4.8, which together with the commutativity of the diagram above implies \(r(v_j) = \alpha_j t + w_j \) for some \(\alpha_j \in \mathbb{Z}_p \). We therefore obtain

\[
r(P(t, \xi_1, \ldots, \xi_d)) = P(t, \alpha_1 t + w_1, \ldots, \alpha_d t + w_d) = \sum_{k \geq 0} t^k Q_k(w_1, \ldots, w_d)
\]

for some polynomials \(Q_k \). It follows that \(a = Q_t(w_1, \ldots, w_d) \) and hence the restriction map \(H^*(M; \mathbb{Z}_p) \to H^*(N'; \mathbb{Z}_p) \) is surjective.

Now we can repeat the same argument for \(N' \) with the induced action of \(S/G \), which is again a circle. We conclude that the restriction map \(H^*(M; \mathbb{Z}_p) \to H^*(N'; \mathbb{Z}_p) \) is surjective for any \(p \)-subgroup \(K \) of \(S \) and any connected component \(N' \) of \(M^K \). Now, if the order of \(K \) is sufficiently large, then \(M^K = M^S = M^H \) and hence \(N' = N \). It follows that the restriction map \(H^*(M; \mathbb{Z}_p) \to H^*(N; \mathbb{Z}_p) \) is surjective for any connected component \(N \) of \(M^H \) and for arbitrary prime \(p \). \(\square \)

Characteristic submanifolds. From now on we assume that \(M \) is a torus manifold, i.e. \(M \) is closed, connected, smooth and orientable, \(\dim M = 2 \dim T = 2n \), the \(T \)-action is smooth and effective and \(M^T \neq \emptyset \).

A closed connected codimension-two submanifold of \(M \) is called **characteristic** if it is fixed pointwise by a circle subgroup \(S \subset T \). Since \(M^T \neq \emptyset \), there exists at least one characteristic submanifold (an exercise). Furthermore, any fixed point is contained in an intersection of some \(n \) characteristic submanifolds.

There are finitely many characteristic submanifolds in \(M \), and we shall denote them by \(M_i \), \(1 \leq i \leq m \). The intersection of any \(k \leq n \) characteristic submanifolds is either empty or a (possibly disconnected) submanifold of codimension \(2k \) fixed pointwise by a \(k \)-dimensional subtorus of \(T \). In particular, the intersection of any \(n \) characteristic submanifolds consists of finitely many \(T \)-fixed points.

Since \(M \) is orientable, each \(M_i \) is also orientable (since it is fixed by a circle action). We say that \(M \) is **omni-oriented** if an orientation is specified for \(M \) and for each characteristic submanifold \(M_i \). There are \(2^{m+1} \) choices of omni-orientations on \(M \). In what follows we shall always assume \(M \) to be omni-oriented. This allows us to view the circle fixing \(M_i \) as an element in the integer lattice \(\text{Hom}(S, T) \cong \mathbb{Z}^n \).

Since both \(M \) and \(M_i \) are oriented, the equivariant Gysin homomorphism \(H^*_T(M_i) \to H^*_T(M) \) is defined (see Section B.4). Denote by \(\tau_i \in H^2_T(M) \) the image of 1 in \(H^0_T(M_i) \) under this homomorphism. The restriction of \(\tau_i \) to \(H^2_T(M_i) \) is the equivariant Euler class \(e^T(\nu_i) \) of the normal bundle \(\nu_i = \nu(M_i \subset M) \).

Proposition 7.4.10. Let \(\lambda_i \in H_2(BT) \) be the element corresponding to the circle subgroup fixing \(M_i \) via the identification \(H_2(BT) = \text{Hom}(S, T) \).

(a) Let \(v \) be a \(T \)-fixed point of \(M \), and assume that \(v \) is contained in the intersection \(M_1 \cap \cdots \cap M_m \). Then the corresponding elements \(\lambda_1, \ldots, \lambda_m \) form a basis of \(H_2(BT) \cong \mathbb{Z}^n \). This basis is conjugate to the set of weights \(w_1(v), \ldots, w_n(v) \) of the tangential \(T \)-representation at \(v \).

(b) Let \(p: ET \times_T M \to BT \) be the projection. For any \(t \in H^2(BT) \),

\[
p^*(t) = \sum_{i=1}^m (t, \lambda_i) \tau_i \quad \text{modulo } H^*(BT) \text{-torsion}.
\]
Proof. Since the action is effective and M is connected, the tangential T-representation at v is faithful, so the set of weights $\{w_1(v), \ldots, w_n(v)\}$ is a basis of $	ext{Hom}(T,S) = H^+(BT)$. The proof of (a) is the same as that of Proposition 7.3.18.

By Theorem 7.4.5, the restriction map (7.19) is an isomorphism after localization at $H^+(BT)$. Therefore, to prove (b), we can apply the map r to the both sides of the identity in question and verify the resulting identity in $H^*(BT) \otimes H^*(MT)$.

We may write $r = \bigoplus_r v_r$, where $r_v: H^*_T(M) \to H^*(BT)$ is the map induced by the inclusion of the fixed point $v \to M$. We have $r_v(\rho(t)) = t$ and

$$r_v \left(\sum_{i=1}^m (t, \lambda_i) \tau_i \right) = \sum_{k=1}^n (t, \lambda_k) e^T(\nu_k)v = \sum_{k=1}^n (t, \lambda_k) w_k(v) = t,$$

because $\lambda_1, \ldots, \lambda_n$ and $w_1(v), \ldots, w_n(v)$ are conjugate bases. \hfill \square

Here is an example of a locally standard torus manifold which is not quasitoric:

Example 7.4.11. Consider the unit $2n$-sphere in $\mathbb{C}^n \times \mathbb{R}$:

$$S^{2n} = \{(z_1, \ldots, z_n, y) \in \mathbb{C}^n \times \mathbb{R} : |z_1|^2 + \cdots + |z_n|^2 + y^2 = 1 \}.$$

Define a T-action by the formula

$$(t_1, \ldots, t_n) \cdot (z_1, \ldots, z_n, y) = (t_1 z_1, \ldots, t_n z_n, y).$$

There are two fixed points $(0, \ldots, 0, \pm 1)$ and n characteristic submanifolds given by $\{z_1 = 0\}, \ldots, \{z_n = 0\}$. The intersection of any k characteristic submanifolds is connected if $k \leq n - 1$, and consists of two disjoint fixed points if $k = n > 1$.

Unlike quasitoric manifolds, some intersections of characteristic submanifolds are disconnected in the example above. The cohomology ring of a quasitoric manifold is generated in degree two (Theorem 7.3.28). The next lemma shows that this is exactly the condition that guarantees the connectedness of intersections of characteristic submanifolds.

Lemma 7.4.12. Suppose that $H^*(M)$ is generated by degree-two elements. Then all nonempty multiple intersections of characteristic submanifolds are connected and have cohomology generated by degree-two elements.

Proof. By Lemma 7.4.9, the cohomology $H^*(M_i)$ is generated by the degree-two part and the restriction map $H^*(M) \to H^*(M_i)$ is surjective for any characteristic submanifold M_i. Then it follows from Lemma 7.4.7 that the restriction map $H^*_T(M) \to H^*_T(M_i)$ in equivariant cohomology is also surjective.

Now we prove that multiple intersections are connected. Suppose that $M_{i_1} \cap \cdots \cap M_{i_k} \neq \emptyset$, $1 \leq k \leq n$, and let N be a connected component of this intersection. Since N is fixed by a subtorus, it contains a T-fixed point by Lemmata 7.4.4 and 7.4.8. For each $i \in \{i_1, \ldots, i_k\}$, there are embeddings $\varphi_i: N \to M_i$, $\psi_i: M_i \to M$, and the corresponding equivariant Gysin homomorphisms:

$$H^*_T(N) \xrightarrow{\varphi_i} H^*_{2i-2}(M_i) \xrightarrow{\psi_i} H^*_{2i}(M).$$

The map $\psi^*_i: H^*_T(M) \to H^*_{2i}(M_i)$ is surjective, so we obtain $\varphi_i(1) = \psi^*_i(u)$ for some $u \in H^*_{2i-2}(M)$. Now we calculate

$$(\psi_i \circ \varphi_i)(1) = \psi_i(\varphi_i(1)) = \psi_i(\psi^*_i(u)) = \psi_i(1)u = \tau_i u.$$
Hence \((\psi_i \circ \varphi_i)(1)\) is divisible by \(\tau_i\), for each \(i \in \{i_1, \ldots, i_k\}\). By [249, Proposition 3.4] (see also Theorem 7.4.33 below), the degree-2k part of \(H^*_T(M)\) is additively generated by monomials \(t_{j_1} \cdots t_{j_p}\) such that \(M_{j_1} \cap \cdots \cap M_{j_p} \neq \emptyset\) and \(k_1 + \cdots + k_p = k\). It follows that \((\psi_i \circ \varphi_i)(1)\) is a nonzero integral multiple of \(\tau_{i_1} \cdots \tau_{i_k} \in H^{2k}_T(M)\). By the definition of Gysin homomorphism, \((\psi \circ \varphi)(1)\) maps to zero under the restriction map \(H^*_T(M) \to H^*_T(x)\) for any point \(x \in (M \setminus N)^T\). On the other hand, the image of \(\tau_{i_1} \cdots \tau_{i_k}\) under the map \(H^*_T(M) \to H^*_T(x)\) is nonzero for any \(T\)-fixed point \(x \in M_{i_1} \cap \cdots \cap M_{i_k}\). Thus, \(N\) is the only connected component of the latter intersection. The fact that \(H^*(N)\) is generated by its degree-two part follows from Lemma 7.4.9.

\section*{Orbit quotients and manifolds with corners.}

Let \(Q = M/T\) be the orbit space of a locally standard \(T\)-manifold \(M\), and let \(\pi : M \to Q\) be the quotient projection. Then \(Q\) is a manifold with corners (see Definition 7.1.3). The facets of \(Q\) are the projections of the characteristic submanifolds: \(F_i = \pi(M_i)\), \(1 \leq i \leq m\). Faces of \(Q\) are connected components of intersections of facets (note that these intersections may be disconnected, as in Example 7.4.11). For convenience, we regard \(Q\) itself as a face; all other faces are called \(\textit{proper}\).

If \(H^{\text{odd}}(M) = 0\), then each face has a vertex by Lemmata 7.4.8 and 7.4.4. Moreover, if \(H^*(M)\) is generated in degree two, then all intersections of facets are connected by Lemma 7.4.12.

\begin{proposition}

The orbit space \(Q\) of a locally standard \(T\)-manifold is a nice manifold with corners.
\end{proposition}

\begin{proof}

We need to show that any face \(G\) of codimension \(k\) in \(Q\) is an intersection of exactly \(k\) facets. Let \(q\) be a point in the interior of \(G\), and let \(x \in \pi^{-1}(q)\). Let \(z_1, \ldots, z_n\) be the coordinates in a locally standard chart containing \(x\). The point \(x\) has exactly \(k\) of these coordinates vanishing, assume that these are \(z_{i_1}, \ldots, z_{i_k}\). Then, for any \(i = 1, \ldots, k\), the equation \(z_i = 0\) specifies the tangent space at \(x\) to a characteristic submanifold of \(M\). Therefore, \(x\) is contained in exactly \(k\) characteristic submanifolds. Each characteristic submanifold is projected onto a facet of \(Q\), so that \(G\) is contained in exactly \(k\) facets.
\end{proof}

\begin{theorem}

A torus manifold \(M\) with \(H^{\text{odd}}(M) = 0\) is locally standard.
\end{theorem}

\begin{proof}

We first show that there are no nontrivial finite stabilisers for the \(T\)-action on \(M\). Assume the opposite, i.e. there is a point \(x \in M\) with finite nontrivial stabiliser \(T_x\). Then \(T_x\) contains a nontrivial cyclic subgroup \(G\) of prime order \(p\). Let \(N\) be the connected component of \(M^G\) containing \(x\). Since \(N\) contains \(x\) and \(T_x\) is finite, the principal (i.e. the smallest) stabiliser of the induced \(T\)-action on \(N\) is finite. As in the proof of Lemma 7.4.8, it follows from [47, Theorem VII.2.2] that \(H^{\text{odd}}(N; \mathbb{Z}_p) = 0\). In particular, the Euler characteristic of \(N\) is non-zero, hence \(N\) has a \(T\)-fixed point, say \(y\). The tangential \(T\)-representation \(T_yM\) at \(y\) is faithful, \(\dim M = 2\dim T\) and \(T_yN\) is a proper \(T\)-subrepresentation of \(T_yM\). It follows that there is a nontrivial subtorus \(T' \subset T\) which fixes \(T_yN\) and does not fix the complement of \(T_yN\) in \(T_yM\). Then \(T'\) is the principal stabiliser of \(N\), which contradicts the above observation that the principal stabiliser of \(N\) is finite.

If the stabiliser \(T_x\) is trivial, \(M\) is obviously locally standard near \(x\). Suppose that \(T_x\) is non-trivial. Then it cannot be finite, i.e. \(\dim T_x > 0\). Let \(H\) be the identity component of \(T_x\), and \(N\) the connected component of \(M^H\) containing \(x\).
By Lemmata 7.4.8 and 7.4.4, \(N \) has a \(T \)-fixed point, say \(y \). Looking at the tangential representation at \(y \), we observe that the induced action of \(T/H \) on \(N \) is effective. By the previous argument, no point of \(N \) has a nontrivial finite stabiliser for the induced action of \(T/H \), which implies that \(T_x = H \). Now \(x \) and \(y \) are both in the same connected submanifold \(N \) fixed pointwise by \(T_x \), hence the \(T_x \)-representation \(T_x M \) agrees with the restriction of the tangential \(T \)-representation \(T_x M \) to \(T_x \). This implies that \(M \) is locally standard near \(x \). \(\square \)

Recall that a space \(X \) is acyclic if \(\widetilde{H}_i(X) = 0 \) for each \(i \).

Definition 7.4.15. We say that a manifold with corners \(Q \) is **face-acyclic** if \(Q \) and all its faces are acyclic. We call \(Q \) a *homology polytope* if it is face-acyclic and all nonempty multiple intersections of facets are connected.

A simple polytope is a homology polytope. Here is an example that does not arise in this way:

Example 7.4.16. The torus manifold \(S^{2n} \) with the \(T \)-action from Example 7.4.11 is locally standard, and the map

\[
(z_1, \ldots, z_n, y) \mapsto (|z_1|, \ldots, |z_n|, y)
\]

induces a face preserving homeomorphism from the orbit space \(S^{2n}/T \) to the space

\[
\{(x_1, \ldots, x_n, y) \in \mathbb{R}^{n+1} : x_1^2 + \cdots + x_n^2 + y^2 = 1, \ x_1 \geq 0, \ldots, x_n \geq 0 \}. \]

This manifold with corners is face-acyclic, but is not a homology polytope if \(n > 1 \).

Proposition 7.4.10 allows us to define a characteristic map for locally standard torus manifolds:

\[
\lambda: \{F_1, \ldots, F_m\} \to H_2(BT) = \text{Hom}(\mathbb{S}, T) \cong \mathbb{Z}^n,
\]

\[
F_i \mapsto \lambda_i.
\]

Given a point \(q \in Q \), consider the smallest face \(G(q) \) containing \(q \). This face is a connected component of an intersection of facets \(F_{i_1} \cap \cdots \cap F_{i_k} \). We define the subtorus \(T(q) \subset T \) generated by the circle subgroups corresponding to \(\lambda(F_{i_1}), \ldots, \lambda(F_{i_k}) \), and the identification space

\[
M(Q, \lambda) = Q \times T/\sim \quad \text{where} \quad (x, t_1) \sim (x, t_2) \quad \text{if} \quad t_1^{-1}t_2 \in T(q).
\]

It is easy to see that \(M(Q, \lambda) \) is a closed manifold with a \(T \)-action. Here is a straightforward generalisation of [112, Lemma 1.4] (see Proposition 7.3.6):

Proposition 7.4.17. Let \(M \) be a locally standard torus manifold with orbit space \(Q \), and let \(\lambda \) be the map defined by (7.21). If \(Q \) is face-acyclic, then there is a weakly \(T \)-equivariant homeomorphism

\[
M(Q, \lambda) \to M
\]

covering the identity on \(Q \).

Remark. Instead of face-acyclicity, one need only require that the second cohomology group of each face of \(Q \) vanishes, as this is the condition implying the triviality of torus principal bundles obtained after blowing up the singular strata of lower dimension.
Face rings of manifolds with corners. Let Q be a nice manifold with corners. The set of faces of Q containing a given face is isomorphic to the poset of faces of a simplex. In other words, the faces of Q form a simplicial poset \mathcal{S} (see Definition 2.8.1) with respect to the reverse inclusion. The initial element 0 of this poset is Q. We refer to this simplicial poset \mathcal{S} as the dual of Q; this duality extends the combinatorial duality between simple polytopes and their boundary sphere triangulations. The dual poset \mathcal{S} is the poset of faces of a simplicial complex K if and only if all nonempty multiple intersections of facets of Q are connected. In this case, K is the nerve of the covering of ∂Q by facets.

Example 7.4.18. Consider the three structures of a manifold with corners on a disc D^2, shown in Figure 7.4. The manifold with corners shown on the left is not nice. The middle one is nice and is face-acyclic, but is not a homology polytope. The right one is homeomorphic to a 2-simplex, so it is a homology polytope. Compare this with simplicial posets from Example 2.8.2.

Example 7.4.19. Let $Q = S^{2n}/T$ be the orbit space of the torus manifold S^{2n}, see Examples 7.4.11 and 7.4.16 (the case $n = 2$ is shown in Figure 7.4 (2)). Here we have n facets, the intersection of any k facets is connected if $k \leq n - 1$, but the intersection of n facets consists of two points. The dual simplicial cell complex is obtained by gluing two $(n - 1)$-simplices along their boundaries.

We can define the face ring of the orbit space Q as the face ring of the dual simplicial poset (see Definition 3.5.2). However, for the reader’s convenience, we give the definition and state the main properties directly in terms of the combinatorics of faces of Q. The proofs of the statements in this subsection are obtained by obvious dualisation of the corresponding statements in Section 3.5.

The intersection of two faces G, H in a manifold with corners may be disconnected. We consider $G \cap H$ as the set of its connected components and use the notation $E \in G \cap H$ for connected components E of this intersection. If $G \cap H \neq \emptyset$, then there exists a unique minimal face $G \vee H$ containing both G and H.

Definition 7.4.20. The face ring of a nice manifold with corners Q is the quotient $\mathbb{Z}[Q] = \mathbb{Z}[v_G : G \text{ a face}]/\mathcal{I}_Q$, where \mathcal{I}_Q is the ideal generated by $v_Q - 1$ and all elements of the form

$$v_G v_H - v_{G \vee H} \sum_{E \in G \cap H} v_E.$$

In particular, if $G \cap H = \emptyset$, then $v_G v_H = 0$ in $\mathbb{Z}[Q]$.

The grading is given by $\deg v_G = 2 \operatorname{codim} G$.

![Figure 7.4. 2-disc as a manifold with corners.](image-url)
Example 7.4.21. Consider the torus action on S^{2n} from Examples 7.4.11 and 7.4.16 and let $n = 2$. Then Q is a 2-disc with two 0-faces, say p and q, and two 1-faces, say G and H. Then

$$Z[Q] = Z[v_p, v_q, v_p, v_q]/(v_p + v_q, v_p v_q = 0),$$

where $\deg v_p = \deg v_q = 2$, $\deg v_p = \deg v_q = 4$. This is the same ring as the one described in Example 3.5.3.1, but written in the dual notation.

Here is a dualisation of Theorem 3.5.7:

Theorem 7.4.22. Any element $a \in Z[Q]$ can be written uniquely as an integral linear combination of monomials $v_{G_1}^{i_1} v_{G_2}^{i_2} \cdots v_{G_n}^{i_n}$ corresponding to chains of faces $G_1 \supset G_2 \supset \cdots \supset G_n$ of Q.

Given a vertex $v \in Q$, define the restriction map

$$s_v : Z[Q] \to Z[Q]/(v : G \not\ni v).$$

The ring $Z[Q]/(v : G \not\ni v)$ is identified with the polynomial ring $Z[v_{G_1}, \ldots, v_{G_n}]$ on n degree-two generators corresponding to the facets F_1, \ldots, F_n containing v.

Theorem 7.4.23. Assume that each face of Q has a vertex. Then the sum $s = \bigoplus s_v$ of the restriction maps over all vertices $v \in Q$ is a monomorphism from $Z[Q]$ to a direct sum of polynomial rings.

Equivariant cohomology. Here we construct a natural homomorphism from the face ring $Z[Q]$ to the equivariant cohomology ring $H^*_T(M)$ of a locally standard torus manifold modulo $H^*(BT)$-torsion. Then we obtain conditions under which this homomorphism is monic and epic; in particular, we show that $Z[Q] \to H^*_T(M)$ is an isomorphism when $H^{odd}(M) = 0$.

Since the fixed point set M^T is finite, the restriction map (7.19) defines a map

$$r = \bigoplus_{v \in M^T} r_v : H^*_T(M) \to H^*_T(M^T) = \bigoplus_{v \in M^T} H^*(BT)$$

to a direct sum of polynomial rings. Its kernel is a $H^*(BT)$-torsion by Corollary 7.4.6, and r is a monomorphism when $H^{odd}(M) = 0$.

The 1-skeleton of Q is an n-valent graph. We identify M^T with the vertices of Q and denote by $E(Q)$ the set of oriented edges. Given an element $e \in E(Q)$, denote the initial point and the terminal point of e by $i(e)$ and $t(e)$, respectively. Then $M_e = \pi^{-1}(e)$ is a 2-sphere fixed pointwise by a codimension-one subtorus in T, and it contains two T-fixed points $i(e)$ and $t(e)$. The 2-dimensional subspace $T_{i(e)} M_e \subset T_{t(e)} M$ is an irreducible component of the tangential T-representation $T_{i(e)} M$. The same is true for the other point $t(e)$, and the T-representations $T_{i(e)} M$ and $T_{t(e)} M$ are isomorphic. There is a unique characteristic submanifold, say M_e, intersecting M_e at $i(e)$ transversely. The omni-orientation defines an orientation for the normal bundle ν_e of M_e and, therefore, an orientation of $T_{i(e)} M_e$. We therefore can view the representation $T_{i(e)} M_e$ as an element of $\text{Hom}(T, \mathcal{S}) = H^2(BT)$, and denote this element by $\alpha(e)$.

Let $e^T(\nu_e) \in H^2_T(M_e)$ be the Euler class of the normal bundle, and denote its restriction to a fixed point $v \in M^T$ by $e^T(\nu_e)|_v \in H^2_T(v) = H^2(BT)$. Then

$$e^T(\nu_e)|_v = \alpha(e).$$
where e is the unique edge such that $i(e) = v$ and $e \notin F_i = \pi(M_i)$. Using the terminology of Guillemin and Zara [172], we refer to the map

$$\alpha: E(Q) \rightarrow H^2(BT), \quad e \mapsto \alpha(e),$$

as an axial function.

Lemma 7.4.24. The axial function α has the following properties:

(a) $\alpha(\bar{e}) = \pm \alpha(e)$ for any $e \in E(Q)$, where \bar{e} denotes the edge e with the opposite orientation;

(b) for any vertex v, the set $\alpha_v = \{\alpha(e): i(e) = v\}$ is a basis of $H^2(BT)$;

(c) for $e \in E(Q)$, we have $\alpha_{\l(e)} = \alpha_{\r(e)} \mod \alpha(e)$.

Proof. Property (a) follows from the fact that $T_{i(e)}M_e$ and $T_{\bar{i}(e)}M_{\bar{e}}$ are isomorphic as real T-representations, and (b) holds since the T-representation $T_{\l(e)}M$ is faithful. Let T_e be the codimension-one subtorus fixing M_e. Then the T_e-representations $T_{i(e)}M_e$ and $T_{\bar{i}(e)}M_{\bar{e}}$ are isomorphic, since the points $i(e)$ and $\bar{i}(e)$ are contained in the same connected component M_e of M^T. This implies (c). \hfill \square

Remark. The original definition of an axial function in [172] requires the property $\alpha(\bar{e}) = -\alpha(e)$, but we allow $\alpha(\bar{e}) = \alpha(e)$. For example, $\alpha(\bar{e}) = \alpha(e)$ for the T^2-action on S^4 from Example 7.4.11.

Lemma 7.4.25. Given $\eta \in H^*_T(M)$ and $e \in E(Q)$, the difference $r_{\l(e)}(\eta) - r_{\r(e)}(\eta)$ is divisible by $\alpha(e)$.

Proof. Consider the commutative diagram of restrictions

$$
\begin{array}{ccc}
H^*_T(M) & \longrightarrow & H^*_T(i(e)) \oplus H^*_T(t(e)) = H^*(BT) \oplus H^*(BT)
\\
\downarrow & & \downarrow
\\
H^*_T(M_e) & \longrightarrow & H^*_T(i(e)) \oplus H^*_T(t(e)) = H^*(BT_e) \oplus H^*(BT_e)
\end{array}
$$

Since $H^*_T(M_e) = H^*(BT_e) \oplus H^*(M_e)$, the two components of the image of η in $H^*(BT_e) \oplus H^*(BT_e)$ above coincide. Then it follows from the commutativity of the diagram that the restrictions of $r_{\l(e)}(\eta)$ and $r_{\r(e)}(\eta)$ to $H^*(BT_e)$ coincide. Now the result follows from the fact that the kernel of the restriction map $H^*(BT) \rightarrow H^*(BT_e)$ is the ideal generated by $\alpha(e)$. \hfill \square

The preimage $M_G = \pi^{-1}(G)$ of a codimension-k face $G \subset Q$ is a closed T-invariant submanifold of M. It is a connected component of an intersection of k characteristic submanifolds. The orientation gives an orientation of M_G; and the equivariant Gysin homomorphism $H^0_T(M_G) \rightarrow H^k_B(M)$. Let τ_v denote the image of 1 under this homomorphism; it is called the Thom class of M_G. The restriction of $\tau_v \in H^B_k(M)$ to $H^B_k(M_G)$ is the equivariant Euler class of the normal bundle $v(M_G \subset M)$, and $r_v(\tau_v) = 0$ for $v \notin (M_G)^T$. It follows from (7.24) that

$$r_v(\tau_v) = \left\{ \begin{array}{ll}
\prod_{i(e) = v, \ r(e) \not\in G} \alpha(e) & \text{if } v \in (M_G)^T;
0 & \text{otherwise.}
\end{array} \right. $$

Define the quotient ring

$$\hat{H}^*_T(M) = H^*_T(M)/H^*(BT)\text{-torsion}. $$
The restriction map \(r \) from (7.23) induces a monomorphism \(\hat{H}^*_T(M) \to H^*_T(M^T) \), which we continue to denote by \(r \). The next lemma shows that the face ring relations from Definition 7.4.20 hold in \(\hat{H}^*_T(M) \) with \(v_0 \) replaced by \(\tau_0 \).

Lemma 7.4.26. For any two faces \(G \) and \(H \) of \(Q \), the relation
\[
\tau_G \tau_H = \tau_{G \vee H} \cdot \sum_{E \in G \cap H} \tau_E
\]
holds in \(\hat{H}^*_T(M) \).

Proof. Since the map \(r: \hat{H}^*_T(M) \to H^*_T(M^T) \) is injective, it suffices to show that \(r_\ast \) maps both sides of the identity to the same element, for any \(v \in M^T \).

Let \(v \in M^T \). Given a face \(G \ni v \), set
\[
N_v(G) = \{ e \in E(Q) : i(e) = v, e \notin G \},
\]
which may be thought of as the set of directions transverse to \(G \) at \(v \). Then we can rewrite (7.25) as follows:
\[
(7.26) \quad r_\ast(\tau_G) = \prod_{e \in N_v(G)} \alpha(e),
\]
where the right hand side is understood to be 1 if \(N_v(G) = \emptyset \) and to be 0 if \(v \notin G \). Assume that \(v \notin G \cap H \); then either \(v \notin G \) or \(v \notin H \), and \(v \notin E \) for any \(E \in G \cap H \). Hence both sides of the identity from the lemma map to zero by \(r_\ast \). Assume that \(v \in G \cap H \); then
\[
N_v(G) \cap N_v(H) = N_v(G \vee H), \quad N_v(G) \cup N_v(H) = N_v(E),
\]
where \(E \) is the connected component of the intersection \(G \cap H \) containing \(v \), and \(v \notin E' \) for any other \(E' \in G \cap H \). This together with (7.26) implies that both sides of the identity are sent to the same element by \(r_\ast \). \(\Box \)

Lemma 7.4.26 implies that the map
\[
Z[v_0 : G a face] \to H^*_T(M), \quad v_0 \mapsto \tau_G
\]
induces a homomorphism
\[
(7.27) \quad \varphi: Z[Q] \to \hat{H}^*_T(M).
\]

Lemma 7.4.27. The homomorphism \(\varphi \) is injective if each face of \(Q \) has a vertex.

Proof. We have \(s = r \circ \varphi \), where \(s \) is the algebraic restriction map from Lemma 7.4.23. Since \(s \) is injective, \(\varphi \) is also injective. \(\Box \)

The next theorem, which is a particular case of one of the main results of [154], says that when \(H^{odd}(M) = 0 \), the condition from Lemma 7.4.25 specifies precisely the image of the equivariant cohomology under the restriction map:

Theorem 7.4.28 ([154], see also [170, Chapter 11]). Let \(M \) be a torus manifold with \(H^{odd}(M) = 0 \). Assume given an element \(\eta_v \in H^\ast(BT) \) for each \(v \in M^T \). Then \(\{ \eta_v \} \in \bigoplus_{v \in M^T} H^\ast(BT) \) belongs to the image of the restriction map \(r \) in (7.23) if and only if \(\eta_v - \eta_e \) is divisible by \(\alpha(e) \) for any \(e \in E(Q) \).

Corollary 7.4.29. If \(H^{odd}(M) = 0 \), then the 1-skeleton of any face of \(Q \) (including \(Q \) itself) is connected.
PROOF. By Theorem 7.4.28, \(\{ \eta_v \} \in \bigoplus_{v \in M^T} H^0(BT) \) belongs to \(r(H^0_T(M)) \) if \(\eta_v \) is a locally constant function on the 1-skeleton of \(Q \). On the other hand, since \(M \) is connected, the image \(r(H^0_T(M)) \) is isomorphic to \(\mathbb{Z} \). Hence the 1-skeleton of \(Q \) is connected. Similarly, the 1-skeleton of any face \(G \) of \(Q \) is connected, because \(M_G = \pi^{-1}(G) \) is also a torus manifold with \(H^{\text{odd}}(M) = 0 \) (see Lemma 7.4.8).

REMARK. Connectedness of 1-skeletons of faces of \(Q \) can be proved without referring to Theorem 7.4.28, see the remark after Theorem 7.4.46.

For a face \(G \subset Q \), we denote by \(I(G) \) the ideal in \(H^*(BT) \) generated by all elements \(\alpha(e) \) with \(e \in G \).

LEMMA 7.4.30. Suppose that the 1-skeleton of a face \(G \) is connected. Given \(\eta \in H^+_T(M) \), if \(r_v(\eta) \notin I(G) \) for some vertex \(v \in G \), then \(r_w(\eta) \notin I(G) \) for any vertex \(w \in G \).

PROOF. Suppose \(r_w(\eta) \in I(G) \) for some vertex \(w \in G \). Then \(r_w(\eta) \in I(G) \) for any vertex \(u \in G \) joined to \(w \) by an edge \(f \subset G \), because \(r_w(\eta) - r_u(\eta) \) is divisible by \(\alpha(f) \) by Lemma 7.4.25. Since the 1-skeleton of \(G \) is connected, \(r_w(\eta) \in I(G) \) for any vertex \(w \in G \), which contradicts the assumption.

LEMMA 7.4.31. If each face of \(Q \) has connected 1-skeleton, then \(\widehat{H}^+_T(M) \) is generated by the elements \(\tau_v \) as an \(H^*(BT) \)-module.

PROOF. Let \(\eta \in H^+_T(M) \) be a nonzero element of positive degree. Set

\[
Z(\eta) = \{ v \in M^T : r_v(\eta) = 0 \}.
\]

Take \(v \notin Z(\eta) \). Then \(r_v(\eta) \in H^*(BT) \) is nonzero and we can express it as a polynomial in \(\{ \alpha(e) : i(e) = v \} \), as the latter is a basis of \(H^2(BT) \). Let

\[
(7.28) \prod_{i(e)=v} \alpha(e)^{n_e}, \quad n_e \geq 0
\]

be a monomial appearing in \(r_v(\eta) \) with a nonzero coefficient. Let \(G \) be the face spanned by the edges \(e \) with \(n_e = 0 \). Then \(r_v(\eta) \notin I(G) \) since \(r_v(\eta) \) contains the monomial (7.28). Hence \(r_w(\eta) \notin I(G) \) (in particular, \(r_w(\eta) \neq 0 \)) for any vertex \(w \in G \), by Lemma 7.4.30.

On the other hand, it follows from (7.25) that the monomial (7.28) can be written as \(r_v(u_{i_v} \tau_v) \) with some \(u_{i_v} \in H^*(BT) \). Set \(\eta' = \eta - u_{i_v} \tau_v \in H^*_T(M) \). We have \(r_w(\tau_v) = 0 \) for any \(w \notin G \), which implies \(r_w(\eta') = r_w(\eta) \) for \(w \notin G \). At the same time, \(r_v(\eta') \neq 0 \) for \(u \in G \) (see above). It follows that \(Z(\eta') \supset Z(\eta) \). The number of monomials in \(r_v(\eta') \) is less than that in \(r_v(\eta) \). Therefore, by subtracting from \(\eta \) a linear combination of elements \(\tau_v \) with coefficients in \(H^*(BT) \), we obtain an element \(\lambda \) such that \(Z(\lambda) \) contains \(Z(\eta) \) as a proper subset. By iterating this procedure, we end up with an element whose restriction to every vertex is zero. Since the restriction map \(r : \widehat{H}^+_T(M) \to \widehat{H}^+_T(M^T) \) is injective, the result follows.

THEOREM 7.4.32. Let \(M \) be a locally standard torus manifold with orbit space \(Q \). If each face of \(Q \) has connected 1-skeleton and contains a vertex, then the monomorphism \(\varphi : \widehat{Z}(Q) \to \widehat{H}^+_T(M) \) of (7.27) is an isomorphism.

PROOF. The homomorphism \(\varphi \) is injective by Lemma 7.4.27. To prove that \(\varphi \) is surjective it suffices to show that \(\widehat{H}^+_T(M) \) is generated by the elements \(\tau_v \) as a ring. By Proposition 7.4.10, the group \(\widehat{H}^+_T(M) \) is generated by the elements \(\tau_v \).
corresponding to the facets F_i. (Note: the notation τ_i is used for τ_{F_i} in Proposition 7.4.10.) In particular, any element in $H^2(BT) \subset \tilde{H}_T^*(M)$ can be written as a linear combination of the elements τ_{F_i}. Hence any element in $H^*(BT)$ is a polynomial in τ_{F_i}. The rest follows from Lemma 7.4.31. \hfill \Box

As a corollary we obtain a complete description of the equivariant cohomology in the case $H^{odd}(M) = 0$:

Theorem 7.4.33 ([252]). Let M be a locally standard T-manifold with $H^{odd}(M) = 0$. Then the equivariant cohomology $H^*_T(M)$ is isomorphic to the face ring $\mathbb{Z}[Q]$ of the manifold with corners $Q = M/T$.

Proof. Indeed, if $H^{odd}(M) = 0$, then M is a torus manifold by Lemma 7.4.4. Furthermore, $H^*_T(M)$ is a free $H^*(BT)$-module by Lemma 7.4.7, i.e. $\tilde{H}^*_T(M) = H^*_T(M)$. The result follows from Theorem 7.4.32. \hfill \Box

The condition $H^{odd}(M) = 0$ can be interpreted in terms of the simplicial poset S dual to Q as follows:

Lemma 7.4.34. Let M be a torus manifold with quotient Q, and S be the face poset of Q. Then $H^{odd}(M) = 0$ if and only if the following conditions are satisfied:

(a) the ring $H^*_T(M)$ is isomorphic to $\mathbb{Z}[S](= \mathbb{Z}[Q])$;

(b) $\mathbb{Z}[S]$ is a Cohen-Macaulay ring.

Furthermore, the ring $H^*(M)$ is generated in degree two if and only if S is (the face poset of) a simplicial complex in addition to the above two conditions.

Proof. If $H^{odd}(M) = 0$, then $H^*_T(M) \cong \mathbb{Z}[Q]$ by Theorem 7.4.33, and $\mathbb{Z}[S]$ is a Cohen-Macaulay ring by Lemma 7.4.7.

Now we prove that $H^{odd}(M) = 0$ under conditions (a) and (b). The composite

$$H^*(BT) \xrightarrow{\rho^*} H^*_T(M) \xrightarrow{T} \bigoplus_{v \in M^T} H^*(BT),$$

is the diagonal map. By Lemma 3.5.8, this implies that $\rho^*(t_1), \ldots, \rho^*(t_n)$ is an isop. Since $H^*_T(M)$ is a Cohen-Macaulay ring, any loop is a regular sequence (Proposition A.3.12). It follows that $H^*_T(M)$ is a free $H^*(BT)$-module and hence $H^{odd}(M) = 0$, by Lemma 7.4.7.

It remains to prove the last statement. Assume that $H^*(M)$ is generated in degree two. By Lemma 7.4.12, all non-empty multiple intersections of facets are connected. Then S is the nerve of the covering of ∂Q by facets.

Assume that S is a simplicial complex. Then $\mathbb{Z}[S]$ is generated in degree two. Furthermore, $H^*_T(M) \cong \mathbb{Z}[S]$ is a free $H^*(BT)$-module by the first part of the theorem, whence $H^*(M)$ is a quotient ring of $H^*_T(M)$. It follows that $H^*(M)$ is also generated by its degree-two part. \hfill \Box

Ordinary cohomology. We can now describe the ordinary cohomology of a locally standard T-manifold (or torus manifold) with $H^{odd}(M) = 0$. This result generalises the corresponding statements for toric and quasitoric manifolds (Theorems 5.3.1 and 7.3.28):

Theorem 7.4.35. Let M be a locally standard T-manifold with $H^{odd}(M) = 0$, and let $Q = M/T$ be its orbit space. Then there is a ring isomorphism

$$H^*(M) \cong \mathbb{Z}[v_i : G \text{ a face of } Q]/I,$$
where I is the ideal generated by elements of the following two types:

(a) $v_{e_i}v_{e_r} - v_{e_r} \sum_{E \in G^H} v_E$;

(b) $\sum_{i=1}^{m} \langle t, \lambda_i \rangle v_{E_i}$, for $t \in H^2(BT)$.

Here F_i are the facets of Q, $i = 1, \ldots, m$, and the element $\lambda_i \in H_2(BT)$ corresponds to the circle subgroup fixing the characteristic submanifold $M_i = \pi^{-1}(F_i)$.

The Betti numbers are given by the formula

$$\text{rank } H^{2i}(M) = h_i, \quad 0 \leq i \leq n,$$

where h_i denote the components of the h-vector of the dual simplicial poset S.

Proof. Since the Serre spectral sequence of the bundle $\rho: ET \times_T M \to BT$ collapses at E_2, the map $H^*_F(M) \to H^*(M)$ is surjective and its kernel is the ideal generated by all elements $\rho^*(t)$, $t \in H^2(BT)$. Therefore, the statement about the cohomology ring follows from Proposition 7.4.10 and Theorem 7.4.33.

By Lemma 7.4.7, $H^*_F(M) \cong H^*(BT) \otimes H^*(M)$ as $H^*(BT)$-modules, so we have the following formula for the Poincaré series:

$$P_H^*(M) = \sum_{i=0}^{\infty} \frac{\text{rank } H^{2i}(M) \lambda_i^{2i}}{(1 - \lambda^2)^n}.$$

The Poincaré series of the face ring $\mathbb{Z}[Q]$ is given by Theorem 3.5.9, and the two series coincide by Theorem 7.4.33. The formula for the Betti numbers follows. \qed

Example 7.4.36. The equivariant cohomology ring of the torus manifold S^4 from Example 7.4.21 is isomorphic to the ring $\mathbb{Z}[Q]$ described there. The ordinary cohomology ring is obtained by taking quotient by the ideal generated by v_Q and v_H.

Torus manifolds over homology polytopes. Using the previous results on torus manifolds with $H^{odd}(M) = 0$, we can now proceed to describe the relationship between the cohomology of M and the cohomology of its orbit space Q. Here we prove Theorem 7.4.41, which gives a cohomological characterisation of T-manifolds whose orbit spaces are homology polytopes. In the next subsection we prove that Q is face-acyclic if and only if $H^{odd}(M) = 0$.

Lemma 7.4.37. If $H^{odd}(M) = 0$, then $H^1(Q) = 0$.

Proof. We use the Leray spectral sequence of the projection map $ET \times_T M \to M/T = Q$ onto the second factor. It has $E_2^{p,q} = H^p(M/T; \mathcal{H}^q)$ where \mathcal{H}^q is the sheaf with stalk $H^q(BT_x)$ over a point $x \in M/T$, and the spectral sequence converges to $H^*_F(M)$. Since the T-action on M is locally standard, the stabiliser T_x at $x \in M$ is a subtorus; so $H^{odd}(BT_x) = 0$. Hence $H^{odd} = 0$, in particular, $H^1 = 0$. Moreover, $\mathcal{H}^0 = \mathbb{Z}$ (the constant sheaf). Therefore, we have $E_2^{0,1} = 0$ and $E_2^{0,0} = H^1(M/T)$, whence $H^1(M/T) \cong H^1_F(M)$. On the other hand, since $H^{odd}(M) = 0$ by assumption, $H^*_F(M)$ is a free $H^*(BT)$-module. Therefore, $H^{odd}_F(M) = 0$ by the universal coefficient theorem. In particular, $H^1_F(M) = 0$. \qed

Lemma 7.4.38. If either

1. Q is a homology polytope, or
2. $H^*(M)$ is generated by its degree-two part,

then the dual poset \tilde{S} of Q is (the face poset of) a Gorenstein* simplicial complex.
Proof. Under either of the assumptions (1) or (2), all nonempty multiple intersections of facets of Q are connected, so S is the face poset of the nerve simplicial complex K of the covering of ∂Q. For simplicity, we identify S with K.

We first prove that S is Gorenstein* under assumption (1). According to Theorem 3.4.2, it is enough to show that the link $\text{lk} \sigma$ of any simplex $\sigma \in K$, has homology of a sphere of dimension $\dim \text{lk} \sigma = n - 2 - \dim \sigma$. If $\sigma = \emptyset$ then $\text{lk} \sigma$ is K itself, and it has homology of an $(n - 1)$-sphere, since Q is a homology polytope. If $\sigma \neq \emptyset$ then $\text{lk} \sigma$ is the nerve of a face of Q. Since any face of Q is again a homology polytope, $\text{lk} \sigma$ has homology of a sphere of dimension $\dim \text{lk} \sigma$.

Now we prove that K is Gorenstein* under assumption (2). By Exercise 3.4.10, it is enough to show that

(a) K is Cohen–Macaulay;
(b) every $(n - 2)$-dimensional simplex is contained in exactly two $(n - 1)$-dimensional simplices;
(c) $\chi(K) = \chi(S^{n-1})$.

Condition (a) follows from Lemma 7.4.34. By definition, every k-dimensional simplex of K corresponds to a set of $k + 1$ characteristic submanifolds with nonempty intersection. By Lemma 7.4.12, the intersection of any n characteristic submanifolds is either empty or consists of a single T-fixed point. This means that $(n - 1)$-simplices of K are in one-to-one correspondence with T-fixed points of M. Now, each $(n - 2)$-simplex of K corresponds to a non-empty intersection of $n - 1$ characteristic submanifolds of M. The latter intersection is connected by Lemma 7.4.12, so it is a 2-sphere. Every 2-sphere contains exactly two T-fixed points, which implies (b). Finally, (c) is just the equation $h_0 = h_n$, which is valid as $h_n = \text{rank } H^{2n}(M) = 1$.

Consider the order complex $\text{ord}(S)$ (see Definition 2.3.6) and denote by C its geometric realization. Then C is the cone over $|S|$. The space C has a face structure, as in the proof of Theorem 4.1.4. Namely, for each simplex $\sigma \in \text{ord}(S)$ we denote by C_σ the geometric realization of the simplicial complex $\text{st} \sigma = \{ \tau \in \text{ord}(S) : \sigma \subset \tau \}$. If σ has dimension $k - 1$, then we say that C_σ is a codimension-k face of C. Each facet C_i (a face of codimension one) is the star of a vertex of $\text{ord}(S)$, as in (4.4). A face of codimension k is a connected component of an intersection of k facets. Since any face is a cone, it is acyclic.

Although the face posets of C and Q coincide, the spaces themselves are different: faces C_σ are defined abstractly and they are contractible (being cones), but faces of Q may be not contractible even when Q is a homology polytope. Nevertheless, we can define the characteristic map λ for the face structure of C by (7.21), and define a T-space

$$M(C, \lambda) = C \times T/\sim$$

by analogy with (7.22). Since C may be not a manifold with corners, the space $M(C, \lambda)$ is not a manifold in general. By a straightforward generalisation of Proposition 7.3.13, the space $M(C, \lambda)$ can be identified with the quotient Z_S/K of the moment-angle complex corresponding to S (see Section 4.10) by a freely acting torus K of dimension $m - n$.

Proposition 7.4.39. We have $H^*_T(M(C, \lambda)) \cong \mathbb{Z}[S]$.

Proof. We have $H^*\tau_n(Z_S) \cong \mathbb{Z}[S]$ by Exercise 4.10.9. Now, $H^*\tau_n(Z_S) \cong H^*_T(M(C, \lambda))$, because $M(C, \lambda) \cong Z_S/K$ and $T = \mathbb{T}^m/K$. \qed
Proposition 7.4.40. There is a face-preserving map \(Q \to C \), which is covered by a \(T \)-equivariant map

\[
\Phi: M(Q, \lambda) \to M(C, \lambda).
\]

Proof. The map \(Q \to C \) is constructed inductively; we start with a bijection between vertices, and then extend the map to faces of higher dimension. Each face of \(C \) is a cone, there are no obstructions to such extensions. Since the map \(Q \to C \) preserves the face structure, it is covered by a \(T \)-equivariant map

\[
M(Q, \lambda) = T \times Q/\sim \to T \times C/\sim = M(C, \lambda).
\]

Now we can prove the main result of this subsection:

Theorem 7.4.41 ([252]). The cohomology of a locally standard \(T \)-manifold \(M \) is generated in degree two if and only if the orbit space \(Q \) is a homology polytope.

Proof. Assume that \(Q \) is a homology polytope. Then \(M \) is homeomorphic to the canonical model \(M(Q, \lambda) \) (Proposition 7.4.17), and we can view the map \(\Phi \) from Proposition 7.4.40 as a map \(M \to M(C, \lambda) \). For simplicity, we denote \(M(C, \lambda) \) by \(M_C \) in this proof. Let \(M_{C,i} = \pi^{-1}(C_i), 1 \leq i \leq m, \) be the \('\text{characteristic}'\) subspaces of \(M_C \). We also denote by \(\partial C \) the union of all facets \(C_i \) of \(C \); topologically, \(\partial C \) is the simplicial cell complex \(\langle S \rangle \). The \(T \)-action is free on \(M_C \setminus \bigcup_i M_{C,i} \) and on \(M \setminus \bigcup_i M_i \), so we have

\[
H^*_T(M_C, \bigcup_i M_{C,i}) \cong H^*(C, \partial C), \quad H^*_T(M, \bigcup_i M_i) \cong H^*(Q, \partial Q).
\]

Therefore, the map \(\Phi \) induces a map between exact sequences

\[
\begin{array}{ccccccc}
\rightarrow & H^*(C, \partial C) & \longrightarrow & H^*_T(M_C) & \longrightarrow & H^*_T(\bigcup_i M_{C,i}) & \longrightarrow \\
\downarrow & & & & & & \\
\rightarrow & H^*(Q, \partial Q) & \longrightarrow & H^*_T(M) & \longrightarrow & H^*_T(\bigcup_i M_i) & \longrightarrow
\end{array}
\]

(7.29)

Each \(M_i \) itself is a torus manifold with quotient homology polytope \(F_i \). Using induction and the Mayer–Vietoris sequence, we may assume that the map \(H^*_T(\bigcup_i M_{C,i}) \to H^*_T(\bigcup_i M_i) \) above is an isomorphism. By Lemma 7.4.38, \(\partial C \cong \langle S \rangle \) has the homology of an \((n-1)\)-sphere. Hence \(H^*(C, \partial C) \cong H^*(D^n, S^{n-1}) \), because \(C \) is the cone over \(\partial C \). We also have \(H^*(Q, \partial Q) \cong H^*(D^n, S^{n-1}) \), because \(Q \) is a homology polytope. Using these isomorphisms, we see from the construction of the map \(\Phi \) that the induced map \(H^*(C, \partial C) \to H^*(Q, \partial Q) \) is the identity on \(H^*(D^n, S^{n-1}) \). By applying the 5-lemma to (7.29) we obtain that \(\Phi^*: H^*_T(M_C) \to H^*_T(M) \) is an isomorphism. This together with Proposition 7.4.39 implies \(H^*_T(M) \cong \mathbb{Z}\langle S \rangle \). The ring \(\mathbb{Z}\langle S \rangle \) is Cohen–Macaulay by Lemma 7.4.38. Therefore, all conditions of Lemma 7.4.34 are satisfied, and \(H^*(M) \) is generated by its degree-two part.

Assume now that that \(H^*(M) \) is generated in degree two. Since all nonempty intersections of characteristic submanifolds are connected and their cohomology rings are generated in degree two (Lemma 7.4.12), we may assume by induction that all proper faces of \(Q \) are homology polytopes. In particular, the proper faces are acyclic, whence \(H^*(\partial Q) \cong H^*(\partial C) \), because both \(\partial Q \) and \(\partial C \) have acyclic coverings with the same nerve \(S \). This together with Lemma 7.4.38 implies that

\[
H^*(\partial Q) \cong H^*(S^{n-1})).
\]

(7.30)

We need to show that \(Q \) itself is acyclic. We first prove the following:
Claim. \(H^2(Q) = 0 \).

Proof. The claim is trivial for \(n = 1 \). If \(n = 2 \) then \(Q \) is a surface with boundary, hence \(H^2(Q) = 0 \). Now assume \(n \geq 3 \). We consider the equivariant cohomology exact sequence of the pair \((M, \cup_i M_i)\) (the bottom row of (7.29)). All the maps in the exact sequence are \(H^*(BT) \)-module maps. By Lemma 7.4.7, \(H^*_T(M) \) is a free \(H^*(BT) \)-module. On the other hand, \(H^*(Q, \partial Q) \) is finitely generated over \(\mathbb{Z} \), so it is a torsion \(H^*(BT) \)-module. It follows that the whole sequence splits into short exact sequences:

\[0 \rightarrow H^k_T(M) \rightarrow H^k_T(\cup_i M_i) \rightarrow H^{k+1}(Q, \partial Q) \rightarrow 0 \]

We set \(k = 1 \) in the sequence above and consider the projection \(ET \times_T (\cup_i M_i) \rightarrow (\cup_i M_i)/T = \partial Q \) obtained by restriction of \(ET \times_T M \rightarrow M/T = Q \). This gives the commutative diagram

\[
\begin{array}{ccc}
H^1_T((\cup_i M_i)) & \xrightarrow{\cong} & H^2(Q, \partial Q) \\
\downarrow & & \downarrow \\
H^1(\partial Q) & \longrightarrow & H^1((\cup_i M_i)/T) \longrightarrow H^2(Q, \partial Q)
\end{array}
\]

in which the left vertical arrow is an isomorphism by the same argument as in Lemma 7.4.37. It follows that the coboundary map \(H^1(\partial Q) \rightarrow H^2(Q, \partial Q) \) is an isomorphism. Therefore, we get the following part of the exact sequence of a pair:

\[0 \rightarrow H^2(Q) \rightarrow H^2(\partial Q) \rightarrow H^3(Q, \partial Q). \]

By (7.30), \(H^2(\partial Q) \cong H^2(S^{n-1}) \), whence \(H^2(Q) = 0 \) for \(n \geq 4 \). If \(n = 3 \), the coboundary map \(H^2(\partial Q) \rightarrow H^3(Q, \partial Q) \) above is an isomorphism because \(Q \) is orientable by Lemma 7.4.37, whence \(H^2(Q) = 0 \) again. \(\square \)

Now we resume the proof of the theorem. We obtain a \(T \)-homeomorphism \(M \rightarrow M(Q, \lambda) \) (because \(H^2(Q) = 0 \) and all proper faces are acyclic by the inductive assumption, see the remark after Proposition 7.4.17), and therefore a \(T \)-map \(\Phi : M \rightarrow M_C \), as in the proof of the ‘if’ part of the theorem. We consider the diagram (7.29) again. Using induction and a Mayer–Vietoris argument, we may assume that \(H^*_T((\cup_i M_{C,i}) \rightarrow H^*_T(\cup_i M_i) \) is an isomorphism. By Lemma 7.4.38, \(H^*(C, \partial C) \cong H^*(D^n, S^{n-1}) \). The map \(Q \rightarrow C \) used in the construction of \(\Phi \) induces a map

\[H^*(D^n, S^{n-1}) \cong H^*(C, \partial C) \rightarrow H^*(Q, \partial Q) \]

which is injective (it is an isomorphism in dimension \(n \) and zero otherwise). Applying the 5-lemma (Exercise A.1.3) to (7.29), we obtain that \(\Phi^*: H^*_T(M_C) \rightarrow H^*_T(M) \) is injective. Theorem 7.4.33 and Proposition 7.4.39 imply that \(H^*_T(M) \cong \mathbb{Z}[Q] \cong H^*_T(M_C) \), and all graded components of these rings are finitely generated. The same argument works with any field coefficients, so that \(\Phi^*: H^*_T(M_C) \rightarrow H^*_T(M) \) is actually an isomorphism. By applying the 5-lemma again to diagram (7.29), we obtain that (7.31) is an isomorphism, i.e. \(H^*(Q, \partial Q) \cong H^*(D^n, S^{n-1}) \). This together with (7.30) implies that \(Q \) is acyclic. \(\square \)

Theorem 7.4.41 shows that if the cohomology ring of a locally standard \(T \)-manifold is generated in degree two, then the combinatorics of the orbit space \(Q \) is fully determined by its nerve simplicial complex. The following result gives a characterisation of simplicial complexes arising in this way.
Proposition 7.4.42. A simplicial complex K is the nerve of a locally standard T-manifold with cohomology generated by degree-two elements if and only if K is Gorenstein* and $\mathbb{Z}[K]$ admits an integral loop.

Proof. If $H^*(M)$ is generated in degree two, then K is Gorenstein* by Lemma 7.4.38. In particular, $\mathbb{Z}[K]$ is a Cohen–Macaulay ring. Furthermore, $H^2_T(M) \cong \mathbb{Z}[K]$ by Theorem 7.4.33. Since $H^2_T(M) \cong H^*(BT) \otimes H^*(M)$ as a $H^*(BT)$-module, the ring $\mathbb{Z}[K]$ admits an isomorphism.

Now assume that $\mathbb{Z}[K]$ is Gorenstein* and admits an isomorphism. By [110, Theorem 12.2], there exists a homology polytope Q with nerve K. Since $\mathbb{Z}[K]$ admits an isomorphism, any element $t \in H^2(BT)$ can be written as

$$t = \sum_{i=1}^{m} \lambda_i(t)v_i$$

with $\lambda_i(t) \in \mathbb{Z}$. Clearly, $\lambda_i(t)$ is linear in t, so that we can view λ_i as an element of the dual lattice $H_2(BT)$ (see Proposition 7.4.10). Now define a map λ (7.21) which sends F_i to λ_i. Then $M = M(Q, \lambda)$ (see (7.22)) is a locally standard T-manifold, and its cohomology is generated in degree two by Theorem 7.4.41. \qed

Torus manifolds over face-acyclic manifolds with corners. Here we prove the second main result on the cohomology of T-manifolds, Theorem 7.4.46. It states that the orbit space Q of a locally standard T-manifold M is face-acyclic if and only if $H^{odd}(M) = 0$. The proof is by reduction to Theorem 7.4.41 on T-manifolds over homology polytopes; it relies upon the operation of blow-up and the algebraic results of Section 3.6.

As before, M is a locally standard T-manifold with orbit projection $\pi : M \to Q$.

Construction 7.4.43 (Blow-up of a T-manifold). Let $M_G = \pi^{-1}(G)$ be the submanifold corresponding to a face $G \subset Q$, and $\nu_G = \nu(M_G \subset M)$ the normal bundle. Since M_G is a transverse intersection of characteristic submanifolds, ν_G is the Whitney sum of their normal bundles. The omniorientation on M makes ν_G into a complex T-bundle.

Consider the T-bundle $\nu_G \oplus \mathbb{C}$, where the T-action on the trivial summand \mathbb{C} is trivial. The projectivisation $\mathbb{C}P(\nu_G \oplus \mathbb{C})$ is a locally standard T-manifold containing M_G, and there are invariant neighbourhoods of M_G in M and of M_G in $\mathbb{C}P(\nu_G \oplus \mathbb{C})$ which are T-diffeomorphic. After removing these invariant neighbourhoods of M_G from M and $\mathbb{C}P(\nu_G \oplus \mathbb{C})$ and reversing orientation on the latter, we can identify the resulting T-manifolds along their boundaries. As a result, we obtain a locally standard T-manifold \tilde{M}, which is called the blow-up of M at M_G.

If G is a vertex, then \tilde{M} is diffeomorphic to the connected sum $M \# \mathbb{CP}^n$.

There is a blow-down map $\tilde{M} \to M$, which collapses the total space $\mathbb{C}P(\nu_G \oplus \mathbb{C})$ onto M_G and is the identity on the remaining part of \tilde{M}.

The orbit space \tilde{Q} of \tilde{M} is obtained by truncating Q at the face G. As a result, \tilde{Q} acquires a new facet, which we denote by \tilde{G}. The simplicial cell complex dual to \tilde{Q} is obtained from the dual of Q by applying a stellar subdivision at the face dual to G (see Definition 2.7.1).

Lemma 7.4.44. \tilde{Q} is face-acyclic if and only if Q is face-acyclic.

Proof. All new faces appearing as the result of truncating Q at G are contained in the facet $\tilde{G} \subset \tilde{Q}$. The blow-down map $\tilde{M} \to M$ induces the projection
\[Q \to Q \text{ collapsing } G \text{ onto } G. \] The face \(G \) is a deformation retract of \(\widetilde{G} \) (combinatorially, \(\widetilde{G} \) is a product of \(G \) and a simplex). Hence \(G \) is acyclic if and only if \(\widetilde{G} \) is acyclic. Similarly, any other new face of \(Q \) deformation retracts onto a face of \(Q \). Furthermore, the map \(Q \to Q \) is also a deformation retraction. \[\square \]

Lemma 7.4.45. \(H^{odd}(\widetilde{M}) = 0 \) if and only if \(H^{odd}(M) = 0 \).

Proof. Assume that \(H^{odd}(M) = 0 \). By Lemma 7.4.8, \(H^{odd}(M_G) = 0 \). The facial submanifold \(M_G \subset M \) is blown up to a codimension-two submanifold \(\widetilde{M}_G \cong CP(v_G) \). The cohomology of the projectivisation of a complex vector bundle over \(M_G \) is a free \(H^*(M_G) \)-module on even-dimensional generators (see, e.g., [340, Chapter V]). Therefore, \(H^{odd}(\widetilde{M}_G) = 0 \).

The blow-down map \(\widetilde{M} \to M \) induces a map between exact sequences of pairs

\[
\begin{align*}
H^{k-1}(M_G) & \longrightarrow H^k(M, M_G) \longrightarrow H^k(M) \longrightarrow H^k(M_G) \\
\downarrow & \cong \downarrow & \downarrow & \downarrow \\
H^{k-1}(\widetilde{M}_G) & \longrightarrow H^k(\widetilde{M}, \widetilde{M}_G) \longrightarrow H^k(\widetilde{M}) \longrightarrow H^k(\widetilde{M}_G)
\end{align*}
\]

where the second vertical arrow is an isomorphism by excision. Assume that \(k \) is odd. Since \(H^k(M) = 0 \), the map \(H^{k-1}(M_G) \to H^k(M, M_G) \) is onto. Therefore, \(H^{k-1}(\widetilde{M}_G) \to H^k(\widetilde{M}, \widetilde{M}_G) \) is onto. Since \(H^k(\widetilde{M}_G) = 0 \), this implies \(H^k(\widetilde{M}) = 0 \).

To prove the opposite statement, we use the algebraic results from Section 3.6. Assume \(H^{odd}(\widetilde{M}) = 0 \). Let \(S \) be the dual simplicial poset of \(Q \), and let \(\tilde{S} \) be the dual poset of \(\widetilde{Q} \). Then \(\tilde{S} \) is obtained from \(S \) by stellar subdivision at the face dual to \(G \). By Lemma 7.4.34, \(\mathbb{Z}[\tilde{S}] \) is a Cohen–Macaulay ring. We claim that \(\mathbb{Z}[S] \) is also Cohen–Macaulay (i.e., the converse of Lemma 3.6.6 holds). Indeed, Theorem 3.6.7 implies that \(\tilde{S} \) is a Cohen–Macaulay simplicial poset. Let \(K \) be a simplicial complex which is a common subdivision of simplicial cell complexes \(S \) and \(\tilde{S} \) (for example, we may take \(K \) to be the barycentric subdivision of \(\tilde{S} \)). Then \(K \) is a Cohen–Macaulay complex by Corollary 3.6.2, hence \(S \) is a Cohen–Macaulay simplicial poset. Another application of Theorem 3.6.7 gives that \(\mathbb{Z}[S] \) is a Cohen–Macaulay ring. Finally, Lemma 7.4.34 implies that \(H^{odd}(M) = 0 \). \[\square \]

Now we can prove our final result:

Theorem 7.4.46 ([252]). The odd-degree cohomology of a locally standard \(T \)-manifold \(M \) vanishes if and only if the orbit space \(Q \) is face-acyclic.

Proof. The idea is to reduce to Theorem 7.4.41 by blowing up sufficiently many facial submanifolds. If the orbit space of \(M \) is face-acyclic, then it becomes a homology polytope after sufficiently many blow-ups.

Let \(S \) be the simplicial poset dual to \(Q \). Since the barycentric subdivision is a sequence of stellar subdivisions (Proposition 3.6.3), by applying appropriate blow-ups we get a torus manifold \(M' \) with orbit space \(Q' \) such that the face poset of \(Q' \) is the barycentric subdivision of the face poset of \(Q \). The collapse map \(M' \to M \) is a composition of blow-down maps:

\[
(7.32) \quad M = M_0 \leftarrow M_1 \leftarrow \cdots \leftarrow M_k = M'.
\]

Assume that \(H^{odd}(M) = 0 \). Then \(M \) is locally standard by Theorem 7.4.14. By applying Lemma 7.4.45 successively, we get \(H^{odd}(M') = 0 \). By construction, all
intersections of faces of Q' are connected, so $H^*(M')$ is generated in degree two by Lemma 7.4.34 and Q' is a homology polytope by Theorem 7.4.41. In particular, Q' is face-acyclic. Finally, by applying Lemma 7.4.44 successively, we conclude that Q is also face-acyclic.

Assume now that Q is face-acyclic. By applying Lemma 7.4.44 successively, we obtain that Q' is also face-acyclic. On the other hand, S' is a simplicial complex, hence Q' is a homology polytope. By Theorem 7.4.41, $H^{odd}(M') = 0$. By applying Lemma 7.4.45 successively, we finally conclude that $H^{odd}(M) = 0$. □

Remark. As one can easily observe, the argument for the 'only if' part of Theorem 7.4.46 is independent of Theorem 7.4.28 and Theorem 7.4.33. Now, given that Q is face-acyclic, one readily deduces that the 1-skeleton of Q is connected. Indeed, otherwise the smallest face containing vertices from two different connected components of the 1-skeleton would be a manifold with at least two boundary components and thereby non-acyclic. Thus, our reference to Theorem 7.4.28 was actually unnecessary, although it made the argument more straightforward.

Exercises.

7.4.47. If M is orientable and $H^{odd}(M) = 0$, then $H^*(M)$ is torsion-free.

7.4.48. Any torus manifold M has at least two characteristic submanifolds.

7.4.49. Any T-fixed point of a torus $2n$-manifold M is contained in an intersection of n characteristic submanifolds.

7.4.50. Each face of a face-acyclic manifold with corners has a vertex.

7.4.51. The equivariant Chern class of a torus manifold M with an invariant stably complex structure is given by

$$c^T(M) = \prod_{i=1}^{m}(1 + \tau_i) \mod H^*(BT)$$

where $\tau_i \in H^2(M)$ is the Thom class defined before Proposition 7.4.10. (Hint: use Corollary 7.4.6, see [249, Theorem 3.1].)

7.4.52. Let M be a torus manifold of dimension $2n$ with $H^{odd}(M; \mathbb{Z}_2) = 0$ and let $G \subset T$ denote the discrete subgroup isomorphic to \mathbb{Z}_2^n. Show that the G-equivariant Stiefel–Whitney class of M is given by

$$w^G(M) = \prod_{i=1}^{m}(1 + \tau_i),$$

where $\tau_i \in H^2_G(M; \mathbb{Z}_2)$ is the mod-2 Thom class.

7.4.53. Prove the following particular case of Theorem 3.7.4. Let S be a Gorenstein* simplicial poset such that there exists a torus manifold M with $H^{odd}(M) = 0$ and orbit space Q whose dual poset is S. Let $h(S) = (h_0, h_1, \ldots, h_n)$ be the h-vector. Assume that n is even and $h_i = 0$ for some i. Then $h_{n/2}$ is even. (Hint: use the previous exercise, see [252, Theorem 10.1]. An algebraic version of this argument was used in [250] to prove Theorem 3.7.4 completely.)
7.5. Topological toric manifolds

Recall that a toric manifold is a smooth complete (compact) algebraic variety with an effective algebraic action of an algebraic torus \((\mathbb{C}^\times)^n\) having an open dense orbit. More constructively, toric varieties can be defined via the fan-variety correspondence; this gives a covering of the variety by invariant affine charts, which in the smooth complete case are algebraic representation spaces of \((\mathbb{C}^\times)^n\).

The idea behind Ishida, Fukukawa and Masuda’s generalisation of toric manifolds is to combine topological versions of these two definitions of toric varieties:

Definition 7.5.1 ([197]). A topological toric manifold is a closed smooth manifold \(X\) of dimension \(2n\) with an effective smooth action of \((\mathbb{C}^\times)^n\) having an open dense orbit and covered by finitely many invariant open subsets each equivariantly diffeomorphic to a smooth representation space of \((\mathbb{C}^\times)^n\).

As is pointed out in [197], keeping only the first part of the definition (i.e. a smooth \((\mathbb{C}^\times)^n\)-action with a dense orbit) leads to a vast and untractable class of objects; therefore it is important to include the covering by invariant charts.

In this section we review the main properties of topological toric manifolds, and outline the construction of the correspondence between topological toric manifolds and generalised fans, called topological fans. We mainly follow the notation and terminology of [197]. The details of proofs can be found in the original paper.

The effectiveness of the \((\mathbb{C}^\times)^n\)-action on a topological toric manifold \(X\) implies that the smooth representation of \((\mathbb{C}^\times)^n\) modelling each invariant chart of \(X\) is faithful. A faithful smooth real \(2n\)-dimensional representation of \((\mathbb{C}^\times)^n\) is isomorphic to a direct sum of real 2-dimensional representations.

To get a hold on smooth representations of \((\mathbb{C}^\times)^n\), we consider the case \(n = 1\) first. A smooth representation of \(\mathbb{C}^\times = \mathbb{R}_\times \mathbb{S}\) in \(\mathbb{C} = \mathbb{R}^2\) can be viewed as a smooth endomorphism of \(\mathbb{C}^\times\). Such an endomorphism has the form

\[
z \mapsto z^\mu = \left|z\right|^{b+ic} \left(z / \left|z\right|\right)^a \quad \text{with} \quad \mu = (b + ic, a) \in \mathbb{C} \times \mathbb{Z}.
\]

The representation given by \(z \to z^\mu\) is algebraic if and only if \(c = 0\) and \(b = a\).

Composition of smooth endomorphisms of \(\mathbb{C}^\times\) defines a (noncommutative) product on \(\mathbb{C} \times \mathbb{Z}\), given by

\[
(z^\mu_1 z^\mu_2)^\mu = z^{\mu_1 + \mu_2}, \quad \mu_2 \mu_1 = (b_1 b_2 + i (b_1 c_2 + c_1 a_2), a_1 a_2).
\]

This product becomes the matrix product if we represent \(\mu\) by \(2 \times 2\) matrices:

\[
\begin{pmatrix}
b_2 & 0 \\
c_2 & a_2
\end{pmatrix}
\begin{pmatrix}
b_1 & 0 \\
c_1 & a_1
\end{pmatrix} =
\begin{pmatrix}
b_2 b_1 & 0 \\
c_2 b_1 + a_2 c_1 & a_2 a_1
\end{pmatrix}.
\]

Let \(\mathcal{R}\) be the ring consisting of elements of \(\mathbb{C} \times \mathbb{Z}\) with componentwise addition and multiplication defined above. The ring \(\mathcal{R}\) is therefore isomorphic to the ring \(\text{Hom}_{\text{sm}}(\mathbb{C}^\times, \mathbb{C}^\times)\) of smooth endomorphisms of \(\mathbb{C}^\times\).

Given \(\alpha = (\alpha^1, \ldots, \alpha^n) \in \mathcal{R}^n\) and \(\beta = (\beta^1, \ldots, \beta^n) \in \mathcal{R}^n\), define smooth homomorphisms \(\chi^\alpha \in \text{Hom}_{\text{sm}}((\mathbb{C}^\times)^n, \mathbb{C}^\times)\) and \(\lambda^\beta \in \text{Hom}_{\text{sm}}(\mathbb{C}^\times, (\mathbb{C}^\times)^n)\) by

\[
\chi^\alpha(z_1, \ldots, z_n) = \prod_{k=1}^n z_k^{\alpha^k}, \quad \lambda^\beta(z) = (z^{\beta^1}, \ldots, z^{\beta^n}),
\]

where \(\mathbb{C}\) acts on the right by \(z^\mu \cdot z = z^{\mu + \mu}\).
and also define
\[\langle \alpha, \beta \rangle = \sum_{k=1}^{n} \alpha^k \beta^k \in \mathcal{R}. \]

The following properties are checked easily:

(a) \(\chi^\alpha(\lambda_\beta(z)) = z^{\langle \alpha, \beta \rangle} \);

(b) \(\lambda_\beta(x^\alpha(z_1, \ldots, z_n)) = \left(\prod_{k=1}^{n} z_k^{\beta^k \alpha_k}, \ldots, \prod_{k=1}^{n} z_k^{\beta^n \alpha_k} \right). \)

Given \(\alpha_1, \ldots, \alpha_n \in \mathcal{R}^n \), define the endomorphism \(\bigoplus_{i=1}^{n} \chi^{\alpha_i} \) of \((\mathbb{C}^n)^n \) by
\[
\left(\bigoplus_{i=1}^{n} \chi^{\alpha_i} \right)(z_1, \ldots, z_n) = (x^{\alpha_1}(z_1, \ldots, z_n), \ldots, x^{\alpha_n}(z_1, \ldots, z_n)).
\]

Proposition 7.5.2. Any smooth representation of \((\mathbb{C}^n)^n \) in \(\mathbb{C}^n \) has the form \(\bigoplus_{i=1}^{n} \chi^{\alpha_i} \) with \(\alpha_i \in \mathcal{R}^n \). This representation is faithful if and only if the \(n \times n \)-matrix formed by the coordinates of \(\alpha_i \) has an inverse in Mat_\(n(\mathbb{R}) \).

A faithful representation of \((\mathbb{C}^n)^n \) in \(\mathbb{C}^n \) has a unique fixed point \(0 \), hence the fixed point set \(X^{(\mathbb{C}^n)^n} \) of a topological toric manifold is finite.

A closed connected submanifold of real codimension two in a topological toric manifold \(X \) is called characteristic if it is fixed pointwise by a subgroup isomorphic to \(\mathbb{C}^n \). There are finitely many characteristic submanifolds in \(X \), and we denote them by \(X_1, \ldots, X_m \).

It can be easily seen that a topological toric manifold \(X \) is simply connected ([197, Proposition 3.2]). In particular, \(X \) is orientable. For each characteristic submanifold \(X_j \), the normal bundle \(\nu_j = \nu(X_j \subset X) \) is orientable as a \((\mathbb{C}^n) \)-equivariant bundle. Therefore, \(X_j \) itself is also orientable. A choice of an orientation for each \(X_j \) together with an orientation of \(X \) is called an omniorientation on \(X \). Topological toric manifolds are assumed to be omnioriented below.

Lemma 7.5.3 ([197, Lemma 3.3]). For each characteristic submanifold \(X_j \), there is a unique \(\beta_j(X) \in \mathcal{R}^n \) such that the subgroup \(\lambda_{\beta_j(X)}(\mathbb{C}^n) \subset (\mathbb{C}^n)^n \) fixes \(X_j \) pointwise and \(\lambda_{\beta_j(X)}(z) \cdot \xi = z \xi \) for any \(z \in \mathbb{C}^n, \xi \in \nu_j \), where \(\lambda_{\beta_j(X)}(z) \) denotes the differential of \(\lambda_{\beta_j(X)}(z) \).

Characteristic submanifolds of \(X \) intersect transversely. Furthermore, multiple intersections of characteristic submanifolds are all connected (as in the case of quasitoric manifolds, and unlike general torus manifolds), see [197, Lemma 3.6]. In particular, any fixed point \(v \in X^{(\mathbb{C}^n)^n} \) is an intersection of an \(n \)-tuple \(X_{j_1}, \ldots, X_{j_n} \) of characteristic submanifolds, so we have an isomorphism of real \((\mathbb{C}^n)^n \)-representation spaces
\[
T_vX \cong (\nu_{j_1} \oplus \cdots \oplus \nu_{j_n})|_v.
\]

The omniorientation of \(X \) defines orientations for the left and right hand side of the identity above. These two orientations may be different, so the sign of \(v \) is defined (compare Lemma 7.3.19 (a)).

The element \(\beta_j(X) \) defined in Lemma 7.5.3 can be written as
\[
(7.33) \quad \beta_j(X) = (b_j(X) + i c_j(X), a_j(X)) \in \mathbb{C}^n \times \mathbb{Z}^n.
\]

Here is an analogue of Proposition 7.3.18 for topological toric manifolds:
Lemma 7.5.4 ([197, Lemma 3.4]). Let \(v = X_{j_1} \cap \cdots \cap X_{j_n} \) be a fixed point of \(X \). Then \(\{ b_{j_1}(X), \ldots, b_{j_n}(X) \} \) and \(\{ a_{j_1}(X), \ldots, a_{j_n}(X) \} \) are bases of \(\mathbb{R}^n \) and \(\mathbb{Z}^n \) respectively.

The complex \(C^* \)-representation space \((\nu_{j_1} \oplus \cdots \oplus \nu_{j_n})v \) is isomorphic to \(\bigoplus_{k=1}^n \chi^{\alpha_k(v)} \), where \(\{ \alpha_1^{(v)}, \ldots, \alpha_n^{(v)} \} \) is the dual set of \(\{ \beta_1(X), \ldots, \beta_n(X) \} \), defined uniquely by the condition
\[
\langle \alpha_k^{(v)}, \beta_{j_k}(X) \rangle = \delta_{kl}
\]
(here \(\delta_{kl} \) denotes the Kronecker delta).

Define the simplicial complex \(K(X) \) on \([m]\) whose simplices correspond to nonempty intersections of characteristic submanifolds:
\[
K(X) = \{ I = \{ i_1, \ldots, i_k \} \in [m] : X_{i_1} \cap \cdots \cap X_{i_k} \neq \emptyset \}.
\]

When \(X \) is a toric manifold, we have \(b_j(X) = a_j(X) \) and \(c_j(X) = 0 \) in (7.33), and the primitive vector \(a_j(X) \) corresponds to the 1-parameter algebraic subgroup of \((\mathbb{C}^*)^n \) fixing the divisor \(X_j \). Furthermore, the data \(\{ K(X); a_1(X), \ldots, a_m(X) \} \) define a complete simplicial regular fan (see Section 6.5). Now let us see what kind of combinatorial structure replaces a fan in the case of topological toric manifolds.

Given \(I \in K(X) \), let \(\sigma_I = \mathbb{R}_+ \langle b_i : i \in I \rangle \) denote the cone spanned by the vectors \(b_i \in \mathbb{R}^n \) with \(i \in I \). By Lemma 7.5.4, \(\sigma_I \) is a simplicial cone of dimension \(|I|\).

Lemma 7.5.5 ([197, Lemma 3.7]). \(\bigcup_{I \in K(X)} \sigma_I = \mathbb{R}^n \) and \(\sigma_I \cap \sigma_J = \sigma_{IJ} \). In other words, the data \(\{ K(X); b_1(X), \ldots, b_m(X) \} \) define a complete simplicial fan.

Definition 7.5.6. Let \(K \) be a simplicial complex on \([m]\), and let
\[
\beta_j = (b_j + ic_j, a_j) \in \mathbb{C}^n \times \mathbb{Z}^n, \quad j = 1, \ldots, m
\]
be a collection of \(m \) elements of \(\mathbb{C}^n \times \mathbb{Z}^n \). The data \(\{ K; \beta_1, \ldots, \beta_m \} \) is said to define a (regular) topological fan \(\Delta \) if the following two conditions are satisfied:

(a) the data \(\{ K; b_1, \ldots, b_m \} \) define a simplicial fan in \(\mathbb{R}^n \);
(b) for each \(I \in K \), the set \(\{ a_i : i \in I \} \) is a part of basis of \(\mathbb{Z}^n \).

A topological fan \(\Delta \) is said to be complete if the ordinary fan from (a) is complete.

Note that the fan of (a) is not required to be rational or regular, but if \(a_j = b_j \) for all \(j \), then \(\Delta \) becomes a regular ordinary fan.

Theorem 7.5.7 ([197, Theorem 8.1]). There is a bijective correspondence between omnioriented topological toric manifolds of dimension \(2n \) and complete topological fans of dimension \(n \).

Sketch of proof. Let \(X \) be a topological toric manifold. By Lemma 7.5.5, the data \(\{ K(X); \beta_1(X), \ldots, \beta_m(X) \} \) define a complete topological fan \(\Delta(X) \).

Now let \(\Delta \) be a complete topological fan, defined by data \(\{ K; \beta_1, \ldots, \beta_m \} \). For each maximal simplex \(I = \{ i_1, \ldots, i_n \} \in K \), let \(\{ \alpha_1', \ldots, \alpha_n' \} \) be the dual set of \(\{ \beta_1, \ldots, \beta_n \} \) (compare Lemma 7.5.4). Condition (b) of Definition 7.5.6 guarantees that the complex \(n \)-dimensional representation \(\bigoplus_{k=1}^n \chi^{\alpha_k} \) of \((\mathbb{C}^*)^n \) is faithful.

These representation spaces corresponding to all maximal \(I \in K \) patch together into a topological space \(X(\Delta) \) locally homeomorphic to \(\mathbb{C}^n \), and \((\mathbb{C}^*)^n \) acts on \(X \) smoothly with an open dense orbit. As in the case of ordinary fans, condition (a) of Definition 7.5.6 guarantees that the space \(X(\Delta) \) is Hausdorff, so it is a smooth manifold. (However, the algebraic criterion for separatedness used in the proof of
Lemma 5.1.4 cannot be used here; a topological argument is needed.) Finally the condition that \(\Delta \) is complete gives that \(X(\Delta) \) is compact, i.e. closed.

An alternative way to proceed is to use an analogue of the quotient construction of toric varieties, described in Section 5.4. To do this, define the coordinate subspace arrangement complement \(U(\mathbb{K}) \) by (5.5), and define the homomorphism

\[
\lambda: (\mathbb{C}^\times)^m \to (\mathbb{C}^\times)^n, \quad \lambda(z_1, \ldots, z_m) = \prod_{k=1}^{m} \lambda_{\beta_k}(z_k).
\]

Then \(\lambda \) is surjective and its kernel is given by

\[
\text{Ker} \lambda = \{ (z_1, \ldots, z_m) \in (\mathbb{C}^\times)^m : \prod_{i=1}^{m} z_i^{\alpha_i \beta_i} = 1 \text{ for any } \alpha \in \mathbb{R}^n \},
\]

by analogy with (5.3). Then define

\[
X(\Delta) = U(\mathbb{K}) / \text{Ker} \lambda = \bigcup_{I \in \mathbb{K}} (\mathbb{C}, \mathbb{C}^\times)^I / \text{Ker} \lambda.
\]

The space \(X(\Delta) \) has a smooth action of \((\mathbb{C}^\times)^m / \text{Ker} \lambda \cong (\mathbb{C}^\times)^n\) with an open dense orbit. Furthermore, for each maximal \(I \in \mathbb{K} \) there is an equivariant diffeomorphism

\[
\varphi_I: (\mathbb{C}, \mathbb{C}^\times)^I / \text{Ker} \lambda \to \bigoplus_{k=1}^{n} \chi^{I}_{\alpha_k},
\]

where the latter is the faithful smooth \((\mathbb{C}^\times)^n\)-representation space defined above. Condition (a) of Definition 7.5.6 translates into the condition of \(X(\Delta) \) being Hausdorff. The fact that only the ‘real part’ \((K; b_1, \ldots, b_m)\) of the topological fan data matters when deciding whether the quotient is Hausdorff should be clear from the similar argument in the proof of Theorem 6.5.2 (b). Finally, \(X(\Delta) \) is compact because \(\Delta \) is complete. Thus, \(X(\Delta) \) with the local charts \(\{(\mathbb{C}, \mathbb{C}^\times)^I / \text{Ker} \lambda, \varphi_I\} \) is a topological toric manifold. \(\square \)

For the classification of topological toric manifolds up to equivariant diffeomorphism or homeomorphism, see [197, Corollary 8.2]

One can restrict the \((\mathbb{C}^\times)^n\)-action on \(X \) to the compact \(n \)-torus \(\mathbb{T}^n \). The resulting \(\mathbb{T}^n \)-manifold \(X \) is obviously a locally standard torus manifold, so the quotient \(X/\mathbb{T}^n \) is a manifold with corners.

Lemma 7.5.8 ([197, Lemma 7.1]). All faces of \(X/\mathbb{T}^n \) are contractible and the face poset of \(X/\mathbb{T}^n \) coincides with the inverse poset of \(\mathcal{K}(X) \).

It follows that \(X/\mathbb{T}^n \) is a homology polytope. As a corollary of Theorem 7.4.35 and Theorem 7.4.41, we obtain the following description of the cohomology of \(X \), similar to toric or quasitoric manifolds:

Theorem 7.5.9. Let \(X \) be a topological toric manifold, whose associated topological fan is defined by the data \((\mathcal{K}(X); \beta_1(X), \ldots, \beta_m(X))\). Then the cohomology ring of \(X \) is given by

\[
H^*(X) \cong \mathbb{Z}[v_1, \ldots, v_m] / I,
\]

where \(v_i \in H^2(X) \) is the class dual to the characteristic submanifold \(X_i \), and \(I \) is the ideal generated by elements of the following two types:

(a) \(v_i \cdots v_k \) with \(\{i_1, \ldots, i_k\} \notin \mathcal{K}(X) \);
(b) \[\sum_{i=1}^{m} \langle u, a_i(X) \rangle v_i, \text{ for any } u \in \mathbb{Z}^n. \]

The element \(a_i(X) \in \mathbb{Z}^n \) here is the second coordinate of \(\beta_i(X) \), see (7.33).

7.6. Relationship between different classes of 7-manifolds

The relationship is described schematically in Figure 7.5. Each class shown in an oval is contained as a proper subclass in the next larger oval, except for one case (topological toric manifolds and quasitoric manifolds), where the relation is slightly more subtle. Different examples are discussed below.

![Diagram](image)

Figure 7.5. Classes of 7-manifolds.

Projective toric manifolds are also Hamiltonian toric manifolds (see Sections 5.5 and 6.3). However, when viewed as symplectic manifolds, projective toric manifolds form a smaller class: their symplectic forms represent integral cohomology classes and their moment polytopes are lattice Delzant, while an arbitrary Delzant polytope can be realised as the moment polytope of a Hamiltonian toric manifold.

A toric manifold (nonsingular compact toric variety) which is not projective is described in Example 5.2.3.

A projective toric manifold is quasitoric by Proposition 7.3.2.

Many examples of quasitoric manifolds which are not toric can be constructed using the equivariant connected sum operation (Construction 9.1.11). The simplest example is \(CP^2 \# CP^2 \). It can be easily seen to be a quasitoric manifold over a 4-gon, but it does not admit an almost complex structure, and therefore cannot be a complex algebraic variety. A non-toric example with an invariant almost complex structure is given in Exercise 7.3.38.

Examples of toric manifolds which are not quasitoric are constructed by Suyama [342]. The basic example is of real dimension 8; its corresponding regular simplicial fan is obtained by subdividing a singular fan whose underlying simplicial complex is the Barrette sphere (see Construction 2.5.5). More examples in arbitrary dimension can be constructed by subsequent subdivision and suspension.

Any quasitoric manifold \(M \) is \(T \)-equivariantly homeomorphic to a \(T \)-manifold obtained by restricting the \((\mathbb{C}^\times)^n \)-action on a topological toric manifold to the compact torus \(T^n \subset (\mathbb{C}^\times)^n \) (see [197, Theorem 10.2]). The easiest way to see this is to
use the classification results (Proposition 7.3.11 and Theorem 7.5.7), and construct a topological fan from the combinatorial quasitoric pair \((P, \Lambda)\) corresponding to \(M\). To do this, consider any convex realisation (6.1) of the polytope \(P\), and define

\[\beta_j = (a_j + ic_j, \lambda_j) \in \mathbb{C}^n \times \mathbb{Z}^n, \quad j = 1, \ldots, m, \]

where \(a_j\) are the normal vectors to the facets of \(P\), and \(\lambda_j\) are the columns of the characteristic matrix \(\Lambda\). The vectors \(c_j \in \mathbb{R}^n\) can be chosen arbitrarily. Then the data \((K_P; \beta_1, \ldots, \beta_m)\) define a topological fan \(\Delta\). Indeed, condition (a) from Definition 7.5.6 is satisfied because \((K_P; a_1, \ldots, a_m)\) define the normal fan \(\Sigma_P\), and condition (b) is equivalent to (7.5). Then the topological toric manifold \(X(\Delta)\) is \(T\)-homeomorphic to \(M\) and the restriction of the \((\mathbb{C}^\times)^n\)-action to the compact torus \(T\) gives the \(T\)-action on \(M\) (this follows by comparing the construction of \(X(\Delta)\) with Proposition 7.3.13).

Remark. One would expect that the \(T\)-action on a quasitoric manifold \(M\) can be extended to a \((\mathbb{C}^\times)^n\)-action which gives \(M\) a structure of a topologically toric manifold. This stronger statement would hold if one can replace an equivariant homeomorphism by an equivariant diffeomorphism in Proposition 7.3.6.

In [197, §9] there is constructed a topological toric manifold \(X\) whose associated simplicial complex \(\mathcal{K}(X)\) is the Barnette sphere. Since the Barnette sphere is not polytopal, this \(X\) is not a quasitoric manifold.

A toric manifold is topologically toric by definition. An example of a topological toric manifold which is not toric can be constructed from the quasitoric manifold \(\mathbb{C}P^2 \neq \mathbb{C}P^2\) as described above. An explicit topological toric atlas on \(\mathbb{C}P^2 \neq \mathbb{C}P^2\) and the corresponding topological fan are described in [197, §5, Example].

Any topological toric manifold is a torus manifold with \(H^{odd} = 0\) by Proposition 7.5.9. An even-dimensional sphere is a torus manifold with \(H^{odd} = 0\) (Example 7.4.11), but it is not a topological toric manifold.

An example of a torus manifold with \(H^{odd} \neq 0\) can be constructed as follows. Take any torus manifold \(M\) whose quotient \(Q\) is face-acyclic. Let \(R\) be any closed manifold which is not a homology sphere. Consider the connected sum \(\tilde{Q} = Q \# R\) taken near an interior point of \(Q\). Then \(\tilde{Q}\) is a manifold with corners with \(\partial \tilde{Q} = \partial Q\). In particular, all proper faces of \(\tilde{Q}\) are acyclic, but \(\tilde{Q}\) itself is not (we have \(H^*(\tilde{Q}) \cong H^*(R \setminus pt)\)). Consider the manifold \(\tilde{M} = M(\tilde{Q}, \lambda)\) constructed using the characteristic map of \(M\), see (7.22). The singular \(T\)-orbits of \(\tilde{M}\) are the same as those of \(M\), but the free orbits are different. Now the quotient of \(\tilde{M}\) is \(\tilde{Q}\), which is not face-acyclic. Hence \(H^{odd}(\tilde{M}) \neq 0\) by Theorem 7.4.46 (this can be also easily seen directly). The simplest example is obtained when \(M = \mathbb{C}P^2\) and \(R\) is a 2-torus.

Any torus manifold with \(H^{odd} = 0\) is locally standard by Theorem 7.4.14.

An example of a torus manifold which is not locally standard is given in [197, §11]. A free action of \(T^n\) on the first factor of a product manifold \(T^n \times N^n\) gives an example of a locally standard \(T\)-manifold which is not a torus manifold.

We conclude this section by mentioning that there are real analogues of all classes of \(T\)-manifolds considered here, in which the torus \(T^n\) is replaced by the ‘real torus’ \((\mathbb{Z}_2)^n\) and the algebraic torus \((\mathbb{C}^\times)^n\) is replaced by \((\mathbb{R}^\times)^n\), where \(\mathbb{R}^\times \cong \mathbb{R}_+ \times \mathbb{Z}_2\) is the multiplicative group of real numbers. The ‘real’ versions of the results of this chapter are often simpler; the reader may recover the details of the proofs himself. Real toric varieties feature in tropical geometry [200]. Real quasitoric
manifolds are known as small covers of simple polytopes; they were introduced by Davis and Januszkiewicz in [112] along with quasitoric manifolds.

7.7. Bounded flag manifolds

Bounded flag manifolds BF_n were introduced by Buchstaber and Ray in [73] and subsequently studied in [72] and [74]. Each BF_n is a projective toric manifold whose moment polytope is combinatorially equivalent to an n-cube, so that BF_n is also a quasitoric manifold over a cube. Bounded flag manifolds are examples of iterated projective bundles, or Bott towers, which are studied in the next section. The manifolds BF_n find numerous application in cobordism theory; they are implicitly present in the work of Conner–Floyd [100] and in the construction of Ray’s basis [319] in the complex bordism of \mathbb{CP}^∞ (see details in Section 9.2), and they are used in the construction of toric representatives in complex bordism classes, described in Section 9.1. Bounded flag manifolds also illustrate nicely many constructions and results related to toric and quasitoric manifolds.

Construction 7.7.1 (Bounded flag manifold). A bounded flag in \mathbb{C}^{n+1} is a complete flag

$$U = \{U_1 \subset U_2 \subset \cdots \subset U_{n+1} = \mathbb{C}^{n+1}, \quad \dim U_i = i\}$$

for which U_k, $2 \leq k \leq n$, contains the coordinate subspace $\mathbb{C}^{k-1} = \langle e_1, \ldots, e_{k-1} \rangle$ spanned by the first $k-1$ standard basis vectors. Denote by BF_n the set of all bounded flags in \mathbb{C}^{n+1}.

Every bounded flag U in \mathbb{C}^{n+1} is uniquely determined by the set of n lines

$$L = \{l_1, \ldots, l_n: \quad l_k \subset \mathbb{C}_k \oplus l_{k+1} \quad \text{for } 1 \leq k \leq n, \quad l_{n+1} = \mathbb{C}_{n+1}\},$$

where $\mathbb{C}_k = \langle e_k \rangle$ is the kth coordinate line in \mathbb{C}^{n+1}. Indeed, given a set of lines L as above, we can construct a bounded flag U by setting $U_k = \mathbb{C}^{k-1} \oplus l_k$ for $1 \leq k \leq n+1$. Conversely, one recovers the set of lines L from a flag U in the reverse order $l_{n+1}, l_n, \ldots, l_1$ using the formula $l_k = (\mathbb{C}_k \oplus l_{k+1}) \cap U_k$.

Theorem 7.7.2. The action of the algebraic torus $(\mathbb{C}^\times)^n$ on \mathbb{C}^{n+1} given by

$$(t_1, \ldots, t_n) \cdot (w_1, \ldots, w_n, w_{n+1}) = (t_1 w_1, \ldots, t_n w_n, w_{n+1}),$$

where $(t_1, \ldots, t_n) \in (\mathbb{C}^\times)^n$ and $(w_1, \ldots, w_n, w_{n+1}) \in \mathbb{C}^{n+1}$, induces an action on bounded flags, and therefore makes BF_n into a smooth toric variety.

Proof. We first construct a covering of BF_n by smooth affine charts with regular change of coordinate functions, thereby giving BF_n a structure of a smooth affine variety. We parametrise bounded flags by sets of lines (7.34). Let v_k be a nonzero vector in l_k, for $1 \leq k \leq n$, and set $v_{n+1} = e_{n+1}$ for the last line. Consider two collections of n open subsets in BF_n:

$$V^0_k = \{U \in BF_n: l_k \neq \mathbb{C}_k\}, \quad V^1_k = \{U \in BF_n: \langle v_k, e_k \rangle \neq 0\}, \quad 1 \leq k \leq n.$$

Now define 2^n open subsets

$$V_{\varepsilon_1, \ldots, \varepsilon_n} = V^1_{\varepsilon_1} \cap \cdots \cap V^1_{\varepsilon_n}, \quad \text{where } \varepsilon_k = 0, 1,$$

Then $\{V_{\varepsilon_1, \ldots, \varepsilon_n}\}$ is a covering of BF_n, because $V^0_k \cup V^1_k = BF_n$ for any k. The condition $l_k \subset \mathbb{C}_k \oplus l_{k+1}$ implies

$$v_k = z_k e_k + z_{k+n} v_{k+1}, \quad 1 \leq k \leq n,$$

where $z_k, z_{k+n} \in \mathbb{C}, \quad 1 \leq k \leq n.$
for some $z_i \in \mathbb{C}$, $1 \leq i \leq 2n$. We have $z_k \neq 0$ if $U \in V^1_k$, and $z_{k+n} \neq 0$ if $U \in V^0_k$. Let $U \in V^{\sigma_1, \ldots, \sigma_n}$; then we can choose the vectors \((7.35)\) in the form
$v_k = x_k^0 e_k + v_{k+1}$ if $\varepsilon_k = 0$, and $v_k = e_k + x_k^1 v_{k+1}$ if $\varepsilon_k = 1$, for $1 \leq k \leq n$. Then we can identify $V^{\sigma_1, \ldots, \sigma_n}$ with \mathbb{C}^n using the affine coordinates (x_1^1, \ldots, x_n^1). The change of coordinate functions are regular on intersections of charts by inspection, so that BF_n is a smooth algebraic variety, with affine atlas \(\{ V^{\sigma_1, \ldots, \sigma_n} \} \).

Furthermore, the change of coordinate functions are Laurent monomials, which implies that BF_n is a toric variety. This can also be seen directly, as the torus action defined in the theorem is standard in the affine chart $V^{0, \ldots, 0}$, that is,
\[(t_1, \ldots, t_n) \cdot (x_1^0, \ldots, x_n^0) = (t_1 x_1^0, \ldots, t_n x_n^0).\]

Proposition 7.7.3. The complete fan Σ corresponding to the toric variety BF_n has $2n$ one-dimensional cones generated by the vectors
\[a_0^k = e_k, \quad a_1^k = -e_1 - \cdots - e_k, \quad 1 \leq k \leq n,
\]
and 2^n maximal cones generated by the sets of vectors $a_1^{\sigma_1}, \ldots, a_n^{\sigma_n}$, where $\varepsilon_k = 0, 1$.

Proof. Each affine chart $V^{\sigma_1, \ldots, \sigma_n} \subset BF_n$ constructed in the proof of Theorem 7.7.2 corresponds to an n-dimensional cone $\sigma^{\sigma_1, \ldots, \sigma_n}$ of the fan Σ, so there are 2^n maximal cones in total. One-dimensional cones of Σ correspond to $(\mathbb{C}^*)^n$-invariant submanifolds of complex codimension 1 in BF_n. Each of these submanifolds is defined by vanishing of one of the affine coordinates, i.e. by an equation $x_k^\varepsilon = 0$, so there are $2n$ such submanifolds.

In order to find the generators of the cone $\sigma^{\sigma_1, \ldots, \sigma_n}$, we note that the primitive generators of the dual cone $(\sigma^{\sigma_1, \ldots, \sigma_n})^*$ are the weights of the $(\mathbb{C}^*)^n$-representation in the affine space \mathbb{C}^n corresponding to the chart $V^{\sigma_1, \ldots, \sigma_n}$. The $(\mathbb{C}^*)^n$-representation in the chart $V^{0, \ldots, 0}$ is standard, so we have $a_0^k = e_k$ for $1 \leq k \leq n$. In order to find the remaining vectors it is enough to calculate the weights of the torus representation in the chart $V^{1, \ldots, 1}$.

The coordinates (x_1^1, \ldots, x_n^1) in the chart $V^{1, \ldots, 1}$ are defined from the relations $v_k = e_k + x_k^1 v_{k+1}$, $1 \leq k \leq n$, and $v_{n+1} = e_{n+1}$. An element $(t_1, \ldots, t_n) \in (\mathbb{C}^*)^n$ acts on e_k as multiplication by t_k for $1 \leq k \leq n$ and acts on e_{n+1} identically (see Theorem 7.7.2). Then it is easy to see that the torus representation is written in the coordinates (x_1^1, \ldots, x_n^1) as follows:
\[(t_1, \ldots, t_n) \cdot (x_1^1, \ldots, x_n^1) = (t_1 x_1^1, \ldots, t_n x_n^1) = (t_1^{-1} t_2 x_1^1, \ldots, t_n x_{n-1}^1, t_n x_n^1).
\]
In other words, the weights of this representation are the columns of the matrix
\[W = \begin{pmatrix}
-1 & 0 & \ldots & 0 & 0 \\
1 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & -1 & 0 \\
0 & 0 & \ldots & 1 & -1
\end{pmatrix}.
\]
The generators a_1^1, \ldots, a_n^1 of the cone $\sigma^{1, \ldots, 1}$ form the dual basis, i.e. they are columns of the matrix $(W^{-1})^t$. These are the vectors listed in the lemma.

Proposition 7.7.4. The bounded flag manifold BF_n is the projective toric variety corresponding to the polytope
\[P = \{ x \in \mathbb{R}^n : x_k \geq 0, \quad x_1 + \cdots + x_k \leq k, \quad \text{for } 1 \leq k \leq n \}.
\]
Proof. We need to check that the normal fan of this P is the fan from Proposition 7.7.3. Indeed, the $2n$ inequalities specifying P can be written as \(\langle a^0_k, x \rangle \geq 0 \) and \(\langle a^1_k, x \rangle + k \geq 0 \), for $1 \leq k \leq n$. Set
\[
F^0_k = \{ x \in P : \langle a^0_k, x \rangle = 0 \} \quad \text{and} \quad F^1_k = \{ x \in P : \langle a^1_k, x \rangle + k = 0 \}.
\]
Then we need to check that
(a) each $F^0_k (\varepsilon = 0, 1)$ is a facet of P;
(b) $F^0_k \cap F^1_k = \emptyset$, for $1 \leq k \leq n$;
(c) the intersection of any n-tuple F^0_1, \ldots, F^0_n is a vertex of P.
This is left as an exercise. \(\square \)

Proposition 7.7.5 ([74]). The bounded flag manifold BF_n is a quasitoric manifold over a combinatorial n-cube I^n, with characteristic matrix
\[
A = \begin{pmatrix}
1 & 0 & \ldots & 0 & -1 & -1 & \ldots & -1 \\
0 & 1 & \ldots & 0 & -1 & -1 & \ldots & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & 0 & 0 & \ldots & -1
\end{pmatrix}.
\]

Proof. Indeed, the polytope from Proposition 7.7.4 is combinatorially equivalent to a cube, and the columns of A are the vectors from Proposition 7.7.3. \(\square \)

Example 7.7.6. The manifold BF_2 is isomorphic to the Hirzebruch surface F_1 (or F_{-1}) from Example 5.1.8.

We can also describe BF_n as a toric manifold using the quotient construction (Section 5.4) or symplectic reduction (Section 5.5), as follows. The moment-angle manifold corresponding to a cube I^n is a product of n three-dimensional spheres:
\[
Z_{I^n} = \{ (z_1, \ldots, z_{2n}) \in \mathbb{C}^{2n} : |z_k|^2 + |z_{k+n}|^2 = 1, \ 1 \leq k \leq n \}.
\]
The manifold BF_n is obtained by taking the quotient of Z_{I^n} by the kernel K of the map $T^{2n} \to T^n$ given by the matrix (7.37). We have $K \cong T^n$, and the inclusion $K \subset T^{2n}$ is given by
\[
(t_1, \ldots, t_n) \mapsto (t_1 t_2 \cdots t_{n-1} t_n, t_2 \cdots t_{n-1} t_n, \ldots, t_{n-1} t_n, t_n, t_1, t_2, \ldots, t_n).
\]
Geometrically, the projection $Z_{I^n} \to BF_n$ maps $z = (z_1, \ldots, z_{2n})$ to the bounded flag defined by the set of lines l_1, \ldots, l_{n+1}, where $l_k = \langle v_k \rangle$ and v_k is given by (7.35) (an exercise).

The algebraic quotient description of BF_n is very similar. Instead of the moment-angle manifold $Z_{I^n} \cong (S^1)^n$ we have the space $U(\Sigma) = (\mathbb{C}^2 \setminus \{0\})^n$. The manifold BF_n is obtained by taking the quotient of $U(\Sigma)$ by the kernel G of the map of algebraic tori $(\mathbb{C}^\times)^n \to (\mathbb{C}^\times)^n$ given by the matrix (7.37).

Now we describe the characteristic submanifolds and their corresponding line bundles (7.8). Let $\pi : BF_n \to P$ be the quotient projection for the torus action, and let ρ^ε_k denote the line bundle corresponding to the characteristic submanifold (or $(\mathbb{C}^\times)^2$-invariant divisor) $\pi^{-1}(F^\varepsilon_k)$, for $1 \leq k \leq n$, $\varepsilon = 0, 1$, see (7.36).

Proposition 7.7.7 ([74]).
(a) The characteristic submanifold $\pi^{-1}(F^0_k)$ is isomorphic to BF_{n-1}, and $\pi^{-1}(F^1_k)$ is isomorphic to $BF_{k-1} \times BF_{n-k}$, for $1 \leq k \leq n$.

(b) The line bundle ρ^0_k is isomorphic to the bundle whose fibre over $U \in BF_n$ is the line $l_k = U_k / \mathbb{C}^{k-1}$. The line bundle ρ^1_k is isomorphic to the bundle whose fibre over $U \in BF_n$ is the quotient $(\mathbb{C}^k \oplus l_{k+1}) / l_k = U_k / U_{k+1}$.

Proof. The submanifold $\pi^{-1}(F^0_k) \subset BF_n$ is obtained by projecting the submanifold of Z_{2n} given by the equation $z_k = 0$ onto BF_n. If $z_k = 0$, then the vectors v_1, \ldots, v_n defined by (7.35) all belong to the subspace $\mathbb{C}^{k} \subset \mathbb{C}^{n+1}$. It follows that $\pi^{-1}(F^0_k)$ can be identified with the set of bounded flags in $\mathbb{C}^{(1, \ldots, n+1) \setminus k}$, that is, with BF_{n-1}.

Similarly, the submanifold $\pi^{-1}(F^1_k)$ is the projection of the submanifold of Z_{2n} given by the equation $z_{k+n} = 0$. Then (7.35) implies that the vectors v_1, \ldots, v_k belong to the subspace $\mathbb{C}^k \subset \mathbb{C}^{n+1}$, and the vectors v_{k+1}, \ldots, v_n belong to the subspace $\mathbb{C}^{(k+1, \ldots, n+1)}$. Therefore, $\pi^{-1}(F^1_k)$ can be identified with $BF_{k-1} \times BF_{n-k}$.

Statement (b) also follows from (7.35), because the line bundle ρ^0_k is isomorphic to $Z_{2n} \times K \mathbb{C}_k$, and ρ^1_k is isomorphic to $Z_{2n} \times K \mathbb{C}_{n+k}$. □

Proposition 7.7.8. The manifold BF_n is the complex projectivisation of the complex plane bundle $\mathbb{C} \oplus \rho^0_k$ over BF_{n-1}.

Proof. Consider the projection $BF_n \to BF_{n-1}$ taking a bounded flag $U = \{U_1 \subset U_2 \subset \cdots \subset U_n \subset \mathbb{C}^{n+1}\}$ to the flag $U' = U / C_1$ in $\mathbb{C}^{1, \ldots, n+1} \cong \mathbb{C}^n$. (More precisely, $U' = \{U'_1 \subset U'_2 \subset \cdots \subset U'_{n-1}\}$, where $U'_k = U_{k+1} / C_1$, $1 \leq k \leq n - 1$.) The set of lines (7.34) corresponding to U' is obtained from the set of lines corresponding to U' by forgetting the first line. In order to recover the flag U from the flag U', one needs to choose a line l_1 in the plane $\mathbb{C}_1 \oplus l_2$. Since l_2 is the first line in the set corresponding to the flag $U' \in BF_{n-1}$, we obtain $BF_n \cong CP(\mathbb{C} \oplus \rho^0_k)$, as needed. □

We therefore obtain a tower of fibrations $BF_n \to BF_{n-1} \to \cdots \to BF_1 = \mathbb{C}P^1$, where each BF_k is the projectivisation of a sum of two line bundles over BF_{k-1}. In particular, the fibre of each bundle in the tower is $\mathbb{C}P^1$. Towers of fibrations arising in this way are called **Bott towers**; they are the subject of the next section.

Exercises.

7.7.9. The fan described in Proposition 7.7.3 is the normal fan of the polytope from Proposition 7.7.4.

7.7.10. Given $z = (z_1, \ldots, z_{2n})$, define the vectors $v_{n+1} = e_{n+1}, v_{n+1}, \ldots, v_1$ by (7.35), and set $l_k = \langle v_k \rangle$, $1 \leq k \leq n + 1$. Then the projection $Z_{2n} \to BF_n$ maps $z \in Z_{2n}$ to the bounded flag in \mathbb{C}^{n+1} defined by the set of lines l_1, \ldots, l_{n+1}.

7.8. Bott towers

In their study of symmetric spaces, Bott and Samelson [42] introduced a family of complex manifolds obtained as the total spaces of iterated bundles over $\mathbb{C}P^1$ with fibre $\mathbb{C}P^1$. Grossberg and Kassman [163] showed that these manifolds carry an algebraic torus action, and therefore constitute an important family of smooth projective toric varieties, and called them Bott towers. Civan and Ray [96] developed significantly the study of Bott towers by enumerating the invariant stably complex structures and calculating their complex and real K-theory rings, and cobordism.
Each Bott tower is a projective toric manifold whose corresponding simple polytope is combinatorially equivalent to a cube (a *toric manifold over cube* for short). We have the following hierarchy of classes of T-manifolds:

Bott towers \subset toric manifolds over cubes \subset quasitoric manifolds over cubes

By the result of Dobrinskaya [120], the first inclusion above is in fact an identity (we explain this in Corollary 7.8.11).

Two results were obtained in [253] relating circle actions on Bott towers, their topological structure, and cohomology rings. First (Theorem 7.8.16), if a Bott tower admits a semifree S^1-action with isolated fixed points, then it is S^1-equivariantly diffeomorphic to a product of 2-spheres. Second (Theorem 7.8.22), a Bott tower whose cohomology ring is isomorphic to the cohomology of a product of spheres is diffeomorphic to this product. Both theorems can be extended to quasitoric manifolds over cubes, but only in the topological category (Theorems 7.8.18 and 7.8.24). These results have been further extended by several authors, and led to the study of the *cohomological rigidity* property for different classes of manifolds with torus actions; we discuss this circle of problems in the end of this section.

Definition and main properties.

Definition 7.8.1. A *Bott tower* of height n is a tower of fibre bundles

$$B_n \xrightarrow{p_n} B_{n-1} \xrightarrow{p_{n-1}} \cdots \xrightarrow{p_2} B_1 \xrightarrow{p_1} pt,$$

of complex manifolds, where $B_1 = \mathbb{C}P^1$ and $B_k = \mathbb{C}P(\mathbb{C} \oplus \xi_{k-1})$ for $2 \leq k \leq n$. Here $\mathbb{C}P^1$ denotes complex projectivisation, ξ_{k-1} is a complex line bundle over B_{k-1} and \mathbb{C} is a trivial line bundle. The fibre of the bundle $p_k: B_k \to B_{k-1}$ is $\mathbb{C}P^1$.

A Bott tower B_n is said to be *topologically trivial* if each $p_k: B_k \to B_{k-1}$ is trivial as a smooth fibre bundle; such B_n is diffeomorphic to a product of 2-dimensional spheres.

We shall refer to the last stage B_n in a Bott tower as a *Bott manifold* (although it is also often called by the same name ‘Bott tower’).

The following is a corollary of the general result describing the cohomology of projectivisations (Theorem D.4.2):

Theorem 7.8.2. $H^*(B_k)$ is a free module over $H^*(B_{k-1})$ on generators 1 and u_k, where u_k is the first Chern class of the tautological line bundle over $B_k = \mathbb{C}P(\mathbb{C} \oplus \xi_{k-1})$. The ring structure is determined by the single relation

$$u_k^2 = c_1(\xi_{k-1})u_k.$$

For simplicity, we denote the element $p^*_k(u_{k-1}) \in H^2(B_k)$ by u_{k-1}; similarly, we denote by u_i each of the elements in $H^*(B_k)$ with $k \geq i$ which map to each other by the homomorphisms p^*_k. Each line bundle ξ_{k-1} is determined by its first Chern class, which can be written as a linear combination

$$c_1(\xi_{k-1}) = a_1 u_1 + a_2 u_2 + \cdots + a_{k-1,k} u_{k-1} \in H^2(B_{k-1}).$$

It follows that a Bott tower of height n is uniquely determined by the list of integers $\{a_{ij}: 1 \leq i < j \leq n\}$, where

$$u_k^2 = \sum_{i=1}^{k-1} a_{ik} u_i u_k, \quad 1 \leq k \leq n. \tag{7.38}$$
The cohomology ring of B_n is the quotient of $\mathbb{Z}[u_1, \ldots, u_n]$ by the relations (7.38).

It is convenient to organise the integers a_{ij} into an upper triangular matrix,

$$A = \begin{pmatrix}
-1 & a_{12} & \cdots & a_{1n} \\
0 & -1 & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & -1
\end{pmatrix}.
$$

(7.39)

Example 7.8.3. Let $n = 2$. Then a Bott tower $B_2 \rightarrow B_1$ is determined by a line bundle ξ_1 over $B_1 = \mathbb{C}P^1$, i.e. B_2 is a Hirzebruch surface (see Example 5.1.8). We have $\xi_1 = \eta^k$ for some $k \in \mathbb{Z}$ where η^k denotes the kth tensor power of the tautological line bundle over $\mathbb{C}P^1$. The cohomology ring is given by

$$H^*(B_2) = \mathbb{Z}[u_1, u_2]/(u_1^2, u_2^2 - ku_1u_2).$$

We have

$$\mathbb{C}P(\mathbb{C} \oplus \eta^k) \cong \mathbb{C}P(\mathbb{C} \oplus \eta^{k'}) \iff k \equiv k' \mod 2,$$

where \cong denotes a diffeomorphism. This is proved by the following observation. First, note that $\mathbb{C}P(\xi) \cong \mathbb{C}P(\xi \otimes \eta)$ for any complex vector bundle ξ and line bundle η. If $k' - k = 2\ell$ for some $\ell \in \mathbb{Z}$, then

$$\mathbb{C}P(\mathbb{C} \oplus \eta^k) \cong \mathbb{C}P(\mathbb{C} \oplus \eta^{k'}) \cong \mathbb{C}P(\mathbb{C} \oplus \eta^\ell \otimes \eta^{k+\ell}) \cong \mathbb{C}P(\mathbb{C} \oplus \eta^{k+\ell}),$$

where the last diffeomorphism is induced by the vector bundle isomorphism $\eta^\ell \oplus \eta^{k+\ell} \cong \mathbb{C} \oplus \eta^{k+\ell}$, as both are plane bundles over $\mathbb{C}P^1$ with equal Chern classes.

On the other hand, a cohomology ring isomorphism $H^*(\mathbb{C}P(\mathbb{C} \oplus \eta^k)) \cong H^*(\mathbb{C}P(\mathbb{C} \oplus \eta^{k'}))$ implies that $k \equiv k' \mod 2$ (an exercise).

This example shows that the cohomology ring determines the diffeomorphism type of a Bott manifold B_n for $n = 2$. We may ask if this is true for arbitrary n; questions of this sort are discussed in the last subsection.

Example 7.8.4. The bounded flag manifold BF_n is a Bott manifold. By Proposition 7.7.8, $BF_n = \mathbb{C}P(\mathbb{C} \oplus \rho_n^1)$, where ρ_n^1 is the line bundle over BF_{n-1} whose fiber over a bounded flag U is its first space U_1. By Theorem 7.8.2, the ring structure of $H^*(BF_n)$ is determined by the relation $u_n^2 = c_1(\rho_n^1)u_n$. As is clear from the proof of Proposition 7.7.8, ρ_n^1 is the tautological line bundle over BF_{n-1} (considered as a complex projectivisation), so $c_1(\rho_n^1) = u_{n-1}$. (Warning: the line bundle ρ_n^1 over BF_n is not the pullback of the line bundle ρ_n^1 over BF_{n-1} by the projection $p_n: BF_n \rightarrow BF_{n-1}$, because $p_n^*(\rho_n^1) = \rho_n^2$.)

We therefore obtain the identity $u_n^2 = u_{n-1}u_n$ in $H^*(BF_n)$, and matrix (7.39) for the structure of the Bott tower on the bounded flag manifold has the form

$$A = \begin{pmatrix}
-1 & 1 & 0 & \cdots & 0 \\
0 & -1 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & -1
\end{pmatrix}.$$

As a corollary of this example we obtain the following characterisation of bounded flag manifolds:
Proposition 7.8.5. The bounded flag manifold BF_n is the Bott manifold whose tower structure is defined as follows: in each $B_k = \mathbb{C}P(\mathbb{C} \oplus \xi_{k-1})$ the bundle ξ_{k-1} is the tautological line bundle over $B_{k-1} = \mathbb{C}P(\mathbb{C} \oplus \xi_{k-2})$, for $2 \leq k \leq n$.

Bott towers as toric manifolds.

Theorem 7.8.6. The Bott manifold B_n corresponding to a matrix A given by (7.39) is isomorphic to the toric manifold corresponding to the complete fan Σ with $2n$ one-dimensional cones generated by the vectors
\[
a^0_1 = e_k, \quad a^0_k = -e_k + a_{k,k+1}e_{k+1} + \cdots + a_{kn}e_n \quad (1 \leq k \leq n),
\]
and 2^n maximal cones generated by the sets of vectors a^1_1, \ldots, a^n_1, where $\varepsilon_k = 0, 1$.

Proof. Let X_n denote the toric manifold corresponding to the fan described in the theorem. We may assume by induction that $X_{n-1} = B_{n-1}$ (the base of the induction is clear, as $X_1 = B_1 = \mathbb{C}P^1$). By the construction of Section 5.4, the manifold X_n can be obtained as the quotient of
\[
U_n = \{z \in \mathbb{C}^n : |z_k|^2 + |z_k+1|^2 \neq 0, 1 \leq k \leq n\} \cong (\mathbb{C}^2 \setminus \{0\})^n
\]
by the action of the group $G_n \cong (\mathbb{C}^\times)^n$ given by (5.3) (we have $m = 2n$ here).

Explicitly, the inclusion $G_n \to (\mathbb{C}^\times)^{2n}$ is given by
\[
(t_1, \ldots, t_n) \mapsto (t_1, t_1^{-a_{12}}t_2, \ldots, t_1^{-a_{1n}}t_2^{-a_{2n}} \cdots t_{n-1}^{-a_{n,n}}t_n, t_1, t_2, \ldots, t_n).
\]
Observe that $U_n = U_{n-1} \times (\mathbb{C}^2 \setminus \{0\})$, $G_n = G_{n-1} \times \mathbb{C}^\times$, and the last factor \mathbb{C}^\times (corresponding to t_n) acts trivially on U_{n-1}. Therefore, we have
\[
X_n = U_n / G_n = \left(U_{n-1} \times (\mathbb{C}^2 \setminus \{0\}) / \mathbb{C}^\times \right) / G_{n-1}
\]
\[
= U_{n-1} \times_{G_{n-1}} \mathbb{C}P^1 = \mathbb{C}P(U_{n-1} \times_{G_{n-1}} (\mathbb{C} \oplus \mathbb{C})),
\]
where $U_{n-1} \times_{G_{n-1}} (\mathbb{C} \oplus \mathbb{C})$ is a complex 2-plane bundle over $U_{n-1} / G_{n-1} = X_{n-1}$ defined by the representation of the algebraic torus $G_{n-1} \cong (\mathbb{C}^\times)^{n-1}$ in $\mathbb{C} \oplus \mathbb{C}$ which is given by the character $(t_1, \ldots, t_{n-1}) \mapsto t_1^{-a_{1n}}t_2^{-a_{2n}} \cdots t_{n-1}^{-a_{n,n-1}}$ on the first summand and is trivial on the second summand.

By the inductive assumption, $X_{n-1} = B_{n-1}$. The bundle $U_{n-1} \times_{G_{n-1}} (\mathbb{C} \oplus \mathbb{C})$ is $\xi_{n-1} \oplus \mathbb{C}$, where ξ_{n-1} is the line bundle over B_{n-1} with first Chern class $\sum_{i=1}^{n-1} a_{in}u_i$. Thus, $X_n = \mathbb{C}P(\xi_{n-1} \oplus \mathbb{C}) = B_n$, and the inductive step is complete.

Note that the associated simplicial complex of the fan described in Theorem 7.8.6 is the boundary of a cross-polytope, so the toric manifold is also a quasitoric manifold over a cube. We therefore obtain:

Corollary 7.8.7. A Bott tower of height n determined by matrix A has a natural action of the torus T^n making it into a quasitoric manifold over a cube with refined characteristic matrix $\Lambda = (I \mid A^t)$, see (7.7).

Remark. The bounded flag manifold BF_n has a toric structure described in Proposition 7.7.3, and another toric structure coming from its Bott tower structure via Theorem 7.8.6 (its matrix A is given in Example 7.8.4). The corresponding fans are not the same, but are isomorphic (see Exercise 7.8.32).

Remark. The relations in the face ring of an n-cube are $v_i v_{i+n} = 0$, $1 \leq i \leq n$. These relations together with (7.18) give the relations (7.38) after substitution $\Lambda = (I \mid A^t)$ and $u_i = -v_{i+n}$. In fact, one has $u_i = c_1(\rho_{i+n})$, where ρ_{i+n} is
the line bundle (7.8) over the toric manifold B_n (an exercise). It follows that the description of the cohomology ring of a Bott manifold from Theorem 7.8.2 agrees with the description of the cohomology of a toric manifold from Theorem 7.3.28.

Given a permutation σ of n elements, denote by $P(\sigma)$ the corresponding permutation matrix, the square matrix of size n with ones at the positions $(i, \sigma(i))$ for $1 \leq i \leq n$, and zeros elsewhere. There is an action of the symmetric group S_n on square n-matrices by conjugations, $A \mapsto P(\sigma)^{-1}AP(\sigma)$, or, equivalently, by permutations of the rows and columns of A.

Proposition 7.8.8. A quasitoric manifold M over a cube with refined characteristic matrix $A = (I \mid A_*)$ is equivalent to a Bott manifold if and only if A_* is conjugate by means of a permutation matrix to an upper triangular matrix.

Proof. Assume that A_* is conjugate by means of a permutation matrix to an upper triangular matrix. Clearly, this condition is equivalent to the conjugacy of A_* to a lower triangular matrix. Consider the action of S_n on the set of facets of the cube \mathbb{I}^n by permuting pairs of opposite facets. A rearrangement of facets corresponds to a rearrangement of columns in the characteristic $n \times 2n$-matrix A, so an element $\sigma \in S_n$ acts as

$$A \mapsto A_\sigma \begin{pmatrix} P(\sigma) & 0 \\ 0 & P(\sigma) \end{pmatrix}.$$

This action does not preserve the refined form of A, as $(I \mid A_*)$ becomes $(P(\sigma) \mid \Lambda_*, P(\sigma))$. The refined representative in the left coset (7.6) of the latter matrix is given by $(I \mid P(\sigma)^{-1}A_*, P(\sigma))$. (In other words, we must compensate for the permutation of pairs of facets by an automorphism of the torus \mathbb{T}^n permuting the coordinate subcircles to keep the characteristic matrix in the refined form.) This implies that the action by permutations on pairs of opposite facets induces an action by conjugations on refined submatrices A_*. Hence we may assume, up to an equivalence, that the refined characteristic submatrix A_* of M is lower triangular. The non-singularity condition (7.5) guarantees that the diagonal entries of A_* are equal to ± 1, and we can set all of them equal to -1 by changing the orientation of M if necessary. Now, M has the same characteristic matrix as the Bott manifold corresponding to the matrix $A = A_*^t$ (see Corollary 7.8.7). Therefore, M and the Bott manifold are equivalent by Proposition 7.3.11.

The converse statement follows from Corollary 7.8.7. \hfill \square

Our next goal is to characterise Bott manifolds within the class of quasitoric manifolds over cubes more explicitly. Given a subset $\{i_1, \ldots, i_k\} \subset [n]$, the principal minor of a square n-matrix A is the determinant of the submatrix formed by the elements in columns and rows with numbers i_1, \ldots, i_k. In the case of Bott manifolds, according to Corollary 7.8.7, all principal minors of the matrix $-A_*$ are equal to 1; for an arbitrary quasitoric manifold the non-singularity condition (7.5) only guarantees that all principal minors of A_* are equal to ± 1.

Recall that an upper triangular matrix is unipotent if all its diagonal entries are ones. The following key technical lemma can be retrieved from the proof of Dobrinskaya’s general result [120, Theorem 6] characterising quasitoric manifolds over products of simplices which can be decomposed into towers of fibrations.

Lemma 7.8.9. Let R be a commutative integral domain with identity element 1, and let A be an $n \times n$-matrix ($n \geq 2$) with entries in R. Suppose that every proper
principal minor of A is equal to 1. If $\det A = 1$, then A is conjugate by means of a permutation matrix to a unipotent upper triangular matrix, otherwise it is permutation-conjugate to a matrix of the following form:

$$
\begin{pmatrix}
1 & b_1 & 0 & \ldots & 0 \\
0 & 1 & b_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & b_{n-1} \\
b_n & 0 & \ldots & 0 & 1
\end{pmatrix}
$$

(7.40)

where $b_i \neq 0$ for all i.

Proof. By assumption the diagonal entries of A must be ones. We say that the ith row is elementary if its ith entry is 1 and the other entries are 0. Assuming by induction that the theorem holds for matrices of size $(n - 1)$ we deduce that A is itself permutation-conjugate to a unipotent upper triangular matrix if and only if it contains an elementary row. We denote by A_i the square $(n - 1)$-matrix obtained by removing from A the ith column and the ith row.

We may assume by induction that A_n is a unipotent upper triangular matrix. Next we apply the induction assumption to A_i. The permutation of rows and columns transforming A_i into a unipotent upper triangular matrix turns A into an ‘almost’ unipotent upper triangular matrix; the latter may have only one non-zero entry below the diagonal, which must be in the first column. If $a_{n1} = 0$, then the nth row of A is elementary and A is permutation-conjugate to a unipotent upper triangular matrix. Otherwise we have

$$
A = \begin{pmatrix}
1 & * & * & \ldots & * \\
0 & 1 & * & \ldots & * \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & b_{n-1} \\
b_n & 0 & \ldots & 0 & 1
\end{pmatrix},
$$

where $b_{n-1} \neq 0$ and $b_n \neq 0$ (otherwise A contains an elementary row). Now let a_{1,j_1} be the last non-zero entry in the first row of A. If A does not contain an elementary row, then we may define by induction a_{j_1,j_1+1} as the last non-zero non-diagonal entry in the j_1th row of A. Clearly, we have

$$1 < j_1 < \cdots < j_i < j_{i+1} < \cdots < j_k = n$$

for some $k < n$. Now, if $j_i = i + 1$ for $1 \leq i \leq n - 1$, then A is the matrix (7.40) with $b_i = a_{j_i-1,i}$, $1 \leq i \leq n - 1$. Otherwise, the submatrix

$$
S = \begin{pmatrix}
1 & a_{1j_1} & 0 & \ldots & 0 \\
0 & 1 & a_{j_1,j_2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & a_{j_k-1,n} \\
b_n & 0 & \ldots & 0 & 1
\end{pmatrix},
$$

of A formed by the columns and rows with indices $1,j_1,\ldots,j_k$ is proper and has determinant $1 \pm b_n \prod a_{j_1,j_1+1} \neq 1$. This contradiction finishes the proof. \qed
Theorem 7.8.10. Let \(M = M(I^n, \Lambda) \) be a quasitoric manifold over a cube with canonical \(T^n \)-invariant smooth structure, and \(\Lambda \) the corresponding refined submatrix. Then the following conditions are equivalent:

(a) \(M \) is equivalent to a Bott manifold;
(b) all the principal minors of \(-\Lambda\) are equal to \(1\);
(c) \(M \) admits a \(T^n \)-invariant almost complex structure (with the associated omniorientation).

Proof. The implication (b) \(\Rightarrow \) (a) follows from Lemma 7.8.9 and Proposition 7.8.8. The implication (a) \(\Rightarrow \) (c) is obvious. Let us prove (c) \(\Rightarrow \) (b). Recall the definition of the sign \(\sigma(v) \) and the formula from Lemma 7.3.19 (b) expressing this sign in terms of the combinatorial data. Denote the facets of the cube \(I^n \) by \(F^e_1, \ldots , F^e_n \) \((\varepsilon = 0, 1)\), assuming that \(F^0_k \cap F^1_k = \emptyset \), for \(1 \leq k \leq n \). The normal vectors of facets are \(a^e_k = (-1)^\varepsilon e_k \). A vertex of \(I^n \) is given by

\[
v = F^e_1 \cap \cdots \cap F^e_n.
\]

Therefore, the expression for the sign \(\sigma(v) \) on the right hand side of the formula from Lemma 7.3.19 is equal to a principal minor of the matrix \(-\Lambda\) (namely, the minor formed by the columns and rows with numbers \(i \) such that \(v \in F^0_i \)). It remains to note that in the almost complex case the sign of every vertex is 1.

Remark. The equivalence (a) \(\Leftrightarrow \) (b) is a particular case of [120, Theorem 6].

Corollary 7.8.11. Let \(V \) be a toric manifold whose associated fan is combinatorially equivalent to the fan consisting of cones over the faces of a cross-polytope. Then \(V \) is a Bott manifold.

Proof. If we view \(V \) as a quasitoric manifold (over a cube), then all the principal minors of the corresponding matrix \(\Lambda_\ast \) are equal to 1 for the same reason as in the proof of Theorem 7.8.10. By Lemma 7.8.9, the matrix \(\Lambda_\ast \) is permutation-conjugate to a unipotent upper triangular matrix, so the full characteristic matrix \(\Lambda \) has the same form as the characteristic matrix of a Bott manifold. The columns of \(\Lambda \) are the primitive vectors along edges of the fan corresponding to \(V \), so the combinatorial type of the fan and the matrix \(\Lambda \) determine the fan completely. It follows that the fan of \(V \) is the same as the fan of some Bott manifold, which implies that \(V \) has the structure of a Bott tower.

Example 7.8.12. Corollary 7.8.11 shows that the class of Bott manifolds coincides with the class of toric manifolds over cubes, i.e. the first inclusion in the hierarchy described at the beginning of this section is an identity. This is not the case for the second inclusion. For example the quasitoric manifold \(M \) over a square with refined characteristic submatrix \(\Lambda_\ast = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \) is not a Bott manifold, because \(\Lambda_\ast \) is not permutation-conjugate to an upper triangular matrix. This \(M \) is diffeomorphic to \(CP^2 \# CP^2 \).

Semifree circle actions. Recall that an action of a group is called semifree if it is free on the complement of the fixed point set. A particularly interesting class of Hamiltonian semifree circle actions was studied by Hattori, who proved in [178] that a compact symplectic manifold \(M \) carrying a semifree Hamiltonian \(S^1 \)-action with nonempty isolated fixed point set has the same cohomology ring and the same Chern classes as \(CP^1 \times \cdots \times CP^1 \), thus imposing a severe restriction on
the topological structure of the manifold. Hattori's results were further extended by Tolman and Weitsman, who showed in [351] that a semifree symplectic \mathbb{S}^1-action with nonempty isolated fixed point set is automatically Hamiltonian, and the equivariant cohomology ring and Chern classes of M also agree with those of $\mathbb{C}P^1 \times \cdots \times \mathbb{C}P^1$. In dimensions up to 6 it is known that a symplectic manifold with a \mathbb{S}^1-action satisfying the properties above is diffeomorphic to a product of 2-spheres, but in higher dimensions this remains open.

Ilinski\u0103 considered in [194] an algebraic version of Hattori's question about semifree symplectic \mathbb{S}^1-actions. Namely, he conjectured that a smooth compact complex algebraic variety V carrying a semifree action of the algebraic 1-torus \mathbb{C}^\times with positive number of isolated fixed points is homeomorphic to $S^2 \times \cdots \times S^2$. The algebraic and symplectic versions of the conjecture are related via the common subclass of projective varieties; a smooth projective variety is a symplectic manifold. Ilinski\u0103 proved the toric version of his algebraic conjecture, namely, when V is a toric manifold and the semifree 1-torus is a subgroup of the acting torus (of dimension $\dim \mathbb{C} V$). The first step of Ilinski\u0103's argument was to show that if V admits a semifree action of a subcircle with isolated fixed points, then the corresponding fan is combinatorially equivalent to the fan over the faces of a cross-polytope. By Corollary 7.8.11, such a toric manifold V admits a structure of a Bott tower.

The above described classification of Bott towers can therefore be applied to obtain results on semifree circle actions. According to a result of [253] (Theorem 7.8.15 below), a quasitoric manifold over a cube with a semifree circle action is a Bott tower. By another result of [253], all such Bott towers are topologically trivial, i.e. diffeomorphic to a product of 2-dimensional spheres (Theorem 7.8.16).

A complex n-dimensional representation of the circle \mathbb{S}^1 is determined by the set of weights $k_j \in \mathbb{Z}, \ 1 \leq j \leq n$. In appropriate coordinates an element $s = e^{2\pi i \varphi} \in \mathbb{S}^1$ acts as follows:

$$s \cdot (z_1, \ldots, z_n) = (e^{2\pi i k_1 \varphi} z_1, \ldots, e^{2\pi i k_n \varphi} z_n).$$

The following result is straightforward.

Proposition 7.8.13. A representation of \mathbb{S}^1 in \mathbb{C}^n is semifree if and only if $k_j = \pm 1$ for $1 \leq j \leq n$.

Let $M = M(P, \Lambda)$ be a quasitoric manifold. A circle subgroup in \mathbb{T}^n is determined by a primitive integer vector $\nu = (\nu_1, \ldots, \nu_n)$:

$$S(\nu) = \{ (e^{2\pi i \nu_1 \varphi}, \ldots, e^{2\pi i \nu_n \varphi}) \in \mathbb{T}^n : \varphi \in \mathbb{R} \}.$$

Given a vertex $v = F_{j_1} \cap \cdots \cap F_{j_n}$ of P, we can decompose ν in terms of the basis $\lambda_{j_1}, \ldots, \lambda_{j_n}$:

$$\nu = k_{j_1}(\nu, v) \lambda_{j_1} + \cdots + k_{j_n}(\nu, v) \lambda_{j_n}.$$

Proposition 7.8.14. A circle $S(\nu) \subset \mathbb{T}^n$ acts on a quasitoric manifold $M = M(P, \Lambda)$ semifreely and with isolated fixed points if and only if, for every vertex $v = F_{j_1} \cap \cdots \cap F_{j_n}$, the coefficients in (7.43) satisfy $k_i(\nu, v) = \pm 1$ for $1 \leq i \leq n$.

Proof. It follows from Proposition 7.3.18 that the coefficients $k_i(\nu, v)$ are the weights of the representation of the circle $S(\nu)$ in the tangent space to M at v. The statement follows from Proposition 7.8.13. \qed
Theorem 7.8.15 ([253]). Let M be a quasitoric manifold over a cube I^n. Assume that the torus acting on M has a circle subgroup acting semifreely and with isolated fixed points. Then M is equivalent to a Bott tower.

Proof. Let A_* be the refined characteristic submatrix of M. We may assume by induction that every characteristic submanifold of M is a Bott manifold, so that every proper principal minor of the matrix $-A_*$ is 1. Therefore, we are in the situation of Lemma 7.8.9, and $-A_*$ is a matrix of one of the two types described there. The second type is ruled out because of the semifreeness assumption. Indeed, let $A = (I - B)$, where B is the matrix (7.40) and assume that $S^*(\nu) \subset T^n$ acts semifreely with isolated fixed points. Applying the criterion from Proposition 7.8.14 to the vertex $v \in F_i^0 \cap \cdots \cap F_i^n$ we obtain $v_i = \pm 1$ for $1 \leq i \leq n$. Now we apply the same criterion to the vertex $v' \in F_1^0 \cap \cdots \cap F_1^n$. Since the submatrix formed by the corresponding columns of A is precisely $-B$, it follows that det $B = \pm 1$. This implies that $b_i = \pm 1$ in (7.40) for some i. Therefore, if all the coefficients $k_j(\nu, v')$ in the expression $\nu = k_1(\nu, v')\lambda_{n+1} + \cdots + k_n(\nu, v')\lambda_{2n}$ are equal to ± 1, then the ith coordinate of ν is $v_i = \pm 1 \pm b_i \neq \pm 1$: a contradiction. \hfill \Box

The next result shows that a Bott tower with a semifree circle subgroup and isolated fixed points is topologically trivial. Let t (respectively, C) be the standard (respectively, the trivial) complex one-dimensional representation of the circle S^1, and let V denote the trivial bundle with fibre V over a given base. We say that an action of a group G on a Bott manifold B_n preserves the tower structure if for each stage $B_k = \mathbb{CP}(\mathbb{C} \oplus \xi_{k-1})$ the line bundle ξ_{k-1} is G-equivariant. The intrinsic T^n-action on B_n (see Corollary 7.8.7) obviously preserves the tower structure.

Theorem 7.8.16 ([253]). Assume that a Bott manifold B_n admits a semifree S^1-action with isolated fixed points preserving the tower structure. Then the Bott tower is topologically trivial; furthermore, B_n is S^1-equivariantly diffeomorphic to the product $(\mathbb{CP}(\mathbb{C} \oplus t))^n$.

Proof. We may assume by induction that the $(n-1)$st stage of the Bott tower is diffeomorphic to $(\mathbb{CP}(\mathbb{C} \oplus t))^{n-1}$ and $B_n = \mathbb{CP}(\mathbb{C} \oplus \xi)$ for some S^1-equivariant line bundle ξ over $(\mathbb{CP}(\mathbb{C} \oplus t))^{n-1}$.

Let $\gamma = \tilde{\eta}$ be the conjugate tautological line bundle over $\mathbb{CP}(\mathbb{C} \oplus t) \cong \mathbb{CP}^1$. It carries a unique structure of an S^1-equivariant bundle such that

\begin{equation}
\gamma|_{(0:1)} = \mathbb{C} \quad \text{and} \quad \gamma|_{(1:0)} = t.
\end{equation}

We denote by $x \in H^2(\mathbb{CP}(\mathbb{C} \oplus t))$ the first Chern class of γ, and let $x_i = \pi^*_i(x) \in H^2(\mathbb{CP}(\mathbb{C} \oplus t)^{n-1})$ be the pullback of x by the projection π_i onto the ith factor. Then $c_1(\xi) = \sum_{i=1}^{n-1} a_i x_i$ for some $a_i \in \mathbb{Z}$. The S^1-equivariant line bundles ξ and $\otimes_{i=1}^{n-1} \pi^*_i(\gamma^{a_i})$ have the same underlying bundles, so there is an integer k such that

\begin{equation}
\xi = \mathfrak{l}^k \otimes \bigotimes_{i=1}^{n-1} \pi^*_i(\gamma^{a_i})
\end{equation}

as S^1-equivariant line bundles (see [181, Corollary 4.2]).

We encode S^1-fixed points in $\mathbb{CP}(\mathbb{C} \oplus t)^{n-1}$ by sequences $(p_1^{\varepsilon_1}, \ldots, p_{n-1}^{\varepsilon_{n-1}})$, where $\varepsilon_i = 0$ or 1, and p_i^{ε} denotes $(1:0)$ if $\varepsilon_i = 0$ and $(0:1)$ if $\varepsilon_i = 1$. Then it follows from (7.44) and (7.45) that

\begin{equation}
\xi_{(p_1^{\varepsilon_1}, \ldots, p_{n-1}^{\varepsilon_{n-1}})} = \mathfrak{l}^{k + \sum_{i=1}^{n-1} \varepsilon_i a_i}.
\end{equation}
The S^1-action on $B_n = \mathbb{C}P^2(\mathbb{C} \oplus \xi)$ is semifree if and only if $|k + \sum_{i=1}^{n} \varepsilon_i a_i| = 1$ for all possible values of ε_i. Setting $\varepsilon_i = 0$ for all i we obtain $|k| = 1$. Let $k = 1$ (the case $k = -1$ is treated similarly). Then $(a_1, \ldots, a_{n-1}) = (0, \ldots, 0)$ or $(0, \ldots, 0, -2, 0, \ldots, 0)$. In the former case, $\xi = \xi$ and $B_n = \mathbb{C}P^2(\mathbb{C} \oplus \xi) \cong \mathbb{C}P^2(\mathbb{C} \oplus t_i)^n$. In the latter case we have $\xi = t_i \pi_i^* (\gamma^{-2})$ for some i, so that $B_n = \pi_i^* \mathbb{C}P^2(\mathbb{C} \oplus t_i^2)$. Since for any S^1-vector bundle η and S^1-line bundle ζ the projectivisations $\mathbb{C}P(\eta)$ and $\mathbb{C}P(\eta \oplus \zeta)$ are S^1-diffeomorphic, it follows that $\mathbb{C}P^2(\mathbb{C} \oplus t_i^2) \cong \mathbb{C}P^2(\mathbb{C} \oplus t_i^{-1})$. The first Chern class of $\gamma \oplus t \gamma^{-1}$ is zero, so its underlying bundle is trivial. The S^1-representation in the fibre of $\gamma \oplus t \gamma^{-1}$ over a fixed point is isomorphic to $\mathbb{C} \oplus t$ by (7.44). Therefore, $\gamma \oplus t \gamma^{-1} \cong \mathbb{C} \oplus t$ as S^1-bundles. It follows that $\mathbb{C}P^2(\mathbb{C} \oplus t_i^2) \cong \mathbb{C}P(\mathbb{C} \oplus t_i)^n$ and $B_n \cong (\mathbb{C}P(\mathbb{C} \oplus t)^n)$. \hfill \Box

Remark. The diffeomorphism of Theorem 7.8.16 is not \mathbb{T}^n-equivariant.

The next example shows that Theorem 7.8.16 cannot be generalised to quasitoric manifolds. However, as we shall see, it holds under the additional assumption that the quotient polytope of the quasitoric manifold is a cube.

Example 7.8.17. Let M be a quasitoric manifold over a $2k$-gon with

$$A = \begin{pmatrix}
1 & 0 & 1 & 0 & \cdots & 1 & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 1
\end{pmatrix}.$$

By Corollary 7.8.14, the circle subgroup determined by the vector $\nu = (1, 1)$ acts semifreely on M. However, the quotient of M is not a 2-cube if $k > 2$, so M cannot be homeomorphic to a product of spheres (it can be shown that M is a connected sum of $k - 1$ copies of $S^2 \times S^2$).

Theorem 7.8.18 ([253]). Let M a quasitoric manifold M over a cube I^n. Assume that the torus acting on M has a circle subgroup acting semifreely. Then M is S^1-equivariantly homeomorphic to a product of 2-spheres.

Proof. By Theorem 7.8.15, M is equivalent to a Bott tower. By Theorem 7.8.16, it is S^1-homeomorphic to a product of spheres. \hfill \Box

We can also derive Ilinskii’s result on semifree actions on toric manifolds:

Theorem 7.8.19 ([194]). A toric manifold V carrying a semifree action of a circle subgroup with isolated fixed points is diffeomorphic to a product of 2-spheres.

Proof. By Theorem 7.8.16, it is sufficient to show that V is a Bott manifold. A semifree circle subgroup acting on V also acts semifreely and with isolated fixed points on every characteristic submanifold V_j of V. We use induction on the dimension. The base of induction is the case $\dim_{\mathbb{C}} V = 2$; we consider it below. By the inductive hypothesis, each V_j is a Bott manifold, i.e. its quotient polytope is a combinatorial cube. On the other hand, the quotient polytope of V_j is the facet F_j of the quotient polytope P of V_j; since each F_j is a cube, P is also a cube by Exercise 1.1.22. By Corollary 7.8.11, V is a Bott manifold, and we are done.

It remains to consider the case $\dim_{\mathbb{C}} V = 2$. We need to show that the quotient polytope of a complex 2-dimensional toric manifold V with semifree circle subgroup action and isolated fixed points is a 4-gon.

Let Σ be the fan corresponding to V. One-dimensional cones of Σ correspond to facets (or edges) of the quotient polygon P^2. We must show that there are precisely 4 one-dimensional cones. The values of the characteristic function on the facets of
P^2 are given by the primitive vectors generating the corresponding one-dimensional cones of Σ. Let ν be the vector generating the semifree circle subgroup. We may choose an initial vertex v of P^2 so that ν belongs to the 2-dimensional cone of Σ corresponding to v. Then we index the primitive generators a_i of the 1-cones so that ν is in the cone generated by a_1 and a_2, and any two consecutive vectors span a two-dimensional cone (see Figure 7.6). This provides us with a refined characteristic matrix A of size $2 \times m$. We have $a_1 = (1, 0)$ and $a_2 = (0, 1)$, and applying the criterion from Proposition 7.8.14 to the first cone $\mathbb{R}_\geq \langle a_1, a_2 \rangle$ (that is, to the initial vertex of the polygon) we obtain $\nu = (1, 1)$.

The rest of the proof is a case-by-case analysis using the non-singularity condition (7.5) and Proposition 7.8.14. The reader may be willing to do this as an exercise rather than following the argument below.

Consider now the second cone. The non-singularity conditions (7.5) gives us $\det(a_2, a_3) = 1$, hence $a_3 = (-1,*)$. Writing $\nu = k_1 a_2 + k_2 a_3$ and applying Proposition 7.8.14 to the second cone $\mathbb{R}_\geq \langle a_2, a_3 \rangle$ we obtain

$$(1, 1) = \pm (0, 1) \pm (-1,*)$$

Therefore, $a_3 = (-1,0)$ or $a_3 = (-1,-2)$. Similarly, considering the last cone $\mathbb{R}_\geq \langle a_m, a_1 \rangle$ we obtain $a_m = (*,-1)$, and then, applying Proposition 7.8.14, we see that $a_m = (0,-1)$ or $a_m = (-2,-1)$. The case when $a_3 = (-1,-2)$ and $a_m = (-2,-1)$ is impossible since then the second and the last cones overlap.

Let $a_3 = (-1,-2)$ and $a_m = (0,-1)$. Considering the cone $\mathbb{R}_\geq \langle a_{m-1}, a_m \rangle$ we obtain $a_{m-1} = (-1,0)$ or $a_{m-1} = (-1,-2)$. In the former case cones overlap, and in the latter case we get $a_{m-1} = a_3$. This implies $m = 4$ and we are done.

Let $a_3 = (-1,0)$. Then considering the third cone $\mathbb{R}_\geq \langle a_3, a_4 \rangle$ we obtain $a_4 = (0,-1)$ or $a_4 = (-2,-1)$. If $a_4 = (0,-1)$, then $a_4 = a_m$ (otherwise cones overlap), and we are done. Let $a_4 = (-2,-1)$. Then either $a_m = (-2,-1) = a_4$ and we are done, or $a_m = (0,-1)$. In the latter case, we get $a_{m-1} = (-1,-2)$ (see the previous paragraph).

We are left with the case $a_4 = (-2,-1)$ and $a_{m-1} = (-1,-2)$. The only way to satisfy both (7.5) and the condition of Proposition 7.8.14 without overlapping cones is to set $a_5 = (-3,-2)$ and $a_{m-2} = (-2,-3)$. Continuing this process, we obtain $a_k = (-k+2,-k+3)$, $k \geq 2$, and $a_{m-l} = (-l,-l-1)$, $l \geq 0$. This process never stops, as we never get a complete regular fan. So this case is impossible. \[\square\]
The proof above leaves three possibilities for the vectors a_2 and a_4 of the 2-dimensional fan: $(-1,0)$ and $(0,-1)$, or $(-1,0)$ and $(-2,-1)$, or $(-1,-2)$ and $(0,-1)$. The last two pairs correspond to isomorphic fans. The refined characteristic submatrices corresponding to the first two pairs are

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$ and $$\begin{pmatrix} -1 & -2 \\ 0 & -1 \end{pmatrix}.$$

The first corresponds to $\mathbb{C}P^1 \times \mathbb{C}P^1$, and the second to a Bott manifold (Hirzebruch surface) with $a_{12} = -2$.

The next result gives an explicit description of matrices (7.39) corresponding to our specific class of Bott towers:

Theorem 7.8.20 ([253]). A Bott manifold B_n admits a semifree circle subgroup with isolated fixed points if and only if its matrix (7.39) satisfies the identity

$$\frac{1}{2}(E - A) = C_1 C_2 \cdots C_n,$$

where C_k is either the identity matrix or a unipotent upper triangular matrix with only one nonzero element above the diagonal; this element is 1 in the kth column.

Proof. Assume first that B_n admits a semifree circle subgroup with isolated fixed points. We have two sets of multiplicative generators for the ring $H^*(B_n)$: the set $\{u_1, \ldots, u_n\}$ from Theorem 7.8.2 satisfying the identities (7.38), and the set $\{x_1, \ldots, x_n\}$ satisfying $x_i^2 = 0$ (the latter set exists since B_n is diffeomorphic to a product of 2-spheres). The reduced sets with $i \leq k$ can be regarded as the corresponding sets of generators for the kth stage B_k. As is clear from the proof of Theorem 7.8.16, we have $c_1(\xi_{k-1}) = -2c_{i_k,k}x_{i_k}$ for some $i_k < k$, where $c_{i,k} = 1$ or 0. From $u_k^2 + 2c_{i_k,k}x_{i_k}u_k = 0$ we obtain $x_k = u_k + c_{i_k,k}x_{i_k}$. In other words, the transition matrix C_k from the basis $x_1, \ldots, x_{k-1}, u_k, \ldots, u_n$ of $H^2(B_n)$ to $x_1, \ldots, x_k, u_{k+1}, \ldots, u_n$ may have only one nonzero entry off the diagonal, which is $c_{i_k,k}$. The transition matrix from u_1, \ldots, u_n to x_1, \ldots, x_n is the product $D = C_1 C_2 \cdots C_n$. Then $D = (d_{jk})$ is a unipotent upper triangular matrix consisting of zeros and ones, $x_k = \sum_{j=1}^n d_{jk}u_j$ and

$$0 = x_k^2 = (u_k + \sum_{j=1}^{k-1} d_{jk}u_j)^2 = u_k^2 + 2\sum_{j=1}^{k-1} d_{jk}u_ju_k + \cdots, \quad 1 \leq k \leq n.$$

On the other hand, $0 = u_k^2 = \sum_{j=1}^{k-1} a_{jk}u_ju_k$ by (7.38). Comparing the coefficients of u_ju_k for $1 \leq j \leq k - 1$ in the last two equations and observing that these elements are linearly independent in $H^4(B_k)$ we obtain $2d_{jk} = -a_{jk}$ for $1 \leq j < k \leq n$. As both D and $-A$ are unipotent upper triangular matrices, this implies $2D = E - A$.

Assume now that the matrix A satisfies $E - A = 2C_1 C_2 \cdots C_n$. Then for the corresponding Bott tower we have $\xi_{k-1} = \pi_{i_k}^*(\gamma^{-2c_{i_k,k}})$. Therefore, we may choose a circle subgroup such that ξ_{k-1} becomes $\pi_{i_k}^*(\gamma^{-2c_{i_k,k}})$ (as an S^1-equivariant bundle), for $1 < k \leq n$. This circle subgroup acts semifreely and with isolated fixed points as seen from the same argument as in the proof of Theorem 7.8.16. \[\square\]

Example 7.8.21. The condition of Theorem 7.8.20 implies in particular that the matrix (7.39) may have only entries equal to 0 or -2 above the diagonal. However, the hypothesis of Theorem 7.8.20 is stronger. For instance, if

$$A = \begin{pmatrix} -1 & 0 & -2 \\ 0 & -1 & -2 \\ 0 & 0 & -1 \end{pmatrix}$$
then the matrix \((E - A)/2\) cannot be factored as \(C_1 C_2 C_3\). Consequently, the corresponding 3-stage Bott tower does not admit a subcircle acting semifreely and with isolated fixed points. On the other hand, if
\[
A = \begin{pmatrix}
-1 & -2 & -2 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]
then we have
\[
\frac{1}{2}(E - A) = \begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

It is clear that not every topologically trivial Bott manifold admits a semifree subcircle action with isolated fixed points; the latter condition is stronger even for \(n = 2\). We now consider the former class in more detail.

Topologically trivial Bott towers. The topological triviality of a Bott tower can be detected by its cohomology ring:

Theorem 7.8.22 ([253]). A Bott tower \(B_n\) is topologically trivial if and only if there is an isomorphism \(H^*(B_n) \cong H^*((S^2)^n)\) of graded rings.

Proof. Theorem 7.8.2 implies
\[
H^*(B_n) \cong H^*(B_{n-1})[u_n]/(u_n^2 - c_1(\xi_{n-1})u_n).
\]

We may therefore write any element of \(H^2(B_n)\) as \(x + bu_n\), where \(x \in H^2(B_{n-1})\) and \(b \in \mathbb{Z}\). We have
\[
(x + bu_n)^2 = x^2 + 2bxu_n + b^2u_n^2 = x^2 + b(2x + bc_1(\xi_{n-1}))u_n,
\]
so that the square of \(x + bu_n\) with \(b \neq 0\) is zero if and only if \(x^2 = 0\) and \(2x + bc_1(\xi_{n-1}) = 0\). This shows that elements of the form \(x + bu_n\) with \(b \neq 0\) whose squares are zero generate a rank-one free subgroup of \(H^2(B_n)\).

Assume that \(H^*(B_n) \cong H^*((\mathbb{C}P^1)^n)\). Then there is a basis \(\{x_1, \ldots, x_n\}\) in \(H^2(B_n)\) such that \(x_i^2 = 0\) for all \(i\). By the observation from the previous paragraph, we may assume that the elements \(x_1, \ldots, x_{n-1}\) lie in \(H^2(B_{n-1})\), and \(x_n\) is not in \(H^2(B_{n-1})\). Then we can have \(x_n = \sum_{i=1}^{n-1} b_ix_i + u_n\) for some \(b_i \in \mathbb{Z}\). A product \(\prod_{i \in I} x_i\) with \(I \subset \{1, \ldots, n\}\) lies in \(H^*(B_{n-1})\) if and only if \(a \not\in I\). This implies that the ring \(H^*(B_{n-1})\) is generated by the elements \(x_1, \ldots, x_{n-1}\) and is isomorphic to the cohomology ring of \((\mathbb{C}P^1)^{n-1}\). Therefore, we may assume by induction that \(B_{n-1} \cong (\mathbb{C}P^1)^{n-1}\).

Writing \(c_1(\xi_{n-1}) = \sum_{i=1}^{n-1} a_ix_i\), we obtain
\[
0 = x_n^2 = (u_n + \sum_{i=1}^{n-1} b_ix_i)^2 = \sum_{i=1}^{n-1} (a_i + 2b_i)x_iu_n + (\sum_{i=1}^{n-1} b_ix_i^2).
\]

This may hold only if at most one of the \(a_i\) is nonzero (and equal to \(-2b_i\)) because the elements \(x_i, x_j\) and \(x_iu_n\) with \(i < j < n\) form a basis of \(H^4(B_n)\). Therefore, \(\xi_{n-1}\) is the pullback of the bundle \(\gamma^{-2b_i}\) over \(\mathbb{C}P^1\) by the \(i\)th projection map \(B_{n-1} = (\mathbb{C}P^1)^{n-1} \to \mathbb{C}P^1\). Since \(\mathbb{C}P^1 \oplus \gamma^{-2b_i}\) is a topologically trivial bundle (see Example 7.8.3), the bundle \(B_n = \mathbb{C}P(\mathbb{C} \oplus \xi_{n-1})\) is also trivial. \(\square\)

We can now also describe effectively the class of matrices (7.39) corresponding to topologically trivial Bott towers:
Theorem 7.8.23. A Bott tower is topologically trivial if and only if its corresponding matrix (7.39) satisfies the identity
\[
\frac{1}{2}(E - A) = C_1 C_2 \cdots C_n,
\]
where \(C_k\) is either the identity matrix or a unipotent upper triangular matrix with only one non-zero element above the diagonal; this element lies in the \(k\)th column.

Proof. The argument is the same as in the proof of Theorem 7.8.20. The only difference is that the number \(c_{ik,k}\) in the formula \(c_1(\xi_{k-1}) = -2c_{ik,k}x_{ik}\) is now an arbitrary integer. \(\square\)

Theorem 7.8.22 can be generalised to quasitoric manifolds, but only in the topological category:

Theorem 7.8.24 ([253, Theorem 5.7]). A quasitoric manifold \(M\) is homeomorphic to a product \((S^2)^n\) if and only if there is an isomorphism \(H^*(M) \cong H^*((S^2)^n)\) of graded rings.

Generalisations and cohomological rigidity.

Definition 7.8.25. A generalised Bott tower of height \(n\) is a tower of bundles
\[
B_n \xrightarrow{p_n} B_{n-1} \xrightarrow{p_{n-1}} \cdots \xrightarrow{p_2} B_2 \xrightarrow{p_1} B_1 \xrightarrow{} pt,
\]
of complex manifolds, where \(B_1 = \mathbb{C}P^j\) and each \(B_k\) is the complex projectivisation of a sum of \(j_k + 1\) complex line bundles over \(B_{k-1}\). The fibre of the bundle \(p_k : B_k \rightarrow B_{k-1}\) is \(\mathbb{C}P^{j_k}\). A generalised Bott tower is topologically trivial if each \(p_k\) is trivial as a smooth bundle.

The last stage \(B_n\) in a generalised Bott tower is a generalised Bott manifold.

Remark. A generalised Bott manifold \(B_n\) is a projective toric manifold whose corresponding polytope is combinatorially equivalent to a product of simplices \(\Delta^j_1 \times \cdots \times \Delta^j_n\) (an exercise). In particular, \(B_n\) is a quasitoric manifold over a product of simplices. If we replace ‘a sum of complex line bundles’ by ‘a complex vector bundle’ in the definition, then the resulting tower will not be a toric manifold in general: the torus action on \(B_{k-1}\) lifts to the projectivisation of a sum of line bundles, but not to the projectivisation of an arbitrary vector bundle over \(B_{k-1}\).

Generalised Bott towers were considered by Dobrinshaya [120], who proved the following result (see Lemma 7.3.19 for the information about the signs of vertices):

Theorem 7.8.26 ([120, Corollary 7]). A quasitoric manifold over a product of simplices \(P = \Delta^{j_1} \times \cdots \times \Delta^{j_n}\) is a generalised Bott manifold if and only if the sign of each vertex of \(P\) is the product of the signs of its corresponding vertices of the simplices \(\Delta^{j_k}\) according to the decomposition of \(P\). In particular, a toric manifold over a product of simplices is always a generalised Bott manifold.

Remark. According to a general result of Dobrinshaya [120, Theorem 6], a quasitoric manifold over any product polytope \(P = P_{j_1} \times \cdots \times P_{j_n}\) decomposes into a tower of quasitoric fibre bundles if and only if the sign of each vertex of \(P\) decomposes into the corresponding product.

Theorem 7.8.22 can be extended to generalised Bott towers:
Theorem 7.8.27 ([93, Theorem 1.1]). If the integral cohomology ring of a
generalised Bott manifold B_n is isomorphic to $H^*(\mathbb{C}P^{p_1} \times \cdots \times \mathbb{C}P^{p_n})$, then the
generalised Bott tower is topologically trivial; in particular, B_n is diffeomorphic to
$\mathbb{C}P^{p_1} \times \cdots \times \mathbb{C}P^{p_n}$.

According to another result of Choi, Masuda and Suh [92, Theorem 8.1], a quasitoric manifold M over a product of simplices $P = \Delta^{p_1} \times \cdots \times \Delta^{p_n}$ is homeomorphic to a generalised Bott manifold if $H^*(M) \cong H^*(\mathbb{C}P^{p_1} \times \cdots \times \mathbb{C}P^{p_n})$. Therefore, such a quasitoric manifold M is homeomorphic to $\mathbb{C}P^{p_1} \times \cdots \times \mathbb{C}P^{p_n}$.

Since trivial (generalised) Bott towers can be detected by their cohomology rings, a natural question arises of whether any two (generalised) Bott manifolds can be distinguished, either smoothly or topologically, by their cohomology rings. This leads to the notion of cohomological rigidity:

Definition 7.8.28. Fix a commutative ring k with unit. We say that a family of closed manifolds is cohomologically rigid over k if manifolds in the family are distinguished up to homeomorphism by their cohomology rings with coefficients in k. That is, a family is cohomologically rigid if a graded ring isomorphism $H^*(M_1; k) \cong H^*(M_2; k)$ implies a homeomorphism $M_1 \cong M_2$ whenever M_1 and M_2 are in the family.

A manifold M in the given family is said to be cohomologically rigid if for any other manifold M' in the family a ring isomorphism $H^*(M; k) \cong H^*(M'; k)$ implies a homeomorphism $M \cong M'$. Obviously a family is cohomologically rigid whenever each of its elements is cohomologically rigid.

There is a smooth version of cohomological rigidity for families of smooth manifolds, with homeomorphisms replaced by diffeomorphisms.

Problem 7.8.29. Is the family of Bott manifolds cohomologically rigid (over \mathbb{Z})? Namely, is it true that any two Bott manifolds M_1 and M_2 with isomorphic integral cohomology rings are homeomorphic (or even diffeomorphic)?

This question is open even for the much larger families of toric and quasitoric manifolds. Namely, there are no known examples of non-homeomorphic (quasi)toric manifolds with isomorphic integral cohomology rings. By the result of Choi, Park and Suh [95], quasitoric manifolds with second Betti number 2 (i.e. over a product of two simplices) are homeomorphic when their cohomology rings are isomorphic.

Theorem 7.8.22 shows that a trivial Bott manifold is cohomologically rigid in the family of Bott manifolds, in the smooth category. By Theorem 7.8.24, a topologically trivial Bott manifold is cohomologically rigid in the wider family of quasitoric manifolds, but only in the topological category. Smooth cohomological rigidity was established in Choi [89] for Bott manifolds up to height 4.

There is an \mathbb{R}-version of the theory, with quasitoric manifolds replaced by small covers, (generalised) Bott towers replaced by real (generalised) Bott towers, and the cohomology rings taken with coefficients in \mathbb{Z}_2. A real generalised Bott tower is defined similarly to a complex tower, with the complex projectivisations replaced by the real ones.

The family of real Bott manifolds is cohomologically rigid over \mathbb{Z}_2 by the result of Kamishima–Masuda [206] (see also [91]), but the family of generalised Bott manifolds is not [251]. Also, every small cover over a product of simplices is a generalised real Bott tower [92] (this is not true for quasitoric manifolds, see
Example 7.8.12). For more results on the cohomological rigidity of (generalised) Bott towers, see the survey articles [254] and [94].

Exercises.

7.8.30. Let \(\eta^k \) denote the \(k \)th tensor power of the tautological line bundle over \(\mathbb{C}P^1 \), and \(\xi \) denote the trivial line bundle. Show that there is a cohomology ring isomorphism \(H^*(\mathbb{C}P(\xi \oplus \eta^k)) \cong H^*(\mathbb{C}P(\xi \oplus \eta^{k'})) \) if and only if \(k \equiv k' \mod 2 \).

7.8.31. Show that the toric manifold described in Theorem 7.8.6 is projective by explicitly providing a polytope \(P \) whose normal fan is \(\Sigma \). Observe that \(P \) is combinatorially equivalent to a cube (compare Proposition 7.7.4).

7.8.32. The bounded flag manifold \(BF_n \) is a Bott tower, as described in Example 7.8.4. By Theorem 7.8.6, it is isomorphic to the toric manifold whose corresponding fan has generators

\[
 a^0_k = e_k \quad (1 \leq k \leq n), \quad a^1_k = -e_k + e_{k+1} \quad (1 \leq k \leq n-1), \quad a^1_n = -e_n.
\]

This fan is not the same as the one described in Proposition 7.7.3. However, there is a linear isomorphism of \(\mathbb{R}^n \) taking one fan to another, and therefore the corresponding toric manifolds are isomorphic.

7.8.33. Let \(B_n \) be the Bott manifold and \(u_i \in H^2(B_n) \) the canonical cohomology ring generator (obtained by pulling back the first Chern class of the tautological line bundle over \(B_t \) to the top stage \(B_n \)). Show that \(u_i = c_1(\tilde{\rho}_{i+n}) \), where \(\rho_{i+n} \) is the line bundle (7.8) over the toric manifold \(B_n \). (Hint: use induction.)

7.8.34. A generalised Bott manifold is a projective toric manifold over a product of simplices.

7.8.35. The projectivisation of a complex \(k \)-plane bundle \((k > 1)\) over \(\mathbb{C}P^n \) is not necessarily a toric manifold.

7.9. Weight graphs

The quotient space \(M^{2n}/T^n \) of a half-dimensional torus action has the orbit stratification (the face structure), therefore providing a natural combinatorial object associated with the action and allowing us to translate equivariant topology into combinatorics. For the classes of half-dimensional torus actions considered in the previous sections, the quotient \(M^{2n}/T^n \) is contractible or acyclic, so many topological invariants of the action can be expressed in purely combinatorial terms.

In this section we consider another type of combinatorial objects associated to \(T \)-manifolds, which catch some important information about the \(T \)-action and its orbit structure: the so-called weight graphs (for particular classes of \(T \)-manifolds these are also known as GKM-graphs). A weight graph is an oriented graph with a special labelling of edges, which can be assigned to an effective \(T^k \)-action on \(M^{2n} \) \((k \leq n)\) with isolated fixed points under very mild assumption on the action. When \(k < n \) the topology of the quotient \(M^{2n}/T^k \) is often quite complicated, and the weight graph can be viewed as its combinatorial approximation.

In the study of quasitoric manifolds we constructed the correspondence (7.15), which assigns to each oriented edge of the quotient simple polytope \(P \) a weight of the \(T \)-representation at the fixed point corresponding to the origin of the edge.
This correspondence can be viewed as a graph Γ with special labels on its oriented edges, and we refer to such an object as a \textit{weight graph}. As follows from Proposition 7.3.18, defining the correspondence (7.15) is equivalent to defining the characteristic matrix Λ. At the same time, it is well-known that the 1-skeleton of a simple polytope determines its entire combinatorial structure (see e.g. [367, Theorem 3.12]). It follows that the weight graph contains the same information as the combinatorial quasitoric pair (P, Λ), and therefore it completely determines the torus action on the quasitoric manifold M. For more general classes of torus actions considered in this chapter, one cannot expect that the weight graph determines the action, but it still contains an important piece of information.

Graphs whose oriented edges are labelled by the weights of a torus action were considered in the works of Musin [281], Hattori and other authors since the 1970s. A renewed interest to these graphs was stimulated by the works of Goresky–Kottwitz–MacPherson [154] and Guillemin–Zara [171] in connection with the study of symplectic manifolds with Hamiltonian torus actions. A related more general class of T-manifolds has become known as \textit{GKM-manifolds}, and their weight graphs are often referred to as \textit{GKM-graphs}.

A closed $2n$-dimensional manifold M with an effective smooth action of torus $T^k (k \leq n)$ is called a \textit{GKM-manifold} if the fixed point set is finite and nonempty, a T^k-invariant almost complex structure is given on M, and the weights of the tangential T^k-representation at any fixed point are pairwise linearly independent. As in the case of quasitoric manifolds, there is a weight graph associated with each GKM-manifold M (vertices of the graph correspond to fixed points of M, and edges correspond to connected components of the set of points of M with codimension-one stabilisers). As was shown in [154], many important topological characteristics of a GKM-manifold M (such as the Betti numbers or the equivariant cohomology) can be described in terms of the weight graph. Axiomatisation of the properties of the weight graph of a GKM-manifold led to the notion of a GKM-graph [171].

Weight graphs arising from locally standard T-manifolds (or torus manifolds) were studied in [246]. As in the case of GKM-manifolds, axiomatisation of the properties of weight graphs leads to an interesting combinatorial object, known as a T-\textit{graph} (or \textit{torus graph}).

A T-\textit{graph} is a finite n-valent graph Γ (without loops, but with multiple edges allowed) with an \textit{axial function} on the set $E(\Gamma)$ of oriented edges taking values in $\text{Hom}(T^n, S^1) = H^2(BT^n)$ and satisfying certain compatibility conditions. These conditions (described below) are similar to those for GKM-graphs, but not exactly the same. The weight graph of a torus manifold is an example of a T-graph; in this case the values of the axial function are the weights of the tangential representations of T^n at fixed points.

The equivariant cohomology ring $H^*_T(\Gamma)$ of a T-graph Γ can be defined in the same way as for GKM-graphs; when the T-graph arises from a locally standard torus manifold M we have $H^*_T(\Gamma) = H^*_T(M)$. Furthermore, unlike the case of GKM-graphs, the equivariant cohomology ring of a T-graph can be described in terms of generators and relations (see Theorem 7.9.12). Such a description is obtained by defining the simplicial poset $S(\Gamma)$ associated with a T-graph Γ; then $H^*_T(\Gamma)$ is shown to be isomorphic to the face ring $\mathbb{Z}[S(\Gamma)]$. This theorem continues the series of results identifying the equivariant cohomology of a (quasi)toric manifold [112] and
a locally standard T-manifold (Theorem 7.4.33) with the face ring of the associated polytope, simplicial complex, or simplicial poset.

Although the classes of GKM- and T-graphs diverge in general, they contain an important subclass of n-independent GKM-graphs in their intersection.

Definition of a T-graph. This definition is a natural adaptation of the notion of GKM-graph [171] to torus manifolds.

Let Γ be a connected n-valent graph without loops but possibly with multiple edges. Denote by $V(\Gamma)$ the set of vertices and by $E(\Gamma)$ the set of oriented edges (so that each edge enters $E(\Gamma)$ twice with the opposite orientations). We further denote by $i(e)$ and $t(e)$ the initial and terminal points of $e \in E(\Gamma)$, respectively, and denote by \bar{e} the edge e with the reversed orientation. For $v \in V(\Gamma)$ we set

$$E(\Gamma)_v = \{ e \in E(\Gamma) : i(e) = v \}.$$

A collection $\theta = \{ \theta_v \}$ of bijections

$$\theta_e : E(\Gamma)_{i(e)} \to E(\Gamma)_{t(e)}, \quad e \in E(\Gamma),$$

is called a connection on Γ if

1. θ_e is the inverse of $\theta_{\bar{e}}$;
2. $\theta_e(e) = \bar{e}$.

An n-valent graph Γ with g edges admits $((n - 1)!)^g$ different connections. Let $T = T^n$ be an n-torus. A map

$$\alpha : E(\Gamma) \to \text{Hom}(T, S^1) = H^2(BT)$$

is called an axial function (associated with the connection θ) if it satisfies the following three conditions:

1. $\alpha(\bar{e}) = \pm \alpha(e)$;
2. elements of $\alpha(E(\Gamma)_v)$ are pairwise linearly independent (2-independent) for each vertex $v \in V(\Gamma)$;
3. $\alpha(\theta_{e}(e')) \equiv \alpha(e') \mod \alpha(e)$ for any $e \in E(\Gamma)$ and $e' \in E(\Gamma)_{t(e)}$.

We also denote by $T_v = \ker \alpha(e)$ the codimension-one subtorus in T determined by α and e. Then we may reformulate the condition (c) above as follows: the restrictions of $\alpha(\theta_e(e'))$ and $\alpha(e')$ to $H^*(BT_v)$ coincide.

Remark. Guillemin and Zara required $\alpha(\bar{e}) = -\alpha(e)$ in their definition of axial function. A connection θ satisfying condition (c) above is unique if elements of $\alpha(E(\Gamma)_v)$ are 3-independent for each vertex v (an exercise, see [171]).

Definition 7.9.1. We call α a T-axial function if it is n-independent, i.e. if $\alpha(E(\Gamma)_v)$ is a basis of $H^2(BT)$ for each $v \in V(\Gamma)$. A triple (Γ, θ, α) consisting of a graph Γ, a connection θ and a T-axial function α is called a T-graph. Since a connection θ is uniquely determined by α, we often suppress it in the notation.

Remark. Compared with GKM-graphs, the definition of a T-graph has weaker condition (a) (we only require $\alpha(\bar{e}) = \pm \alpha(e)$ instead of $\alpha(\bar{e}) = -\alpha(e)$), but stronger condition (b) (α is required to be n-independent rather than 2-independent).

Example 7.9.2. Let M be a locally standard torus manifold. Denote by Γ_M the 1-skeleton of the orbit space $Q = M/T$, and let α_M be the axial function of Lemma 7.4.24. Then (Γ_M, α_M) is a T-graph.
Example 7.9.3. Two T-graphs are shown in Figure 7.7. The first is 2-valent and the second is 3-valent. The axial function α takes the edges, regardless of their orientation, to the generators $t_1, t_2 \in H^2(B T^2)$ (respectively, $t_1, t_2, t_3 \in H^2(B T^3)$). These T-graphs are not GKM-graphs, as the condition $\alpha(\tilde{e}) = -\alpha(e)$ is not satisfied. Both come from torus manifolds, S^4 and S^6, respectively (see Example 7.4.16).

Definition 7.9.4. The equivariant cohomology $H^*_T(\Gamma)$ of a T-graph Γ is a set of maps

$$ f : V(\Gamma) \to H^*(B T) $$

such that for every $e \in E(\Gamma)$ the restrictions of $f(i(e))$ and $f(t(e))$ to $H^*(B T_e)$ coincide. Since $H^*(B T)$ is a ring, the set of maps from $V(\Gamma)$ to $H^*(B T)$, denoted by $H^*(B T)^{V(\Gamma)}$, is also a ring with respect to the vertex-wise multiplication. Its subspace $H^*_T(\Gamma)$ is a subring because the restriction map $H^*(B T) \to H^*(B T_e)$ is multiplicative. Furthermore, $H^*_T(\Gamma)$ is a $H^*(B T)$-algebra.

If M is a torus manifold with $H^{odd}(M) = 0$, then for the corresponding T-graph Γ_M we have $H^*_T(\Gamma_M) \cong H^*_T(M)$ by Theorem 7.4.28.

Calculation of equivariant cohomology. Here we interpret the results of Section 7.4 on equivariant cohomology of torus manifolds in terms of their associated T-graphs, thereby providing a purely combinatorial model for this calculation, which is applicable to a wider class of objects.

Definition 7.9.5. Let Γ, θ, α be a T-graph and Γ' a connected k-valent subgraph of Γ, where $0 \leq k \leq n$. If Γ' is invariant under the connection θ, then we say that $(\Gamma', \alpha|E(\Gamma'))$ is a k-dimensional face of Γ. As usual, $(n-1)$-dimensional faces are called facets.

An intersection of faces is invariant under the connection, but can be disconnected. In other words, such an intersection is a union of faces.

The Thom class of a k-dimensional face $G = (\Gamma', \alpha|E(G'))$ is the map $\tau_G : V(\Gamma) \to H^{2(n-k)}(B T)$ defined by

$$ \tau_G(v) = \begin{cases}
\prod_{i(e)=v, \ e \notin \Gamma'} \alpha(e) & \text{if } v \in V(\Gamma'), \\
0 & \text{otherwise}.
\end{cases} \tag{7.46} $$

Lemma 7.9.6. The Thom class τ_G is an element of $H^*_T(\Gamma)$.

Proof. Let $e \in E(\Gamma)$. If neither of the vertices of e is contained in G, then the values of τ_G on both vertices of e are zero. If only one vertex of e, say $i(e)$,
is contained in G, then $\tau_G(t(e)) = 0$, while $\tau_G(i(e)) \equiv 0 \mod \alpha(e)$, so that the restriction of $\tau_G(i(e))$ to $H^*(BT_e)$ is also zero. Finally, assume that the whole e is contained in G. Let e' be an edge such that $i(e') = i(e)$ and $e' \notin G$, so that $\alpha(e')$ is a factor in $\tau_G(i(e))$. Since G is invariant under the connection, it follows that $\theta(e') \notin G$. Therefore, $\alpha(\theta_i(e'))$ is a factor in $\tau_G(t(e))$. Now we have $\alpha(\theta_i(e')) \equiv \alpha(e') \mod \alpha(e)$ by the definition of axial function. The same holds for any other factor in $\tau_G(i(e))$, whence the restrictions of $\tau_G(i(e))$ and $\tau_G(t(e))$ to $H^*(BT_e)$ coincide.

Lemma 7.9.7. If Γ is a T-graph, then there is a unique k-face containing any given k elements of $E(\Gamma)_v$.

Proof. Let $S \subset E(\Gamma)_v$ be the set of given oriented k edges with the common origin v. Consider the graph Γ' obtained by ‘spreading’ S using the connection θ. In more detail, at the first step we add to S all oriented edges of the form $\theta(e'_i)$ where $e, e' \in S$. Denote the resulting set by S_1. At the second step we add to S_1 all oriented edges of the form $\theta(e'_i)$ where $e, e' \in S_1$ and $i(e) = i(e')$, and so on. Since Γ is a finite graph, this process stabilises after a finite number of steps, and we obtain a subgraph Γ' of Γ. This subgraph Γ' is obviously θ-invariant. We claim that Γ' is k-valent. To see this, define for any vertex $w \in V(\Gamma')$ the subgroup

$$N_w = \mathbb{Z}(\alpha(e) : e \in E(\Gamma')_w) \subset H^2(BT).$$

Condition (c) from the definition of the axial function implies that $N_w = N_{w'}$ for any vertices $w, w' \in V(\Gamma')$. Since $N_v \cong \mathbb{Z}^k$ for the initial vertex v, it follows that $N_w \cong \mathbb{Z}^k$ for any $w \in V(\Gamma')$. Now, then n-independence of the axial function implies that there are exactly k edges in the set $\{e \in E(\Gamma')_w\}$, for any vertex w of Γ'. In other words, Γ' is k-valent and therefore it defines a k-face of Γ.

Corollary 7.9.8. Faces of a T-graph Γ form a simplicial poset $S(\Gamma)$ of rank n with respect to reversed inclusion.

Denote by $G \lor H$ a minimal face containing both G and H. In general such a least upper bound may fail to exist or be non-unique; however it exists and is unique provided that the intersection $G \cap H$ is non-empty.

Lemma 7.9.9. For any two faces G and H of Γ the corresponding Thom classes satisfy the relation

$$(7.47) \quad \tau_G \tau_H = \tau_{G \lor H} \cdot \sum_{E \in G \cap H} \tau_E,$$

where we formally set $\tau_\varnothing = 1$ and $\tau_{\varnothing} = 0$, and the sum in the right hand side is taken over connected components E of $G \cap H$.

Proof. We need to check that both sides of the identity take the same values on any vertex v. The argument is the same as in the proof of Lemma 7.4.26.

Lemma 7.9.10. The Thom classes τ_G corresponding to all proper faces of Γ constitute a set of ring generators for $H_\tau^*(\Gamma)$.

Proof. This is proved in the same way as Lemma 7.4.31.

Consider the face ring $\mathbb{Z}[S(\Gamma)]$, obtained by taking the quotient of the polynomial ring on generators v_\varnothing corresponding to non-empty faces of Γ by the relations (7.47). The grading is given by $\deg v_\varnothing = 2(n - \dim G)$.

Example 7.9.11. Let Γ be the torus graph shown in Figure 7.7 (b). Denote its vertices by p and q, the edges by e, g, h, and their opposite 2-faces by E, G, H, respectively. The simplicial cell complex $\mathcal{S}(\Gamma)$ is obtained by gluing two triangles along their boundaries. The face ring $\mathbb{Z}[\mathcal{S}(\Gamma)]$ is the quotient of the graded polynomial ring

$$\mathbb{Z}[v_e, v_g, v_h, v_p, v_q], \quad \deg v_e = \deg v_g = \deg v_h = 2, \quad \deg v_p = \deg v_q = 6$$

by the two relations

$$v_e v_g v_h = v_p + v_q, \quad v_p v_q = 0.$$ (The generators v_e, v_g, v_h can be excluded using relations like $v_e = v_g v_h$.)

By definition, the equivariant cohomology of a T-graph comes together with a monomorphism into the sum of polynomial rings:

$$r: H^*_T(\Gamma) \to \bigoplus_{V(\Gamma)} H^*(BT).$$

A similar map for the face ring $\mathbb{Z}[\mathcal{S}(\Gamma)]$ is given by Theorem 3.5.6 (or by Theorem 7.4.23). The latter map can be written in our case as

$$s: \mathbb{Z}[\mathcal{S}(\Gamma)] \to \bigoplus_{v \in V(\Gamma)} \mathbb{Z}[\mathcal{S}(\Gamma)]/(v_{1:G} : G \neq v).$$

Theorem 7.9.12 ([246]). The equivariant cohomology ring $H^*_T(\Gamma)$ of a T-graph Γ is isomorphic to the face ring $\mathbb{Z}[\mathcal{S}(\Gamma)]$. In other words, $H^*_T(\Gamma)$ is isomorphic to the quotient of the polynomial ring on the Thom classes τ_i by relations (7.47).

Proof. We define a map

$$\mathbb{Z}[v_i : G \text{ is a face}] \to H^*_T(\Gamma)$$

by sending v_i to τ_i. By Lemma 7.9.9, it factors through a map $\varphi: \mathbb{Z}[\mathcal{S}(\Gamma)] \to H^*_T(\Gamma)$. This map is surjective by Lemma 7.9.10. Also, φ is injective, because we have $s = r \circ \varphi$ and s is injective by Theorem 3.5.6.

Pseudomanifolds and orientations. Which simplicial posets arise as the posets of faces of T-graphs? Here we obtain a partial answer to this question.

We have the following version of Definition 4.6.4 for simplicial posets:

Definition 7.9.13. A simplicial poset \mathcal{S} of rank n is called an $(n - 1)$-dimensional pseudomanifold (without boundary) if

(a) for any element $\sigma \in \mathcal{S}$, there is an element τ of rank n such that $\sigma \leq \tau$ (in other words, \mathcal{S} is pure $(n - 1)$-dimensional);

(b) for any element $\sigma \in \mathcal{S}$ of rank $(n - 1)$, there are exactly two elements τ of rank n such that $\sigma < \tau$;

(c) for any two elements τ and τ' of rank n, there is a sequence of elements $\tau = \tau_1, \tau_2, \ldots, \tau_k = \tau'$ such that rank $\tau_i = n$ and $\tau_i \wedge \tau_{i+1}$ contains an element of rank $(n - 1)$ for $i = 1, \ldots, k - 1$.

Simplicial cell decompositions of topological manifolds are pseudomanifolds, but there are pseudomanifolds that do not arise in this way, see Example 7.9.15.

Theorem 7.9.14 ([246]).

(a) Let Γ be a torus graph; then $\mathcal{S}(\Gamma)$ is a pseudomanifold, and the face ring $\mathbb{Z}[\mathcal{S}(\Gamma)]$ admits an isop;
(b) Given an arbitrary pseudomanifold S and an Isop in $\mathbb{Z}[S]$, one can canonically construct a torus graph Γ_S.

Furthermore, $\Gamma_{S(\Gamma)} = \Gamma$.

Proof. (a) Vertices of $S(\Gamma)$ correspond to $(n-1)$-faces of Γ. Since any face of Γ contains a vertex and Γ is n-valent, $S(\Gamma)$ is pure $(n-1)$-dimensional. Condition (b) follows from the fact that an edge of Γ has exactly two vertices, and (c) follows from the connectivity of Γ. In order to find an Isop, we identify $\mathbb{Z}[S(\Gamma)]$ with a subset of $H^*(BT)^Y(\Gamma)$ (see Theorem 7.9.12) and consider the constant map $H^*(BT) \to H^*(BT)^Y(\Gamma)$. It factors through a monomorphism $H^*(BT) \to \mathbb{Z}[S(\Gamma)]$, and Lemma 3.5.8 implies that the image of a basis in $H^2(BT)$ is an Isop.

(b) Let S be a pseudomanifold of dimension $(n-1)$. Define a graph Γ_S whose vertices correspond to $(n-1)$-dimensional simplices $\sigma \in S$, and in which the number of edges between two vertices σ and σ' is equal to the number of $(n-2)$-dimensional simplices in $\sigma \wedge \sigma'$. Then Γ_S is a connected n-valent graph, and we need to define an axial function.

We can regard an Isop as a map $\lambda: H^*(BT) \to \mathbb{Z}[S]$. Assume that S has m elements of rank 1 (we do not call them vertices to avoid confusion with the vertices of Γ) and let v_1, \ldots, v_m be the corresponding degree-two generators of $\mathbb{Z}[S]$. Then for $t \in H^2(BT)$ we can write

$$\lambda(t) = \sum_{i=1}^m \lambda_i(t) u_i,$$

where λ_i is a linear function on $H^2(BT)$, that is, an element of $H_2(BT)$. Let e be an oriented edge of Γ with initial vertex $v = i(e)$. Then v corresponds to an $(n-1)$-simplex of S, and we denote by $I(v) \subset \{1, \ldots, m\}$ the corresponding set of rank-1 elements of S; note that $|I(v)| = n$. Since λ is an Isop, the set $\{\lambda_i : i \in I(v)\}$ is a basis of $H_2(BT)$. Now we define the axial function $\alpha: E(\Gamma) \to H^2(BT)$ by requiring that its value on $E(\Gamma)_v$ is the dual basis of $\{\lambda_i : i \in I(v)\}$. In more detail, the edge e corresponds to an $(n-2)$-simplex of S and let $\ell \in I(v)$ be the unique element which is not in this $(n-2)$-simplex. Then we define $\alpha(e)$ by requiring that

$$\langle \alpha(e), \lambda_i \rangle = \delta_{\ell i}, \quad i \in I(v),$$

where $\delta_{\ell i}$ is the Kronecker delta. We need to check the three conditions from the definition of axial function. Let $v' = t(e) = i(\bar{e})$. Note that the intersection of $I(v)$ and $I(v')$ consists of at least $(n-1)$ elements. If $I(v) = I(v')$ then Γ has only two vertices, like in Example 7.9.3, while S is obtained by gluing together two $(n-1)$-simplices along their boundaries, see Example 3.6.5. Otherwise, $|I(v) \cap I(v')| = n-1$ and we have $\ell \notin I(v')$. Let ℓ' be an element such that $\ell' \in I(v')$, but $\ell' \notin I(v)$. Then (7.48) implies that $\langle \alpha(e), \lambda_i \rangle = \langle \alpha(\bar{e}), \lambda_i \rangle = 0$ for $i \in I(v) \cap I(v')$. As we work with integral bases, this implies $\alpha(\bar{e}) = \pm \alpha(e)$. It also follows that $\alpha(E(\Gamma)_v \setminus e)$ and $\alpha(E(\Gamma)_{v'} \setminus \bar{e})$ give the same bases in the quotient space $H^2(BT)/\alpha(e)$. Identifying these bases, we obtain a connection $\theta_{\alpha}: E(\Gamma)_v \to E(\Gamma)_{v'}$ satisfying $\alpha(\theta_{\alpha}(e')) \equiv \alpha(e') \mod \alpha(e')$ for any $e' \in E(\Gamma)_{v'}$, as needed.

The identity $\Gamma_{S(\Gamma)} = \Gamma$ is obvious. \qed
Theorem 7.9.14 would have provided a complete characterisation of simplicial posets arising from T-graphs if one had $S(\Gamma_S) = S$. However, this is not the case in general, as is shown by the next example:

Example 7.9.15. Let \mathcal{K} be a triangulation of a 2-dimensional sphere different from the boundary of a simplex. Choose two vertices that are not joined by an edge. Let $\bar{\mathcal{K}}$ be the complex obtained by identifying these two vertices. Then $\bar{\mathcal{K}}$ is a pseudomanifold. If $\mathbb{Z}[\mathcal{K}]$ admits an isop, then $\mathbb{Z}[\bar{\mathcal{K}}]$ also admits an isop (this follows easily from Lemma 3.5.8). However, $\mathcal{S}(\Gamma_{\bar{\mathcal{K}}}) \neq \mathcal{K}$ (in fact, $\mathcal{S}(\Gamma_{\bar{\mathcal{K}}}) = \mathcal{K}$). It follows that $\bar{\mathcal{K}}$ does not arise from any T-graph.

Definition 7.9.16. A map $o : V(\Gamma) \rightarrow \{\pm 1\}$ is called an orientation of a T-graph Γ if $o(i(e))o(\bar{e}) = -o(i(\bar{e}))o(e)$ for any $e \in E(\Gamma)$.

Example 7.9.17. Let M be a torus manifold which admits a T-invariant almost complex structure. The associated axial function α_M satisfies $\alpha_M(\bar{e}) = -\alpha_M(e)$ for any oriented edge e. In this case we can take $o(v) = 1$ for every $v \in V(\Gamma_M)$.

Proposition 7.9.18. An omniorientation of a torus manifold M induces an orientation of the associated T-graph Γ_M.

Proof. For any vertex $v \in MT = V(\Gamma_M)$ we set $o(v) = \sigma(v)$, where $\sigma(v)$ is the sign of v (see Lemma 7.3.19). \hfill \square

Example 7.9.19. Let Γ be a complete graph on four vertices v_1, v_2, v_3, v_4. Choose a basis $t_1, t_2, t_3 \in H^2(B^3)$ and define an axial function by setting

$$o(v_1v_2) = o(v_3v_4) = t_1, \quad o(v_1v_3) = o(v_2v_4) = t_2, \quad o(v_1v_4) = o(v_2v_3) = t_3$$

and $o(\bar{e}) = o(e)$ for any oriented edge e. A direct check shows that this T-graph is not orientable. This graph is associated with the pseudomanifold (simplicial cell complex) shown in Figure 7.8 via the construction of Theorem 7.9.14 (b). This pseudomanifold \mathcal{S} is homeomorphic to $\mathbb{R}P^2$ (the opposite outer edges are identified according to the arrows shown), and the ring $\mathbb{Z}[\mathcal{S}]$ has three two-dimensional generators v_p, v_q, v_r, which constitute an isop. Note that $\mathbb{R}P^2$ itself is non-orientable.

It follows that this T-graph does not arise from a torus manifold.

Proposition 7.9.20. A T-graph is Γ is orientable if and only if the associated pseudomanifold $S(\Gamma)$ is orientable.

Proof. Let $v \in V(\Gamma)$ and let σ be the corresponding $(n - 1)$-simplex of $S(\Gamma)$. The oriented edges in $E(\Gamma)$, canonically correspond to the vertices of σ. Choose
7. HALF-DIMENSIONAL TORUS ACTIONS

Figure 7.9. Blow-up at an edge

a basis of $H^2(BT)$. Assume first that $S(\Gamma)$ is oriented. Choose a ‘positive’ (i.e. compatible with the orientation) order of vertices of σ; this allows us to regard $\alpha(E(\Gamma)_v)$ as a basis of $H^2(BT)$. We set $\alpha(v) = 1$ if it is a positively oriented basis, and $\alpha(v) = -1$ otherwise. This defines an orientation on Γ. To prove the opposite statement we just reverse this procedure.

Blowing up T-manifolds and T-graphs. Here we elaborate on relating the following three geometric constructions:

(a) blowing up a torus manifold at a facial submanifold (Construction 7.4.43);
(b) truncating a simple polytope at a face (Construction 1.1.12) or, more generally, blowing up a GKM graph or a T-graph;
(c) stellar subdivision of a simplicial complex or simplicial poset (see Definition 2.7.1 and Section 3.6).

The construction of blow-up of a GKM-graph is described in [171, §2.2.1]. It also applies to T-graphs and agrees with the topological blow-ups for graphs arising from torus manifolds.

Let (Γ, α, θ) be a T-graph and G its k-face. The blow-up of Γ at G is a T-graph Γ' which is defined as follows. Its vertex set is $V(\Gamma') = (V(\Gamma) \setminus V(G)) \cup V(G)^{n-k}$, that is, each vertex $p \in V(G)$ is replaced by $n - k$ new vertices $\bar{p}_1, \ldots, \bar{p}_{n-k}$. It is convenient to choose these new vertices close to p on the edges from the set $E_p(\Gamma) \setminus E_p(G)$, and we denote by p'_i the endpoint of the edge of Γ containing both p and \bar{p}_i. Furthermore, for any two vertices $p, q \in G$ joined by an edge pq we index the corresponding new vertices of Γ in the way compatible with the connection, i.e. so that $\theta_{pq}(\bar{p}_i \bar{p}_j) = q q'_i$. Now we need to define the edges of the new graph Γ' and the axial function $\bar{\alpha}: E(\Gamma') \rightarrow H^n(BT)$. We have four types of edges in Γ', which are given in the following list together with the values of the axial function:

(a) $\bar{p}_i \bar{p}_j$ for every $p \in V(G)$; $\bar{\alpha}(\bar{p}_i \bar{p}_j) = \alpha(pp'_i) - \alpha(pp'_j)$;
(b) $\bar{p}_i \bar{q}_i$ if p and q where joined by an edge in G; $\bar{\alpha}(\bar{p}_i \bar{q}_i) = \alpha(pq)$;
(c) $\bar{p}_i p'_j$ for every $p \in V(G)$; $\bar{\alpha}(\bar{p}_i p'_j) = \alpha(pp'_j)$;
(d) edges ‘left over from Γ, i.e. $e \in E(\Gamma)$ with $i(e) \notin V(G)$ and $t(e) \notin V(G)$;

$\bar{\alpha}(e) = \Delta(e),$

see Figure 7.9 ($n = 3, k = 1$) and Figure 7.10 ($n = 3, k = 0$).

There is a blow-down map $b: \Gamma' \rightarrow \Gamma$ taking faces to faces. The face G is blown up to a new facet $\bar{G} \subset \Gamma'$ (unless G is a facet itself, in which case $\bar{G} = \Gamma$). For any
face $H \subset \Gamma$ not contained in G, there is a unique face $\bar{H} \subset \bar{\Gamma}$ that is blown down onto H. The blow-down map induces a homomorphism in equivariant cohomology $b^*: H^*_T(\bar{\Gamma}) \to H^*_T(\Gamma)$, which is defined by the following commutative diagram:

$$
\begin{array}{ccc}
H^*_T(\bar{\Gamma}) & \xrightarrow{b^*} & H^*_T(\Gamma) \\
\downarrow r & & \downarrow \bar{r} \\
H^*(BT)^{V(\bar{\Gamma})} & \xrightarrow{Vb^*} & H^*(BT)^{V(\Gamma)},
\end{array}
$$

(7.49)

where r and \bar{r} are the monomorphisms from the definition of equivariant cohomology of a T-graph, and $V(b)^*$ is the homomorphism induced by the set map $V(b): V(\bar{\Gamma}) \to V(\Gamma)$. The next lemma describes the images of the two-dimensional generators $\tau_p \in H^*_T(\Gamma)$ corresponding to facets $F \subset \Gamma$.

Lemma 7.9.21. For a given facet $F \subset \Gamma$, we have $b^*(\tau_p) = \tau_G + \tau_{\bar{p}}$, if $G \subset F$ and $b^*(\tau_p) = \tau_{\bar{p}}$ otherwise.

Proof. We consider diagram (7.49) and check that the images of $b^*(\tau_p)$ and $\tau_G + \tau_{\bar{p}}$ (or $\tau_{\bar{p}}$) under the map \bar{r} agree. Take a vertex $p \in V(\Gamma)$. If $p \notin G$, then $b^{-1}(p) = p$ and $r(\tau_p)(p) = \bar{r}(\tau_p)(p)$, $\bar{r}(\tau_G)(p) = 0$. Now let $p \in G$; then $b(\bar{p}_i) = p$ for $1 \leq i \leq n - k$.

First assume $G \not\subset F$ (see Figure 7.11). If $p \notin F$, then $r(\tau_p)(p) = \bar{r}(\tau_p)(\bar{p}_i) = 0$. Otherwise $p \in F \cap G$. Let e be the unique edge such that $e \in E_p(\Gamma)$ and $e \notin F$. Then $e = pq$ for some $q \in V(G)$ (because $G \not\subset F$). From (7.46) we obtain

$$
r(\tau_p)(p) = \alpha(pq) = \tilde{\alpha}(\bar{p}_i\bar{q}_i) = \bar{r}(\tau_p)(\bar{p}_i), \quad 1 \leq i \leq n - k.
$$

Then $Vb^*r(\tau_p) = \bar{r}(\tau_p)$, and therefore, $b^*(\tau_p) = \tau_{\bar{p}}$.

Now assume $G \subset F$ (see Figure 7.12). In this case the unique edge e for which $e \in E_p(\Gamma)$ and $e \notin F$ is of type pp'_j. Using (7.46) we calculate

$$
r(\tau_p)(p) = \alpha(pp'_j),
\bar{r}(\tau_p)(\bar{p}_i) = \tilde{\alpha}(\bar{p}_i\bar{p}_j) = \alpha(pp'_j) - \alpha(pp'_i),
\bar{r}(\tau_G)(\bar{p}_i) = \tilde{\alpha}(\bar{p}_i\bar{p}_j) = \alpha(pp'_i), \quad 1 \leq i \leq n - k.
$$

Then $Vb^*r(\tau_p) = \bar{r}(\tau_G) + \bar{r}(\tau_p)$, and therefore, $b^*(\tau_p) = \tau_G + \tau_{\bar{p}}$.

\[\square\]
Corollary 7.9.22. After the identifications $H^*_T(\Gamma) \cong \mathbb{Z}[S(\Gamma)]$ and $H^*_T(\tilde{\Gamma}) \cong \mathbb{Z}[S(\tilde{\Gamma})]$, the equivariant cohomology homomorphism b^* induced by the blow-down map $b: \tilde{\Gamma} \to \Gamma$ coincides with the homomorphism β from Lemma 3.6.4.

Proof. Recall from Theorem 7.9.12 that the poset $S(\Gamma)$ is formed by faces of Γ with the reversed inclusion relation, and the isomorphism $H^*_T(\Gamma) \cong \mathbb{Z}[S(\Gamma)]$ is established by identifying Thom classes τ_H with generators v_H corresponding to faces $H \subset \Gamma$. Let $\sigma \in S(\Gamma)$ be the element corresponding to the blown up face G. Then an element $\tau \in S(\Gamma)$ belongs to $st_{S(\Gamma)} \sigma$ if and only if its corresponding face $H \subset \Gamma$ satisfies $G \cap H \neq \emptyset$. The degree-two generators v_1, \ldots, v_m of $\mathbb{Z}[S(\Gamma)]$ and of $\mathbb{Z}[S(\tilde{\Gamma})]$ correspond to the generators $\tau_{G_1}, \ldots, \tau_{G_m}$ of $H^*_T(\Gamma)$ and the generators $\tau_{G_j}, \ldots, \tau_{G_m}$ of $H^*_T(\tilde{\Gamma})$, respectively. Making the appropriate identifications, we see that the homomorphism from Lemma 3.6.4 is determined uniquely by the conditions

\[
\begin{align*}
\tau_H &\mapsto \tau_H & \text{if } G \cap H = \emptyset, \\
\tau_{G_i} &\mapsto \tau_G + \tau_{G_i} & \text{if } G \subset F_i, \\
\tau_{G_i} &\mapsto \tau_{G_i} & \text{if } G \not\subset F_i.
\end{align*}
\]

The blow-down map b^* satisfies these conditions, thus finishing the proof. \qed

Exercises.

7.9.23. A connection θ satisfying condition (c) from the definition of axial function is unique if the elements of $\alpha(E(\Gamma)_v)$ are 3-independent for every vertex v.
CHAPTER 8

Homotopy Theory of Polyhedral Products

The homotopy-theoretical study of toric spaces, such as moment-angle complexes or general polyhedral products, has recently evolved into a separate branch linking toric topology to unstable homotopy theory. Like toric varieties in algebraic geometry, polyhedral product spaces provide an effective testing ground for many important homotopy-theoretical techniques.

Basic homotopical properties of polyhedral products were described in our 2002 text [68]; these are included in Section 4.3 of this book. Two important developments soon followed. First, Gomić and Theriault [157], [158] described a wide class of simplicial complexes K whose corresponding moment-angle complex Z_K is homotopy equivalent to a wedge of spheres. (This class includes, for example, i-dimensional skeleta of a simplex Δ^{m-1} for all i and m.) Second, formality of the Davis–Januszkiewicz space $DJ(K)$ (or, equivalently, the polyhedral product $(\mathbb{C}P^\infty)^K$) was established by Notbohm and Ray in [288]. (An alternative proof of this result was also given in [69, Lemma 7.35].) The importance of the homotopy-theoretical viewpoint on toric spaces has been emphasised in two papers [75] and [302], both coauthored with Ray and appearing in the proceedings of 2006 Osaka conference on toric topology. Following the earlier work of Panov, Ray and Vogt [303], in [302] categorical methods were brought to bear on toric topology. We include the main results of [302] and [303] in Sections 8.1 and 8.4.

The idea is to exhibit a toric space as the homotopy colimit of a diagram of spaces over the small category $\text{cat}(K)$, whose objects are the faces of a finite simplicial complex K and morphisms are their inclusions. The corresponding $\text{cat}(K)$-diagrams can also be studied in various algebraic Quillen model categories, and their homotopy (co)limits can be interpreted as algebraic models for toric spaces. Such models encode many standard algebraic invariants, and their existence is assured by the Quillen structure. Several illustrative calculations will be provided. In particular, we prove that toric and quasitoric manifolds are rationally formal, and that the polyhedral product $(\mathbb{C}P^\infty)^K$ (or the Davis–Januszkiewicz space) is coformal precisely when K is flag.

A number of papers on the homotopy-theoretical aspects of toric spaces have appeared since 2008. One of the most important contributions was the 2010 work of Bahri, Bendersky, Cohen and Gitler [16] establishing a decomposition of the suspension of a polyhedral product $(X,A)^K$ into a wedge of suspensions corresponding to subsets $I \subseteq [m]$. In particular, the moment-angle complex Z_K breaks up into a wedge of suspensions of full subcomplexes K_I after one suspension, providing a homotopy-theoretical interpretation of the cohomology calculation of Theorem 4.5.8. We include the results of [16] and related results on stable decompositions of polyhedral products in Section 8.3.
In Section 8.4 we study the loop spaces of moment-angle complexes and polyhedral products, by applying both categorical decompositions and the classical homotopy-theoretical approach via the (higher) Whitehead and Samelson products.

In the last section we restrict our attention to the case of flag complexes \mathcal{K}. We describe the Pontryagin algebra $H_*(\Omega(CP^K))$ explicitly by generators and relations in Theorem 8.5.2, and also exhibit it as a colimit (or graph product) of exterior algebras. For the commutator subalgebra $H_*(\Omega Z_\mathcal{K})$, a minimal set of generators was constructed in [156]; it is included as Theorem 8.5.7. Another result of [156] (Theorem 8.5.11) gives a complete characterisation of the class of flag complexes \mathcal{K} for which the moment-angle complex $Z_\mathcal{K}$ is homotopy equivalent to a wedge of spheres.

Background material on model categories and homotopy (co)limits is given in Appendix C, further references can also be found there.

8.1. Rational homotopy theory of polyhedral products

Here we construct several decompositions of polyhedral products into colimits and homotopy colimits of diagrams over $\text{cat}(\mathcal{K})$. We also establish formality of polyhedral powers X^K with formal X, as well as formality of (quas)toric manifolds and some torus manifolds. This is in contrast to the situation with moment-angle complexes $Z_\mathcal{K} = (D^2, S^1)^K$, which are not formal in general (see Section 4.9).

The indexing category for all diagrams in this section is $\text{cat}(\mathcal{K})$ (simplices of a finite simplicial complex \mathcal{K} and their inclusions) or its opposite $\text{cat}(\mathcal{K})^{op}$. We recall the following diagrams and their (co)limits which appeared earlier in this book:

- $\text{cat}(\mathcal{K})^{op}$-diagram $k[\cdot]^K$ in CGA, see Exercise 3.1.15 and Lemma 3.5.11; its limit is the face ring $k[\mathcal{K}]$;
- $\text{cat}(\mathcal{K})$-diagram $D_\mathcal{K}(D^2, S^1)$ in TOP, see (4.3); its colimit is the moment-angle complex $Z_\mathcal{K} = (D^2, S^1)^K$;
- $\text{cat}(\mathcal{K})$-diagram $D_\mathcal{K}(X, A)$ in TOP, see (4.7); its colimit is the polyhedral product $(X, A)^K$.

In the case $k = \mathbb{Q}$, the first diagram above can be generalised as follows. Given a sequence $C = (C_1, \ldots, C_m)$ of commutative dg-algebras over \mathbb{Q}, define the diagram

$$D^K(C) : \text{cat}(\mathcal{K})^{op} \rightarrow \text{cdga}_\mathbb{Q}, \quad I \mapsto \bigotimes_{i \in I} C_i,$$

by mapping a morphism $I \subset J$ to the surjection $\bigotimes_{i \in J} C_i \twoheadrightarrow \bigotimes_{i \in I} C_i$ sending each C_i with $i \notin I$ to 1. Then the diagram $\mathbb{Q}[\cdot]^K$ corresponds to the case $C_i = \mathbb{Q}[v_i]$ the polynomial algebra on one generator of degree 2.

Proposition 8.1.1.

(a) The diagram $D^K(C)$ is fibrant. Therefore, there is a weak equivalence $\lim D^K(C) \xrightarrow{\sim} \text{holim} D^K(C)$. In particular, there is a weak equivalence $\mathbb{Q}[\cdot]^K = \lim \mathbb{Q}[\cdot]^K \xrightarrow{\sim} \text{holim} \mathbb{Q}[\cdot]^K$.

(b) The diagram $D_\mathcal{K}(X, A)$ is cofibrant whenever each $A_i \rightarrow X_i$ is a cofibration (e.g., when (X_i, A_i) is a cellular pair). Under this condition, there is a weak equivalence $\text{hocolim} D_\mathcal{K}(X, A) \xrightarrow{\sim} (X, A)^K$.

Proof. (a) Recall from Section C.1 that a $\text{cat}^{op}(\mathcal{K})$-diagram C is fibrant when the canonical map $C(I) \rightarrow \text{lim} C_{\text{cat}^{op}(\partial \Delta(I))}$ is a fibration for each $I \in \mathcal{K}$. In our
case,
\[D^K(C)(I) = \bigotimes_{i \in I} C_i, \quad \lim_{\Delta} D^K(C)|_{cat^{-}\psi(\partial \Delta(I))} = \bigotimes_{i \in I} C_i/I, \]
where I is the ideal generated by all products \(\prod_{i \in I} c_i \) with \(c_i \in C_i^+ \). Hence the fibrance condition is satisfied. Proposition C.3.3 implies that the canonical map \(\lim D^K(C) \xrightarrow{\sim} \holim D^K(C) \) is a is a weak equivalence.

(b) A \(cat(K) \)-diagram \(D \) is cofibrant whenever each map \(D|_{cat^{-}\psi(\partial \Delta(I))} \to D(I) \) is a cofibration. In our case,
\[\lim_{\Delta} D_K(X, A)|_{cat^{-}\psi(\partial \Delta(I))} = (X, A)^{\partial \Delta(I)} \times A^{[m]} \setminus I, \quad D_K(X, A)(I) = (X, A)^I, \]
so the cofibration condition is satisfied. \(\square \)

We now consider more specific models for particular polyhedral products and quasitopic manifolds. All cohomology in this section is with rational coefficients.

Formality of \(X^K \) **and** \((\mathbb{C}P^\infty)^K \). Recall that we use the notation \(X^K \) for the polyhedral product \((X, pt)^K \), and a space \(X \) is formal if the commutative dg-algebra \(A_{PL}(X) = A^*(S_\bullet X) \) is weakly equivalent to its cohomology \(H^*(X) \).

Theorem 8.1.2. If each space \(X_i \) in \(X = (X_1, \ldots, X_m) \) is formal, then the polyhedral product \(X^K \) is also formal.

Proof. For notational clarity, we denote the colimit of the diagram \(D_K(X, pt) \) defining \(X^K \) by \(\colim_I X^I \), where \(I \in K \). We shall prove that \(A_{PL} = A^* S_\bullet \) maps this colimit to the limit of dg-algebras \(A_{PL}(X^I) = \bigotimes_{i \in I} A_{PL}(X_i) \). For this it is convenient to work with simplicial sets, as the definition of the polynomial de Rham functor \(A^* \) implies that it takes colimits in \(\text{sset} \) to limits in \(\text{cdga} \), see [45, §13.5].

We have a natural weak equivalence \(|S_\bullet (X^I)| \to X^I \). Since the total singular complex functor \(S_\bullet \) is right adjoint, it preserves products, so we have a weak equivalence \(|(S_\bullet X)^I| \to X^I \). The \(cat(K) \)-diagram \(D_K(X, pt) \) given by \(I \mapsto X^I \) is cofibrant by Proposition 8.1.1, and the diagram \(I \mapsto |(S_\bullet X)^I| \) is cofibrant for the same reason. We therefore have a weak equivalence \(\colim_I |(S_\bullet X)^I| \to \colim_I X^I \) by Proposition C.3.4. Applying \(A_{PL} \), we obtain the zigzag
\[A_{PL}(X^K) = A_{PL} \colim_I X^I \xrightarrow{\sim} A_{PL} \colim_I |(S_\bullet X)^I| \cong A_{PL} |\colim_I (S_\bullet X)^I|, \]
where in the last identity we used the fact that the realisation functor is left adjoint and therefore preserves colimits. Given an arbitrary simplicial set \(Y_\bullet \), there is a quasi-isomorphism \(A_{PL}(|Y_\bullet|) = A^*(S_\bullet |Y_\bullet|) \xrightarrow{\sim} A^*(Y_\bullet) \) induced by the weak equivalence \(Y_\bullet \to S_\bullet |Y_\bullet| \). We therefore can continue the zigzag above as
\[A_{PL} |\colim_I (S_\bullet X)^I| \xrightarrow{\sim} A^*(\colim_I (S_\bullet X)^I) \cong \lim_I A^*(S_\bullet X)^I = \lim_I A_{PL}(X^I). \]

Now, since each \(X_i \) is formal, there is a zigzag of quasi-isomorphisms \(A_{PL}(X_i) \leftarrow \cdots \to H^*(X_i) \). Applying Proposition 8.1.1 (a) for the case \(C_i = A_{PL}(X_i) \) and \(C_i = H^*(X_i) \) we obtain that both the corresponding diagrams \(D^K(C) \) are fibrant, so their limits are weakly equivalent by Proposition C.3.4:
\[\lim_I A_{PL}(X^I) \xrightarrow{\sim} \cdots \xrightarrow{\sim} \lim_I H^*(X^I) \]
(here we also use the fact that \(H^*(X^I) \cong \bigotimes_{i \in I} H^*(X_i) \), as we work with rational coefficients). The proof is finished by appealing to the isomorphism
\[\lim_I H^*(X^I) \cong H^*(X^K). \]
In the case $X_i = \mathbb{CP}^\infty$ this is proved in Proposition 4.3.1 (we only need this case in this section). For the general case, the proof will be given in Section 8.3. \qed

Corollary 8.1.3. The Davis-Januszkiewicz space $ET^m \times T = Z_K$ is formal.

Proof. This follows from the homotopy equivalence $(\mathbb{CP}^\infty)^K \simeq ET^m \times T = Z_K$ of Theorem 4.3.2 \qed

Remark. The case $X_i = \mathbb{CP}^\infty$ of Theorem 8.1.2 (formality of the Davis-Januszkiewicz space) was proved in [288, Theorem 5.5] and [69, Lemma 7.35]. According to [288, Theorem 4.8], the space $(\mathbb{CP}^\infty)^K$ is integrally formal, i.e. the singular cochain algebra $C^*((\mathbb{CP}^\infty)^K; \mathbb{Z})$ is formal as a non-commutative dg-algebra. A proof is outlined in Exercise 8.1.11.

The result of Theorem 8.1.2 cannot be extended to polyhedral products of the form $(X, A)^K$. Although $\lim_I A_{PL}((X, A)^I)$ is still a model for $A_{PL}(X, A)^K$ (see the next subsection), the $\text{Cat}(K)^{op}$-diagram $I \mapsto H^*((X, A)^I)$ is not fibrant in general, and therefore its limit is neither isomorphic to $\lim_I A_{PL}((X, A)^I)$, nor to $H^*((X, A)^K)$. Indeed, as we have seen in Section 4.9, the moment-angle complex $Z_K = (D^2, S^1)^K$ is not formal in general.

The argument in the proof of Theorem 8.1.2 shows that rational cohomology, as a functor from Top to CDGA_Q, maps the homotopy colimit of a diagram $D_K(X, pt)$ to the homotopy limit of the diagram $D_K^2(H^*(X))$.

The coformality of $(\mathbb{CP}^\infty)^K$ is explored in Theorem 8.5.6.

Models for $(X, A)^K$ and Z_K. Given a polyhedral product $(X, A)^K = \text{colim}_I (X, A)^I$, we can consider the $\text{Cat}(K)^{op}$-diagram of commutative dg-algebras defined by $I \mapsto A_{PL}((X, A)^I)$, and denote its limit by $\lim_I A_{PL}((X, A)^I)$.

Proposition 8.1.4. There is a quasi-isomorphism of commutative dg-algebras

$$A_{PL}((X, A)^K) \cong \lim_I A_{PL}((X, A)^I).$$

Proof. Repeat literally the argument in the first part of proof of Theorem 8.1.2 (before appealing to the formality of X_i). \qed

More specific models can be obtained in the particular case $Z_K = (D^2, S^1)^K$.

Alongside the diagram $D^2(S^1)$ we consider the $\text{Cat}(K)$-diagram $D_K(pt, S^1)$ in Top whose value on $I \in J$ is the quotient map of tori

$$T^m/T^l = (S^1)^{m-I} \to (S^1)^{m-I} = T^m/T^l.$$ (8.2)

This diagram is not cofibrant; we denote its homotopy colimit by $\text{hocolim}_I T^m/T^l$.

Proposition 8.1.5 ([303]). There is a weak equivalence $Z_K \simeq \text{hocolim}_I T^m/T^l$.

Proof. Objectwise projections $(D^2, S^1)^I \to (S^1)^{m-I}$ induce a weak equivalence of diagrams $D_K(D^2, S^1) \to D_K(pt, S^1)$, whose source is cofibrant but whose target is not. Proposition C.3.2 therefore determines a weak equivalence

$$Z_K = \text{colim}_I (D^2, S^1)^I \cong \text{hocolim}_I T^m/T^l.$$ \qed

In order to obtain a rational model of Z_K from this homotopy limit decomposition, we consider $\text{Cat}^{op}(K)$-diagrams $\Lambda[m] \otimes \mathbb{Q}[-]^K$ and $\Lambda[m]/\Lambda[-]^K$ in \mathbb{CDGA}_Q. The first is obtained by objectwise tensoring the diagram $\mathbb{Q}[\cdot]^K$ with the exterior algebra
\[\Lambda[m] = \Lambda[u_1, \ldots, u_m], \ \deg u_i = 1, \] and imposing the standard Koszul differential. So the value of \(\Lambda[m] \otimes \mathbb{Q}[\cdot]_K \) on \(I \subset J \) is the quotient map
\[(\Lambda[m] \otimes \mathbb{Q}[v_i : i \in J], d) \to (\Lambda[m] \otimes \mathbb{Q}[v_i : i \in I], d), \]
where \(d \) is defined on \(\Lambda[m] \otimes \mathbb{Q}[v_i : i \in I] \) by \(du_i = v_i \) for \(i \in J \) and \(du_i = 0 \) otherwise. The value of the second diagram \(\Lambda[m]/\Lambda[\cdot]_K \) on \(I \subset J \) is the monomorphism
\[\Lambda[u_i : i \notin J] \to \Lambda[u_i : i \notin I] \]
of algebras with zero differential. Objectwise projections induce a weak equivalence
\[(8.3) \quad \Lambda[m] \otimes \mathbb{Q}[\cdot]_K \to \Lambda[m]/\Lambda[\cdot]_K \]
in \(\text{cat}^{op}(\mathcal{K}), \text{cdga}_\mathbb{Q} \), whose source is fibrant but whose target is not.

The following result describes the first algebraic model of \(Z_K \), and also recovers the main result of Section 4.5 with rational coefficients.

Theorem 8.1.6 ([302]). The commutative differential graded algebras \(A_{PL}(Z_K) \) and \(\text{holim}_I \Lambda[u_i : i \notin I] \) are weakly equivalent in \(\text{cdga}_\mathbb{Q} \).

Proof. We first construct models for the products of disks and circles \((D^2, S^1)^I \) which are compatible with the inclusions \((D^2, S^1)^I \subset (D^2, S^1)^J \) forming the diagram \(D_K(D^2, S^1) \). The model of a single disk \(D^2 \) is the Koszul algebra \((\Lambda[u] \otimes \mathbb{Q}[v], d) \). The map \(\Lambda[u] \otimes \mathbb{Q}[v] \to A_{PL}(D^2) \) takes \(u \) to the form \(\omega = xdy - ydx \) (where \((x, y) \in D^2 \) are the standard cartesian coordinates), and takes \(v \) to its differential \(2dx \wedge dy \). It is important that the map \(\Lambda[u] \otimes \mathbb{Q}[v] \to A_{PL}(D^2) \) restricts to the quasi-isomorphism \(\Lambda[u] \to A_{PL}(S^1) \) taking \(u \) to the form \(d\varphi \) representing a generator of \(H^1(S^1) \). (Here \(\varphi \) is the polar angle; note that the restriction of \(xdy - ydx = r^2d\varphi \) to \(S^1 \) is closed, but not exact, because \(\varphi \) is not a globally defined function.) Taking the products yields compatible quasi-isomorphisms
\[(\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Q}[v_i : i \in I], d) \xrightarrow{\sim} A_{PL}((D^2, S^1)^I), \]
and therefore a weak equivalence of fibrant diagrams in \(\text{cdga}_\mathbb{Q} \). Their limits are therefore quasi-isomorphic, which together with the quasi-isomorphisms of Proposition 8.1.4, Proposition C.3.3 and (8.3) gives the required zigzag
\[A_{PL}(Z_K) = A_{PL}((D^2, S^1)^I) \xrightarrow{\sim} \lim_I A_{PL}((D^2, S^1)^I) \]
\[\xleftarrow{\sim} \lim_I (\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Q}[v_i : i \in I], d) \xrightarrow{\sim} \text{holim}_I \Lambda[u_i : i \notin I]. \quad \square \]

On the other hand, the zigzag above together with Exercise 3.1.15 (or Lemma 3.5.11) gives a weak equivalence
\[(8.4) \quad A_{PL}(Z_K) \simeq \lim_I (\Lambda[m] \otimes \mathbb{Q}[v_i : i \in I], d) = (\Lambda[m] \otimes \mathbb{Q}[K], d), \]
which implies the isomorphism of Theorem 4.5.4 in the case of rational coefficients:
\[H^*(Z_K; \mathbb{Q}) \cong H((\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Q}[K], d). \]

To obtain the second algebraic model for \(Z_K \) we regard it as the homotopy fibre of the inclusion \((\mathbb{C}P^\infty)^K \hookrightarrow (\mathbb{C}P^\infty)^m = BT^m \) (see Theorem 4.3.2). We therefore can identify \(Z_K \) with the limit of the following diagram in \(\text{top} \):
\[\begin{array}{c}
ET^m \\
\downarrow \\
(\mathbb{C}P^\infty)^K \longrightarrow BT^m
\end{array} \]
This diagram is fibrant for the appropriate Reedy structure, as $ET^m \to BT^m$ is a fibration (see Proposition C.3.5 (b)), so its limit is weakly equivalent to the homotopy limit.

Now we apply A_{PL} to (8.5), on the understanding that it does not generally convert pullbacks to pushouts [45, §3]. We obtain the diagram

\[A_{PL}(BT^m) \longrightarrow A_{PL}(ET^m) \]

\[A_{PL}((\mathbb{C}P^\infty)^K) \]

in cdga_Q, which is not cofibrant. Here is the second model for Z_K:

Theorem 8.1.7 ([302]). The algebra $A_{PL}(Z_K)$ is weakly equivalent the homotopy colimit of (8.6) in cdga_Q.

Proof. There is an objectwise weak equivalence mapping the diagram

\[\mathbb{Q}[u_1, \ldots, u_n] \longrightarrow (\Lambda[m] \otimes \mathbb{Q}[v_1, \ldots, v_m], d) \]

\[\mathbb{Q}[K] \]

to (8.6); here the upper arrow $\mathbb{Q}[m] \to (\Lambda[m] \otimes \mathbb{Q}[m], d)$ is the standard model for the fibration $ET^m \to BT^m$, and $\mathbb{Q}[K]$ is a model for $A_{PL}((\mathbb{C}P^\infty)^K)$ by Theorem 8.1.2. The above diagram is cofibrant, because the upper arrow is a cofibration in cdga_Q, and its colimit is $(\Lambda[m] \otimes \mathbb{Q}[K], d)$. So the result follows from (8.4).

Theorem 8.1.7 chimes with the rational models of fibrations from [136, §15(c)].

Remark. We may summarise the results of Theorems 8.1.6 and 8.1.7 as follows. As functors $\text{top} \to \text{cdga}_Q$, both rational cohomology and A_{PL} map homotopy colimits to homotopy limits on diagrams $D_K(pt, S^1)$, $I \mapsto T^m/T^I$, and map homotopy limits to homotopy colimits on diagrams (8.5).

Models for toric and quasitoric manifolds. Let $M = M(P, A)$ be a quasitoric manifold over a simple n-polytope P with characteristic map $A: \mathbb{Z}^m \to \mathbb{Z}^n$. Here we denote by K the dual sphere triangulation K_P of P. We recall from Proposition 7.3.13 that M can be identified with the quotient of the moment-angle manifold $Z_P = Z_K$ by the free action of the $(m - n)$-torus $K(A) = \text{Ker}(A: T^m \to T^n)$; we denote the map of tori defined by A by the same letter for simplicity. All results below are equally applicable to toric manifolds M, in which case K is the underlying complex of the corresponding complete regular simplicial fan.

Our topological and algebraic models of M are obtained from those of Z_K by the appropriate factorisation by the action of $K(A)$.

We consider the $\text{cat}(K)$-diagram $D_K(pt, S^1)/K(A)$ obtained by factorisation of (8.2); its value on $I \subset J$ is the quotient map of tori

\[T^m/A(T^I) \to T^m/A(T^J), \]

where we have identified $T^m/K(A)$ with T^m. This diagram is not cofibrant; we denote its homotopy colimit by $\text{hocolim}_J T^m/A(T^I)$.

The following result was first proved by Welker, Ziegler and Živaljević in [362]. It appears to be the earliest mention of homotopy colimits in the toric context, and refers to a diagram that is clearly not cofibrant:
Proposition 8.1.8. There is a weak equivalence \(M \simeq \text{hocolim}_I T^n / A(T^I) \).

Proof. As in the proof of Proposition 8.1.5, we consider objectwise projections \((D^2, S^1)^I \to T^m / T^I = (S^1)^{[m]}\), and take quotients by the action of \(K(A) \). As a result, we obtain a weak equivalence
\[
M = Z_K / K(A) = \text{colim}_I ((D^2, S^1)^I / K(A)) \xrightarrow{\simeq} \text{hocolim}_I T^n / A(T^I). \]

Next we construct an analogue of the algebraic model (8.4) for quasitoric manifolds. For this we consider the elements
\[
t_i = \lambda_{i1} v_1 + \cdots + \lambda_{im} v_m, \quad 1 \leq i \leq n,
\]
in the face ring \(\mathbb{Q}[K] = \mathbb{Q}[v_1, \ldots, v_m] / \mathcal{I}_K \) corresponding to the rows of \(A = (\lambda_{ij}) \).

Lemma 8.1.9. For a toric or quasitoric manifold \(M \), the algebra \(A_{PL}(M) \) is weakly equivalent to the commutative dg-algebra
\[
(\Lambda[x_1, \ldots, x_n] \otimes \mathbb{Q}[K], d), \quad \text{with} \quad dx_i = t_i, \quad dv_i = 0.
\]

Proof. The argument is similar to that for Theorem 8.1.6. We consider a \(\text{cat}^{op}(K) \)-diagram \(\Lambda[n] \otimes \mathbb{Q}[\cdot]^K \), whose value on \(I \subset J \) is the quotient map
\[
(\Lambda[x_1, \ldots, x_n] \otimes \mathbb{Q}[v_i : i \in J], d) \to (\Lambda[x_1, \ldots, x_n] \otimes \mathbb{Q}[v_i : i \in I], d),
\]
where \(d \) is defined on \(\Lambda[n] \otimes \mathbb{Q}[v_i : i \in I] \) by \(dx_i = t_i \) and \(dv_i = 0 \). Then define quasi-isomorphisms
\[
(\Lambda[x_1, \ldots, x_n] \otimes \mathbb{Q}[v_i : i \in I], d) \xrightarrow{\simeq} A_{PL}((D^2, S^1)^I / K(A))
\]
by sending each \(x_i \) to the \(K(A) \)-invariant 1-form \(\lambda_{i1} r_1^2 d\varphi_1 + \cdots + \lambda_{im} r_m^2 d\varphi_m \), where \((r_i, \varphi_i)\) are polar coordinates on the \(i \)th disk or circle. The quasi-isomorphisms are compatible with the maps corresponding to inclusions of simplices \(I \subset J \), therefore provide a weak equivalence of fibrant diagrams in \(\text{cdga}_\mathbb{Q} \). Their limits are therefore quasi-isomorphic, and we obtain the required zigzag
\[
A_{PL}(M) = A_{PL}((D^2, S^1)^K / K(A)) \xrightarrow{\simeq} \text{lim}_I A_{PL}((D^2, S^1)^I / K(A)) \xrightarrow{\simeq} \text{lim}_I (\Lambda[x_1, \ldots, x_n] \otimes \mathbb{Q}[v_i : i \in I], d) = (\Lambda[x_1, \ldots, x_n] \otimes \mathbb{Q}[K], d). \]

Remark. The (quasi)toric manifold \(M = M(P, A) \) is the homotopy fibre of the composition of the inclusions \((\mathbb{C}P^\infty)^K \to BT^m \) and the map \(BA : BT^m \to BT^n \) (an exercise). In other words, there is a homotopy pullback diagram
\[
\begin{array}{ccc}
M & \to & ET^n \\
\downarrow & & \downarrow \\
(\mathbb{C}P^\infty)^K & \xrightarrow{i} & BT^m \\
& BA \downarrow & \downarrow \quad \text{BA} \\
& & BT^n
\end{array}
\]
The model of Lemma 8.1.9 can be obtained by applying the results of [136, §15(c)] to the fibration \(M \to (\mathbb{C}P^\infty)^K \) above.

Now we give the proof of the following result of Panov and Ray:

Theorem 8.1.10 ([302]). Every toric or quasitoric manifold is formal.
 PROOF. We use the model of Lemma 8.1.9 and utilise the fact that \(\mathbb{Q}[K] \) is Cohen–Macaulay (Corollary 3.3.17), i.e. \(\mathbb{Q}[K] \) is free as a module over \(\mathbb{Q}[t_1, \ldots, t_n] \). Hence \(\otimes_{\mathbb{Q}[t_1, \ldots, t_n]} \mathbb{Q}[K] \) is a right exact functor, and applying it to the quasi-isomorphism \((\Lambda[u_1, \ldots, u_n] \otimes \mathbb{Q}[t_1, \ldots, t_n], d) \to \mathbb{Q} \) yields a quasi-isomorphism

\[
(\Lambda[u_1, \ldots, u_n] \otimes \mathbb{Q}[K], d) \xrightarrow{\sim} \mathbb{Q}[K]/(t_1, \ldots, t_n),
\]

which is given by the projection onto the second factor. Since \(\mathbb{Q}[K]/(t_1, \ldots, t_n) \cong H^*(M) \) by Theorem 7.3.28, the result follows from Lemma 8.1.9.

Similar arguments apply more generally to torus manifolds over homology polytopes (see Section 7.4), and even to arbitrary torus manifolds with zero odd dimensional cohomology. In the latter case, \(\mathbb{Q}[K] \) is replaced by the face ring \(\mathbb{Q}[S] \) of the corresponding simplicial poset \(S \) (see exercises below).

Note also that the formality of projective toric manifolds follows immediately from the fact that they are Kähler [114].

Exercises.

8.1.11. Fill in the details in the following argument for the integral formality of the polyhedral product \((\mathbb{C}P^\infty)^K \) (the original proof was given in [288]).

We consider singular cochains with integral coefficients in this exercise. Using the Eilenberg–Zilber coalgebra map [245, VIII.8] based on shuffles,

\[
C_* (X) \otimes C_* (X) \xrightarrow{\zeta} C_* (X \times X)
\]

and a proper dualisation, as in [258, Proposition 7.17], one can construct a weak equivalence (a zigzag of quasi-isomorphisms)

\[
C^*(X \times X) \xrightarrow{\sim} \cdots \xrightarrow{\sim} C^*(X) \otimes C^*(X)
\]

in \(\text{dga}_\mathbb{Z} \), which is natural in \(X \). (Note that the standard Kolmogorov–Alexander product map \(C^*(X) \otimes C^*(X) \to C^*(X \times X) \) is not a map of algebras, as \(C^*(X) \) is non-commutative.) In particular, for each \(I \subset [m] \) we obtain quasi-isomorphisms

\[
C^*((\mathbb{C}P^\infty)^I) \xrightarrow{\sim} \cdots \xrightarrow{\sim} C^*((\mathbb{C}P^\infty)^I) \xrightarrow{\sim} H^*((\mathbb{C}P^\infty)^I),
\]

where the right arrow is the \(I \)-fold tensor product of the quasi-isomorphism \(H^*(\mathbb{C}P^\infty) = \mathbb{Z}[v] \xrightarrow{\sim} C^*(\mathbb{C}P^\infty) \). The quasi-isomorphisms above form a weak equivalence of fibrant \(\text{cat}(K)^{op} \)-diagrams in \(\text{dga}_\mathbb{Z} \). Their limits are therefore weakly equivalent, and we obtain a zigzag

\[
C^*(\text{colim}_{I \in K} (\mathbb{C}P^\infty)^I) \xrightarrow{\sim} \lim_{I \in K} C^*((\mathbb{C}P^\infty)^I) \simeq \lim_{I \in K} H^*((\mathbb{C}P^\infty)^I) = \mathbb{Z}[K],
\]

where the first quasi-isomorphism is the standard property of the singular cochain functor. It follows that the singular cochain algebra \(C^*((\mathbb{C}P^\infty)^K) \) is weakly equivalent to its cohomology \(\mathbb{Z}[K] \).

8.1.12. Theorem 4.5.4 on the integral cohomology of \(Z_K \) can be proved using the Eilenberg–Moore spectral sequence of the fibration \(Z_K \to (\mathbb{C}P^\infty)^K \to (\mathbb{C}P^\infty)^m \) (see Theorem B.3.4) as follows. Show that the quasi-isomorphisms in (8.8) are compatible with the \(C^*((\mathbb{C}P^\infty)^m) \)- and \(H^*((\mathbb{C}P^\infty)^m) = \mathbb{Z}[v_1, \ldots, v_m] \)-module structures, therefore giving an isomorphism

\[
\text{Tor}_{C^*((\mathbb{C}P^\infty)^m)} (C^*((\mathbb{C}P^\infty)^K), \mathbb{Z}) \cong \text{Tor}_{\mathbb{Z}[v_1, \ldots, v_m]} (\mathbb{Z}[K], \mathbb{Z}).
\]

The isomorphism \(H^*(Z_K) \cong \text{Tor}_{\mathbb{Z}[v_1, \ldots, v_m]} (\mathbb{Z}[K], \mathbb{Z}) \) now follows from Lemma B.3.2.
This was the original argument for Theorem 4.5.4 given in [66]. The field coefficients were assumed there, although the argument works integrally, as outlined above. The proof given by Franz [141] was integral from the beginning, and also used an Eilenberg–Moore spectral sequence argument.

8.1.13. Construct the homotopy pullback diagram (8.7).

8.1.14. Extend the argument of Theorem 8.1.2 to show that the polyhedral power \((\mathbb{C}P^\infty, pt)^S\) (see Construction 4.10.1) is formal for any simplicial poset \(S\).

8.1.15. Show that a torus manifold \(M\) with \(H^{\text{odd}}(M; \mathbb{Z}) = 0\) is formal. (Hint: use Theorem 7.4.35 establishing an isomorphism \(H^*(M) \cong \mathbb{Q}[S]\), where \(\mathbb{Q}[S]\) is the face ring of the simplicial poset dual to the quotient \(M/T = Q\), and use Lemma 7.4.34 to show that \(\mathbb{Q}[S]\) is free over \(\mathbb{Q}[t_1, \ldots, t_n]\).)

8.2. Wedges of spheres and connected sums of sphere products

There are two situations when the homotopy type of the moment-angle complex \(Z_K\) can be described explicitly. The first concerns a family of examples of polytopal sphere triangulations \(K\) for which \(Z_K\) is homeomorphic to a connected sum of products of spheres, with two spheres in each product. The proofs use differential topology and surgery theory; we included sample results as Theorem 4.6.12 and Theorem 6.2.11 and refer to a more detailed account in the work of Gitler and López de Medrano [152]. The second situation is when \(Z_K\) is homotopy equivalent to a wedge of spheres; the corresponding families of examples of \(K\) were constructed by Grbić and Theriault in [157], [158] and are reviewed here.

Theorem 8.2.1 ([158]). Let \(K = K_1 \cup_I K_2\) be a simplicial complex obtained by gluing \(K_1\) and \(K_2\) along a common face, which may be empty. If \(Z_{K_1}\) and \(Z_{K_2}\) are homotopy equivalent to wedges of spheres, then \(Z_K\) is also homotopy equivalent to a wedge of spheres.

We reproduce the proof from [158], which uses two lemmata.

Lemma 8.2.2 (Cube Lemma). Suppose there is a homotopy commutative diagram of spaces

\[\begin{array}{ccc}
E & \rightarrow & F \\
\downarrow & & \downarrow \\
G & \rightarrow & H \\
\downarrow & & \downarrow \\
A & \rightarrow & B \\
\downarrow & & \downarrow \\
C & \rightarrow & D.
\end{array} \]

Suppose the bottom face is a homotopy pushout and the four sides are homotopy pullbacks. Then the top face is a homotopy pushout.

Proof. See [255, Theorem 25]. Note that the statement is fairly straightforward in the case when \(D = B \cup_A C\) and the vertical arrows are locally trivial fibre bundles obtained by pulling back the bundle \(H \rightarrow D\) along the arrows of the bottom face. This will be enough for our purposes. \(\square\)
The *join* of spaces \(A, B\) is defined as the identification space
\[
A * B = A \times B \times [0, 1] / \langle (a, b_1, 0), (a, b_2, 0), (a_1, b, 1) \rangle.
\]
The product \(A \times B\) embeds into the join as \(A \times B \times \frac{1}{2}\). Furthermore, the lower half
\[
A * B_{\leq \frac{1}{2}} = \{(a, b, t) \in A * B : t \leq \frac{1}{2}\},
\]
of the join is the mapping cylinder of the first projection \(\pi_1 : A \times B \to A\), and the upper half \(A * B_{\geq \frac{1}{2}}\) is the mapping cylinder of the second projection \(\pi_2 : A \times B \to B\).

It follows that there is a homotopy pushout diagram
\[
\begin{array}{ccc}
A \times B & \xrightarrow{\pi_2} & B \\
\downarrow{\pi_1} & & \downarrow{}
\end{array}
\]
which can be viewed as the homotopy-theoretic definition of the join.

For pointed spaces \(A, B\), there are canonical homotopy equivalences \(\Sigma(A \wedge B) \simeq \Sigma(A \wedge B)\), where \(A \wedge B = (A \times B) / (A \times pt \cup pt \times B)\) is the smash product.
The *left half-smash product* is \(A \wedge B = A \times B / (A \times pt)\) and the *right half-smash product* is \(A \wedge B = A \times B / (pt \times B)\). Let \(\epsilon_A\) denote the map collapsing \(A\) to a point.

Lemma 8.2.3. Let \(A, B, C\) and \(D\) be spaces. Define \(Q\) as the homotopy pushout
\[
\begin{array}{ccc}
A \times B & \xrightarrow{\epsilon_A \times id_B} & C \times B \\
\downarrow{id_A \times \epsilon_B} & & \downarrow{}
\end{array}
\]
Then \(Q \simeq (A * B) \vee (C \times B) \vee (A \times D)\).

Proof. We can decompose the pushout square above as
\[
\begin{array}{ccc}
A \times B & \xrightarrow{\pi_2} & B & \xrightarrow{i_2} & C \times B \\
\downarrow{\pi_1} & & \downarrow{j_2} & & \downarrow{}
\end{array}
\]
where \(i_1\) and \(i_2\) denote the inclusions into the first and second factor, and each small square is a homotopy pushout.

Since the map \(A \to A * B\) is null homotopic, we can pinch out \(A\) in the left bottom square above to obtain a homotopy pushout
\[
\begin{array}{ccc}
pt & \rightarrow & A * B \\
\downarrow{\epsilon_1} & & \downarrow{}
\end{array}
\]
Hence \(F \simeq (A * B) \vee (A \times D)\) and \(j_1\) is homotopic to the inclusion into the first wedge summand. Similarly, \(E \simeq (A * B) \vee (C \times B)\). The required decomposition of \(Q\) now follows by considering the right bottom square in (8.10). \(\Box\)
Proof of Theorem 8.2.1. Recall from Theorem 4.3.2 that Z_K is the homotopy fibre of the canonical inclusion $i: (\mathbb{C}P^\infty)^K \to (\mathbb{C}P^\infty)^m = BT_m$. Assume that K_1 is a simplicial complex on $[m_1]$, K_2 is a simplicial complex on $[m_2]$ and K is a simplicial complex on $[m]$, so that $m = m_1 + m_2 - |I|$. By some abuse of notation we assume that the set $[m_1]$ is included as the first m_1 elements in $[m]$, and $[m_2]$ is included as the last m_2 elements. This defines the inclusions like $(\mathbb{C}P^\infty)^{m_1} \to (\mathbb{C}P^\infty)^m$, $(\mathbb{C}P^\infty)^{K_2} \to (\mathbb{C}P^\infty)^K$, etc. We have a pushout square

\[
\begin{array}{ccc}
(\mathbb{C}P^\infty)^I & \to & (\mathbb{C}P^\infty)^{K_1} \\
\downarrow & & \downarrow \\
(\mathbb{C}P^\infty)^{K_2} & \to & (\mathbb{C}P^\infty)^K.
\end{array}
\]

Map each of the four corners of this pushout into $(\mathbb{C}P^\infty)^m$ and take homotopy fibres. This gives homotopy fibrations

\[
\begin{array}{c}
T^{m-m_2} \times T^{m-m_1} = T^{m-|I|} \to (\mathbb{C}P^\infty)^I \to (\mathbb{C}P^\infty)^m, \\
Z_{K_1} \times T^{m-m_1} \to (\mathbb{C}P^\infty)^{K_1} \to (\mathbb{C}P^\infty)^m, \\
T^{m-m_2} \times Z_{K_2} \to (\mathbb{C}P^\infty)^{K_2} \to (\mathbb{C}P^\infty)^m, \\
Z_K \to (\mathbb{C}P^\infty)^K \to (\mathbb{C}P^\infty)^m.
\end{array}
\]

Including $(\mathbb{C}P^\infty)^I$ into $(\mathbb{C}P^\infty)^{K_1}$ gives a homotopy pullback diagram

\[
\begin{array}{ccc}
\Omega BT_m & \to & T^{m-|I|} \\
\downarrow & & \downarrow \theta \\
\Omega BT_m & \to & Z_{K_1} \times T^{m-m_1} \\
\downarrow & & \downarrow \\
\Omega BT_m & \to & (\mathbb{C}P^\infty)^{K_1} \\
\downarrow & & \downarrow \\
\Omega BT_m & \to & BT_m
\end{array}
\]

for some map θ of fibres. We now identify θ. With $BT_m = \prod_{i=1}^m \mathbb{C}P^\infty$, the pullback just described is the product of the homotopy pullback

\[
\begin{array}{ccc}
\Omega BT_m^{m_1} & \to & T^{m-m_2} \\
\downarrow & & \downarrow \theta' \\
\Omega BT_m^{m_1} & \to & Z_{K_1} \\
\downarrow & & \downarrow \\
\Omega BT_m^{m_1} & \to & (\mathbb{C}P^\infty)^{K_1} \\
\downarrow & & \downarrow \\
\Omega BT_m^{m_1} & \to & BT_m^{m_1}
\end{array}
\]

and the path-loop fibration $T^{m-m_1} \to pt \to BT^{m-m_1}$. So $\theta = \theta' \times \text{id}_{T^{m-m_1}}$. Further, T^{m-m_2} is a retract of $\Omega BT_m^{m_1} \approx T^{m_1}$ and $\Omega BT_m \to Z_{K_1}$ is null-homotopic since $\Omega BT_m^{m_1}$ is a retract of $\Omega((\mathbb{C}P^\infty)^{K_1})$. Hence $\theta' \simeq \epsilon_{T^{m-m_2}}$ and therefore $\theta \simeq \epsilon_{T^{m-m_2}} \times \text{id}_{T^{m-m_1}}$. A similar argument for the inclusion of $(\mathbb{C}P^\infty)^I$ into $(\mathbb{C}P^\infty)^{K_2}$ shows that the map of fibres $T^{m-m_2} \times T^{m-m_1} \to T^{m-m_2} \times Z_{K_2}$ is homotopic to $\text{id}_{T^{m-m_2}} \times \epsilon_{T^{m-m_1}}$.

Collecting all this information about homotopy fibres, Lemma 8.2.2 shows that there is a homotopy pushout

\[
\begin{array}{ccc}
T^{m-m_2} \times T^{m-m_1} & \xrightarrow{\epsilon \times \text{id}} & Z_{K_1} \times T^{m-m_1} \\
\downarrow \text{id} \times \epsilon & & \downarrow \\
T^{m-m_2} \times Z_{K_2} & \to & Z_K.
\end{array}
\]
Lemma 8.2.3 then gives a homotopy decomposition
\[(8.11) \quad \mathcal{Z}_K \simeq (T^{m-m_2} \ast T^{m-m_1}) \vee (\mathcal{Z}_{K_1} \times T^{m-m_1}) \vee (T^{m-m_2} \times \mathcal{Z}_{K_2}).\]

To show \(\mathcal{Z}_K\) is homotopy equivalent to a wedge of spheres, we show that each of \(T^{m-m_2} \ast T^{m-m_1}\), \(\mathcal{Z}_{K_1} \times T^{m-m_1}\) and \(T^{m-m_2} \times \mathcal{Z}_{K_2}\) is homotopy equivalent to a wedge of spheres. First, observe that the suspension of a product of spheres is homotopy equivalent to a wedge of spheres, so \(T^{m-m_2} \ast T^{m-m_1}\) is homotopy equivalent to a wedge of spheres. Second, as \(\mathcal{Z}_{K_1}\) is homotopy equivalent to a wedge of spheres, we can write \(\mathcal{Z}_{K_1} \simeq \Sigma W\), where \(W\) is a wedge of spheres (note that \(\mathcal{Z}_{K_1}\) is 2-connected by Proposition 4.3.5 (a)). We then have \(\mathcal{Z}_{K_1} \times T^{m-m_1} \simeq \Sigma W \times T^{m-m_1} \simeq \Sigma W \vee (\Sigma T^{m-m_1} \wedge W)\). Now \(\Sigma T^{m-m_1}\) is homotopy equivalent to a wedge of spheres. Therefore, as \(W\) is homotopy equivalent to a wedge of spheres so is \(\Sigma T^{m-m_1} \wedge W\). Hence \(\mathcal{Z}_{K_1} \times T^{m-m_1}\) is homotopy equivalent to a wedge of spheres. The decomposition of the summand \(T^{m-m_2} \times \mathcal{Z}_{K_2}\) into a wedge of spheres is exactly as for \(\mathcal{Z}_{K_1} \times T^{m-m_1}\).

\[\square\]

Corollary 8.2.4. Assume that there is an order \(I_1, \ldots, I_s\) of the maximal faces of \(K\) such that \((\bigcup_{j<k} I_j) \cap I_k\) is a single face for each \(k = 1, \ldots, s\). Then \(\mathcal{Z}_K\) has homotopy type of a wedge of spheres.

As an application, we describe the homotopy type of \(\mathcal{Z}_K\) for two particular series of \(K\): 0-dimensional complexes and trees (connected graphs without cycles).

Proposition 8.2.5. Let \(K\) be \(m\) disjoint points, \(m \geq 2\). Then
\[(8.12) \quad \mathcal{Z}_K \simeq \bigvee_{k=2}^m \left(S^{k+1} \right)^{(k-1)} (m_k).\]

Proof. Let \(K_m\) denote the complex consisting of \(m\) disjoint points. Applying (8.11) to the decomposition \(K_m = K_{m-1} \cup K_1\) we obtain
\[(8.13) \quad \mathcal{Z}_{K_m} \simeq (T^{m-1} \ast T^1) \vee (\mathcal{Z}_{K_{m-1}} \times T^1)\]
(the third wedge summand vanishes because \(\mathcal{Z}_{K_1} \simeq pt\)). An inductive argument using the decomposition \(\Sigma (A \times B) \simeq \Sigma A \vee \Sigma B \vee (\Sigma A \wedge B)\) shows that
\[T^{m-1} \ast T^1 \simeq \Sigma \Sigma T^{m-1} \simeq \bigvee_{k=2}^m \left(S^{k+1} \right)^{(k-1)} (m_k).\]

Assuming by induction that (8.12) holds for \(K_{m-1}\), we obtain
\[\mathcal{Z}_{K_{m-1}} \times T^1 \simeq \mathcal{Z}_{K_{m-1}} \vee \Sigma \mathcal{Z}_{K_{m-1}} \simeq \bigvee_{k=2}^{m-1} \left(S^{k+1} \right)^{(k-1)} (m_k) \vee \bigvee_{k=3}^m \left(S^{k+1} \right)^{(k-2)} (m_k).\]
Substituting the last two formulae into (8.13) we finally obtain (8.12). \[\square\]

Observe that \(\mathcal{Z}_K\) corresponding to \(m\) disjoint points is the homotopy fibre of the inclusion of the \(m\)-fold wedge \((CP^\infty)^m\) into the \(m\)-fold product \((CP^\infty)^m\). As we have seen in Example 4.7.6, \(Z_{K_m}\) is homotopy equivalent to the complement of the union of all coordinate planes of codimension two in \(C^m\). In this context the result of Proposition 8.2.5 was obtained in [157].

The homotopy type of \(\mathcal{Z}_K\) corresponding to a tree with \(m+1\) vertices depends only on the number of vertices and does not depend on the form of the tree; also, the homotopy type of \(\mathcal{Z}_K\) corresponding to a tree with \(m+1\) vertices is the same as that of \(\mathcal{Z}_K\) corresponding to \(m\) disjoint points.
8.2. Wedges of Spheres and Connected Sums of Sphere Products

Proposition 8.2.6. Let \mathcal{K} be a tree with $m + 1$ vertices, $m \geq 2$. Then

$$Z_\mathcal{K} \simeq \bigvee_{k=2}^{m} (S^{k+1}) \vee \binom{m}{k}.$$

Proof. This time we use the decomposition $\mathcal{K}_m = \mathcal{K}_{m-1} \cup \mathcal{K}_1$, where \mathcal{K}_m denotes a tree with $m + 1$ vertices (so that \mathcal{K}_1 is a segment), and the union is taken along a common vertex v. The rest of the proof is as for Proposition 8.2.5. \hfill \Box

One can notice the similarity between the wedge decomposition of Proposition 8.2.6 and the connected sum decomposition of Theorem 4.6.12. The nature of this similarity is explained in the work of Theriault [346].

A simplicial complex \mathcal{K} is shifted if there is an ordering of its vertices such that whenever $I \subseteq \mathcal{K}$, $i \in I$ and $i < j$, then $(I \setminus \{i\}) \cup \{j\} \subseteq \mathcal{K}$.

Theorem 8.2.7 ([158, Theorem 9.4]). If \mathcal{K} is a shifted complex, then $Z_\mathcal{K}$ is homotopy equivalent to a wedge of spheres.

Idea of Proof. For any simplicial complex \mathcal{K} on $[m]$ there is a pushout square

$$\begin{array}{ccc}
\operatorname{lk}_{\{m\}} \mathcal{K} & \longrightarrow & \mathcal{K}_{\{1, \ldots, m-1\}} \\
\downarrow & & \downarrow \\
\operatorname{st}_{\{m\}} \mathcal{K} & \longrightarrow & \mathcal{K},
\end{array}$$

where $\mathcal{K}_{\{1, \ldots, m-1\}}$ denotes the restriction of \mathcal{K} to the first $m - 1$ vertices. It gives rise to a pushout square of the corresponding polyhedral products $(CP^\infty)^\mathcal{K}$ and, by application of Lemma 8.2.2, to a pushout square of the moment-angle complexes $Z_\mathcal{K}$. The key observation is that if \mathcal{K} is shifted, then all three subcomplexes $\operatorname{lk}_{\{m\}} \mathcal{K}$, $\operatorname{st}_{\{m\}} \mathcal{K}$ and $\mathcal{K}_{\{1, \ldots, m-1\}}$ are also shifted, with respect to the induced ordering of vertices. This allows one to use induction, in a way similar to the proof of Theorem 8.2.1. \hfill \Box

The i-dimensional skeleton of a simplex Δ^{m-1} is a shifted complex. In this case the dimensions of spheres in the wedge decomposition of $Z_\mathcal{K}$ can be described explicitly; this result was given as Theorem 4.7.7. It also follows from a result of Porter [307] for general polyhedral products, which we state in the next section.

Not all complexes \mathcal{K} obtained by iterative gluing along a common face are shifted (see Exercise 8.2.8), and not all shifted complexes can be obtained by iterative gluing along a common face. So one can obtain an even wider class of simplicial complexes \mathcal{K} whose corresponding $Z_\mathcal{K}$ are wedges of spheres by combining the results of Theorem 8.2.1 and Theorem 8.2.7.

Exercises.

8.2.8. The tree \begin{center} \begin{tikzpicture}
 \node (1) at (0,0) {•};
 \node (2) at (1,0) {•};
 \node (3) at (2,0) {•};
 \node (4) at (3,0) {•};
 \node (5) at (4,0) {•};
 \draw (1) -- (2) -- (3) -- (4) -- (5);
\end{tikzpicture} \end{center} is a shifted complex, but \begin{center} \begin{tikzpicture}
 \node (1) at (0,0) {•};
 \node (2) at (1,0) {•};
 \node (3) at (2,0) {•};
 \node (4) at (3,0) {•};
 \node (5) at (4,0) {•};
 \draw (1) -- (2) -- (3) -- (4) -- (5);
\end{tikzpicture} \end{center} is not.

8.2.9. Let \mathcal{K} be the graph \begin{center} \begin{tikzpicture}
 \node (1) at (0,0) {•};
 \node (2) at (1,0) {•};
 \node (3) at (2,0) {•};
 \node (4) at (3,0) {•};
 \draw (1) -- (2) -- (3) -- (4);
\end{tikzpicture} \end{center}. Describe the homotopy type of $Z_\mathcal{K}$.

8.2.10. Let \mathcal{K} be a complex obtained by iteration of the operation of attaching a k-simplex along a common $(k-1)$-face, starting from a k-simplex (so \mathcal{K} is a tree when $k = 1$). Describe the homotopy type of $Z_\mathcal{K}$.
8.3. Stable decompositions of polyhedral products

Several important results on wedge decomposition of polyhedral products after one suspension were obtained in the work of Bahri, Bendersky, Cohen and Gitler [16]. These can be seen as far-reaching generalizations of the classical decomposition $\Sigma(A \times B) \simeq \Sigma A \vee \Sigma B \vee (\Sigma A \land B)$. The proofs given below are reproduced from [16] with few or no modifications. Homotopy theory of polyhedral products has become quite an active area, and we also review some recent results on stable and unstable decompositions at the end of this section.

We start by defining the smash version of the polyhedral product.

Construction 8.3.1 (polyhedral smash product). The initial setup is again a simplicial complex \mathcal{K} on $[m]$ and a sequence of m pairs of pointed cell complexes $(X, A) = \{(X_1, A_1), \ldots, (X_m, A_m)\}$.

We denote the m-fold smash product of the X_i by

$$X^{\wedge m} = X_1 \land X_2 \land \cdots \land X_m.$$

Then the polyhedral smash product $(X, A)^{\land \mathcal{K}}$ is defined as the image of $(X, A)^{\mathcal{K}}$ under the projection $X^{\wedge m} \to X^{\wedge m}$. More specifically, setting for each $I \subset [m]$

$$I \mapsto (x_1, \ldots, x_m) \in X_1 \land X_2 \land \cdots \land X_m: x_j \in A_j \text{ for } j \notin I,$$

we have

$$(X, A)^{\land \mathcal{K}} = \bigcup_{I \in \mathcal{K}} (X, A)^{\land I} = \bigcup_{I \in \mathcal{K}} \left(\bigwedge_{i \in I} X_i \land \bigwedge_{i \notin I} A_i \right).$$

Using the categorical language, define the $\text{CAT}(\mathcal{K})$-diagram

$$\hat{D}_\mathcal{K}(X, A)_I : \text{CAT}(\mathcal{K}) \to \text{TOP},$$

(8.14)

$$I \mapsto (X, A)^{\land I},$$

which maps the morphism $I \subset J$ to the inclusion $(X, A)^{\land I} \subset (X, A)^{\land J}$. Then

$$(X, A)^{\land \mathcal{K}} = \text{colim}_I \hat{D}_\mathcal{K}(X, A) = \text{colim}(X, A)^{\land I}.$$

In the case when all the pairs (X_i, A_i) are the same, i.e. $X_i = X$ and $A_i = A$, we use the notation $(X, A)^{\land \mathcal{K}}$ for $(X, A)^{\land \mathcal{K}}$. Also, if each $A_i = pt$, then we use the abbreviated notation $X^{\land \mathcal{K}}$ for $(X, pt)^{\land \mathcal{K}}$, and $X^{\land 1, \mathcal{K}}$ for $(X, pt)^{\land 1, \mathcal{K}}$.

An inductive argument using the decomposition $\Sigma(A \times B) \simeq \Sigma A \vee \Sigma B \vee (\Sigma A \land B)$ shows that there is a natural pointed homotopy equivalence

$$(8.15) \quad \Sigma(X_1 \times \cdots \times X_m) \simeq \Sigma \left(\bigvee_{J \subset [m]} X^{\land J} \right).$$

For each $J \subset [m]$, define the subfamily

$$(X_J, A_J) = \{(X_j, A_j): j \in J\}.$$

The first result shows that the polyhedral product splits after one suspension into a wedge of polyhedral smash products corresponding to all full subcomplexes of \mathcal{K}.

Theorem 8.3.2 ([16]). For a sequence (X, A) of pairs of pointed cell complexes, the homotopy equivalence (8.15) induces a natural pointed homotopy equivalence

$$\Sigma(X, A)^{\mathcal{K}} \simeq \Sigma \left(\bigvee_{J \subset [m]} (X_J, A_J)^{\land \mathcal{K}, J} \right).$$
Proof. We have $(X,A)^K = \text{colim} D_K(X,A) = \text{colim}_{I \in K} (X,A)^I$, where $D_K(X,A)$ is diagram (4.7). Define another diagram

$$E_K(X,A) : \text{cat}(K) \rightarrow \text{Top},$$

$$I \mapsto \bigvee_{J \subseteq [m]} (X_J, A_J)^{K(J \cap I)}.$$

By (8.15), there is a natural pointed homotopy equivalence

$$\Sigma(X,A)^I \mapright{\simeq} \Sigma \left(\bigvee_{J \subseteq [m]} (X_J, A_J)^{K(J \cap I)} \right).$$

The diagrams $D_K(X,A), E_K(X,A)$, as well as $\Sigma D_K(X,A), \Sigma E_K(X,A)$, are obviously cofibrant, so the objectwise homotopy equivalence above induces a homotopy equivalence of their colimits (see Proposition C.3.4). It remains to note that

$$\text{colim} \Sigma D_K(X,A) = \Sigma \text{colim} D_K(X,A) = \Sigma(X,A)^K,$$

$$\text{colim} \Sigma E_K(X,A) = \text{colim}_{I \in K} \Sigma \left(\bigvee_{J \subseteq [m]} (X_J, A_J)^{K(J \cap I)} \right)$$

$$= \Sigma \left(\bigvee_{J \subseteq [m]} \text{colim}_{(I \cap J) \in K} (X_J, A_J)^{K(J \cap I)} \right)$$

$$= \Sigma \left(\bigvee_{J \subseteq [m]} (X_J, A_J)^{K(J \cap I)} \right). \qed$$

The homotopy type of the wedge summands $(X_J, A_J)^{K(J \cap I)}$ can be described explicitly in the case when the inclusions $A_k \hookrightarrow X_k$ are null-homotopic:

Theorem 8.3.3 ([16]). Let K be a simplicial complex on $[m]$, and let (X,A) be a sequence of pairs of cell complexes with the property that the inclusion $A_k \hookrightarrow X_k$ is null-homotopic for all k. Then there is a homotopy equivalence

$$(X,A)^K \mapright{\simeq} \bigvee_{I \subseteq K} |\text{lk}_K I| \ast (X,A)^I,$$

where $|\text{lk}_K I|$ is the geometric realisation of the link of I in K.

Proof. By hypothesis, there is a homotopy $F_k : A_k \times I \rightarrow X_k$ such that $F_k(a,0) = i_k(a)$ and $F_k(a,1) = pt$, where $i_k : A_k \rightarrow X_k$ is the inclusion. By the homotopy extension property, there exists $\tilde{F}_k : X_k \times I \rightarrow X_k$ with $\tilde{F}_k(x,0) = x, \tilde{F}_k(x,1) = g_k(x)$ where $g_k : X_k \rightarrow X_k$ is a map such that $g_k(a) = pt$ for all $a \in A_k$. Hence there is a commutative diagram

$$
\begin{array}{ccc}
A_k & \xrightarrow{id} & A_k \\
\downarrow{\text{id}} & & \downarrow{\epsilon} \\
X_k & \xrightarrow{g_k} & X_k
\end{array}
$$

where $\epsilon : A_k \rightarrow X_k$ is the constant map to the basepoint. Along with the diagram $\tilde{D}_K = \tilde{D}_K(X,A)$ given by (8.14), define a new diagram

$$\tilde{E}_K : \text{cat}(K) \rightarrow \text{Top}, \quad I \mapsto (X,A)^I.$$

which maps the non-identity morphism $I \subset J$ to the constant map $(X, A)^{\wedge I} \to (X, A)^{\wedge J}$ to the basepoint. For every $I \in \mathcal{K}$, define
\[\alpha(I): \mathcal{D}_I \to \mathcal{E}_I \]
by $\alpha(I) = \alpha_1(I) \wedge \cdots \wedge \alpha_m(I)$ where
\[\alpha_k(I) = \begin{cases} g_k: X_k \to X_k & \text{if } k \in I, \\ \text{id}: A_k \to A_k & \text{if } k \notin I. \end{cases} \]
Since the g_k are homotopy equivalences, so is $\alpha(I)$ for all $I \in \mathcal{K}$. Furthermore, if $I \subset J$, the following diagram commutes:
\[
\begin{array}{ccc}
\mathcal{D}_I & \xrightarrow{\alpha(I)} & \mathcal{E}_I \\
\downarrow & & \downarrow \\
\mathcal{D}_J & \xrightarrow{\alpha(J)} & \mathcal{E}_J.
\end{array}
\]
Hence the maps $\alpha(I)$ give a weak equivalence of diagrams $\mathcal{D}_I \to \mathcal{E}_I$, which gives a homotopy equivalence
\[\text{hocolim} \mathcal{D}_I \xrightarrow{\cong} \text{hocolim} \mathcal{E}_I. \]
Finally, the diagram \mathcal{E}_I satisfies the conditions of Lemma C.3.6, so we get a homotopy equivalence
\[\text{hocolim} \mathcal{E}_I \xrightarrow{\cong} \bigvee_{I \in \mathcal{K}} |\text{lk}_I|^* (X, A)^{\wedge I} \]
(upper semi-intervals in the face poset of \mathcal{K} are links). The result follows since $\text{hocolim} \mathcal{D}_I = (X, A)^{\wedge \mathcal{K}}$. \hfill \Box

Two special cases of Theorem 8.3.3 are presented next where either A_i are contractible for all i or X_i are contractible for all i.

Theorem 8.3.4 ([16]). Let \mathcal{K} be a simplicial complex on $[m]$, and let (X, A) be a sequence of pairs of cell complexes with the property that all the A_i are contractible. Then there is a homotopy equivalence
\[\Sigma(X, A)^{\mathcal{K}} \xrightarrow{\cong} \Sigma \left(\bigvee_{I \in \mathcal{K}} X^{\wedge I} \right). \]

Proof. When all the A_i are contractible, the space $(X, A)^{\wedge I}$ is also contractible unless $I = [m]$. By Theorem 8.3.3,
\[(X, A)^{\wedge \mathcal{K}_J} \simeq \bigvee_{I \in \mathcal{K}_J} |\text{lk}_I|^* (X, A)^{\wedge I}, \]
which is contractible unless $J \in \mathcal{K}_J$, i.e. $J \in \mathcal{K}$. In the latter case we have $(X, A)^{\wedge \mathcal{K}_J} = X^{\wedge J}$. By Theorem 8.3.2,
\[\Sigma(X, A)^{\mathcal{K}} \simeq \Sigma \left(\bigvee_{J \subseteq [m]} (X, A)^{\wedge \mathcal{K}_J} \right) = \Sigma \left(\bigvee_{J \in \mathcal{K}} X^{\wedge J} \right). \]
\hfill \Box

Remark. An interesting corollary of Theorem 8.3.4 is that the polyhedral products $X^{\mathcal{K}} = (X, pt)^{\mathcal{K}}$ corresponding to simplicial complexes \mathcal{K} with the same f-vectors become homotopy equivalent after one suspension.
THEOREM 8.3.5 ([16]). Let K be a simplicial complex on $[m]$, and let (X, A) be a sequence of pairs of cell complexes with the property that all the X_i are contractible. Then there is a homotopy equivalence

$$\Sigma(X, A)^K \cong \Sigma \left(\bigvee_{J \in K} |K_j| * A^{\wedge J} \right).$$

PROOF. Since all the X_i are contractible, all of the spaces $(X, A)^{\wedge I}$ are also contractible with the possible exception of $(X, A)^{\wedge \emptyset} = A^m$. By Theorem 8.3.3,

$$(X, A)^{\wedge K_J} \cong \bigvee_{I \in K_J} |lk_{K_J} I| * (X, A)^{\wedge I} = |lk_{K_J} \emptyset| * (X, A)^{\wedge \emptyset} = |K_J| * A^{\wedge J}$$

which is contractible if $J \in K$. By Theorem 8.3.2,

$$\Sigma(X, A)^K \cong \Sigma \left(\bigvee_{J \subseteq [m]} (X, A)^{\wedge K_J} \right) = \Sigma \left(\bigvee_{J \not\in K} |K_j| * A^{\wedge J} \right). \quad \square$$

COROLLARY 8.3.6.

(a) Let $(X, A) = (D^1, S^0)$, so that $(X, A)^K$ is the real moment-angle complex R_K. Then there is a homotopy equivalence

$$\Sigma R_K \cong \bigvee_{J \in K} \Sigma^2|K_j|.$$

(b) Let $(X, A) = (D^2, S^1)$, so that $(X, A)^K$ is the moment-angle complex Z_K. Then there is a homotopy equivalence

$$\Sigma Z_K \cong \bigvee_{J \in K} \Sigma^2+|J||K_j|.$$

The above decomposition of ΣZ_K implies the additive isomorphism

$$H^k(Z_K; \mathbb{Z}) \cong \bigoplus_{J \subseteq [m]} \tilde{H}^{k-|J|-1}(K_j; \mathbb{Z})$$

of Theorem 4.5.8. Similarly, the decomposition of ΣR_K implies the isomorphism

$$H^k(R_K; \mathbb{Z}) \cong \bigoplus_{J \subseteq [m]} \tilde{H}^{k-1}(K_j; \mathbb{Z}).$$

Another result of [16] describes the cohomology ring of a polyhedral product X^K and generalises the isomorphism $H^*((CP^\infty)^K; \mathbb{Z}) \cong \mathbb{Z}[K]$ of Proposition 4.3.1:

THEOREM 8.3.7 ([16]). Let $X = (X_1, \ldots, X_m)$ be a sequence of pointed cell complexes, and let k be a ring such that the natural map

$$H^*(X_{j_1}; k) \otimes \cdots \otimes H^*(X_{j_k}; k) \rightarrow H^*(X_{j_1} \times \cdots \times X_{j_k}; k)$$

is an isomorphism for any $\{j_1, \ldots, j_k\} \subseteq [m]$. There is an isomorphism of algebras

$$H^*(X^K; k) \cong \left(H^*(X_1; k) \otimes \cdots \otimes H^*(X_m; k) \right) / \mathcal{I},$$

where \mathcal{I} is the generalised Stanley–Reisner ideal, generated by elements $x_{j_1} \otimes \cdots \otimes x_{j_k}$ for which $x_{j_i} \in H^*(X_{j_i}; k)$ and $\{j_1, \ldots, j_k\} \not\subseteq K$. Furthermore, the inclusion $X^K \rightarrow X_1 \times \cdots \times X_m$ induces the quotient projection in cohomology.
8. HOMOTOPY THEORY OF POLYHEDRAL PRODUCTS

Proof. By Theorem 8.3.4, there are homotopy equivalences

\[\Sigma(X_1 \times \cdots \times X_m) \xrightarrow{\simeq} \bigvee_{J \subseteq [m]} X^\wedge J, \quad \Sigma X^K \xrightarrow{\simeq} \bigvee_{J \in \mathcal{K}} X^\wedge J. \]

Naturality implies that the map \(\Sigma X^K \to \Sigma(X_1 \times \cdots \times X_m) \) is split with cofibre \(\Sigma(L_{J \not\in \mathcal{K}} X^\wedge J) \). Hence there is a split cofibration

\[\Sigma \left(\bigvee_{J \in \mathcal{K}} X^\wedge J \right) \to \Sigma \left(\bigvee_{J \subseteq [m]} X^\wedge J \right) \to \Sigma \left(\bigvee_{J \not\in \mathcal{K}} X^\wedge J \right). \]

Under the given condition on \(k \) there is a ring isomorphism

\[\tilde{H}^*(X_1 \times \cdots \times X_m; k) \cong \bigoplus_{J \subseteq [m]} \tilde{H}^*(X_{j_1}; k) \otimes \cdots \otimes \tilde{H}^*(X_{j_k}; k). \]

The natural inclusion map \(\Sigma X^K \to \Sigma(X_1 \times \cdots \times X_m) \) induces a map

\[\tilde{H}^*(X_1 \times \cdots \times X_m; k) \to \tilde{H}^*(X^K; k), \]

which corresponds to the projection map

\[\bigoplus_{J \subseteq [m]} \tilde{H}^*(X_{j_1}; k) \otimes \cdots \otimes \tilde{H}^*(X_{j_k}; k) \to \bigoplus_{J \in \mathcal{K}} \tilde{H}^*(X_{j_1}; k) \otimes \cdots \otimes \tilde{H}^*(X_{j_k}; k). \]

Its kernel is exactly

\[\bigoplus_{J \not\in \mathcal{K}} \tilde{H}^*(X_{j_1}; k) \otimes \cdots \otimes \tilde{H}^*(X_{j_k}; k) \]

which is the generalised Stanley–Reisner ideal \(\mathcal{I} \) by inspection. \(\square \)

As in the case of the face ring \(k[K] = H^*((\mathbb{C}P^\infty)^K; k) \), which can be decomposed as the limit of the \(\text{cat}(K)^{op} \)-diagram of polynomial algebras \(k [\nu_i : i \in I] = H^*((\mathbb{C}P^\infty)^I; k) \), the isomorphism of Theorem 8.3.7 can be interpreted as

\[H^*(X^K; k) \cong \lim_{I \in \mathcal{K}} H^*(X^I; k). \]

This isomorphism was used in the proof of Theorem 8.1.2.

There are several important situations when the isomorphism of Theorem 8.3.5 can be desuspended. As we have seen in the previous section, this is the case for the pairs \((X, A) = (D^2, S^1)\) when \(K \) is obtained by iterative gluing along a common face or when \(K \) is a shifted complex. More generally, the following result, conjectured in [16], was proved independently by Grbić–Theriault and Iriye–Kishimoto:

Theorem 8.3.8 ([159, Theorem 1.1], [195, Theorem 1.7]). Let \(K \) be a shifted complex. Let \(A = (A_1, \ldots, A_m) \) be a sequence of pointed cell complexes, and let cone \(A \) denote the cone on \(A \). Then there is a homotopy equivalence

\[(\text{cone } A, A)^K \xrightarrow{\simeq} \bigvee_{J \in \mathcal{K}} [K] J^* \wedge J. \]

Here is a case where the wedge summands can be described very explicitly:

Corollary 8.3.9. Let \(K_i \) be the \(i \)-dimensional skeleton of the simplex \(\Delta^{m-1} \).

Then there is a homotopy equivalence

\[(\text{cone } A, A)^{K_i} \xrightarrow{\simeq} \bigvee_{k=i+2}^m \left(\bigvee_{1 \leq j_1 < \cdots < j_k \leq m} \left(\Sigma^{j_1+1} A_{j_1} \wedge \cdots \wedge A_{j_k} \right)^{\vee (k+1)} \right). \]
The proof of this corollary is left as an exercise. In the case when each A_i is a loop space, $A_i = \Omega B_i$, the space $(\Omega B, \Omega B)^{K_i}$ is the homotopy fibre of the inclusion $B^{K_i} \to B^m$ (see Example 4.2.6.5 and Exercise 4.3.10) and the decomposition above was obtained by Porter [307]. In the case $A_i = S^1$, Corollary 8.3.9 turns into Theorem 4.7.7.

The wedge decomposition of Theorem 8.3.5 can be used to describe the ring structure for the cohomology of $(X, A)^K$, see [18].

Exercises.

8.3.10. Deduce Corollary 8.3.9 from Theorem 8.3.8.

8.4. Loop spaces, Whitehead and Samelson products

We now turn our attention to topological and algebraic models for the loop spaces $\Omega(\mathbb{C}P^\infty)^K$ and ΩZ_K. We can view the latter as objects in the category tmon of topological monoids by considering Moore loops (of arbitrary length), whose composition is strictly associative.

Pontryagin algebras, Whitehead and Samelson products. We loop the fibration $Z_K \to (\mathbb{C}P^\infty)^K \to (\mathbb{C}P^\infty)^m$ to obtain a fibration

\begin{equation}
\Omega Z_K \to \Omega (\mathbb{C}P^\infty)^K \to T^m.
\end{equation}

It admits a section, defined by the m generators of $\pi_2((\mathbb{C}P^\infty)^K) \cong \mathbb{Z}^m$, and therefore splits in top. So we have a homotopy equivalence

$$\Omega(\mathbb{C}P^\infty)^K \to \Omega Z_K \times T^m$$

which does not preserve monoid structures.

Proposition 8.4.1. There is an exact sequence of homotopy Lie algebras

$$0 \to \pi_*(\Omega Z_K) \otimes \mathbb{Q} \to \pi_*(\Omega (\mathbb{C}P^\infty)^K) \otimes \mathbb{Q} \to \text{CL}(u_1, \ldots, u_m) \to 0,$$

where $\text{CL}(u_1, \ldots, u_m)$ denotes the commutative Lie algebra with generators u_i, $\text{deg } u_i = 1$, and an exact sequence of Pontryagin algebras

\begin{equation}
0 \to H_*(\Omega Z_K; \mathbf{k}) \to H_*(\Omega (\mathbb{C}P^\infty)^K; \mathbf{k}) \to \Lambda[u_1, \ldots, u_m] \to 0,
\end{equation}

for any commutative ring \mathbf{k} with unit.

Proof. The first exact sequence follows by considering the homotopy exact sequence of the fibration (8.16), whose connecting homomorphism is zero because the fibration is trivial.

Since $H_*(T^m; \mathbf{k}) = \Lambda[u_1, \ldots, u_m]$ is a finitely generated free \mathbf{k}-module, the Künneth formula gives an isomorphism of \mathbf{k}-modules

$$H_*(\Omega (\mathbb{C}P^\infty)^K; \mathbf{k}) \cong H_*(\Omega Z_K; \mathbf{k}) \otimes \Lambda[u_1, \ldots, u_m]$$

and therefore an exact sequence of \mathbf{k}-algebras (8.17).

The homotopy group $\pi_2((\mathbb{C}P^\infty)^K) \cong \mathbb{Z}^m$ has m canonical generators represented by the maps

$$\tilde{\mu}_i : S^2 \to \mathbb{C}P^\infty \to (\mathbb{C}P^\infty)^\vee m \to (\mathbb{C}P^\infty)^K$$

for $1 \leq i \leq m$, where the left map is the inclusion of the bottom cell, the middle map is the inclusion of the ith wedge summand, and the right map is the canonical
inclusion of polyhedral powers corresponding to the inclusion of the discrete \(m \)-point complex into \(K \). Let

\[\mu_i : S^1 \rightarrow \Omega (\mathbb{C}P^\infty)^K \]

be the adjoint of \(\hat{\mu}_i \), and let \(u_i \) denote the Hurewicz image of \(\mu_i \) in \(H_1(\Omega (\mathbb{C}P^\infty)^K) \).

We shall be interested in elements of \(\pi_*(\Omega (\mathbb{C}P^\infty)^K) \) represented by Samelson products of the \(\mu_i \) (see Section B.1 for the definition).

Proposition 8.4.2. The Samelson products of the canonical generators \(\mu_i \in \pi_1(\Omega(\mathbb{C}P^\infty)^K) \) satisfy the identities

\[[\mu_i; \mu_i] = 0, \quad [\mu_i; \mu_j] = 0 \quad \text{if and only if} \quad \{i, j\} \in \mathcal{K}. \]

Proof. By adjunction, we can work with the Whitehead products instead. The Whitehead square \([\hat{\mu}_i, \hat{\mu}_i]_w\) is zero in \(\pi_3((\mathbb{C}P^\infty)^K) \), because it is zero in \(\pi_3(\mathbb{C}P^\infty) = 0 \). Furthermore, the map \(\hat{\mu}_i \vee \hat{\mu}_j : S^2 \vee S^2 \rightarrow (\mathbb{C}P^\infty)^K \) with \(i \neq j \) extends to a map \(S^2 \times S^2 \rightarrow (\mathbb{C}P^\infty)^K \) whenever \(\{i, j\} \) is an edge of \(\mathcal{K} \), which implies that \([\hat{\mu}_i, \hat{\mu}_j]_w = 0 \) whenever \(\{i, j\} \in \mathcal{K} \). \(\square \)

Corollary 8.4.3. The algebra \(H_* (\Omega (\mathbb{C}P^\infty)^K; \mathbb{k}) \) contains the subalgebra

\[(8.18) \quad T(u_1, \ldots, u_m)/(u_i^2 = 0, \quad u_iu_j + u_ju_i = 0 \quad \text{if} \quad \{i, j\} \in \mathcal{K}), \]

where \(u_i \in H_1(\Omega (\mathbb{C}P^\infty)^K; \mathbb{k}) \) is the Hurewicz image of \(\mu_i \in \pi_1(\Omega(\mathbb{C}P^\infty)^K) \).

The subalgebra above maps onto the ‘fully commutative’ algebra \(\Lambda[u_1, \ldots, u_m] \) under the projection map of \((8.17)\).

In the homotopy fibration \((8.16)\), since \(\pi_k(T^m) = 0 \) for \(k > 1 \), any iterated Samelson product of the form \([\mu_{i_1}, [\mu_{i_2}, \cdots [\mu_{i_{k-1}}, \mu_{i_k}] \cdots]]\) with \(k > 1 \) composes trivially into \(T^m \) and so lifts to \(\Omega Z_k \).

The Whitehead product \([\hat{\mu}_i, \hat{\mu}_j]_w : S^1 \rightarrow (\mathbb{C}P^\infty)^K \) is nontrivial whenever \(\{i, j\} \) is a missing edge of \(\mathcal{K} \). We may generalise this construction by considering missing faces \(I = \{i_1, \ldots, i_k\} \) of \(\mathcal{K} \) (recall that this means that \(I \notin \mathcal{K} \), but any proper subset of \(I \) is in \(\mathcal{K} \)). Geometrically a missing face defines a subcomplex \(\partial \Delta(I) \subset \mathcal{K} \). Define the \(k \)-fold higher Whitehead product \([\hat{\mu}_{i_1}, \cdots, \hat{\mu}_{i_k}]_w \) as the composite

\[(8.19) \quad [\hat{\mu}_{i_1}, \cdots, \hat{\mu}_{i_k}]_w : S^{2k-1} \xrightarrow{w} (S^2)^{\partial \Delta(I)} \rightarrow (\mathbb{C}P^\infty)^{\partial \Delta(I)} \rightarrow (\mathbb{C}P^\infty)^K \]

where \((S^2)^{\partial \Delta(1)}\) is the fat wedge of \(k \) spheres, \(w \) is the attaching map of the \(2k \)-cell in the product \((S^2)^I\), and the last two maps of the polyhedral products are induced by the inclusions \(S^2 \rightarrow \mathbb{C}P^\infty \) and \(\partial \Delta(I) \rightarrow \mathcal{K} \). The \(k \)-fold higher Samelson product \([\hat{\mu}_{i_1}, \cdots, \hat{\mu}_{i_k}]_s \) is defined as the adjoint of \([\hat{\mu}_{i_1}, \cdots, \hat{\mu}_{i_k}]_w \):

\[[\hat{\mu}_{i_1}, \cdots, \hat{\mu}_{i_k}]_s : S^{2k-2} \rightarrow \Omega (\mathbb{C}P^\infty)^K. \]

Remark. As is standard with higher order operations, the higher product \([\hat{\mu}_{i_1}, \cdots, \hat{\mu}_{i_k}]_s \) is defined only when all shorter higher products of the \(\mu_{i_1}, \cdots, \mu_{i_k} \) (corresponding to proper subsets of \(I \)) are trivial. The general definition of higher Whitehead and Samelson products (see [364]) requires treatment of the indeterminacy, which we avoided in the case of the polyhedral product \((\mathbb{C}P^\infty)^K\) by the canonical choice of map \((8.19)\).

As in the case of standard \((2\text{-fold})\) products, higher Whitehead and Samelson products of the \(\mu_i \) can be iterated and lifted to \(\Omega Z_k \). We summarise this observation as follows:
Proposition 8.4.4. Any iterated higher Whitehead product $\tilde{v}: S^p \to (\mathbb{C}P^\infty)^K$ of the canonical maps $\tilde{\mu}_i: S^2 \to (\mathbb{C}P^\infty)^K$ lifts to a map $S^p \to Z_K$.

Similarly, any iterated higher Samelson product $v: S^{p-1} \to \Omega(\mathbb{C}P^\infty)^K$ of the $\mu_i: S^1 \to \Omega(\mathbb{C}P^\infty)^K$ lifts to a map $S^{p-1} \to \Omega Z_K$.

Lifts $S^p \to Z_K$ of higher iterated Whitehead products of the $\tilde{\mu}_i$ provide an important family of spherical classes in $H_*(Z_K)$. We may ask the following question:

Problem 8.4.5. Assume that Z_K is homotopy equivalent to a wedge of spheres. Is it true that all wedge summands are represented by lifts $S^p \to Z_K$ of higher iterated Whitehead products of the canonical maps $\tilde{\mu}_i: S^2 \to (\mathbb{C}P^\infty)^K$?

For all known classes of examples when Z_K is a wedge of spheres, the answer to the above question is positive. We shall give some evidence below.

Example 8.4.6.
1. Let K be two points. The fibration (8.16) becomes

$$\Omega S^3 \to \Omega(\mathbb{C}P^\infty \vee \mathbb{C}P^\infty) \to S^1 \times S^1,$$

and the corresponding sequence of Pontryagin algebras (8.17) is

$$0 \to \mathbb{k}[w] \xrightarrow{i} T(u_1, u_2)/(u_1^2, u_2^2) \xrightarrow{j} \Lambda[u_1, u_2] \to 0$$

where $\mathbb{k}[w] = H_*(\Omega S^3; \mathbb{k})$, $\deg w = 2$, the map i takes w to the commutator $u_1u_2 + u_2u_1$, and j is the projection to the quotient by the ideal generated by $u_1u_2 + u_2u_1$ (an exercise). So

$$H_*(\Omega(\mathbb{C}P^\infty \vee \mathbb{C}P^\infty); \mathbb{k}) = T(u_1, u_2)/(u_1^2, u_2^2) = \Lambda[u_1] \ast \Lambda[u_2]$$

is the free product of two exterior algebras and $i(\mathbb{k}[w])$ is its commutator subalgebra. In particular, exact sequence (8.17) does not split multiplicatively in this example.

Here u_1, u_2 are the Hurewicz images of μ_1, μ_2, the commutator $u_1u_2 + u_2u_1$ is the Hurewicz image of the Samelson product $[\mu_1, \mu_2]: S^2 \to \Omega(\mathbb{C}P^\infty \vee \mathbb{C}P^\infty)$, and $w \in H_2(\Omega S^3)$ is the Hurewicz image of the lift of $[\mu_1, \mu_2]$ to ΩS^3.

2. Now let $K = \partial \Delta^2$, the boundary of a triangle. The fibration (8.16) becomes

$$\Omega S^5 \to \Omega(\mathbb{C}P^\infty)^{\partial \Delta^2} \to T^3,$$

where $\Omega(\mathbb{C}P^\infty)^{\partial \Delta^2}$ is the fat wedge of 3 copies of $\mathbb{C}P^\infty$. We have $H_*(\Omega S^5; \mathbb{k}) = \mathbb{k}[w]$, $\deg w = 4$. The algebra (8.18) is isomorphic to $\Lambda[u_1, u_2, u_3]$, so the sequence of Pontryagin algebras (8.17) splits multiplicatively in this example:

$$0 \to \mathbb{k}[w] \to \mathbb{k}[w] \otimes \Lambda[u_1, u_2, u_3] \to \Lambda[u_1, u_2, u_3] \to 0.$$

Here $w \in H_4(\Omega(\mathbb{C}P^\infty)^{\partial \Delta^2}; \mathbb{k})$ is the Hurewicz image of the higher Samelson product $[\mu_1, \mu_2, \mu_3]: \pi_4(\Omega(\mathbb{C}P^\infty)^{\partial \Delta^2})$, which lifts to ΩS^5. The fact that $[\mu_1, \mu_2, \mu_3]$ is a nontrivial higher Samelson product (and its Hurewicz image w is the 'higher commutator product' of u_1, u_2, u_3) constitutes the additional information necessary to distinguish between the topological monoids $\Omega(\mathbb{C}P^\infty)^{\partial \Delta^2}$ and $\Omega S^5 \times T^3$.

This calculation generalises easily to the case $K = \partial \Delta^{m-1}$, showing that

$$H_*(\Omega(\mathbb{C}P^\infty)^{\partial \Delta^{m-1}}; \mathbb{k}) \cong \mathbb{k}[w] \otimes \Lambda[u_1, \ldots, u_m]$$

where $\deg w = 2m - 2$.
8. HOMOTOPY THEORY OF POLYHEDRAL PRODUCTS

Topological models for loop spaces. We consider the diagram

\[\mathcal{D}_K(S^1) : \text{cat}(K) \to \text{TMON} \]

whose value on the morphism \(I \subset J \) is the monomorphism of tori \(T^I \to T^J \). The classifying space diagram \(BD_K(S^1) \) is \(\mathcal{D}_K(\mathbb{C}P^\infty, pt) : \text{cat}(K) \to \text{TOP} \) with colimit \((\mathbb{C}P^\infty)^K \). We denote the colimit and homotopy colimit of \(\mathcal{D}_K(S^1) \) by \(\text{colim}_{I \in K}^\text{TMON} T^I \) and \(\text{hocolim}_{I \in K}^\text{TMON} T^I \), respectively.

Theorem 8.4.7 ([303]). There is a commutative diagram

\[\begin{array}{ccc}
\Omega \text{hocolim}_{I \in K}^\text{TOP} BT^I & \xrightarrow{g} & \text{hocolim}_{I \in K}^\text{TMON} T^I \\
\alpha_{p^\text{top}} \downarrow \simeq & & \downarrow p_{\text{TMON}}^\text{top} \\
\Omega(\mathbb{C}P^\infty)^K & \xrightarrow{\simeq} & \Omega \text{colim}_{I \in K}^\text{TOP} BT^I \xrightarrow{\simeq} \text{colim}_{I \in K}^\text{TMON} T^I
\end{array} \]

in \(H_0(\text{TMON}) \), where the top and left homomorphisms are homotopy equivalences.

Proof. We apply Corollary C.3.8 with \(\mathcal{D} = \mathcal{D}_K(S^1) \). The left projection \(\Omega p_{\text{TOP}} : \Omega \text{hocolim}_{I \in K}^\text{TOP} BT^I \to \Omega \text{colim}_{I \in K}^\text{TOP} BT^I \) is a weak equivalence because \(BD_K(S^1) = \mathcal{D}_K(\mathbb{C}P^\infty, pt) \) is a cofibrant diagram in \(\text{TOP} \).

Corollary 8.4.8. There is a weak equivalence

\[\Omega(\mathbb{C}P^\infty)^K \simeq \text{hocolim}_{I \in K}^\text{TMON} T^I \]

in \(\text{TMON} \).

The right projection \(p_{\text{TMON}} \) (and therefore the bottom homomorphism in (8.21)) is not a weak equivalence in general, because \(\mathcal{D}_K(S^1) \) is not a cofibrant diagram in \(\text{TMON} \). The appropriate examples are discussed below.

Example 8.4.9.

1. Let \(K \) be two points. Then

\[(\mathbb{C}P^\infty)^K = \mathbb{C}P^\infty \vee \mathbb{C}P^\infty, \quad \text{colim}_{I \in K}^\text{TMON} D_K(S^1) = S^1 \ast S^1 \]

where \(\ast \) denotes the free product of topological monoids, i.e. the coproduct in \(\text{TMON} \). The bottom homomorphism in (8.21) is \(\Omega(\mathbb{C}P^\infty \vee \mathbb{C}P^\infty) \to S^1 \ast S^1 \), it is a weak equivalence in \(\text{TMON} \).

2. Now let \(K = \partial \Delta^2 \). The loop space \(\Omega(\mathbb{C}P^\infty)^{\partial \Delta^2} \) is described in Example 8.4.6.2. On the other hand, the colimit of \(D_K(S^1) \) is obtained by taking the quotient of \(T^{(1)} \ast T^{(2)} \ast T^{(3)} \) by the commutativity relations

\[t_1 \ast t_2 = t_2 \ast t_1, \quad t_2 \ast t_3 = t_3 \ast t_2, \quad t_3 \ast t_1 = t_1 \ast t_3 \]

for \(t_i \in T^{(i)} \), so that \(\text{colim}_{I \in K}^\text{TMON} T^I = T^3 \). It follows that the bottom map \(\Omega(\mathbb{C}P^\infty)^{\partial \Delta^2} \to T^3 \) in (8.21) is not a weak equivalence; it has kernel \(\Omega S^5 \).

The diagram \(D = D_K(S^1) : \text{cat}(K) \to \text{TMON} \) is not cofibrant in this example. Indeed, if we take \(I = \{1, 2\} \), then the induced diagram over the overcategory \(\text{cat}(K) \downarrow I = \text{cat}(\Delta(I)) \) has the form

\[\begin{array}{ccc}
\text{pt} & \longrightarrow & T^{(1)} \\
\downarrow & & \downarrow \\
T^{(2)} & \longrightarrow & T^{(1)} \times T^{(2)}
\end{array} \]
The map \(\text{colim} \, \mathcal{D}_{\text{cor}}(\partial \Delta(I)) \to \mathcal{D}(I) \) is the projection \(T^{(1)} \ast T^{(2)} \to T^{(1)} \times T^{(2)} \) from the free product to the cartesian product, which is not a cofibration in \(\text{TMON} \).

Algebraic models for loop spaces. Our next aim is to obtain an algebraic analogue of Theorem 8.4.7. We work over a commutative ring \(k \).

We define the *face coalgebra* \(k(k) \) as the graded dual of the face ring \(k[K] \). As a \(k \)-module, \(k(k) \) is free on generators \(v_\sigma \) corresponding to multisets of \(m \) elements of the form
\[
\sigma = \{\underbrace{1, \ldots, 1}_{k_1}, \underbrace{2, \ldots, 2}_{k_2}, \ldots, \underbrace{m, \ldots, m}_{k_m}\}
\]
such that the *support* of \(\sigma \) (i.e. the set \(I_\sigma = \{i \in [m] : k_i \neq 0\} \)) is a simplex of \(K \). The element \(v_\sigma \) is dual to the monomial \(v_1^{k_1}v_2^{k_2} \cdots v_m^{k_m} \in k(k) \). The comultiplication takes the form
\[
\Delta v_\sigma = \sum_{\sigma = \tau \cup \tau'} v_\tau \otimes v_{\tau'},
\]
where the sum ranges over all partitions of \(\sigma \) into submultisets \(\tau \) and \(\tau' \).

We recall the Adams cobar construction \(\Omega_* : \text{DGC} \to \text{DGA} \), see (C.9), and the Quillen functor \(L_* : \text{DGC}_Q \to \text{DGL} \), see (C.11). The loop algebra \(\Omega_* k(k) \) is our first algebraic model for \(\Omega(\mathbb{C}P^\infty)^K \).

Proposition 8.4.10. There is an isomorphism of graded algebras
\[
H_*(\Omega(\mathbb{C}P^\infty)^K ; k) \cong H(\Omega_* k(k)) = \text{Cotor}_{k(k)}(k,k).
\]

Proof. By dualising the integral formality results of [288, Theorem 4.8] (see Exercise 8.1.11), we obtain a zigzag of quasi-isomorphisms
\[
C_*(((\mathbb{C}P^\infty)^K ; k) \rightleftarrows \cdots \rightleftarrows k(k).
\]
in \(\text{DGC} \) (when \(k = \mathbb{Q} \) this follows from Theorem 8.1.2). Since \(\Omega_* \) preserves quasi-isomorphisms, the zigzag above combines with Adams’ result (Theorem C.2.1) to obtain the required isomorphism of algebras. \(\square \)

Remark. When \(k \) is a field, there are isomorphisms
\[
H_*(\Omega(\mathbb{C}P^\infty)^K ; k) \cong \text{Cotor}_{k(k)}(k,k) \cong \text{Ext}_{k(k)}(k,k).
\]

The graded algebra underlying the cobar construction \(\Omega_* k(k) \) is the tensor algebra \(T(s^{-1} k(k)) \) on the desuspended \(k \)-module \(k(k) = \text{Ker}(\varepsilon : k(k) \to k) \); the differential is defined on generators by
\[
d(s^{-1} v_\sigma) = \sum_{\sigma = \tau \cup \tau'; \tau, \tau' \notin \emptyset} s^{-1} v_\tau \otimes s^{-1} v_{\tau'},
\]
because \(d = 0 \) on \(k(k) \). For future purposes it is convenient to write \(s^{-1} v_\sigma \) as \(\chi_\sigma \) for any multiset \(\sigma \).

We now define some algebraic diagrams over \(\text{CAT}(K) \). Our previous algebraic diagrams such as (8.1) were commutative, contravariant and cohomological, but to investigate the loop space \(\Omega(\mathbb{C}P^\infty)^K \) we introduce models that are covariant and homological. We consider the diagram
\[
k[k] = \text{CAT}(K) \to \text{DGA}, \quad I \mapsto k[v_i : i \in I]
\]
which maps a morphism $I \subset J$ to the monomorphism of polynomial algebras $k[v_i : i \in I] \to k[u_i : i \in I]$ with $\deg v_i = 2$ and zero differential. Similarly, we define the diagrams

\begin{align*}
\Lambda[\cdot]_\mathcal{K} & : \text{CAT}(\mathcal{K}) \to \text{DGA}, & I & \mapsto \Lambda[u_i : i \in I], & \deg u_i = 1, \\
\mathbf{k}\langle \cdot \rangle_\mathcal{K} & : \text{CAT}(\mathcal{K}) \to \text{DGC}, & I & \mapsto \mathbf{k}\langle v_i : i \in I \rangle, & \deg v_i = 2, \\
\mathbf{CL}(\cdot)_\mathcal{K} & : \text{CAT}(\mathcal{K}) \to \text{DGL}, & I & \mapsto \mathbf{CL}(u_i : i \in I), & \deg u_i = 1,
\end{align*}

where $\mathbf{k}\langle v_i : i \in I \rangle$ denotes the free commutative coalgebra and $\mathbf{CL}(u_i : i \in I)$ denotes the commutative Lie algebra on $|I|$ generators.

The individual algebras and coalgebras in these diagrams are all commutative, but the context demands they be interpreted in the non-commutative categories; this is especially important when forming limits and colimits.

Note that $\text{colim}^{\text{DGC}} \mathbf{k}\langle \cdot \rangle_\mathcal{K} = \mathbf{k}\langle \mathcal{K} \rangle$, while $\text{colim}^{\text{DGA}} \Lambda[\cdot]_\mathcal{K}$ is the non-commutative algebra (8.18) (an exercise).

Proposition 8.4.11. There are acyclic fibrations

$$
\Omega_* \mathbf{k}\langle v_i : i \in I \rangle \xrightarrow{\sim} \Lambda[u_i : i \in I] \quad \text{and} \quad \Omega_* \mathbf{Q}\langle v_i : i \in I \rangle \xrightarrow{\sim} \mathbf{CL}(u_i : i \in I)
$$

in DGA and DGL respectively, for any set $I \subset [m]$.

Proof. We define the first map by $\chi_i \mapsto u_i$ for $1 \leq i \leq m$. Because

$$
\partial \chi_i = \chi_i \otimes \chi_i, \quad \partial \chi_{ij} = \chi_i \otimes \chi_j + \chi_j \otimes \chi_i \quad \text{for} \quad i \neq j
$$

hold in $\Omega_* \mathbf{k}\langle v_i : i \in I \rangle$, the map is consistent with the exterior relations in its target. So it is an epimorphism and quasi-isomorphism in DGA, and hence an acyclic fibration. The corresponding result for DGL follows by restriction to primitives. \(\square\)

Observe that the diagram $\Lambda[\cdot]_\mathcal{K}$ in DGA can be thought of as the diagram of homology algebras of topological monoids in the diagram $D\mathcal{K}(S^1)$, see (8.20), and the diagram $\mathbf{k}\langle \cdot \rangle_\mathcal{K}$ in DGC is the diagram of homology coalgebras of spaces in the classifying diagram $BD\mathcal{K}(S^1)$. This relationship extends to the following algebraic analogue of Theorem 8.4.7:

Theorem 8.4.12 ([302]). There is a commutative diagram

\begin{align*}
\Omega_* \text{colim}^{\text{DGC}} \mathbf{k}\langle \cdot \rangle_\mathcal{K} & \xrightarrow{\sim} \text{hocolim}^{\text{DGA}} \Lambda[\cdot]_\mathcal{K} \\
\Omega_* \mathbf{p}^{\text{DGC}} & \xrightarrow{\sim} \text{hocolim}^{\text{DGA}} \Lambda[\cdot]_\mathcal{K}
\end{align*}

in $\text{Ho}(\text{DGA})$, where the top and left arrows are isomorphisms.

Proof. This follows by considering the diagram

\begin{align*}
\Omega_* \text{colim}^{\text{DGC}} \mathbf{k}\langle \cdot \rangle_\mathcal{K} & \xrightarrow{\sim} \text{hocolim}^{\text{DGA}} \Omega_* \mathbf{k}\langle \cdot \rangle_\mathcal{K} \\
\Omega_* \mathbf{p}^{\text{DGC}} & \xrightarrow{\sim} \text{hocolim}^{\text{DGA}} \Omega_* \mathbf{k}\langle \cdot \rangle_\mathcal{K}
\end{align*}

in $\text{Ho}(\text{DGA})$, where the top and left arrows are isomorphisms.
Here the top right horizontal map is induced by the map of diagrams $\Omega, \kappa(\cdot) \rightarrow \Lambda[\cdot]_K$ whose objectwise maps are acyclic fibrations from Proposition 8.4.11; the map of homotopy colimits is a weak equivalence because the map of diagrams is an acyclic fibration. The right square is commutative. The central vertical map is a weak equivalence because the diagram $\Omega_* \kappa(\cdot)_K$ is cofibrant. The bottom left horizontal map is an isomorphism because Ω_* is left adjoint. The left vertical map is a weak equivalence because the diagram $\kappa(\cdot)_K$ is cofibrant and Ω_* preserves weak equivalences. The resulting zigzag of quasi-isomorphisms

$$
\Omega_* \lim^\text{dgc} \kappa(\cdot)_K \xrightarrow{\cong} \cdots \xrightarrow{\cong} \lim^\text{dga} \Lambda[\cdot]_K
$$

induces an isomorphism in the homotopy category $\text{Ho}(\text{dga})$; we denote it by h. □

As in the case of diagram (8.21), the right and bottom maps in (8.25) are not weak equivalences in general, because $\Lambda[\cdot]_K$ is not a cofibrant diagram in dga.

The following statement is proved similarly.

Theorem 8.4.13 ([302]). There is a homotopy commutative diagram

$$
\begin{array}{ccc}
\lim^\text{dgc} \kappa(\cdot)_K & \xrightarrow{\rho_\text{dgc}} & \lim^\text{dga} \Lambda[\cdot]_K \\
\text{L}_* & \xrightarrow{\cong} & \text{L}_* \\
\text{Q}(\cdot)_K & \xrightarrow{\rho_\text{dgl}} & \colim^\text{dgl} \text{CL}(\cdot)_K
\end{array}
$$

(8.26)

in $\text{Ho}(\text{dgl})$, where the top and left arrows are isomorphisms.

The homotopy colimit decomposition above defines our second algebraic model for $\omega(CP^\infty)^K$:

Corollary 8.4.14. For any simplicial complex K and commutative ring k, there are isomorphisms

$$
H_* \left(\omega(CP^\infty)^K; k \right) \cong H \left(\lim^\text{dga} \Lambda[\cdot]_K \right)
$$

$$
\pi_* \left(\omega(CP^\infty)^K \otimes \mathbb{Z} \mathbb{Q} \right) \cong H \left(\lim^\text{dgl} \text{CL}(\cdot)_K \right)
$$

of graded algebras and Lie algebras respectively.

Example 8.4.15.

1. Let K be a discrete complex on m vertices, so that $(CP^\infty)^K$ is a wedge of m copies of CP^∞. The cofree construction $\Omega_* \mathbb{k}(K)$ on the corresponding face coalgebra is generated as an algebra by the elements of the form χ_i with $i \in [m]$. The first identity of (8.24) still holds, but $\chi_i \otimes \chi_j + \chi_j \otimes \chi_i$ is no longer a boundary for $i \neq j$ since there is no element χ_{ij} in $\Omega_* \mathbb{k}(K)$. We obtain a quasi-isomorphism

$$
\Omega_* \mathbb{k}(K) \xrightarrow{\cong} T(u_1, \ldots, u_m)/(u_i^2 = 0, 1 \leq i \leq m)
$$

that maps χ_i to u_i. The right hand side is isomorphic to $H_*(\omega(CP^\infty)^K; k)$; it is the coproduct (the free product) of m algebras $\Lambda[u_i]$. Therefore, the bottom map $\Omega_* \mathbb{k}(K) \rightarrow \lim^\text{dga} \Lambda[\cdot]_K$ in (8.25) is a quasi-isomorphism in this example.

The algebra $H_*(\Omega Z_K; k)$ is the commutator subalgebra of $H_*(\omega(CP^\infty)^K; k)$ according to (8.17). In contains iterated commutators $[u_{i_1}, [u_{i_2}, \ldots, [u_{i_{k-1}}, u_{i_k}] \cdots]]$ with $k \geq 2$ corresponding to iterated Samelson products in $\pi_*(\omega(CP^\infty)^K)$. On the other hand, Z_K is a wedge of spheres given by (8.12). Therefore, $H_*(\Omega Z_K; k)$ is a free (tensor) algebra on the generators corresponding to the wedge summands. So the number of independent iterated commutators of length k is $(k - 1)\binom{n}{k}$.
fact can be proved purely algebraically, see Corollary 8.5.8 below. There are no higher Samelson products (and higher iterated commutators) in this example, as \(\mathcal{K} \) does not have missing faces with \(> 2 \) vertices.

2. Let \(\mathcal{K} = \partial \Delta^2 \). As we have seen in Example 8.4.6.2,
\[
H_* (\Omega (\mathbb{C}P^\infty)^{\mathcal{K}}; k) \cong k[w] \otimes \Lambda [u_1, u_2, u_3].
\]
This can also be seen algebraically using the cobar model \(\Omega_* k(\mathcal{K}) \). Here \(u_1 \) is the homology class of \(\chi_1 \), and \(w \in H_4 (\Omega (\mathbb{C}P^\infty)^{\mathcal{K}}; k) \) is the homology class of the cycle
\[
\psi = \chi_1 \chi_2 + \chi_2 \chi_3 + \chi_3 \chi_1,
\]
whose failure to bound is due to the non-existence of \(\chi_{123} \). Relations (8.24) hold, and give rise to the exterior relations between \(u_1, u_2, u_3 \). Furthermore, a direct check shows that \(\chi_i \psi - \psi \chi_i \) is a boundary, which implies that each \(u_i \) commutes with \(w \) in \(H_* (\Omega (\mathbb{C}P^\infty)^{\mathcal{K}}; k) \).

Here the colimit of \(\Lambda [\cdot]_{\mathcal{K}} \) in DGA is the quotient of \(T (u_1, u_2, u_3) \) by all exterior relations. In other words, \(\text{colim}^{\text{cos}} \Lambda [\cdot]_{\mathcal{K}} = \Lambda [u_1, u_2, u_3] \) and the bottom map \(\Omega_* k(\mathcal{K}) \rightarrow \text{colim}^{\text{cos}} \Lambda [\cdot]_{\mathcal{K}} \) in (8.25) is not a quasi-isomorphism in this example.

3. Let \(\mathcal{K} = sk^1 \partial \Delta^3 \), the 1-skeleton of a 3-simplex, or a complete graph on 4 vertices. Arguments similar to those of the previous example show that the Pontryagin algebra \(H_* (\Omega (\mathbb{C}P^\infty)^{\mathcal{K}}; k) \) contains 1-dimensional classes \(u_1, \ldots, u_4 \) and 4-dimensional classes \(w_{123}, w_{124}, w_{134}, w_{234} \), corresponding to the four missing faces with three vertices each. For example, \(w_{123} \) is the homology class of the cycle \(\psi_{123} \) which may be thought of as the ‘boundary of the non-existing element \(\chi_{123} \)’.

The identities (8.24) give rise to the exterior relations between \(u_1, \ldots, u_4 \). We may easily check that \(u_i \) commutes with \(w_{jkl} \) if \(i \in \{ j, k, l \} \). There are four remaining non-trivial commutators of the form \([u_i, w_{jkl}] \) with all \(i, j, k, l \) different.

It follows that the commutator subalgebra \(H_* (\Omega Z^\Delta; k) \) contains four higher commutators \(w_{jkl} = [u_j, u_k, u_l] \) (the Hurewicz images of the higher Samelson products \([u_j, \mu_k, \mu_l] \)) and four iterated commutators \([u_i, w_{jkl}] \). On the other hand, Theorem 4.7.7 gives a homotopy equivalence
\[
Z_{\mathcal{K}} \simeq (S^5)^{\vee^4} \vee (S^6)^{\vee^3},
\]
which implies that \(H_* (\Omega Z^\Delta; k) \) is a free algebra on four 4-dimensional and three 5-dimensional generators. The point is that the commutators \([u_i, w_{jkl}] \) are subject to one extra relation, which can be derived as follows. Consider the relation
\[
d\chi_{1234} = (\chi_1 \chi_{234} + \chi_{234} \chi_1) + \cdots + (\chi_4 \chi_{123} + \chi_{123} \chi_4) + \beta
\]
in \(\Omega_* k(v_1, v_2, v_3, v_4) \), where \(\beta \) consists of terms \(\chi_\sigma \chi_\tau \) such that \(|\sigma| = |\tau| = 2 \). Denote the first four summands on the right hand side of (8.27) by \(\alpha_1, \alpha_2, \alpha_3, \alpha_4 \) respectively, and apply the differential to both sides. Observing that \(d\alpha_1 = -\chi_1 \psi_{234} + \psi_{234} \chi_1 = -[\chi_1, \psi_{234}] \), and similarly for \(d\alpha_2, d\alpha_3 \) and \(d\alpha_4 \), we obtain
\[
[\chi_1, \psi_{234}] + [\chi_2, \psi_{134}] + [\chi_3, \psi_{124}] + [\chi_4, \psi_{123}] = d\beta.
\]

The outcome is an isomorphism
\[
H_* (\Omega (\mathbb{C}P^\infty)^{\mathcal{K}}; k) \cong T (u_1, u_2, u_3, u_4, w_{123}, w_{124}, w_{134}, w_{123}) / \mathcal{I},
\]
where \(\text{deg} w_{jkl} = 4 \) and \(\mathcal{I} \) is generated by three types of relations:
\begin{itemize}
 \item exterior algebra relations for \(u_1, u_2, u_3, u_4 \);
 \item \([u_i, w_{jkl}] = 0 \) for \(i \in \{ j, k, l \} \);
 \item \([u_1, w_{234}] + [u_2, w_{134}] + [u_3, w_{124}] + [u_4, w_{123}] = 0 \).
\end{itemize}
As w_{ijk} is the higher commutator of u_i, u_j, and u_k, the third relation may be considered as a higher analogue of the Jacobi identity.

It is a challenging task to construct explicit algebraic models for $\Omega(\mathbb{C}P^\infty)^K$ and ΩZ_K, which would include a description of the Pontryagin algebra structure, as well as higher Samelson and commutator products. The situation is considerably simpler when K is a flag complex, as there are no higher products; this is the subject of the next section.

Exercises.

8.4.16. For any $2n$-dimensional (quasi)toric manifold M, show that there is a fibration

$$
\Omega M \to \Omega(\mathbb{C}P^\infty)^K \to T^n,
$$

which splits in \mathbf{TOP}.

8.4.17. For the classes of simplicial complexes K described in Propositions 8.2.5 and 8.2.6 (discrete complexes and trees), show that each wedge summand of Z_K is represented by a lift $S^p \to Z_K$ of iterated Whitehead products of the $\mu_i: S^2 \to (\mathbb{C}P^\infty)^K$ (no higher products appear here). Describe the corresponding iterated brackets explicitly. In particular, the answer to Problem 8.4.5 is positive for these two classes of K.

8.4.18. Show that $H^*(\Omega(\mathbb{C}P^\infty \vee \mathbb{C}P^\infty); k) = T(u_1, u_2)/(u_1^2, u_2^2)$ and describe the sequence of Pontryagin algebras corresponding to the fibration $\Omega S^3 \to \Omega(\mathbb{C}P^\infty \vee \mathbb{C}P^\infty) \to S^1 \times S^1$.

8.4.19. Show that $\text{colim}^{h_{\mathbb{C}A}} \Lambda[\cdot]_K$ is the algebra given by (8.18).

8.5. The case of flag complexes

In this section we study the loop spaces associated with flag complexes K. Such complexes have significantly simpler combinatorial properties, which are reflected in the homotopy theory of the toric spaces. We modify results of the previous section in this context, and focus on applications to the Pontryagin rings and homotopy Lie algebras of $\Omega(\mathbb{C}P^\infty)^K$ and ΩZ_K. We also describe completely the class of flag complexes K for which Z_K is homotopy equivalent to a wedge of spheres.

For any simplicial complex K on $[m]$, recall that a subset $I \subset [m]$ is called a missing face when every proper subset lies in K, but I itself does not. If every missing face of K has 2 vertices, then K is a flag complex; equivalently, K is flag when every set of vertices that is pairwise connected spans a simplex. A flag complex is therefore determined by its 1-skeleton, which is a graph. When K is flag, we may express the face ring as

$$
k[K] = T(v_1, \ldots, v_m)/(v_i v_j - v_j v_i = 0 \text{ for } \{i, j\} \in K, \ v_i v_j = 0 \text{ for } \{i, j\} \notin K).
$$

It is therefore quadratic, in the sense that it is the quotient of a free algebra by quadratic relations.

The following result of Fröberg allows us to calculate the Yoneda algebras $\text{Ext}_A(k, k)$ explicitly for a class of quadratic algebras A that includes the face rings of flag complexes.
PROPOSITION 8.5.1 ([143, §3]). When k is a field and \mathcal{K} is a flag complex, there is an isomorphism of graded algebras

$$\text{Ext}_{k[\mathcal{K}]}(k, k) \cong T(u_1, \ldots, u_m)/(u_i^2 = 0, u_i u_j + u_j u_i = 0 \text{ for } \{i, j\} \in \mathcal{K}).$$

REMARK. The algebra on the right hand side of (8.28) is the quadratic dual of $k[\mathcal{K}]$. A quadratic algebra A is called Koszul if its quadratic dual coincides with $\text{Ext}_A(k, k)$, so Proposition 8.5.1 asserts that $k[\mathcal{K}]$ is Koszul when \mathcal{K} is flag.

When \mathcal{K} is flag, (8.18) is the whole Pontryagin algebra $H_*(\Omega(CP^\infty)_{/\mathcal{K}}; k)$:

Theorem 8.5.2 ([302]). For any flag complex \mathcal{K}, there are isomorphisms

$$H_*(\Omega(CP^\infty)_{/\mathcal{K}}; k) \cong T(u_1, \ldots, u_m)/(u_i^2 = 0, u_i u_j + u_j u_i = 0 \text{ for } \{i, j\} \in \mathcal{K})$$

$$\pi_*(\Omega(CP^\infty)_{/\mathcal{K}}) \otimes_{\mathbb{Z}} \mathbb{Q} \cong FL(u_1, \ldots, u_m)/(|u_i| = 0, [u_i, u_j] = 0 \text{ for } \{i, j\} \in \mathcal{K}),$$

where k is \mathbb{Z} or a field, $FL(\cdot)$ denotes a free Lie algebra and $\deg u_i = 1$.

Proof. By Proposition 8.4.10, $H_*(\Omega(CP^\infty)_{/\mathcal{K}}; k) \cong \text{Cotor}_k(k, k)$. When k is a field, $\text{Cotor}_k(k, k) \cong \text{Ext}_k(k, k)$ by (C.10), and the first required isomorphism follows from Proposition 8.5.1.

Now let $k = \mathbb{Z}$. Denote by A algebra (8.18) with $k = \mathbb{Z}$. Then A includes as a subalgebra in $H_*(\Omega(CP^\infty)_{/\mathcal{K}}; \mathbb{Z})$ by Corollary 8.4.3. Consider the exact sequence

$$0 \rightarrow A \overset{j}{\rightarrow} H_*(\Omega(CP^\infty)_{/\mathcal{K}}; \mathbb{Z}) \rightarrow R \rightarrow 0$$

where R is the cokernel of i. By tensoring with a field k we obtain an exact sequence

$$A \otimes k \overset{i \otimes k}{\rightarrow} H_*(\Omega(CP^\infty)_{/\mathcal{K}}; \mathbb{Z}) \otimes k \rightarrow R \otimes k \rightarrow 0$$

The composite map

$$A \otimes k \overset{i \otimes k}{\rightarrow} H_*(\Omega(CP^\infty)_{/\mathcal{K}}; \mathbb{Z}) \otimes k \overset{j \otimes k}{\rightarrow} H_*(\Omega(CP^\infty)_{/\mathcal{K}}; k)$$

is an isomorphism by the argument in the previous paragraph, and j is a monomorphism by the universal coefficient theorem. Therefore, $i \otimes k$ is also an isomorphism, which implies that $R \otimes k = 0$ for any field k. Thus, $R = 0$ and i is an isomorphism.

The isomorphism of Lie algebras follows by restriction to primitives. \(\square\)

The authors are grateful to Koyemon Iriye and Jie Wu for pointing out that the original argument of [302] for the theorem above can be extended to the case $k = \mathbb{Z}$.

The associative algebra and the Lie algebra from Theorem 8.5.2 are examples of **graph products**, by which one usually means algebraic objects described by generators corresponding to the vertices in a simple graph, with each edge giving rise to a commutativity relation between the generators corresponding to its two ends. These two graph products can be also described as the colimits of the diagrams $\Lambda[\cdot]_{\mathcal{K}}$ and $CL(\cdot)_{\mathcal{K}}$ in DGA and DGL respectively, see (8.23). It follows that the bottom maps in (8.25) and (8.26) are quasi-isomorphisms when \mathcal{K} is flag, and the homotopy colimit in the models of Corollary 8.4.14 can be replaced by the colimit:

Corollary 8.5.3. For any flag complex \mathcal{K}, there are isomorphisms

$$H_*(\Omega(CP^\infty)_{/\mathcal{K}}; k) \cong \text{colim}^{\text{DGA}} \Lambda[\cdot]_{\mathcal{K}}$$

$$\pi_*(\Omega(CP^\infty)_{/\mathcal{K}}) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \text{colim}^{\text{DGL}} CL(\cdot)_{\mathcal{K}}$$

of graded algebras and Lie algebras respectively, where $k = \mathbb{Z}$ or a field.
Remark. The bottom homomorphism
\[\Omega(\mathbb{C}P^\infty)^K \to \text{colim}_{I \in K} T^I \]
in the topological model (8.21) is also a homotopy equivalence when \(K \) is flag, by [303, Proposition 6.3]. Furthermore, there are analogues of this result for other polyhedral powers. Interesting cases are \((\mathbb{R}P^\infty)^K\) and \((S^1)^K\), for which there are homotopy equivalence homomorphisms
\[\Omega(\mathbb{R}P^\infty)^K \overset{\sim}{\to} \text{colim}_{I \in K} \mathbb{Z}_2^I, \]
\[\Omega(S^1)^K \overset{\sim}{\to} \text{colim}_{I \in K} \mathbb{Z}^I. \]
(8.29)

Since \(\mathbb{Z}_2 \) and \(\mathbb{Z} \) are discrete groups, the colimit in \(\text{tm} \) is the ordinary colimit of groups, and the two colimits above have the following graph product presentations:
\[\text{colim}_{I \in K}^{\text{gp}} \mathbb{Z}_2^I = F(g_1, \ldots, g_m)/\langle g_i^2 = 0, g_i g_j = g_j g_i \rangle, \quad \text{for} \{i, j\} \in K, \]
\[\text{colim}_{I \in K}^{\text{gp}} \mathbb{Z}^I = F(g_1, \ldots, g_m)/\langle g_i g_j = g_j g_i \rangle, \quad \text{for} \{i, j\} \in K \]
where \(F(g_1, \ldots, g_m) \) denotes a free group on \(m \) generators. The two groups above are known as the right-angled Coxeter group and the right-angled Artin group corresponding to the 1-skeleton (graph) of the flag complex \(K \).

The homotopy equivalences (8.29) imply that the polyhedral power \((\mathbb{R}P^\infty)^K\)
is the classifying space for the right-angled Coxeter group \(\text{colim}_{I \in K}^{\text{gp}} \mathbb{Z}_2^I \) and \((S^1)^K\) is the classifying space for the right-angled Artin group \(\text{colim}_{I \in K}^{\text{gp}} \mathbb{Z}^I \). The former result is implicit in the work of Davis and Januszkiewicz [112], and the latter is due to Kim and Roush [214]. Note that \((S^1)^K\) is a finite cell complex.

Proposition 8.5.4. For a flag complex \(K \), the Poincaré series of the Pontryagin algebras \(H_*(\Omega(\mathbb{C}P^\infty)^K; k) \) and \(H_*(\Omega S_\infty; k) \) are given by
\[F(H_*(\Omega(\mathbb{C}P^\infty)^K; k); \lambda) = \frac{(1 + \lambda)^n}{1 - h_1 \lambda + \cdots + (-1)^n h_n \lambda}, \]
\[F(H_*(\Omega S_\infty; k); \lambda) = \frac{1}{(1 + \lambda)^{m-n}(1 - h_1 \lambda + \cdots + (-1)^n h_n \lambda)}, \]
where \((h_0, h_1, \ldots, h_n)\) is the h-vector of \(K \).

Proof. Since \(H_*(\Omega(\mathbb{C}P^\infty)^K; k) \) is the quadratic dual of \(k[K] \), the identity
\[F(k[K]; -\lambda) : F(H_*(\Omega(\mathbb{C}P^\infty)^K); \lambda) = 1 \]
follows from Fröberg [143, §4] (in the identity above it is assumed that the generators of \(k[K] \) have degree one). The Poincaré series of the face ring is given by Theorem 3.1.10, whence the first formula follows. The second formula follows from exact relation (8.17). \(\Box \)

The Poincaré series of \(\pi_*(\Omega(\mathbb{C}P^\infty)^K) \otimes \mathbb{Q} \) (and therefore the ranks of homotopy groups of \((\mathbb{C}P^\infty)^K\) and \(S_\infty \)) can also be calculated in the flag case, although less explicitly. See [117, §4.2].

Example 8.5.5. Let \(K = \partial \Delta^n \), so that \(h_0 = \cdots = h_n = 1 \). Then \(\Omega(\mathbb{C}P^\infty)^K \simeq \Omega S^{2n+1} \times T^{n+1} \), and
\[F(H_*(\Omega(\mathbb{C}P^\infty)^K; \lambda) = \frac{(1 + \lambda)^{n+1}}{1 - \lambda^{2n}}. \]
On the other hand, Proposition 8.5.4 gives
\[
\frac{(1 + \lambda)^n}{1 - \lambda + \lambda^2 + \cdots + (-1)^n \lambda^n} = \frac{(1 + \lambda)^{n+1}}{1 + (-1)^n \lambda^{n+1}}.
\]
The formulae agree if \(n = 1 \), in which case \(K \) is flag, but differ otherwise.

We recall from Section C.1 that a space \(X \) is \textit{coformal} when its Quillen model \(Q(X) \) is weakly equivalent to the rational homotopy Lie algebra \(\pi_*(\Omega X) \otimes \mathbb{Q} \) as objects in \textit{dgl}. The space \((\mathbb{C} P^\infty)^K \) is always formal by Theorem 8.1.2, while its coformality depends on \(K \):

Theorem 8.5.6. The space \((\mathbb{C} P^\infty)^K\) is coformal if and only if \(K \) is flag.

Proof. If \(K \) is flag, Theorem 8.4.12 together with Corollary 8.5.5 provides an acyclic fibration
\[\Omega_* Q(\langle K \rangle) \cong \Omega_* \text{colim}_{\text{dgc}} Q(\langle \cdot \rangle)_K \xrightarrow{\sim} \text{colim}_{\text{dga}} \Lambda [\cdot]_K \]
in \textit{dga}. Restricting to primitives yields a quasi-isomorphism \(e : L_* \mathbb{Q}(\langle K \rangle) \xrightarrow{\sim} \pi_* (\Omega (\mathbb{C} P^\infty)^K) \otimes \mathbb{Q} \) in \textit{dgl}.

Now choose a minimal model \(M_K \to \mathbb{Q}[K] \) for the face ring in \textit{cdgca}. Its graded dual \(Q(\langle K \rangle) \to C_K \) is a minimal model for \(Q(\langle K \rangle) \) in \textit{cdgca} (see [286, §5]), so \(\Omega_* Q(\langle K \rangle) \to \Omega_* C_K \) is a weak equivalence in \textit{dga}. Restricting to primitives provides the central map in the zigzag
\[
L_K \xleftarrow{\sim} L_* C_K \xrightarrow{\sim} L_* \mathbb{Q}(\langle K \rangle) \xrightarrow{e} \pi_* (\Omega (\mathbb{C} P^\infty)^K) \otimes \mathbb{Q}
\]
of quasi-isomorphisms in \textit{dgl}, where \(L_K \) is a minimal model for \((\mathbb{C} P^\infty)^K \) in \textit{dgl} [286, §8]. Hence \((\mathbb{C} P^\infty)^K\) is coformal.

On the other hand, every missing face of \(K \) with \(> 2 \) vertices determines a nontrivial higher Samelson bracket in \(\pi_* (\Omega (\mathbb{C} P^\infty)^K) \otimes \mathbb{Q} \). The existence of such brackets in \(\pi_*(\Omega X) \otimes \mathbb{Q} \) ensures that \(X \) cannot be coformal, just as higher Massey products in \(H^*(X; \mathbb{Q}) \) obstruct formality.

Unlike the situation with the Pontryagin algebra \(H_*(\Omega (\mathbb{C} P^\infty)^K) \), we are unable to describe the structure of its commutator subalgebra \(H_*(\Omega Z_K) \) completely even in the flag case. However, the following result identifies a minimal set of multiplicative generators as a specific set of iterated commutators of the \(u_i \):

Theorem 8.5.7 ([156, Theorem 4.3]). Assume that \(K \) is flag and \(k \) is a field. The algebra \(H_*(\Omega Z_K; k) \), viewed as the commutator subalgebra of (8.18) via the exact sequence (8.17), is multiplicatively generated by \(\sum_{I \subseteq [m]} \text{dim} H^I(K_I) \) iterated commutators of the form
\[
[u_{j_1}, u_{i_1}], [u_{k_1}, [u_{j_2}, u_{i_2}]], \ldots, [u_{k_1}, [u_{k_2}, \ldots [u_{k_{m-2}}, [u_{j_1}, u_{i_1}] \ldots]]]
\]
where \(k_1 < k_2 < \cdots < k_p < j > i \), \(k_s \neq i \) for any \(s \), and \(i \) is the smallest vertex in a connected component not containing \(j \) of the subcomplex \(K_{(i, \ldots, j, i)} \). Furthermore, this multiplicative generating set is minimal, that is, the commutators above form a basis in the submodule of indecomposables in \(H_*(\Omega Z_K; k) \).

Remark. To help clarify the statement of Theorem 8.5.7, it is useful to consider which brackets \([u_{j_1}, u_{i_1}] \) are in the list of multiplicative generators for \(H_*(\Omega Z_K; k) \). If \(\{ j, i \} \in K \) then \(i \) and \(j \) are in the same connected component of the subcomplex \(K_{(j, i)} \), so \([u_{j_1}, u_{i_1}] \) is not a multiplicative generator. On the other hand, if \(\{ j, i \} \notin K \)
then the subcomplex $\mathcal{K}_{\{j,i\}}$ consists of the two distinct points i and j, and i is the smallest vertex in its connected component of $\mathcal{K}_{\{j,i\}}$ which does not contain j, so $[u_j, u_i]$ is a multiplicative generator.

For a given $I = \{k_1, \ldots, k_p, j, i\}$, the number of the commutators containing all $u_{k_1}, \ldots, u_{k_p}, u_j, u_i$ in the set above is equal to $\dim \tilde{H}^0(\mathcal{K}_I)$ (one less the number of connected components in \mathcal{K}_I), so there are indeed $\sum_{I \subseteq \{j\}} \dim \tilde{H}^0(\mathcal{K}_I)$ commutators in total. More details are given in examples below.

As a corollary of Theorem 8.5.7 we obtain that the answer to the question of Problem 8.4.5 is positive when \mathcal{K} is a flag.

An important particular case of Theorem 8.5.7 corresponds to \mathcal{K} consisting of m disjoint points. This result may be of independent algebraic interest, as it is an analogue of the description of a basis in the commutator subalgebra of a free algebra, given by Cohen and Neisendorfer [99]:

Corollary 8.5.8. Let A be the commutator subalgebra of the algebra $T(u_1, \ldots, u_m)/(u_i^2 = 0)$, that is, A is the algebra defined by the exact sequence

$$1 \longrightarrow A \longrightarrow T(u_1, \ldots, u_m)/(u_i^2 = 0) \longrightarrow \Lambda[u_1, \ldots, u_m] \longrightarrow 1$$

where $\deg u_i = 1$. Then A is a free associative algebra minimally generated by the iterated commutators of the form

$$[u_{j_1}, u_i], \ [u_{j_2}, [u_{j_1}, u_i]], \ \ldots, \ [u_{j_k}, [u_{j_{k-1}}, [u_{j_{k-2}}, [u_{j_1}, u_i]]]]$$

where $k_1 < k_2 < \cdots < k_p < j > i$ and $k_s \neq i$ for any s. Here, the number of commutators of length ℓ is equal to $(\ell - 1)\binom{m}{\ell}$.

Example 8.5.9. Let \mathcal{K} be the boundary of the pentagon, shown in Figure 8.1.

![Figure 8.1. Boundary of pentagon.](image)

Then \mathcal{K} gives the following 10 generators for the algebra $H_*(\Omega \mathcal{Z}_\mathcal{K})$,

$$a_1 = [u_3, u_1], \ a_2 = [u_4, u_1], \ a_3 = [u_4, u_2], \ a_4 = [u_5, u_2], \ a_5 = [u_5, u_3],$$

$$b_1 = [u_4, [u_5, u_2]], \ b_2 = [u_3, [u_5, u_2]], \ b_3 = [u_1, [u_5, u_3]],$$

where $\deg a_i = 2$ and $\deg b_i = 3$. In the notation of the beginning of the previous section, a_1 is the Hurewicz image of the Samelson product $[\mu_3, \mu_1] : S^2 \to \Omega(CP^\infty)^K$ lifted to $\Omega \mathcal{Z}_\mathcal{K}$, and b_1 is the Hurewicz image of the iterated Samelson product $[\mu_4, [\mu_5, \mu_2]] : S^3 \to \Omega(CP^\infty)^K$ lifted to $\Omega \mathcal{Z}_\mathcal{K}$; the other a_i and b_i are described similarly. We therefore have adjoint maps

$$\iota : (S^2 \vee S^3)^{\vee_5} \to \Omega \mathcal{Z}_\mathcal{K} \quad \text{and} \quad j : (S^3 \vee S^4)^{\vee_5} \to \mathcal{Z}_\mathcal{K}$$
corresponding to the wedge of all a_i and b_i. Now a calculation using relations from Theorem 8.5.2 and the Jacobi identity shows that a_i and b_i satisfy the relation

\[(8.32)\quad -[a_1, b_1] + [a_2, b_2] + [a_3, b_3] - [a_4, b_4] + [a_5, b_5] = 0,\]

where $[a_i, b_i] = a_i b_i - b_i a_i$. (One can make all the commutators enter the sum with positive signs by changing the order the elements in the commutators defining a_i, b_i.) This relation has a topological meaning. In general, suppose that M and N are d-dimensional manifolds. Let \overline{M} be the $(d - 1)$-skeleton of M, or equivalently, \overline{M} is obtained from M by removing a disc in the interior of the d-cell of M. Define \overline{N} similarly. Suppose that $f : S^{d-1} \to \overline{M}$ and $g : S^{d-1} \to \overline{N}$ are the attaching maps for the top cells in M and N. Then the attaching map for the top cell in the connected sum $M \# N$ is $S^{d-1} \xrightarrow{f+g} \overline{M} \vee \overline{N}$. In our case, $S^3 \times S^4$ is a manifold and the attaching map $S^6 \to S^3 \vee S^4$ for its top cell is the Whitehead product $[s_1, s_2]_\kappa$, where s_1 and s_2 respectively are the inclusions of S^3 and S^4 into $S^3 \vee S^4$. The attaching map for the top cell of the 7-fold connected sum $(S^3 \times S^4)^{#5}$ is therefore the sum of five such Whitehead products. Composing it with j into \mathbb{Z}_κ and passing to the adjoint map we obtain $\sum_{i=1}^5 \pm[a_i, b_i]$ (the signs depend on the orientation chosen, see Construction D.3.8). By (8.32), this sum is null homotopic. Thus the inclusion $j : (S^3 \vee S^4)^{\vee5} \to S^3 \vee S^4$ extends to a map

\[\tilde{j} : (S^3 \times S^4)^{#5} \to \mathbb{Z}_\kappa.\]

Furthermore, a calculation using Theorem 4.5.4 shows that \tilde{j} induces an isomorphism in cohomology (see Example 4.6.10), that is, \tilde{j} is a homotopy equivalence. Since both $(S^3 \times S^4)^{#5}$ and \mathbb{Z}_κ are manifolds, the complement of $(S^3 \vee S^4)^{\vee5}$ in $(S^3 \times S^4)^{#5}$ and \mathbb{Z}_κ is a 7-disc, so that the extension map \tilde{j} can be chosen to be one-to-one, which implies that \tilde{j} is a homeomorphism.

We also obtain that $H_*(\Omega \mathbb{Z}_\kappa)$ is the quotient of a free algebra on ten generators a_i, b_i by the relation (8.32). Its Poincaré series is given by Proposition 8.5.4:

\[P(H_*(\Omega \mathbb{Z}_\kappa); \lambda) = \frac{1}{1 - 5\lambda^2 - 5\lambda^3 + \lambda^5}.\]

The summand λ^5 in the denominator is what distinguishes the Poincaré series of the one-relator algebra $H_*(\Omega \mathbb{Z}_\kappa)$ from that of the free algebra $H_*(\Omega(S^3 \vee S^4)^{\vee5})$.

A similar argument can be used to show that \mathbb{Z}_κ is homeomorphic to a connected sum of products of spheres when κ is a boundary of an m-gon with $m \geq 4$, therefore giving a homotopical proof of a particular case of Theorem 4.6.12. It would be interesting to give a homotopical proof of this theorem in general.

To describe the class of flag complexes κ for which \mathbb{Z}_κ has the homotopy type of a wedge of spheres we need some terminology.

We recall from Definition 4.9.5 that $k[\kappa]$ is a Golod ring and κ is a Golod complex when the multiplication and all higher Massey products in $\text{Tor}_{k[u_1, \ldots, u_m]}(k[\kappa], k) = H(\Lambda[u_1, \ldots, u_m] \otimes k[\kappa], d)$ are trivial.

We also need some terminology from graph theory. Let Γ be a graph on the vertex set $[m]$. A clique of Γ is a subset I of vertices such that every two vertices in I are connected by an edge. Each flag complex κ is the clique complex of its one-skeleton $\Gamma = \kappa^1$, that is, the simplicial complex formed by filling in each clique of Γ by a face.
A graph Γ is called chordal if each of its cycles with ≥ 4 vertices has a chord (an edge joining two vertices that are not adjacent in the cycle). Equivalently, a chordal graph is a graph with no induced cycles of length more than three.

The following result gives an alternative characterisation of chordal graphs.

Theorem 8.5.10 (Fullerison–Gross [145]). A graph is chordal if and only if its vertices can be ordered in such a way that, for each vertex i, the lesser neighbours of i form a clique.

Such an ordering of vertices is called a perfect elimination order.

Theorem 8.5.11 ([156]). Let \mathcal{K} be a flag complex and k a field. The following conditions are equivalent:

(a) $k[\mathcal{K}]$ is a Golod ring;
(b) the multiplication in $H^*(\mathcal{Z}_K; k)$ is trivial;
(c) $\Gamma = K^1$ is a chordal graph;
(d) \mathcal{Z}_K has homotopy type of a wedge of spheres.

Proof. (a)⇒(b) This is by definition of Golodness and Theorem 4.5.4.

(b)⇒(c) Assume that K^1 is not chordal, and choose an induced chordless cycle I with $|I| \geq 4$. Then the full subcomplex K_I is the same cycle (the boundary of an $|I|$-gon), and therefore \mathcal{Z}_{K_I} is a connected sum of sphere products. Hence, $H^*(\mathcal{Z}_{K_I})$ has nontrivial products (this can be also seen directly by using Theorem 4.5.8). Then, by Theorem 4.5.8, the same nontrivial products appear in $H^*(\mathcal{Z}_K)$.

(c)⇒(d) Assume that the vertices of \mathcal{K} are in perfect elimination order. We assign to each vertex i the clique I_i consisting of i and the lesser neighbours of i. Each maximal face of \mathcal{K} (that is, each maximal clique of K^1) is obtained in this way, so we get an induced order on the maximal faces: I_{i_1}, \ldots, I_{i_s}. Then, for each $k = 1, \ldots, s$, the simplicial complex $\bigcup_{j < k} I_{i_j}$ is flag (since it is the full subcomplex $K_{\{1,2,\ldots,i_{k-1}\}}$ in a flag complex). The intersection $(\bigcup_{j < k} I_{i_j}) \cap I_{i_k}$ is a clique, so it is a face of $\bigcup_{j < k} I_{i_j}$. Therefore, \mathcal{Z}_K has homotopy type of a wedge of spheres by Corollary 8.2.4.

(d)⇒(a) This is by definition of the Golod property and the fact that the cohomology of the wedge of spheres contains only trivial Massey products. □

Corollary 8.5.12. Assume that \mathcal{K} is flag with m vertices, and \mathcal{Z}_K has homotopy type of a wedge of spheres. Then

(a) the maximal dimension of spheres in the wedge is $m + 1$;
(b) the number of spheres of dimension $\ell + 1$ in the wedge is given by $\sum_{|I| = \ell} \dim H^0(K_I)$, for $2 \leq \ell \leq m$;
(c) $H^i(K_I) = 0$ for $i > 0$ and all I.

Proof. If \mathcal{Z}_K is a wedge of spheres, then $H_*(\Omega \mathcal{Z}_K)$ is a free algebra on generators described by Theorem 8.5.7, which implies (a) and (b). It also follows that $H^*(\mathcal{Z}_K) \cong \bigoplus_{J \subset [m]} H^0(K_J)$. On the other hand, $H^*(\mathcal{Z}_K) \cong \bigoplus_{J \subset [m]} H^*(K_J)$ by Theorem 4.5.8, whence (c) follows. □

Remark. The equivalence of (a), (b) and (c) in Theorem 8.5.11 was proved in [31]. All the implications in the proof of Theorem 8.5.11 except (c)⇒(d) are valid for arbitrary \mathcal{K}, with the same arguments. However, (c)⇒(d) fails in the non-flag case. Indeed, if \mathcal{K} be the triangulation of $\mathbb{R}P^2$ from Example 3.2.12.4, then K^1 is
a complete graph, so it is chordal. However, \(Z_K \) is not homotopy equivalent to a wedge of spheres, because it has 2-torsion in homology. Furthermore, this \(K \) is a Golod complex by Exercise 4.9.7. The following question is open:

Problem 8.5.13 ([156]). Assume that \(H^*(Z_K) \) has trivial multiplication, so that \(K \) is Golod, over any field. Is it true that \(Z_K \) is a co-\(H \)-space, or even a suspension, as in all known examples?

Exercises.

8.5.14. Show that the polyhedral power \((\mathbb{R}P^\infty)^K \) and the real moment-angle complex \(R_K = (D^1, S^0)^K \) are aspherical spaces only if \(K \) is a flag complex.

8.5.15. Show that the fundamental group of \(R_K \) is the commutator subgroup of the right-angled Coxeter group \(\text{colim}_{i \in \mathbb{Z}} \mathbb{Z}_i \), see (8.30).

8.5.16. Show that the generators \(a_1, \ldots, a_5, b_1, \ldots, b_5 \) of the Pontryagin algebra \(H^*(\Omega Z_K) \) from Example 8.5.9 satisfy relation (8.32).

8.5.17 ([156, Example 3.3]). Describe explicitly the homotopy type of \(Z_K \) when \(K \) is the triangulation of \(\mathbb{R}P^2 \) from Example 3.2.12.4.
CHAPTER 9

Torus Actions and Complex Cobordism

Here we consider applications of toric methods in the theory of complex cobordism. In particular, we describe new families of toric generators of the complex bordism ring and quasitoric representatives in bordism classes. We also develop the theory of torus-equivariant genera with applications to rigidity and fibre multiplicativity problems, and provide explicit formulae for bordism classes and genera of toric manifolds and their generalisations via localisation techniques.

We refer to Appendices D and E for background material on complex (co)bordism and Hirzebruch genera.

As usual, when working with cobordism we assume all manifolds to be smooth and compact. We denote by \([M]\) the bordism class in \(\Omega_{2n}^U\) of a \(2n\)-dimensional stably complex manifold \(M\), and denote by \((M) \in \mathcal{H}_{2n}(M)\) its fundamental homology class defined by the orientation arising from the stably complex structure.

9.1. Toric and quasitoric representatives in complex bordism classes

Describing multiplicative generators for the complex bordism ring \(\Omega^U\) and representing bordism classes by manifolds with specific nice properties are well-known questions in cobordism theory. For the application of toric methods, it is important to represent complex bordism classes by manifolds with nicely behaving torus actions preserving the stably complex structure. In the context of oriented bordism, this question goes back to the fundamental work of Conner and Floyd [100].

Toric or quasitoric manifolds have an effective action of a ‘large’ torus of half the dimension of the manifold. Such an action does not exist on Milnor hypersurfaces \(H_{ij}\), which constitute the most well-known multiplicative generator set for \(\Omega^U\) (see Theorem 9.1.5). An alternative multiplicative generator set for \(\Omega^U\) consisting of projective toric manifolds \(B_{ij}\) was constructed by Buchstaber and Ray in [72]. Each \(B_{ij}\) is a complex projectivisation of a sum of line bundles over the bounded flag manifold \(BF_{ij}\); in particular, \(B_{ij}\) is a generalised Bott manifold.

It seems likely that a minimal set of ring generators of \(\Omega^U\) can be found among toric manifolds, i.e. that there exist projective toric manifolds \(X_i\) whose bordism classes \(a_i = [X_i]\) are polynomial generators of the bordism ring: \(\Omega^U \cong \mathbb{Z}[a_1, a_2, \ldots]\).

A partial result in this direction was obtained by Wilfong [363]. Nevertheless, not every complex bordism class can be represented by a toric manifold. The reason is that toric manifolds are very special algebraic varieties, and there are many restrictions on their characteristic numbers. For example, the Todd genus of a toric manifold is equal to 1, which implies that the bordism class of a disjoint union of toric manifolds cannot be represented by a toric manifold.

The main result of this section is Theorem 9.1.17 (originally proved in [70]), which shows that any complex bordism class (in dimensions \(> 2\)) contains a quasitoric manifold. A canonical torus-invariant stably complex structure is induced
by an omni-orientation of a quasitoric manifold, see Corollary 7.3.16. The above mentioned result of [72] provides an additive basis for each bordism group \(\Omega^U_n \) represented by toric manifolds; it implies that any complex bordism class can be represented by a disjoint union of toric manifolds. The next step is to replace disjoint unions by connected sums. There is the standard construction of connected sum of \(T \)-manifolds at their fixed points. (The connected sum of two stably complex manifolds \(M_1 \) and \(M_2 \) always admits a stably complex structure representing the bordism class \([M_1] + [M_2]\).) Davis and Januszkiewicz [112] proposed to use this construction to make the connected sum \(M_1 \# M_2 \) of two quasitoric manifolds \(M_1 \) and \(M_2 \) into a quasitoric manifold over the connected sum \(P_1 \# P_2 \) of quotient polytopes. However, the main difficulty here is that one needs to keep track of both the torus action and the stably complex structure on the connected sum of manifolds. The connected sum \(M_1 \# M_2 \) does not always admit an omni-orientation such that the bordism class \([M_1] + [M_2] \in \Omega^U \) of the induced \(T^k \)-invariant stably complex structure represents the sum \([M_1] + [M_2]\); this depends on the sign pattern of the fixed points of the manifolds.

In order to overcome the difficulty described above, we replace \(M_2 \) by a bordant quasitoric manifold \(M'_2 \) whose quotient polytope is \(P_2 \) (a connected sum of \(P_2 \) with an \(n \)-cube). Then we show that the connected sum \(M_1 \# M'_2 \) admits a stably complex structure which is invariant under the torus action and represents the bordism class \([M_1] + [M'_2] = [M_1] + [M_2]\); the quotient polytope of \(M_1 \# M'_2 \) is \(P_1 \# P_2 \). This allows us to finish the proof of the main result.

This result on quasitoric representatives can be viewed as an answer to a toric version of the famous Hirzebruch question (see Problem D.6.8) on bordism classes representable by connected nonsingular algebraic varieties. Note that quasitoric manifolds are connected by definition.

Using the constructions of Chapter 6 we can interpret this result as follows: each complex bordism class can be represented by the quotient of a nonsingular complete intersection of real quadrics by a free torus action.

Milnor hypersurfaces \(H_{ij} \) **are not quasitoric.** Milnor hypersurfaces

\[
H_{ij} = \{ (z_0 : \cdots : z_i) \times (w_0 : \cdots : w_j) \in \mathbb{C}P^i \times \mathbb{C}P^j : z_0w_0 + \cdots + z_iw_i = 0 \}
\]

(corresponding to pairs of integers \(j \geq i \geq 0 \)) form the most well-known set of multiplicative generators of the complex bordism ring \(\Omega^U \), see Theorem D.6.5. However, as was shown in [72], the manifold \(H_{ij} \) is not (quasi)toric when \(i > 1 \). We give the argument below.

Construction 9.1.1. Let \(\mathbb{C}^{i+1} \subset \mathbb{C}^{i+1} \) be the subspace generated by the first \(i + 1 \) vectors of the standard basis of \(\mathbb{C}^{i+1} \). We identify \(\mathbb{C}P^i \) with the set of lines \(l \subset \mathbb{C}^{i+1} \). To each line \(l \) we assign the set of hyperplanes \(W \subset \mathbb{C}^{i+1} \) containing \(l \). The latter set can be identified with \(\mathbb{C}P^{i+1} \). Consider the set of pairs

\[
E = \{ (l, W) : l \subset W, l \subset \mathbb{C}^{i+1}, W \subset \mathbb{C}^{i+1} \}.
\]

The projection \((l, W) \mapsto l \) defines a bundle \(E \to \mathbb{C}P^i \) with fibre \(\mathbb{C}P^{i+1} \).

Lemma 9.1.2. The space \(E \) is identified with the Milnor hypersurface \(H_{ij} \).

Proof. Indeed, a line \(l \subset \mathbb{C}^{i+1} \) can be given by its generating vector with homogeneous coordinates \((z_0 : z_1 : \cdots : z_i)\). A hyperplane \(W \subset \mathbb{C}^{i+1} \) is given by a
linear form with coefficients \(w_0, w_1, \ldots, w_j\). The condition \(\ell \subset W\) is equivalent to the equation in the definition of \(H_{ij}\).

Example 9.1.3. The Milnor hypersurface \(H_{22}\) is identified with the complex flag manifold \(F_{\ell 3}\) (consisting of complete flags \(\{0\} \subset \ell \subset W \subset \mathbb{C}^3\)).

Theorem 9.1.4. The cohomology ring of \(H_{ij}\) is given by

\[
H^*(H_{ij}) \cong \mathbb{Z}[u, v]/(u^{j+1}, (u^i + u^{i-1} v + \cdots + u^0 v^{j-i+1}) v^{j-i}),
\]

where \(\deg u = \deg v = 2\).

Proof. We use the notation from Construction 9.1.1. Let \(\zeta\) denotes the vector bundle over \(\mathbb{C}P^\ell\) whose fibre over \(l \in \mathbb{C}P^\ell\) is the \(j\)-plane \(l^\perp \subset \mathbb{C}^{j+1}\). Then \(H_{ij}\) is identified with the projectivisation \(\mathbb{C}P(\zeta)\). Indeed, for any line \(l' \subset l^\perp\) representing a point in the fibre of the bundle \(\mathbb{C}P(\zeta)\) over \(l \in \mathbb{C}P^\ell\), the hyperplane \(W = (l')^\perp \subset \mathbb{C}^{j+1}\) contains \(l\), so that the pair \((l, W)\) defines a point in \(H_{ij}\) by Lemma 9.1.2. The rest of the proof reproduces the general argument for the description of the cohomology of a complex projectivisation (see Theorem D.4.2).

Denote by \(\eta\) the tautological line bundle over \(\mathbb{C}P^\ell\) (its fibre over \(l \in \mathbb{C}P^\ell\) is the line \(l\)). Then \(\eta \oplus \zeta\) is a trivial \((j+1)\)-plane bundle. Set \(w = c_1(\eta) \in H^2(\mathbb{C}P^\ell)\) and consider the total Chern class \(c(\eta) = 1 + c_1(\eta) + c_2(\eta) + \cdots\). Since \(c(\eta)c(\zeta) = 1\) and \(c(\eta) = 1 - w\), it follows that

\[
c(\zeta) = 1 + w + \cdots + w^j.
\]

Consider the projection \(p: \mathbb{C}P(\zeta) \to \mathbb{C}P^\ell\). Denote by \(\gamma\) the tautological line bundle over \(\mathbb{C}P(\zeta)\), whose fibre over \(l' \in \mathbb{C}P(\zeta)\) is the line \(l'\). Let \(\gamma^\perp\) denote the \((j-1)\)-plane bundle over \(\mathbb{C}P(\zeta)\) whose fibre over \(l' \subset l^\perp\) is the orthogonal complement to \(l'\) in \(l^\perp\) (recall that a point of \(\mathbb{C}P(\zeta)\) is represented by a line \(l'\) in a fibre \(l^\perp\) of the bundle \(\zeta\)). It is easy to see that \(p^*(\zeta) = \gamma \oplus \gamma^\perp\). We set \(v = c_1(\gamma) \in H^2(\mathbb{C}P(\zeta))\) and \(u = p^*(w) \in H^2(\mathbb{C}P(\zeta))\). Then \(u^{j+1} = 0\). We have \(c(\gamma) = 1 - v\) and \(c(p^*(\zeta)) = c(\gamma)c(\gamma^\perp)\), hence

\[
c(\gamma^\perp) = p^*(c(\zeta))(1 - v)^{-1} = (1 + u + \cdots + u^j)(1 + v + v^2 + \cdots),
\]

see (9.1). Since \(\gamma^\perp\) is a \((j-1)\)-plane bundle, it follows that \(c_j(\gamma^\perp) = 0\). Calculating the homogeneous component of degree \(j\) in the identity above, we obtain the second relation \(\sum_{k=0}^{j+1} u^k v^{j-k} = 0\). If we denote by \(R\) the quotient ring of \(\mathbb{Z}[u, v]\) given in the theorem, then it follows that the homomorphism \(\mathbb{Z}[u, v] \to H^*(\mathbb{C}P(\zeta))\) factors through a homomorphism \(R \to H^*(\mathbb{C}P(\zeta))\).

It remains to observe that \(R \to H^*(\mathbb{C}P(\zeta))\) is actually an isomorphism. This follows by considering the Serre spectral sequence of the bundle \(p: \mathbb{C}P(\zeta) \to \mathbb{C}P^\ell\), which collapses at \(E_2\), as both \(\mathbb{C}P^\ell\) and \(\mathbb{C}P^{j-1}\) have only even-dimensional cells.

Theorem 9.1.5. There is no torus action on the Milnor hypersurface \(H_{ij}\) with \(i > 1\) making it into a quasitoric manifold.

Proof. The cohomology of a quasitoric manifold has the form \(\mathbb{Z}[v_1, \ldots, v_m]/\mathcal{I}\), where \(\mathcal{I}\) is the sum of two ideals, one generated by square-free monomials and the other generated by linear forms (see Theorem 7.3.28). We may assume that the characteristic matrix \(A\) has reduced form (7.7) and express the first \(n\) generators \(v_1, \ldots, v_n\) via the last \(m-n\) ones by means of linear relations with integer coefficients. Therefore, we have

\[
\mathbb{Z}[v_1, \ldots, v_m]/\mathcal{I} \cong \mathbb{Z}[w_1, \ldots, w_{m-n}]/\mathcal{I}',
\]
where \(\mathcal{T} \) is an ideal with basis consisting of products of \(\geq 2 \) integral linear forms.

Suppose now that \(H_{ij} \) is a quasitoric manifold. Then we have
\[
\mathbb{Z}[w_1, \ldots, w_{m-n}]/\mathcal{T} \cong \mathbb{Z}[u, v]/\mathcal{T}'
\]
where \(\mathcal{T}' \) is the ideal from Theorem 9.1.4. Comparing the dimensions of linear (degree-two) components above, we obtain \(m - n = 2 \), so that \(w_1, w_2 \) can be identified with \(u, v \) after a linear change of variables. Thus, the ideal \(\mathcal{T}' \) has a basis consisting of polynomials which are decomposable into linear factors over \(\mathbb{Z} \), which is impossible for \(i > 1 \).

Remark. \(H_{ij} \) is a projectivisation of a complex \(j \)-plane bundle over \(\mathbb{C}P^i \), but this bundle does not split into a sum of line bundles, preventing \(H_{ij} \) from carrying an effective \(T^{i+j+1} \)-action. See the remark after Definition 7.8.25 and Exercise 9.1.23.

Toric generators for the bordism ring \(\Omega^U \). Here we describe, following [72] and [70], a family of toric manifolds \(\{ B_{ij} \} \) satisfying the condition \(s_{i+j-1}[B_{ij}] = s_{i+j-1}[H_{ij}] \), where \(s_n[M] \) denotes the characteristic number defined by (D.9). This implies that the family \(\{ B_{ij} \} \) multiplicatively generates the complex bordism ring, by the same argument as Theorem D.6.5.

Construction 9.1.6. Given a pair of integers \(0 \leq i \leq j \), we introduce the manifold \(B_{ij} \) consisting of pairs \((U, W)\), where
\[
U = \{ U_1 \subset U_2 \subset \cdots \subset U_{i+1} = \mathbb{C}^{i+1}, \quad \dim U_k = k \}
\]
is a bounded flag in \(\mathbb{C}^{i+1} \) (that is, \(U_k \supset \mathbb{C}^{k-1} \), see Construction 7.7.1) and \(W \) is a hyperplane in \(\mathbb{C}^{i+1} \) containing \(U_1 \). The projection \((U, W) \to U \) describes \(B_{ij} \) as the projectivisation of a \(j \)-plane bundle over the bounded flag manifold \(BF_i \). This bundle splits into a sum of line bundles:
\[
B_{ij} = \mathbb{CP}(\rho_1^i \oplus \cdots \oplus \rho_j^i \oplus \mathbb{C}^{j-i}),
\]
where \(\rho_1^i, \ldots, \rho_j^i \) are the line bundles over \(BF_i \) described in Proposition 7.7.7 (the splitting follows from the fact that \(W \) can be identified with a line in \(U_1^+ \oplus \mathbb{C}^{j-i} \) using the Hermitian scalar product in \(\mathbb{C}^{j+1} \)). Therefore, \(B_{ij} \) is a generalised Bott manifold (see Definition 7.8.25). It follows that \(B_{ij} \) is a toric manifold, and also a quasitoric manifold over the combinatorial polytope \(P^i \times \Delta^{j-1} \). The description of the corresponding characteristic matrix and characteristic submanifolds can be found in [74, Examples 2.9, 4.5] or [70, Example 3.13].

Proposition 9.1.7. Let \(f : BF_i \to \mathbb{C}P^i \) be the map sending a bounded flag \(U \) to its first line \(U_1 \subset \mathbb{C}^{i+1} \). Then the bundle \(B_{ij} \to BF_i \) is induced from the bundle \(H_{ij} \to \mathbb{C}P^i \) by means of the map \(f \):
\[
\begin{array}{ccc}
B_{ij} & \longrightarrow & H_{ij} \\
\downarrow & & \downarrow \\
BF_i & \xrightarrow{f} & \mathbb{C}P^i.
\end{array}
\]

Proof. This follows from Lemma 9.1.2.

Theorem 9.1.8. We have \(s_{i+j-1}[B_{ij}] = s_{i+j-1}[H_{ij}] \), where the characteristic number \(s_{i+j-1} \) of Milnor hypersurface \(H_{ij} \) is given by Lemma D.6.4.

Proof. We first prove a lemma:
Lemma 9.1.9. Let \(f: M \to N \) be a degree-\(d \) map of 2\(i \)-dimensional stably complex manifolds, and let \(\xi \) be a complex \(j \)-plane bundle over \(N \), \(j > 1 \). Then

\[
s_{i+j-1}[\mathbb{C}P(f^*\xi)] = d \cdot s_{i+j-1}[\mathbb{C}P(\xi)].
\]

Proof. Let \(p: \mathbb{C}P(\xi) \to N \) be the projection, and \(\eta \) the tautological bundle over \(\mathbb{C}P(\xi) \). The map \(f: M \to N \) induces a map \(\tilde{f}: \mathbb{C}P(f^*\xi) \to \mathbb{C}P(\xi) \) such that

\[
\cdot p\tilde{f} = fp_1, \text{ where } p_1: \mathbb{C}P(f^*\xi) \to M \text{ is the projection;}
\]

\[
\cdot \deg \tilde{f} = \deg f;
\]

\[
\cdot \tilde{f}^*\eta \text{ is the tautological bundle over } \mathbb{C}P(f^*\xi).
\]

Using Theorem D.4.1, we calculate

\[
s_{i+j-1}(T(\mathbb{C}P(\xi))) = p^*s_{i+j-1}(TN) + s_{i+j-1}(\tilde{f}^*\mathbb{C}P(\eta)) = s_{i+j-1}(\tilde{f}^*\mathbb{C}P(\eta))\]

(since \(i+j-1 > i \), and similarly for \(T(\mathbb{C}P(f^*\xi)) \). Thus,

\[
s_{i+j-1}[\mathbb{C}P(f^*\xi)] = s_{i+j-1}(T(\mathbb{C}P(f^*\xi))) \langle \mathbb{C}P(f^*\xi) \rangle \]

\[
= s_{i+j-1}((\tilde{f}^*\eta) \langle p_1^*f^*\xi \rangle \langle \mathbb{C}P(f^*\xi) \rangle) = s_{i+j-1}((\tilde{f}^*\eta) \langle p_1^*f^*\xi \rangle \langle \mathbb{C}P(f^*\xi) \rangle) \]

\[
= s_{i+j-1}(\tilde{f}^*\eta) f_*(\mathbb{C}P(f^*\xi)) = d \cdot s_{i+j-1}(\tilde{f}^*\eta) \mathbb{C}P(\xi) \]

\[
= d \cdot s_{i+j-1}[\mathbb{C}P(\xi)]. \quad \Box
\]

To finish the proof of Theorem 9.1.8 we note that the map \(f: BF_i \to \mathbb{C}P^i \) from Proposition 9.1.7 has degree 1. (The map \(f: BF_i \to \mathbb{C}P^i \) is birational; it is an isomorphism on the affine chart \(V^{0,\ldots,0} = \{U \in BF_i: U_1 \not\subset \mathbb{C}i\} \), because a bounded flag in \(V^{0,\ldots,0} \subset BF_i \) is uniquely determined by its first line \(U_1 \).) \(\Box \)

Theorem 9.1.10 ([72]). The bordism classes of toric varieties \(B_{ij} \), \(0 \leq i \leq j \), multiplicatively generate the complex bordism ring \(\Omega^L \).

Proof. This follows from Theorems 9.1.8 and D.6.5. \(\Box \)

Remark. A product of toric manifolds is toric, but a disjoint union of toric manifolds is not, since toric manifolds are connected by definition. Therefore, every complex bordism class contains a disjoint union of toric manifolds and their opposites. We cannot get any better than this if we restrict ourselves to toric manifolds, because the Todd genus of any toric manifold is one (see Example 9.5.4).

The manifolds \(H_{ij} \) and \(B_{ij} \) are not bordant in general, although \(H_{0j} = B_{0j} = \mathbb{C}P^{j-1} \) and \(H_{1j} = B_{1j} \). The proof of Lemma 9.1.9 uses specific properties of the class \(s_n \), and it does not work for arbitrary characteristic numbers.

Connected sums. Our next goal is to replace the disjoint union of toric manifolds by a version of connected sum, which will be a quasitoric manifold.

Construction 9.1.11 (Equivariant connected sum at fixed points). We give the construction for quasitoric manifolds only, although it can be generalised easily to locally standard \(T \)-manifolds. Let \(M' = M(P', A') \) and \(M'' = M(P'', A'') \) be two quasitoric manifolds over \(n \)-polytopes \(P' \) and \(P'' \), respectively (see Section 7.3). We assume that both characteristic matrices \(A' \) and \(A'' \) are in the refined form (7.7), and denote by \(x' \) and \(x'' \) the initial vertices (given by the intersection of the first \(n \) facets) of \(P' \) and \(P'' \), respectively.
Consider the connected sum of polytopes $P' \# P'' = P' \#_{x',x''} P''$ (see Construction 1.1.13). By definition, the equivariant connected sum $M' \# M'' = M' \#_{x',x''} M''$ is the quasitoric manifold over $P' \# P''$ with characteristic matrix

$$
A_\# = \begin{pmatrix}
1 & 0 & \cdots & 0 & \lambda'_{1,n+1} & \cdots & \lambda'_{1,m'} & \lambda''_{1,n+1} & \cdots & \lambda''_{1,m''} \\
0 & 1 & \cdots & 0 & \lambda'_{2,n+1} & \cdots & \lambda'_{2,m'} & \lambda''_{2,n+1} & \cdots & \lambda''_{2,m''} \\
& & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & \lambda'_{n,n+1} & \cdots & \lambda'_{n,m'} & \lambda''_{n,n+1} & \cdots & \lambda''_{n,m''}
\end{pmatrix}.
$$

(9.2)

Note that the matrix $A_\#$ is not refined, because the first n facets of $P' \# P''$ do not intersect.

The manifold $M' \# M''$ is T^n-equivariantly diffeomorphic to the manifold obtained by removing from M' and M'' invariant neighbourhoods of the fixed points corresponding to x' and x'' with subsequent T^n-equivariant identification of the boundaries of these neighbourhoods. The latter manifold becomes the standard connected sum $M' \# M''$ (see Construction D.3.8) if we forget the action.

In order to define an orientation (and therefore an invariant stably complex structure) on $M' \# M''$ we need to specify an orientation of $M' \# M''$ along with the matrix (9.2).

Since both M' and M'' are oriented, the quasitoric manifold $M' \# M''$ can be oriented so as to be oriented diffeomorphic either to the oriented connected sum $M' \# M''$, or to $M' \# T^n$ (see Construction D.3.8). In the first case we say that the orientation of $M' \# M''$ is compatible with the orientations of M' and M''.

The existence of a compatible orientation on $M' \# M''$ can be detected from the combinatorial quasitoric pairs (P', A') and (P'', A''). We recall the notion of sign of a fixed point of a quasitoric manifold M (or a vertex of the quotient polytope P). By Lemma 7.3.19, the sign $\sigma(x)$ of a vertex $x = F_{j_1} \cap \cdots \cap F_{j_n}$ measures the difference between the orientations of $T_x M$ and $\langle \rho_{j_1} \oplus \cdots \oplus \rho_{j_n} \rangle |_x$. Therefore,

$$
\sigma(x) = v_{j_1} \cdots v_{j_n} (M),
$$

where $v_i = c_1(\rho_i) \in H^2(M), 1 \leq i \leq m$, are the ring generators of $H^\ast(M)$ and $\langle M \rangle \in H_{2n}(M)$ is the fundamental homology class.

Lemma 9.1.12. The equivariant connected sum $M' \#_{x',x''} M''$ of omni-oriented quasitoric manifolds admits an orientation compatible with the orientations of M' and M'' if and only if $\sigma(x') = -\sigma(x'')$.

Proof. Denote by $\rho'_{j}, 1 \leq j \leq m'$, the complex line bundles (7.8) corresponding to the characteristic submanifolds of M' (or to the facets of P'), and similarly for $\rho''_{k}, 1 \leq k \leq m''$, and M''. We also denote

$$
c_1(\rho'_{j}) = v'_{j}, \quad c_1(\rho''_{k}) = v''_{k}, \quad 1 \leq j \leq m', \quad 1 \leq k \leq m''.
$$

The facets of the polytope $P' \# P''$ are of three types: n facets arising from the identifications of facets meeting at x' and x'', $(m' - n)$ facets coming from P', and $(m'' - n)$ facets coming from P''. We denote the corresponding line bundles over $M' \# M''$ by ξ_i, ξ'_j and ξ''_k, respectively (they correspond to the columns of the characteristic matrix (9.2)). Consider their first Chern classes in $H^2(M' \# M'')$:

$$
w_i = c_1(\xi_i), \quad w'_j = c_1(\xi'_j), \quad w''_k = c_1(\xi''_k),
$$

$1 \leq i \leq n$, $n + 1 \leq j \leq m'$, $n + 1 \leq k \leq m''$.

Now consider the maps \(p': M'\# M'' \to M' \) and \(p'': M'\# M'' \to M'' \) pinching one of the connected summands to a point. We have \(p'^*(\rho'_j) = \xi'_j \) for \(n + 1 \leq j \leq m' \) and \(p''*(\rho''_k) = \xi''_k \) for \(n + 1 \leq k \leq m'' \). The relations (7.18) in the cohomology ring of \(M'\# M'' \) take the form

\[
 w_i = -\lambda'_{i,n+1}w'_{n+1} - \cdots - \lambda'_{i,m'}w'_m - \lambda''_{i,n+1}w''_{n+1} - \cdots - \lambda''_{i,m''}w''_m.
\]

It follows that

\[
 w_i = p'^*v'_i + p''*v''_i, \quad 1 \leq i \leq n.
\]

Since the first \(n \) facets of \(P' \# P'' \) do not intersect, it follows that \(w_1 \cdots w_n = 0 \) in \(H^{2n}(M'\# M'') \), hence

\[
 (p'^*v'_1 + p''*v''_1) \cdots (p'^*v'_n + p''*v''_n) = p'^*(v'_1 \cdots v'_n) + p''*(v''_1 \cdots v''_n) = 0.
\]

For any choice of an orientation with the corresponding fundamental class \(\langle M'\# M'' \rangle \in H_{2n}(M'\# M'') \), we obtain

\[
 v'_1 \cdots v'_n (p'_*(M'\# M'')) + v''_1 \cdots v''_n (p''*(M'\# M'')) = 0.
\]

An orientation of \(M'\# M'' \) is compatible with the orientations of \(M' \) and \(M'' \) if and only if \(p'_*(M'\# M'') = \langle M' \rangle \) and \(p''*(M'\# M'') = \langle M'' \rangle \). Substituting this in the identity above, we obtain \(\sigma(x') = \sigma(x'') = 0 \).

Proposition 9.1.13. Let \(M' = M(P', \Lambda') \) and \(M'' = M(P'', \Lambda'') \) be two oriented quasioriented manifolds, and assume that \(\sigma(x') = -\sigma(x'') \). Then the stably complex structure defined on the equivariant connected sum \(M'\#_{x',x''} M'' \) by the characteristic matrix (9.2) and the compatible orientation is equivalent to the sum of the canonical stably complex structures on \(M' \) and \(M'' \). In particular, the corresponding complex bordism classes satisfy

\[
 [M'\# M''] = [M'] + [M''].
\]

Proof. The connected sum of the two canonical stably complex structures on \(M' \) and \(M'' \) is defined by the isomorphism

\[
 T(M'\# M'') \oplus \mathbb{R}^{2(m' + m'' - n)} \cong p'^*(\rho'_1 \oplus \cdots \oplus \rho'_{m'}) \oplus p''*(\rho''_1 \oplus \cdots \oplus \rho''_{m''})
\]

(see Construction D.3.8). We have \(p'^*(\rho'_j) = \xi'_j \) for \(n + 1 \leq j \leq m' \) and \(p''*(\rho''_k) = \xi''_k \) for \(n + 1 \leq k \leq m'' \). Furthermore, we claim that \(p'^*(\rho'_i) \oplus p''*(\rho''_i) = \xi_i \oplus \xi''_i \) for \(1 \leq i \leq n \). Indeed, the relations (7.18) for \(M' \) imply that

\[
 p'^*(\rho'_i) = (\xi'_{i+1})^{-\lambda'_{i+1}} \cdots (\xi'_{m'})^{-\lambda'_{m'},} \quad 1 \leq i \leq n,
\]

and the same relations for \(M'' \) imply that

\[
 p''*(\rho''_i) = (\xi''_{i+1})^{-\lambda''_{i+1}} \cdots (\xi''_{m''})^{-\lambda''_{m''}}, \quad 1 \leq i \leq n.
\]

The line bundle \(\xi'_j \) over \(M'\# M'' \) has a section whose zero set is precisely the characteristic submanifold corresponding to the facet \(F'_j \subset P' \# P'' \), for \(n + 1 \leq j \leq m' \). There is an analogous property of the bundles \(\xi''_k \), for \(n + 1 \leq k \leq m'' \). Now, since the facets \(F'_j \) and \(F''_k \) do not intersect in \(P' \# P'' \) for any \(j \) and \(k \), the bundle \(p'^*(\rho'_i) \oplus p''*(\rho''_i) \) has a nowhere vanishing section, for \(1 \leq i \leq n \). Therefore, \(p'^*(\rho'_i) \oplus p''*(\rho''_i) = \eta \oplus \xi''_i \) for some line bundle \(\eta \). By comparing the first Chern classes and using (9.3), we obtain \(\eta = \xi''_i \), as needed.
Therefore, the stably complex structure (9.4) takes the form
\[
\mathcal{T}(M' \# M'') \oplus \mathbb{R}^{2(m' + m'' - n)} \xrightarrow{\cong} \\
\mathbb{R}^{2m' + 2m'' - 2n} \rightarrow \\
\mathbb{C}^{n} \oplus \cdots \oplus \mathbb{C}^{n} \oplus \xi_{n+1}' \oplus \cdots \oplus \xi_{m'}' \oplus \xi_{n+1}'' \oplus \cdots \oplus \xi_{m''}'' \oplus \mathbb{C}^{n}.
\]
This differs by a trivial summand \mathbb{C}^{n} from the stably complex structure defined by the matrix (9.2).

Corollary 9.1.14. The complex bordism class $[M' \# M'']$ does not depend on the choice of initial vertices and the ordering of facets of P' and P''.

The relationship between the equivariant connected sum $M' \#_{x',x''} M''$ of omni-oriented quasitoric manifolds and the standard connected sum $M' \# M''$ of oriented (or stably complex) manifolds is now clear: the two operations produce the same manifold if and only if $\sigma(x') = -\sigma(x'')$. Otherwise the equivariant connected sum gives $M' \# M''$ or $\overline{M'} \# M''$ depending on the choice of orientation. This implies that the equivariant connected sum cannot always be used to obtain the sum of bordism classes. If the sign of every vertex of P is positive, for example, then it is impossible to obtain the bordism class $2[M]$ directly from $M \# M$. This is the case when M is a toric manifold.

Proof of the main result. We start with an example.

Example 9.1.15. Consider the standard cube I^n with the orientation induced from \mathbb{R}^n. The quasitoric manifold over I^n corresponding to the characteristic $n \times 2n$-matrix $(I \mid -I)$ (where I is the unit $n \times n$-matrix) is the product $(\mathbb{C}P^1)^n$ with the standard complex structure. It represents a nontrivial complex bordism class, and the signs of all vertices of the cube are positive.

On the other hand, we can consider the omni-oriented quasitoric manifold over I^n corresponding to the matrix $(I \mid I)$. It is easy to see that the corresponding stably complex structure on $(\mathbb{C}P^1)^n \cong (S^2)^n$ is the product of n copies of the trivial structure on $\mathbb{C}P^1$ from Example B.5.1. We denote this omni-oriented quasitoric manifold by S. The bordism class $[S]$ is zero, and the sign of a vertex $(\varepsilon_1, \ldots, \varepsilon_n) \in I^n$ where $\varepsilon_i = 0$ or 1 is given by
\[
\sigma(\varepsilon_1, \ldots, \varepsilon_n) = (-1)^{\varepsilon_1 \cdots \varepsilon_n}.
\]
So adjacent vertices of I^n have opposite signs.

We are now in a position to prove the next key lemma which emphasises an important principle; however unsuitable a quasitoric manifold M may be for the formation of connected sums, a good alternative representative always exists within the complex bordism class $[M]$.

Lemma 9.1.16. Let M be an omni-oriented quasitoric manifold of dimension > 2 over a polytope P. Then there exists an omni-oriented M' over a polytope P' such that $[M'] = [M]$ and P' has at least two vertices of opposite sign.

Proof. Suppose that x is the initial vertex of P. Let S be the omni-oriented product of 2-spheres of Example 9.1.15, with initial vertex $w = (0, \ldots, 0)$.

If $\sigma(x) = -1$, define M' to be $S \#_{w,x} M$ over $P' = I^n \#_{w,x} P$. Then $[M'] = [M]$, because S bounds. Moreover, there is a pair of adjacent vertices of I^n which survive under formation of the connected sum $I^n \#_{w,x} P$ (because $n > 1$). These two vertices have opposite signs, as sought.
If $\sigma(x) = 1$, we make the same construction using the opposite orientation of I^n (and therefore of S). Since $-S$ also bounds, the same conclusions hold. \hfill \square

We may now complete the proof of the main result.

Theorem 9.1.17 ([70]). In dimensions >2, every complex bordism class contains a quasitoric manifold, necessarily connected, whose stably complex structure is induced by an omniorientation, and is therefore compatible with the torus action.

Proof. Consider bordism classes $[M_1]$ and $[M_2]$ in Ω^U_n, represented by omnioriented quasitoric manifolds over polytopes P_1 and P_2 respectively. It then suffices to construct a quasitoric manifold M such that $[M] = [M_1] + [M_2]$, because Theorem 9.1.10 gives an additive basis of Ω^U_n represented by quasitoric manifolds.

Firstly, we follow Lemma 9.1.16 and replace M_2 by M_2' over P_2', so as to ensure that it has the opposite sign to the initial vertex of P_1, thereby guaranteeing the construction of $M_1 \# M_2'$ over $P_1 \# P_2'$. The resulting omniorientation defines the required bordism class, by Proposition 9.1.13 and Lemma 9.1.16. \hfill \square

One further deduction from Theorem 9.1.17 is the following result of Ray:

Theorem 9.1.18 ([319]). Every complex bordism class contains a representative whose stable tangent bundle is a sum of line bundles.

Examples. Here we consider some examples of 4-dimensional quasitoric manifolds (i.e. $n = 2$) illustrating the constructions of this section.

Example 9.1.19. When $n = 2$, the complex bordism class $[\mathbb{C}P^2]$ of the standard complex structure of Example 7.3.22 is an additive generator of the group $\Omega^U_2 \cong \mathbb{Z}^2$, with $c_2(\mathbb{C}P^2) = 3$ and all signs of the vertices of the quotient 2-simplex Δ^2 being positive.

The question then arises of representing the bordism class $2[\mathbb{C}P^2]$ by an omnioriented quasitoric manifold M. We cannot expect to use $\mathbb{C}P^2 \# \mathbb{C}P^2$ for M, because no vertices of sign -1 are available in Δ^2, as required by Lemma 9.1.12. Moreover, M must satisfy $c_2(M) = 6$, by additivity, so the quotient polytope P has 6 or more vertices (see Exercise 7.3.41). It follows that P cannot be $\Delta^2 \# \Delta^2$, which is a square! So we proceed by appealing to Lemma 9.1.16, and replace the second copy of $\mathbb{C}P^2$ by the omnioriented quasitoric manifold $(-S) \# \mathbb{C}P^2$ over $P' = I^2 \# \Delta^2$. Of course $(-S) \# \mathbb{C}P^2$ is bordant to $\mathbb{C}P^2$, and P' is a pentagon. These observations lead naturally to our second example:

Example 9.1.20. The quasitoric manifold $M = \mathbb{C}P^2 \# (-S) \# \mathbb{C}P^2$ represents the bordism class $2[\mathbb{C}P^2]$, and its quotient polytope is $\Delta^2 \# I^2 \# \Delta^2$, which is a hexagon. Figure 9.1 illustrates the procedure diagrammatically, in terms of characteristic functions and orientations. Every vertex of the hexagon has sign 1, so M admits an equivariant almost complex structure by Theorem 7.3.24; in fact it coincides with the manifold from Exercise 7.3.38.

Our third example shows a related 4-dimensional situation in which the connected sum of the quotient polytopes does support a compatible orientation.

Example 9.1.21. Let $\overline{\mathbb{C}P^2}$ denote the quasitoric manifold obtained by reversing the standard orientation of $\mathbb{C}P^2$ (equivalently, reversing the orientation of the
standard simplex Δ^2). Every vertex has sign -1, and we may construct $\mathbb{C}P^2 \# (-S) \# \mathbb{C}P^2$ as an omnioriented quasitoric manifold over $\Delta^2 \# \Delta^2$. The corresponding characteristic functions and orientations are shown in Figure 9.2. We have $[\mathbb{C}P^2] + [\overline{\mathbb{C}P^2}] = 0$ in Ω^4_4, and the manifold $\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$ bounds by Proposition 9.1.13.

A situation similar to that of Example 9.1.20 arises in higher dimensions, when we consider the problem of representing complex bordism classes by toric manifolds. For any such V, the top Chern number $c_n[V]$ coincides with the Euler characteristic, and is therefore equal to the number of vertices of the quotient polytope P.

Suppose that toric manifolds V_1 and V_2 are of dimension ≥ 4, and have quotient polytopes P_1 and P_2 respectively. Then $c_n[V_1] = f_0(P_1)$ and $c_n[V_2] = f_0(P_2)$, yet $f_0(P_1 \# P_2) = f_0(P_1) + f_0(P_2) - 2$, where $f_0(\cdot)$ denotes the number of vertices. Since $c_n([V_1] + [V_2]) = c_n[V_1] + c_n[V_2]$, no omnioriented quasitoric manifold over $P_1 \# P_2$ can represent $[V_1] + [V_2]$. This objection vanishes for $P_1 \# P_2$ because it enjoys additional $2^n - 2$ vertices with opposite signs.

Exercises.

9.1.22. Construct an effective action of a j-dimensional torus T^j on a Milnor hypersurface H_{ij} and a representation of T^j in $\mathbb{C}^{(j+1)(j+1)}$ such that the composition $H_{ij} \to \mathbb{C}P^i \times \mathbb{C}P^j \to \mathbb{C}P^{(i+1)(j+1)-1}$ with the Segre embedding becomes equivariant. Describe the fixed points of this action.

9.1.23. A torus T^{n+j-1} cannot act effectively with isolated fixed points on a Milnor hypersurface H_{ij} with $i > 1$. (Hint: use Theorem 7.4.35 and other results of Section 7.4.)
9.1.24. Show that the Milnor hypersurface \(H_{11} \) is isomorphic (as a complex manifold) to the Hirzebruch surface \(F_1 \) from Example 5.1.8. In particular, \(H_{11} \) is not homeomorphic to \(F_0 = \mathbb{C}P^1 \times \mathbb{C}P^1 \) (compare Exercise 5.1.13).

9.1.25. Show by comparing the cohomology rings that \(H_{ij} \) is not homeomorphic to \(\mathbb{C}P^1 \times \mathbb{C}P^{j-1} \). On the other hand, the two manifolds are complex bordant by Exercise D.6.12.

9.1.26. The procedure described in Example 9.1.20 allows one to construct an almost complex quasitoric manifold \(M \) (with all signs positive) representing the sum of bordism classes \([V_1] + [V_2]\) of any two projective toric manifolds of real dimension 4. Describe a similar procedure giving almost complex quasitoric representatives for \([V_1] + [V_2]\) in dimension 6. (Hint: modify the intermediate multibordant manifold \(S \).) What about higher dimensions?

9.1.27 ([239, Theorem 3.8]). Another set of toric multiplicative generators for the complex bordism ring can be constructed as follows. Given two positive integers \(i, j \), define \(L_{ij} = \mathbb{C}P(\eta \oplus \mathbb{C}^j) \), where \(\eta \) is the tautological line bundle over \(\mathbb{C}P^n \) and \(\mathbb{C}^j \) is a trivial \(j \)-plane bundle. Then \(L_{ij} \) is a projective toric manifold, whose quotient polytope is combinatorially equivalent to \(\Delta^i \times \Delta^j \) (see Section 7.8). Calculate the characteristic number \(s_{i,j}[L_{ij}] \) using Theorem D.4.1. Prove that the bordism classes of toric manifolds \(L_{ij} \) multiplicatively generate the ring \(\Omega^U \), by analogy with Theorem 9.1.10.

9.2. The universal toric genus

A theory of equivariant genera for stably complex manifolds equipped with compatible actions of a torus \(T^k \) was developed in [71]. This theory focuses on the notion of universal toric genus \(\Phi \), defined on stably complex \(T^k \)-manifolds and taking values in the complex cobordism ring \(U^*(BT^k) \) of the classifying space. The construction of \(\Phi \) goes back to the works of tom Dieck, Krichever and Löffler from the 1970s. The universal toric genus \(\Phi \) is an equivariant analogue of the universal Hirzebruch genus (Example E.3.5) corresponding to the identity homomorphism from the complex cobordism ring \(\Omega_U \) to itself.

Here is the idea behind the construction of \(\Phi \); the details are provided below. We start by defining a composite transformation of equivariant cobordism functors

\[
\Phi_X : U^*_{T^k}(X) \xrightarrow{\nu} MU^*_{T^k}(X) \xrightarrow{\alpha} U^*(ET^k \times_{T^k} X).
\]

Here \(U^*_{T^k}(X) \) (respectively \(MU^*_{T^k}(X) \)) denotes the geometric (respectively the homotopic) \(T^k \)-equivariant complex cobordism ring of a \(T^k \)-manifold \(X \), and \(U^*(ET^k \times_{T^k} X) \) denotes the ordinary complex cobordism of the Borel construction. (Note that the geometric and homotopical versions of equivariant cobordism are different, because of the lack of equivariant transversality.)

By restricting (9.5) to the case \(X = pt \) we get a homomorphism of \(\Omega_U \)-modules

\[
\Phi : \Omega_{U,T^k} \to \Omega_U[\{u_1, \ldots, u_k\}]
\]

from the geometric \(T^k \)-(co)boundary ring \(U^*_{T^k}(pt) = \Omega_{U,T^k}^* = \Omega_U^*[\{u_1, \ldots, u_k\}] \) to the ring \(U^*(BT^k) = \Omega_U[\{u_1, \ldots, u_k\}] \). Here \(u_j \) is the cobordism Chern class \(c_1^i(\eta_j) \) of the conjugate tautological line bundle over the \(j \)-th factor of \(BT^k = (\mathbb{C}P^\infty)^k \), for \(1 \leq j \leq k \). We refer to \(\Phi \) as the universal toric genus. It assigns to a bordism class \([M, c_T] \in \Omega_{2n,T^k}^* \) of a \(2n \)-dimensional stably complex \(T^k \)-manifold \(M \) the 'cobordism
class’ of the map \(ET^k \times T^k X \to BT^k \). The value \(\Phi(M) \) is a power series in \(u_1, \ldots, u_k \) with coefficients in \(\Omega_U \) and constant term \([M] \).

We now proceed to provide the details of the construction. All our \(T^k \)-spaces \(X \) have the homotopy type of cell complexes. It is often important to take account of basepoints, in which case we insist that they be fixed by \(T^k \). If \(X \) itself does not have a \(T^k \)-fixed point, then a disjoint fixed basepoint can be added; the result is denoted by \(X_+ \).

Homotopic equivariant cobordism. The homotopic version of equivariant cobordism is defined via the Thom \(T^k \)-spectrum \(MU_{T^k} \), whose spaces are indexed by the inclusion poset of complex representations \(V \) of \(T^k \) (of complex dimension \(|V| \)). Each \(MU_{T^k}(V) \) is the Thom \(T^k \)-space of the universal \(|V| \)-dimensional complex \(T^k \)-equivariant vector bundle \(\gamma_V \) over \(BU_{T^k}(V) \), and each spectrum map \(\Sigma^2(|W|-|V|)MU_{T^k}(V) \to MU_{T^k}(W) \) is induced by the inclusion \(V \subset W \) of a \(T^k \)-submodule. The homotopic \(T^k \)-equivariant complex cobordism group \(MU_{T^k}^n(X) \) of a pointed \(T^k \)-space \(X \) is defined by stabilising the pointed \(T^k \)-homotopy sets:

\[
MU_{T^k}^n(X) = \lim_{\to} \left[\Sigma^{2|V|-n}(X_+), MU_{T^k}(V) \right]_{T^k}.
\]

The details of this construction can be found in [257, Chapters XXV–XXVIII].

Applying the Borel construction to \(\gamma_V \) yields a complex \(|V| \)-dimensional bundle \(ET^k \times T^k \gamma_V \) over \(ET^k \times T^k BU_{T^k}(V) \), whose Thom space is \(ET^k \times T^k BU_{T^k}(V) \). The classifying map for the bundle \(ET^k \times T^k \gamma_V \) induces a map of Thom spaces \(ET^k \times T^k BU_{T^k}(V) \to MU(|V|) \). Now consider a \(T^k \)-map \(\Sigma^{2|V|-n}(X_+) \to MU_{T^k}(X) \) representing a homotopic cobordism class in \(MU_{T^k}^n(X) \). By applying the Borel construction and composing with the classifying map above, we obtain a composite map of Thom spaces

\[
\Sigma^{2|V|-n}(ET^k \times T^k X)_+ \to ET^k \times T^k BU_{T^k}(V) \to MU(|V|).
\]

This construction is homotopy invariant, so we get a map

\[
\left[\Sigma^{2|V|-n}(X_+), MU_{T^k}(V) \right]_{T^k} \to \left[\Sigma^{2|V|-n}(ET^k \times T^k X)_+, MU(|V|) \right].
\]

Furthermore, it preserves stabilisation and therefore yields the transformation

\[
\alpha: MU_{T^k}^n(X) \to U^n(ET^k \times T^k X),
\]

which is multiplicative and preserves Thom classes [119, Proposition 1.2].

The construction of \(\alpha \) may be also interpreted using the homomorphism \(MU_{T^k}^n(X) \to MU_{T^k}^n(ET^k \times X) \) induced by the \(T^k \)-projection \(ET^k \times X \to X \); since \(T^k \) acts freely on \(ET^k \times X \), the target may be replaced by \(U^n(ET^k \times T^k X) \). Moreover, \(\alpha \) is an isomorphism whenever \(X \) is compact and \(T^k \) acts freely.

Remark. According to a result of Löffler [257, Chapter XXVII], \(\alpha \) is the homomorphism of completion with respect to the augmentation ideal in \(MU_{T^k}^n(X) \).

Geometric equivariant cobordism. The geometric version of equivariant cobordism can be defined naturally by providing an equivariant version of Quillen’s geometric approach [316] to complex cobordism via complex oriented maps (see Construction D.3.2). However, this approach relies on normal complex structures, whereas many of our examples present themselves most readily in terms of tangential information. In the non-equivariant situation, the two forms of data are, of course, interchangeable; but the same does not hold equivariantly. This fact was
often ignored in early literature, and appears only to have been made explicit in 1995, by Comezaña [257, Chapter XXVIII, §3]. As we shall see below, tangential structures may be converted to normal, but the procedure is not reversible.

We recall from Construction D.3.2 that elements in the cobordism group \(U^{-d}(X) \) of a manifold \(X \) can be represented by *stably tangentially complex* bundles \(\pi: E \to X \) with \(d \)-dimensional fibre \(F \), i.e. by those \(\pi \) for which the bundle \(T_F(E) \) of tangents along the fibre is equipped with a stably complex structure \(c_T(\pi) \).

If \(\pi \) is \(T^k \)-equivariant bundle, then it is stably tangentially complex as a \(T^k \)-equivariant bundle when \(c_T(\pi) \) is also \(T^k \)-equivariant. The notions of *equivariant equivalence* and *equivariant cobordism* apply to such bundles accordingly.

The geometric \(T^k \)-equivariant complex cobordism group \(U^{-d}_{T^k}(X) \) consists of equivariant cobordism classes of \(d \)-dimensional stably tangentially complex \(T^k \)-equivariant bundles over \(X \). If \(X = pt \), then we may identify both \(F \) and \(E \) with some \(d \)-dimensional smooth \(T^k \)-manifold \(M \), and \(T_F(E) \) with its tangent bundle \(T(M) \). So \(c_T(\pi) \) reduces to a \(T^k \)-equivariant stably tangentially complex structure \(c_T \) on \(M \), and its cobordism class belongs to the group \(\Omega^d_{U,T^k} = U^{-d}(pt) \) (the cobordism group of a point). The bordism group of a point is given by \(\Omega^d_{U,T^k} = \Omega^d_{U,T^k} \).

The direct sums \(\Omega^{U,T^k} = \bigoplus_d \Omega^d_{U,T^k} \) and \(\Omega_{U,T^k} = \bigoplus_d \Omega^d_{U,T^k} \) are the geometric \(T^k \)-equivariant bordism and cobordism rings respectively, and \(U^*_T(X) \) is a graded \(\Omega^{U,T^k} \)-module under cartesian product. Furthermore, \(U^*_T(\cdot) \) is functorial with respect to pullback along smooth \(T^k \)-maps \(Y \to X \).

Proposition 9.2.1. *Given a smooth compact \(T^k \)-manifold \(X \), there are canonical homomorphisms*

\[
\nu: U^{-d}_{T^k}(X) \to MU^{-d}_{T^k}(X), \quad d \geq 0.
\]

Proof. The idea is to convert the tangential structure used in the definition of the geometric cobordism group \(U^{-d}_{T^k}(X) \) to the normal structure required for the Pontryagin–Thom collapse map in the homotopical approach.

By some abuse of notation, we denote by \(\pi \in U^{-d}_{T^k}(X) \) the cobordism class of a stably tangentially complex \(T^k \)-bundle \(\pi: E \to X \). Choose a \(T^k \)-equivariant embedding \(i: E \to V \) into a complex \(T^k \)-representation space \(V \) (see Theorem B.4.3) and consider the embedding \((\pi,i): E \to X \times V \). It is a map of vector bundles over \(X \) which is \(T^k \)-equivariant with respect to the diagonal action on \(X \times V \). There is an equivariant isomorphism \(c: T_F(E) \oplus \nu(\pi,i) \to \nu = E \times V \) of bundles over \(E \), where \(\nu(\pi,i) \) is the normal bundle of \((\pi,i) \). Now combine \(c \) with the stably complex structure isomorphism \(c_T(\pi): T_F(E) \oplus \mathbb{R}^{2l-d} \to \xi \) to obtain an equivariant isomorphism

\[
(W \oplus \nu(\pi,i)) \longrightarrow \xi^1 \oplus V \oplus \mathbb{R}^{2l-d},
\]

where \(W = \xi^1 \oplus \xi \) is a \(T^k \)-decomposition for some complex representation space \(W \).

If \(d \) is even, (9.6) determines a complex \(T^k \)-structure on an equivariant stabilisation of \(\nu(\pi,i) \); if \(d \) is odd, a further summand \(\mathbb{R} \) must be added. For notational convenience, assume the former, and write \(d = 2n \). We compose (9.6) with the classifying map \(\xi^1 \oplus V \oplus \mathbb{C}^{d-n} \to \gamma_R \), where \(R \) is a \(T^k \)-representation of complex dimension \(|R| = |V| + |W| - n \) and then pass to the Thom spaces to get a sequence of \(T^k \)-equivariant maps

\[
\Sigma^{2|W|} \text{Th}(\nu(\pi,i)) \longrightarrow \text{Th}(\xi^1 \oplus V \oplus \mathbb{R}^{2l-d}) \longrightarrow \text{Th}(\gamma_R) = MU_T^*(R).
\]
We compose this with the Pontryagin–Thom collapse map on \(\nu(\pi, i) \) to obtain
\[
f(\pi) : \Sigma^{2|V|+|W|} X_+ = \Sigma^{2|R| - d} X_+ \longrightarrow MU_{T^k}(R).
\]
If two equivariant stably tangentially complex bundles \(\pi \) and \(\pi' \) over \(X \) are equivalent, then \(f(\pi) \) and \(f(\pi') \) differ only by suspension; if \(\pi \) and \(\pi' \) are cobordant, then \(f(\pi) \) and \(f(\pi') \) are stably \(T^k \)-homotopic. So we define \(\nu(\pi) \) to be the \(T^k \)-homotopy class of \(f(\pi) \), as an element of \(MU_{T^k}^{-d}(X) \).

The linearity of \(\nu \) follows immediately from the fact that addition in \(U_{T^k}^{-d}(X) \) is induced by disjoint union. \(\square \)

The proof of Proposition 9.2.1 also shows that \(\nu \) factors through the geometric cobordism group of stably normal complex \(T^k \)-manifolds over \(X \).

The universal toric genus. For any smooth compact \(T^k \)-manifold \(X \), we define the homomorphism
\[
\Phi_X : U_{T^k}^*(X) \longrightarrow MU_{T^k}(X) \longrightarrow U^*(ET^k \times_{T^k} X).
\]

Definition 9.2.2. The homomorphism
\[
\Phi : \Omega_U[T^k] \longrightarrow \Omega_U[[u_1, \ldots, u_k]]
\]
corresponding to the case \(X = pt \) above is called the **universal toric genus**.

The genus \(\Phi \) is a multiplicative cobordism invariant of stably complex \(T^k \)-manifolds, and it takes values in the ring \(\Omega_U[[u_1, \ldots, u_k]] \). As such it is an equivariant extension of Hirzebruch’s original notion of genus (see Appendix E.3), and is closely related to the theory of formal group laws. We explore this relation and other equivariant genera in the next sections.

Remark. By results of Hanke [175] and Löffler [234, (3.1) Satz], when \(X = pt \), both homomorphisms \(\nu \) and \(\alpha \) are monic; therefore so is \(\Phi \).

On the other hand, there are two important reasons why \(\nu \) cannot be epic. Firstly, it is defined on stably tangential structures by converting them into stably normal information; this procedure cannot be reversed equivariantly, because the former are stabilised only by trivial representations of \(T^k \), whereas the latter are stabilised by arbitrary representations \(V \). Secondly, each \(T^k \)-representation \(W \) gives rise to an Euler class \(e(W) \) in \(MU_{2|W|}(pt) \) [119], while \(U_{T^k}^d(pt) = \Omega_U^d \) is zero for positive \(d \); this phenomenon exemplifies the failure of equivariant transversality.

In geometric terms, the universal toric genus \(\Phi \) assigns to a geometric bordism class \([M, c_T] \in \Omega_{U:T^k}^d \) of a \(d \)-dimensional stably complex \(T^k \)-manifold \(M \) the ‘cobordism class’ of the map \(ET^k \times_{T^k} M \to BT^k \). Since both \(ET^k \times_{T^k} M \) and \(BT^k \) are infinite-dimensional, one needs to use their finite approximations to define the cobordism class \(\Phi(M) \) purely in terms of stably complex structures. Here is a conceptual way to make this precise.

Proposition 9.2.3. Let \([M] \in \Omega_{U:T^k} \) be a geometric equivariant cobordism class represented by a \(d \)-dimensional \(T^k \)-manifold \(M \). Then
\[
\Phi(M) = (id \times_{T^k} \pi)_! 1,
\]
where
\[
(id \times_{T^k} \pi)_! : U^*(ET^k \times_{T^k} M) \longrightarrow U^{*-d}(ET^k \times_{T^k} pt) = U^{*-d}(BT^k)
\]
is the Gysin homomorphism in cobordism induced by the projection \(\pi : M \to pt \).
Proof. Choose an equivariant embedding $M \to V$ into a complex representation space. Then the projection $id \times \pi : ET^k \times \pi : M \to BT^k$ factorises as

$$ET^k \times T^k M \xrightarrow{id} ET^k \times T^k V \to BT^k.$$

We can approximate ET^k by the products $(S^{2q+1})^k$ with the diagonal action of T^k. Then the above sequence is approximated by the appropriate factorisations of smooth bundles over finite-dimensional manifolds,

$$(9.7) \quad (S^{2q+1})^k \times T^k M \xrightarrow{\phi_q} (S^{2q+1})^k \times T^k V \to (\mathbb{C}P^q)^k.$$

This defines a complex orientation for the map $(S^{2q+1})^k \times T^k M \to (\mathbb{C}P^q)^k$ (see Construction D.3.2) and therefore a complex cobordism class in $U^{-d}((\mathbb{C}P^q)^k)$, which we denote by $\Phi_q(M)$. By definition of the Gysin homomorphism (Construction D.3.5), $\Phi_q(M) = (id \times T^k \pi) : 1$, where id_q is the identity map of $(S^{2q+1})^k$. As q increases, the classes $\Phi_q(M)$ form an inverse system, whose limit is $\Phi(M) \in U^{-d}(BT^k)$. In particular, $\Phi(M) = (id \times T^k \pi) : 1$. □

Coefﬁcients of the expansion of $\Phi(M)$. Recall that the cobordism ring $U(\mathbb{C}P^\infty)$ is isomorphic to $\mathcal{O}_U[[u]]$, where $u = e_1^l(q) \in U(\mathbb{C}P^\infty)$ is the generator represented geometrically by a codimension-one complex projective subspace $\mathbb{C}P^{\infty-1} \subset \mathbb{C}P^\infty$ (viewed as the direct limit of inclusions $\mathbb{C}P^{N-1} \subset \mathbb{C}P^N$).

A basis for the \mathcal{O}_U-module $\mathcal{O}_U[[u_1, \ldots, u_k]] = U(\mathbb{C}P^k)$ in dimension $2|\omega|$ is given by the monomials $u^\omega = u_1^{w_1} \cdots u_k^{w_k}$, where ω ranges over nonnegative integral vectors $(\omega_1, \ldots, \omega_k)$, and $|\omega| = \sum_j \omega_j$. A monomial u^ω is represented geometrically by a k-fold product of complex projective subspaces of codimension $(\omega_1, \ldots, \omega_k)$ in $(\mathbb{C}P^\infty)^k$. If we write

$$(9.8) \quad \Phi(M) = \sum_\omega g_\omega(M) u^\omega$$

in $\mathcal{O}_U[[u_1, \ldots, u_k]]$, then the coefficients $g_\omega(M)$ lie in $\mathcal{O}_U^{-2|\omega|+n}$. We shall describe their representatives geometrically as universal operations on M. The cobordism class $g_\omega(M)$ will be represented by the total space $G_\omega(M)$ of a bundle with fibre M over the product $B_\omega = B_{\omega_1} \times \cdots \times B_{\omega_k}$, where each B_{ω_i} is the bounded flag manifold (Section 7.7), albeit with the stably complex structure representing zero in $O_{2\omega_i}$ and therefore not equivalent to the standard complex structure on B_{ω_i}.

We start by describing stably complex structures on BF_n.

Construction 9.2.4. We denote by ξ_n the ‘tautological’ line bundle over the bounded flag manifold BF_n, whose fibre over $U \in BF_n$ is the first space U_1. We recall from Proposition 7.8.5 that BF_n has a structure of a Bott tower in which each stage $B_0 = BF_k$ is the projectivisation $\mathbb{C}P(\xi_{k+1} \oplus \mathbb{C})$. We shall denote the pullback of ξ_n to the top stage BF_n by the same symbol ξ_n, so that we have n line bundles ξ_1, \ldots, ξ_n over BF_n.

Using the matrix A corresponding to the Bott manifold BF_n (described in Example 7.8.4), we identify BF_n with the quotient of the product of 3-spheres

$$(9.9) \quad (S^3)^n = \{(z_1, \ldots, z_{2n}) \in \mathbb{C}^{2n} : |z_k|^2 + |z_{k+n}|^2 = 1, 1 \leq k \leq n\}$$

by the action of T^n given by

$$(9.10) \quad (z_1, \ldots, z_{2n}) \mapsto (t_1 z_1, t_1^{-1} t_2 z_2, \ldots, t_n^{-1} t_n z_n, t_1 z_{n+1}, t_2 z_{n+2}, \ldots, t_n z_{2n})$$
(see the proof of Theorem 7.8.6). The manifold BF_n is a complex algebraic variety (a toric manifold). The corresponding stably complex structure can be described by viewing BF_n as a quasitoric manifold and applying Theorem 7.3.15, which gives

$$T(BF_n) \oplus \mathbb{C}^n \cong \mathfrak{m} \oplus \cdots \oplus \mathfrak{m},$$

where the \mathfrak{m}_i are the line bundles (7.8) corresponding to characteristic submanifolds. We have $c_1(\mathfrak{m}_i) = v_i \in H^2(BF_n)$, $1 \leq i \leq 2n$, the canonical ring generators of the cohomology ring of BF_n viewed as a quasitoric manifold. On the other hand, we have the cohomology ring generators $u_k = c_1(\xi_k)$, $1 \leq k \leq n$, for the Bott manifold BF_n. The two sets are related by the identities $u_k = -v_{k+n}$ (see Exercise 7.8.33). Then identities (7.18) in $H^*(BF_n)$ imply that $v_i = -u_i$ and $v_k = u_{k+1} - u_k$, or equivalently, $\mathfrak{m}_1 = \xi_1$ and $\mathfrak{m}_k = \xi_{k-1} \xi_k$ (where we have dropped the sign of tensor product of line bundles), for $2 \leq k \leq n$. The stably complex structure (9.11) therefore becomes

$$T(BF_n) \oplus \mathbb{C}^n \cong \xi_1 \oplus \xi_2 \oplus \cdots \oplus \xi_n \oplus \xi_1 \oplus \xi_2 \oplus \cdots \oplus \xi_n$$

(note that when $n = 1$ we obtain the standard isomorphism $T \mathbb{C}P^1 \oplus \mathbb{C} \cong \eta \oplus \eta$, as $\xi_1 = \eta$ is the tautological line bundle).

We shall change the stably complex structure on BF_n so that the resulting bordism class in Ω^{2n}_U will be zero. To see that this is possible, we regard BF_n as a sphere bundle over BF_{n-1} rather than the complex projectivisation $\mathbb{C}P(\xi_{n-1} \oplus \mathbb{C})$. If a stably complex structure c_7 on BF_n restricts to a trivial stably complex structure on each fibre S^2 (see Example B.5.1), then c_7 extends over the associated 3-disk bundle, so it is cobordant to zero.

So we need to change the stably complex structure (9.12) so that the new structure restricts to a trivial one on each fibre S^2. We decompose $(S^3)^n$ as $(S^3)^{n-1} \times S^3$ and T^n as $T^{n-1} \times T^1$; then T^1 acts trivially on $(S^3)^{n-1}$ by (9.10), and we obtain

$$BF_n = (S^3)^n/T^n = (T^{n-1} \times T^1)/T^{n-1} = BF_{n-1} \times_{T^{n-1}} S^2.$$

Here T^1 acts on S^2 diagonally, so the stably complex structure on S^2 is the standard structure of $\mathbb{C}P^1$ (see Example 7.3.17).

Now change the torus action (9.10) to the following:

$$(z_1, \ldots, z_{2n}) \mapsto (t_1 z_1, t_1^{-1} z_2, \ldots, t_{n-1}^{-1} z_n, t_1^{-1} z_{n+1}, \ldots, t_1^{-1} z_{2n}).$$

Then the decomposition (9.13) is still valid, but now T^1 acts on S^2 antidiagonally, so the stably complex structure on S^2 is trivial, as needed. The resulting stably complex structure on BF_n is given by the isomorphism

$$T(BF_n) \oplus \mathbb{R}^{2n} \cong \xi_1 \oplus \xi_2 \oplus \cdots \oplus \xi_n \oplus \xi_1 \oplus \xi_2 \oplus \cdots \oplus \xi_n,$$

and its cobordism class in Ω^{2n}_U is zero.

Definition 9.2.5. We denote by B_n the manifold BF_n with zero-cobordant stably complex structure (9.15). The ‘tautological’ line bundle ξ_n is classified by a map $B_n \to \mathbb{C}P^\infty$ and therefore defines a bordism class $\beta_n \in U_{2n}(\mathbb{C}P^\infty)$. We also set $\beta_0 = 1$. The set of bordism classes $\{\beta_n : n \geq 0\}$ is called Ray’s basis of the Ω_U-module $U_*(\mathbb{C}P^\infty)$.

Proposition 9.2.6 ([319]). The bordism classes $\{\beta_n : n \geq 0\}$ form a basis of the free Ω_U-module $U_*(\mathbb{C}P^\infty)$ which is dual to the basis $\{u^k : k \geq 0\}$ of the Ω_U-module $U^*(\mathbb{C}P^\infty) = \Omega_U[[u]]$. Here $u = c_1^U(\xi)$ is the cobordism first Chern class of the conjugate tautological line bundle over $\mathbb{C}P^\infty$ (represented by $\mathbb{C}P^\infty \subset \mathbb{C}P^\infty$).
Proof. Since $[B_n] = 0$ in Ω_U, the bordism class β_n lies in the reduced bordism module $\tilde{U}_{2n}(\mathbb{C}P^n)$ for $n > 0$. Therefore, to show that $\{\beta_n; n \geq 0\}$ and $\{u^k; k \geq 0\}$ are dual bases it is enough to verify the property

$$u \sim \beta_n = \beta_{n-1}$$

(the \sim-product is defined in Construction D.3.3). The bordism class $u \sim \beta_n$ is obtained by making the map $B_n \to \mathbb{C}P^n$ transverse to the zero section $\mathbb{C}P^n$ of $\mathbb{C}P^n = MU(1)$ or, equivalently, by restricting the map $B_n \to \mathbb{C}P^n$ to the zero set of a transverse section of the line bundle ξ_n. As is clear from the proof of Proposition 7.7.7, the zero set of a transverse section of $\xi_n = \rho^n_0$ is obtained by setting $z_1 = 0$ in (9.9) and (9.14), which gives precisely B_{n-1}. \hfill \Box

For a vector $\omega = (\omega_1, \ldots, \omega_k)$ of nonnegative integers, define the manifold $B_\omega = B_{\omega_1} \times \cdots \times B_{\omega_k}$ and the corresponding product bordism class $\beta_\omega \in U_2(\mathbb{C}T^k)$.

Corollary 9.2.7. The set $\{\beta_\omega\}$ is a basis of the free Ω_U-module $U_*^2(\mathbb{C}T^k)$; this basis is dual to the basis $\{u^\omega\}$ of $U_*^1(\mathbb{C}T^k) = \Omega_U[[u_1, \ldots, u_k]]$.

Definition 9.2.8. Let M be a tangentially stably complex T^k-manifold M. Let T^ω be the torus $T_{\omega_1} \times \cdots \times T_{\omega_k}$ and $(S^3)^\omega$ the product $(S^3)^{\omega_1} \times \cdots \times (S^3)^{\omega_k}$, on which T^ω acts coordinatewise by (9.14). Define the manifold

$$G_\omega(M) = (S^3)^\omega \times_{T^\omega} M,$$

where T^ω acts on M via the representation

$$\left(t_{1,1}, \ldots, t_{1,\omega_1}; \ldots; t_{k,1}, \ldots, t_{k,\omega_k}\right) \mapsto \left(t_{1,\omega_1}, \ldots, t_{k,\omega_k}\right).$$

The stably complex structure on $G_\omega(M)$ is induced by the tangential structures on the base and fibre of the bundle $M \to G_\omega(M) \to B_\omega$.

Theorem 9.2.9 ([71]). The manifold $G_\omega(M)$ represents the bordism class of the coefficient $g_\omega(M) = \Omega_{U}^{-2(\omega[1] + n)}$ of (9.8). In particular, the constant term of $\Phi(M) \in \Omega_k[[u_1, \ldots, u_k]]$ is $[M] \in \Omega_{U}^{-2n}$.

Proof. By Corollary 9.2.7, the coefficient $g_\omega(M)$ is identified with the Kronecker product $\left(\Phi(M), \beta_\omega\right)$ (see Construction D.3.3). In terms of (9.7), it is represented on the pullback of the diagram

$$B_\omega \to (\mathbb{C}P^q)^k \leftarrow (S^{2q+1})^k \times_{T^k} M$$

for suitably large q, and therefore on the pullback of the diagram

$$B_\omega \to BT^k \leftarrow ET^k \times_{T^k} M$$

of direct limits. The latter pullback is exactly $G_\omega(M)$. \hfill \Box

Remark. There is also a similar description of the coefficients in the expansion of $\Phi_X(\pi)$ for the transformation (9.5) in the case when $U^*(ET^k \times T^k X)$ is a finitely generated free $U^*(BT^k)$-module, see [71, Theorem 3.15].
Exercises.

9.2.10. Proposition 9.2.3 can be generalised to the following description of the homomorphism Φ_X given by (9.5). Let $\pi \in U_{d}^{*}(X)$ be a geometric cobordism class represented by a T^{k}-equivariant bundle $\pi : E \rightarrow X$. Then

$$\Phi_X(\pi) = (1 \times_{T^k} \pi)_1,$$

where

$$(1 \times_{T^k} \pi)_1 : U^*(ET^k \times_{T^k} E) \longrightarrow U^{*-d}(ET^k \times_{T^k} X)$$

is the Gysin homomorphism in cobordism.

9.2.11. The original approach of [319] to defining a zero-cobordant stably tangent structure on BF_n is as follows. One can identify BF_n with the sphere bundle $S(\xi_{n-1} \oplus \mathbb{R})$ (rather than with $CP(\xi_{n-1} \oplus \mathbb{C})$). Let $\pi_n : S(\xi_{n-1} \oplus \mathbb{R}) \rightarrow BF_{n-1}$ be the projection; show that the tangent bundle of BF_n satisfies

$$TBF_n \oplus \mathbb{R} \cong \pi_n^*(TBF_{n-1} \oplus \xi_{n-1} \oplus \mathbb{R}).$$

By identifying $\pi_n^*\xi_{n-1}$ with ξ_{n-1} (as bundles over BF_n), we obtain inductively

$$TBF_n \oplus \mathbb{R} \cong \xi_1 \oplus \xi_2 \oplus \cdots \oplus \xi_{n-1} \oplus \mathbb{R}.$$

Show that this stably complex structure is equivalent to that of (9.15). (Hint: calculate the total Chern classes.)

9.2.12. There is a canonical T^k-action on $G_{\omega}(M)$ and B_{ω} making $G_{\omega}(M) \rightarrow B_{\omega}$ into a T^k-equivariant bundle.

9.3. Equivariant genera, rigidity and fibre multiplicativity

A genus is a multiplicative cobordism invariant of stably complex manifolds, i.e. a ring homomorphism $\varphi : \Omega_U \rightarrow R$ to a commutative ring with unit. We only consider genera taking values in torsion-free rings R; such φ are uniquely determined by series $f(x) = x + \cdots \in R \otimes \mathbb{Q}[x]$ via Hirzebruch’s correspondence, see Construction E.3.1. (By $R \otimes \mathbb{Q}[x]$ we mean the ring of power series in x over the ring $R \otimes \mathbb{Q}$, but the other way to read this notation gives the same ring.)

Historically, equivariant extensions of genera were first considered by Atiyah and Hirzebruch [13], who established the rigidity property of the χ_y-genus of S^1-manifolds. The origins of these concepts lie in the Atiyah-Bott fixed point formula [12], which also acted as a catalyst for the development of equivariant index theory. This development culminated in the celebrated result of Bott and Taubes [43] establishing the rigidity of the Ochanine-Witten elliptic genus on spin S^1-manifolds.

Here we develop an approach to equivariant genera and rigidity based solely on complex cobordism theory. It allows us to define an equivariant extension and the appropriate concept of rigidity for an arbitrary Hirzebruch genus, and agrees with the classical index-theoretical approach when the genus is the index of an elliptic complex.

9.3.1. Equivariant genera. Our definition of an equivariant genus uses a universal transformation of cohomology theories, studied in [54]:

Construction 9.3.1 (Chern-Dold character). Consider multiplicative transformations of cohomology theories

$$h : U^*(X) \rightarrow H^*(X; \Omega_U \otimes \mathbb{Q}).$$
Such an h is determined uniquely by a power series $h(u) \in H^2(\mathbb{CP}^{\infty}; \Omega_U \otimes \mathbb{Q}) = \Omega_U \otimes \mathbb{Q}[[x]]$, where $u = c^U_t(\tilde{y}) \in U^2(\mathbb{CP}^{\infty})$ and $x = c^{[t]}(\tilde{y}) \in H^2(\mathbb{CP}^{\infty})$.

The Chern–Dold character is the unique multiplicative transformation

$$
\text{ch}_U : U^*(X) \to H^*(X; \Omega_U \otimes \mathbb{Q})
$$

which reduces to the canonical inclusion $\Omega_U \to \Omega_U \otimes \mathbb{Q}$ in the case $X = pt$.

Proposition 9.3.2. The Chern–Dold character satisfies

$$
\text{ch}_U(u) = f_U(x),
$$

where $f_U(x)$ is the exponential of the formal group law F_U of geometric cobordisms.

Proof. Since ch_U acts identically on Ω_U, it follows that

$$
(9.16) \quad \text{ch}_U F_U(v_1, v_2) = F_U(\text{ch}_U(v_1), \text{ch}_U(v_2))
$$

for any $v_1, v_2 \in U^2(\mathbb{CP}^{\infty})$. Let $f(x)$ denote the series $\text{ch}_U(u) \in \Omega_U \otimes \mathbb{Q}[[x]]$. Let $v_i = c^U_t(\xi_i)$ and $x_i = c^{[t]}(\xi_i)$ for some line bundles ξ_i, $i = 1, 2$. Then

$$
\text{ch}_U F_U(v_1, v_2) = \text{ch}_U(c^U_t(\xi_1 \otimes \xi_2)) = f(c^{[t]}(\xi_1 \otimes \xi_2)) = f(x_1 + x_2),
$$

$$
\text{ch}_U(v_1) = f(x_1), \quad \text{ch}_U(v_2) = f(x_2).
$$

Substituting these expressions into (9.16) we get $f(x_1 + x_2) = F_U(f(x_1), f(x_2))$, which means that $f(x)$ is the exponential of F_U.\hfill \Box

Given a Hirzebruch genus $\varphi : \Omega \to R \otimes \mathbb{Q}$ corresponding to $f(x) \in R \otimes \mathbb{Q}[[x]]$, we define a multiplicative transformation

$$
\varphi : \Omega_U \to R \otimes \mathbb{Q} \otimes \mathbb{Q}^\ell \xrightarrow{\Phi} H^*(X; R \otimes \mathbb{Q})
$$

where the second homomorphism acts by φ on the coefficients only. In the case $X = BT^k$ we obtain a homomorphism

$$
\varphi : \Omega_U[[u_1, \ldots, u_k]] \to R \otimes \mathbb{Q}[[x_1, \ldots, x_k]]
$$

which acts on the coefficients as φ and sends u_i to $f(x_i)$ for $1 \leq i \leq k$.

Definition 9.3.3 (equivariant genus). The T^k-equivariant extension of φ is the ring homomorphism

$$
\varphi^T : \Omega_U; T^k \to R \otimes \mathbb{Q}[[x_1, \ldots, x_k]]
$$

defined as the composition $\varphi \cdot \Phi$ with the universal toric genus.

Rigidity. Krichever [221], [224] considers rational-valued genera $\varphi : \Omega_U \to \mathbb{Q}$, and equivariant extensions $\varphi^T : \Omega_U; T^k \to K^*(BT^k) \otimes \mathbb{Q}$. The equivariant genus φ^T is related to our φ^T via a natural transformation $U^*(X) \to K^*(X) \otimes \mathbb{Q}$ defined by φ, as explained below. If $\varphi(M)$ can be realised as the index $\text{ind}(\mathcal{E})$ of an elliptic complex \mathcal{E} of complex vector bundles over M (see e.g. [188]), then for any T^k-manifold M this index has a natural T^k-equivariant extension $\text{ind}^T_k(\mathcal{E})$ which is an element of the complex representation ring $R_U(T^k)$, and hence in its completion $K^0(BT^k)$. Krichever’s interpretation of rigidity is to require that φ^T should lie the subring of constants \mathbb{Q} for every M. In the case of an index, this amounts to insisting that the corresponding T^k-representation is always trivial, and therefore conforms to Atiyah and Hirzebruch’s original notion [13].
The composition of $h_ϕ: U^{\text{even}}(X) \to H^{\text{even}}(X; \mathbb{Q})$ with the inverse of the Chern character $\text{ch}: K^0(X) \otimes \mathbb{Q} \xrightarrow{\sim} H^{\text{even}}(X; \mathbb{Q})$ (where H^{even} denotes the product of even-dimensional cohomology groups) gives the transformation

$$h^K_ϕ = \text{ch}^{-1} \cdot h_ϕ: U^{\text{even}}(X) \to K^0(X) \otimes \mathbb{Q},$$

considered by Krichever in [221]. The transformation $U^{\text{odd}}(X) \to K^1(X) \otimes \mathbb{Q}$ is defined similarly; together they give a transformation $h^K_ϕ: U^*(X) \to K^*(X) \otimes \mathbb{Q}$.

REMARK. In the case of the Todd genus $t_\text{d}: \Omega_U \to \mathbb{Z}$ this construction gives the Conner–Floyd transformation $U^* \to K^*$ described after Example E.3.9.

Krichever [224] refers to a genus $ϕ: \Omega_U \to \mathbb{Q}$ as rigid if the composition

$$ϕ^K: Ω_U; T_k \xrightarrow{ϕ} U^*(BT^k) \xrightarrow{h^K_ϕ} K^0(BT^k) \otimes \mathbb{Q}$$

belongs to the subring $\mathbb{Q} \subset K^0(BT^k) \otimes \mathbb{Q}$, i.e. satisfies $ϕ^K(M) = ϕ(M)$ for any $[M] \in Ω_U; T_k$. Definition 9.3.3 of equivariant genera based on the notion of the universal toric genus leads naturally to the following version of rigidity, which subsumes the approaches of Atiyah–Hirzebruch and Krichever:

DEFINITION 9.3.4. A genus $ϕ: Ω_U \to R$ is T^k-rigid on a stably complex T^k-manifold M whenever $ϕ^T: Ω_U; T_k \to R \otimes \mathbb{Q}[[u_1, \ldots, u_k]]$ satisfies $ϕ^T(M) = ϕ(M)$; if this holds for every M, then $ϕ$ is T^k-rigid.

Since the Chern character $\text{ch}: K^0(BT^k) \otimes \mathbb{Q} \to H^{\text{even}}(BT^k; \mathbb{Q})$ is an isomorphism, a rational genus $ϕ$ is T^k-rigid in the sense of Definition 9.3.4 if and only if it is rigid in the sense of Krichever (and therefore in the original index-theoretical sense of Atiyah–Hirzebruch if $ϕ$ is an index).

In Sections 9.5–9.7 we shall describe how toric methods can be applied to establish the rigidity property for several fundamental Hirzebruch genera. Now we consider another important property of genera.

Fibre multiplicativity. The following definition extends that of Hirzebruch [188, Chapter 4] for the oriented case. It applies to fibre bundles of the form $M \to E \times_G M \xrightarrow{\pi} B$, where M and B are closed, connected and stably tangentially complex, G is a compact Lie group of positive rank whose action preserves the stably complex structure on M, and $E \to B$ is a principal G-bundle. In these circumstances, the bundle π is stably tangentially complex, and $N = E \times_G M$ inherits a canonical stably complex structure.

DEFINITION 9.3.5. A genus $ϕ: Ω_U \to R$ is fibre multiplicative with respect to the stably complex manifold M whenever $ϕ(N) = ϕ(M)ϕ(B)$ for any such bundle π with fibre M; if this holds for every M, then $ϕ$ is fibre multiplicative.

For rational genera in the oriented category, Ochanine [295, Proposition 1] proved that rigidity is equivalent to fibre multiplicativity for spin manifolds (see also [188, Chapter 4]). In the toric case, we have the following stably complex analogue. It refers to bundles $E \times_G M \xrightarrow{\pi} B$ of the form required by Definition 9.3.5, where G has maximal torus T^k with $k \geq 1$.

THEOREM 9.3.6 ([71]). If the genus $ϕ$ is T^k-rigid on M, then it is fibre multiplicative with respect to M for bundles whose structure group G has the property that $U^*(BG)$ is torsion-free.
On the other hand, if \(\varphi \) is fibre multiplicative with respect to a stably tangentially
complex \(T^k \)-manifold \(M \), then it is \(T^k \)-rigid on \(M \).

Proof. Let \(\varphi \) be \(T^k \)-rigid on \(M \), and consider the pullback squares

\[
\begin{array}{ccc}
E \times_G M & \xrightarrow{f'} & EG \times_G M \\
\downarrow & & \downarrow \\
\pi & & \pi^G \downarrow \\
B & \xrightarrow{f} & BG \\
\end{array}
\]

where \(\pi^G \) is universal, \(i \) is induced by inclusion, and \(f \) classifies \(\pi \). By Proposition 9.2.3 and commutativity of the right square, \(\pi^G 1 = [M] \cdot 1 + \beta \), where \(1 \in U^0(EG \times_G M) \) and \(\beta \in U^{-2n}(BG) \). By commutativity of the left square, \(\pi 1 = [M] \cdot 1 + f^* \beta \) in \(U^{-2n}(B) \). Applying the Gysin homomorphism associated
with the augmentation map \(\varepsilon_B : B \to pt \) yields

\[
\varepsilon_B^B \pi 1 = [M][B] + \varepsilon_B^B f^* \beta
\]

in \(\Omega^B_{2(n+1)} \), where \(\dim B = 2k \); so \(\varphi(E \times_G M) = \varphi(M) \varphi(B) + \varphi(\varepsilon_B^B f^* \beta) \). Moreover, \(i^* \beta = \sum_{\omega > 0} \omega_\mu \omega \) in \(U^{-2n}(BT^k) \), so \(\varphi(i^* \beta) = 0 \) because \(\varphi \) is \(T^k \)-rigid. The assumptions on \(G \) ensure that \(i^* \) is injective, which implies that \(\varphi(\beta) = 0 \) in \(U^*(BG) \otimes_R \mathbb{R} \). Fibre multiplicativity then follows from (9.17).

Conversely, suppose that \(\varphi \) is fibre multiplicative with respect to \(M \), and consider the manifold \(G_\omega(M) \) of Theorem 9.29. By Definition 9.2.8, it is the total space of the bundle \((S^3)^\omega \times_{T^\omega} M \to B_\omega \), which has structure group \(T^k \); therefore \(\varphi(G_\omega(M)) = 0 \), because \(B_\omega \) bounds for every \(|\omega| > 0 \). So \(\varphi \) is \(T^k \)-rigid on \(M \).

Remark. We may define \(\varphi \) to be \(G \)-rigid when \(\varphi(\beta) = 0 \), as in the proof of
Theorem 9.3.6. It follows that \(T \)-rigidity implies \(G \)-rigidity for any \(G \) such that \(\Omega^*_U(BG) \) is torsion-free.

Example 9.3.7. The signature (or the \(L \)-genus, see Example E.3.9.2) is fibre
multiplicative over any simply connected base \([88]\), and so is rigid.

9.4. Isolated fixed points: localisation formulae

In this section we focus on stably tangentially complex \(T^k \)-manifolds \((M^{2n}, c_T)\)
for which the fixed points \(p \) are isolated; in other words, the fixed point set \(M^T \) is
finite. We proceed by deducing a localisation formula for \(\Phi(M) \) in terms of fixed
point data. We give several illustrative examples, and describe the consequences
for certain non-equivariant genera and their \(T^k \)-equivariant extensions.

Localisation theorems in equivariant generalised cohomology theories appear
in the works of tom Dieck [119], Quillen [316], Krichever [221], Kawakubo [210],
and elsewhere. We prove our Theorem 9.4.1 by interpreting their results in the case
of isolated fixed points, and identifying the signs explicitly.

Each integer vector \(n = (n_1, \ldots, n_k) \in \mathbb{Z}^k \) determines a line bundle

\[
\eta^n = \eta_1^{n_1} \otimes \cdots \otimes \eta_k^{n_k}
\]

over \(BT^k = (\mathbb{C}P^\infty)^k \), where \(\eta_j \) is the tautological bundle over the \(j \)-th factor. Let

\[
[n](u) = c^T_1(\eta^n)
\]
denote the cobordism first Chern class of η^n. It is given by the power series

\[(9.18) \quad [n](u) = F_U(u_1, \ldots, u_{n_1}, \ldots, u_k, \ldots, u_{n_k}) \in U^2(BT^k),\]

where $F_U(u_1, \ldots, u_k)$ is the iterated substitution $F_U(F_U(u_1, u_2), u_3, \ldots, u_k)$ in the formal group law of geometric cobordisms, see Section E.2. We have

\[(9.19) \quad [n](u) \equiv n_1 u_1 + \cdots + n_k u_k \quad \text{modulo decomposables,}\]

and it is convenient to rewrite the right hand side as a scalar product $\langle n, u \rangle$.

Let p be an isolated fixed point for the T^k-action on M. We recall the weights $w_j(p) \in \mathbb{Z}^k$ and the sign $\sigma(p) = \pm 1$ from Section B.5, and refer to

\[\{w_j(p), \sigma(p) : 1 \leq j \leq n, p \in M^T\}\]

as the fixed point data of (M, c_T).

Theorem 9.4.1 (localisation formula). For any stably tangentially complex $2n$-dimensional T^k-manifold M with isolated fixed points M^T, the equation

\[(9.20) \quad \Phi(M) = \sum_{p \in M^T} \sigma(p) \prod_{j=1}^n \frac{1}{|w_j(p)|(u)}\]

is satisfied in $U^{-2n}(BT^k)$.

Remark. The summands on the right hand side of (9.20) formally belong to the localised ring $S^{-1}U^* (BT^k)$ where S is the set of equivariant Euler classes of nontrivial representations of T^k.

If the structure c_T is almost complex, then $\sigma(x) = 1$ for all fixed points x, and (9.20) reduces to Krichever's formula [224, (2.7)].

There is also a generalisation of the localisation formula (9.20) for any equivariant cobordism class $\pi \in U^d U(T^k)$ represented by a stably tangentially complex T^k-bundle $\pi: E \to X$. It gives an expression for the element $\Phi_X(\pi) \in U^{-d}(ET^k \times_T X)$ (see (9.5)) in terms of the fixed point data, and specialises to (9.20) when $X = pt$. See [71, Theorem 4.6].

Proof. Choose an equivariant embedding $i: M \to V$ into a complex N-dimensional representation space V and consider the commutative diagram

\[(9.21) \quad \begin{array}{ccc}
M^T & \xrightarrow{r_M} & M \\
\downarrow i^T & & \downarrow i \\
V^T & \xrightarrow{r_V} & V
\end{array}\]

where $V^T \subset V$ is the T^k-fixed subspace, r_M and r_V denote the inclusions of fixed points, and i^T is the restriction of i to M^T.

We restrict (9.21) to a tubular neighbourhood of M^T in V, which can be identified with the total space E of the normal bundle $\nu = \nu(M^T \to V)$:

\[(9.22) \quad \begin{array}{ccc}
M^T & \xrightarrow{r_M} & E_1 \\
\downarrow i^T & & \downarrow i \\
E_2 & \xrightarrow{r_V} & E
\end{array}\]
where $E_1 = \nu(r_M)$ and $E_2 = \nu(i^T)$. The normal bundle ν decomposes as

\[(9.23) \quad \nu = \nu(r_M) \oplus r_M^* \nu(i) = \nu(r_M) \oplus \nu(i^T) \oplus \zeta,\]

where ζ is the ‘excess’ bundle over M^T, whose fibres are the non-trivial parts of the T^k-representations in the fibres of $r_M^* \nu(i)$. We therefore rewrite (9.22) as

\[(9.24) \quad \begin{array}{ccc}
M^T & \overset{r_M}{\longrightarrow} & E_1 \\
\downarrow i & & \downarrow i \\
E_2 & \overset{r_V}{\longrightarrow} & E_1 \oplus E_2 \oplus F,
\end{array}\]

where F is the total space of ζ. Since all relevant bundles are complex, we have Gysin–Thom isomorphisms (see Construction D.3.5 and Exercise D.3.13)

$$i_1: U^*(M) \xrightarrow{\cong} U^{*+p}(Th(\nu(i))) = U^{*+p}(V, V \setminus M) = U^{*+p}(E, E \setminus E_1),$$

$$i_1^*: U^*(M^T) \xrightarrow{\cong} U^{*+q}(Th(\nu(i^T))) = U^{*+q}(V^T, V^T \setminus M^T) = U^{*+q}(E_2, E_2 \setminus M^T),$$

where $p = \dim V - \dim M$ and $q = \dim V^T - \dim M^T$. Let $i_1: E_1 \to E_1 \oplus E_2$, $i_2: E_2 \to E_1 \oplus E_2$ and $k: E_1 \oplus E_2 \to E$ be the inclusion maps. Then for $x \in U^*(M)$,

$$r_i^* i_1 x = i_2^* k^* ri_1 x = i_2^*(e(\nu(k)) \cdot i_1 x).$$

Since $i_2^*(e(\nu(k)) = \pi^*(\zeta)$, where $\pi: E_2 \to M$ is the projection, the last term above can be written as

$$\pi^*(e(\zeta)) \cdot i_2^* i_1 x = \pi^*(e(\zeta)) \cdot i_1^* r_M^* x \quad \text{by Proposition D.3.6 (e)}$$

$$= i_1^* (i_1^* \pi^*(e(\zeta)) \cdot r_M^* x) \quad \text{by Proposition D.3.6 (d)}$$

$$= i_1^* (e(\zeta) \cdot r_M^* x).$$

We therefore obtain

\[(9.25) \quad r_i^* i_1 x = i_1^* (e(\zeta) \cdot r_M^* x)\]

in $U^{*+p}(V^T, V^T \setminus M^T)$.

Given a T^k-equivariant map $f: M \to N$ we denote by \hat{f} its ‘Borelification’, i.e. the map $ET^k \times_{T^k} M \to ET^k \times_{T^k} N$. Applying this procedure to (9.21) we obtain a commutative diagram

\[(9.26) \quad \begin{array}{ccc}
BT^k \times M^T & \xrightarrow{\hat{r}_M} & ET^k \times_{T^k} M \\
\hat{i} & & \hat{i} \\
BT^k \times V^T & \xrightarrow{\hat{r}_V} & ET^k \times_{T^k} V.
\end{array}\]

Using the finite-dimensional approximation of the above diagram (as in the proof of Proposition 9.2.3) we can view it as a diagram of proper maps of smooth manifolds and therefore apply Gysin homomorphisms in cobordism. By analogy with (9.25) we obtain for $x \in U^*(ET^k \times_{T^k} M)$,

\[(9.27) \quad \hat{r}_i^* \hat{i}_1 x = i_1^* (e(\hat{\zeta}) \cdot r_M^* x),\]

where $\hat{\zeta}$ is the ‘excess’ bundle over $BT^k \times M^T$ defined similarly to (9.23).
Similarly, by considering the diagram

$$\begin{array}{c}
0 \\
\downarrow j^T \\
V^T \xrightarrow{rV} V
\end{array}$$

we obtain for $y \in U^*(BT^k)$,

$$\hat{r}^*_V \hat{j}_!: y = \hat{j}^T_V \left(e(\hat{\z}_V) \cdot y \right),$$

(9.28)

where \z_V is the nontrivial part of the T^k-representation V, i.e., $V = V^T \oplus \z_V$. Let $\pi: M \to pt$ and $\pi^T: M^T \to pt$ be the projections. Then $\hat{i}_! = \hat{j} \cdot \tilde{\pi}_i$, $\hat{i}^T_V = \hat{j}^T \cdot \tilde{\pi}^T_V$. Substituting $y = \tilde{\pi}_i x$ into (9.28) we obtain

$$\hat{r}^*_V \tilde{\pi}_i x = \hat{j}^T_V \left(e(\hat{\z}_V) \cdot \tilde{\pi}_i x \right)$$

Comparing this with (9.27) and using the fact that

$$\hat{j}^T_V: U^*(BT^k) \to U^{*+r}(\text{Th}(\nu(\hat{j}^T)) = U^{*+r}(\Sigma^r BT^k)$$

is an isomorphism (here $r = \dim V^T$), we finally obtain

$$e(\hat{\z}_V) \cdot \tilde{\pi}_i x = \hat{i}^T_V \left(e(\hat{\z}_V) \cdot \hat{i}^*_V x \right).$$

Now set $x = 1$. Then $\hat{i}_! 1 = \Phi(M)$ by Proposition 9.2.3 and $\hat{r}^*_V 1 = 1$. We get

$$e(\hat{\z}_V) \cdot \Phi(M) = \hat{i}^T_V \left(e(\hat{\z}_V) \right).$$

(9.29)

This formula is valid without restrictions on the fixed point set. Now, if M^T is finite, then $\hat{i}^T_V \left(e(\hat{\z}_V) \right) = \sum_{p \in M^T} e(\hat{\z}_p)$. Recall that \z is defined from the decomposition $\nu = \nu(r_M) \oplus \nu(i^T) \oplus \z$, in which $\nu|_p = \nu(M^T \to V)|_p$ can be identified with V and $\nu(i^T)|_p$ can be identified with V^T (because p is isolated). Since $V = V^T \oplus \z$, it follows that $e(\hat{\z}_V) = (e(\nu(r_M))|_p e(\hat{\z}_p)$ for any $p \in M^T$. We therefore can rewrite (9.29) as

$$\Phi(M) = \sum_{p \in M^T} e(\nu(r_M)|_p).$$

It remains to note that $\nu(r_M)|_p = \nu(p \to M)$ is the tangential T^k-representation $T^*_p M$, so $\nu(r_M)|_p$ is the bundle $ET^{*+k} \times_{T^k} T^*_p M$ over BT^k, whose Euler class is $e(\nu(r_M)|_p) = \sigma(p) \prod_{j=1}^n \left[w_j(p) \left(tu \right) \right]$ by the definition of sign $\sigma(p)$ and weights $w_j(p)$.

The left-hand side of (9.20) lies in $\Omega_U[[u_1, \ldots, u_k]]$, whereas the right-hand side appears to belong to an appropriate localisation. It follows that all terms of negative degree must cancel, thereby imposing substantial restrictions on the fixed point data. These may be made explicit by rewriting (9.19) as

$$[n](tu) \equiv (n_1 u_1 + \cdots + n_k u_k) t \mod (t^2)$$

in $\Omega_U[[u_1, \ldots, u_k, t]]$, and then defining the power series

$$\sum_i c_{ij} t^i = t^n \Phi(M)(tu) = \sum_{p \in M^T} \sigma(p) \prod_{j=1}^n \left[w_j(p) \left(tu \right) \right]$$

over the localisation of $\Omega_U[[u_1, \ldots, u_k]]$.

Proposition 9.4.2. The coefficients c_f are zero for $0 \leq l < n$, and satisfy
\[c_{f_{n+m}} = \sum_{w} g_w(M)u^w \]
for $m \geq 0$; in particular, $c_f = [M]$.

Proof. Combine the definitions of c_f in (9.31) and g_w in (9.8). \[\square\]

Remark. The equations $c_{f_1} = 0$ for $0 \leq l < n$ are the T^k-analogues of the Conner-Floyd relations for \mathbb{Z}_p-actions [291, Appendix 4]; the extra equation $c_{f_n} = [M]$ provides an expression for the cobordism class of M in terms of fixed point data. This is important because, according to Theorem 9.1.17, every element of Ω_U may be represented by a stably tangentially complex T^k-manifold with isolated fixed points. We explore this further in the next section.

Now let $\phi : \Omega_U \to R$ be a genus taking values in a torsion-free ring R, with the corresponding series $f(x) = x + \cdots \in R \otimes \mathbb{Q}[[x]]$. We may adapt Theorem 9.4.1 to express $\phi(M)$ in terms of the fixed point data. The resulting formula is much simpler, because the formal group law ϕF_U may be linearised over $R \otimes \mathbb{Q}$.

Theorem 9.4.3. Let $\phi : \Omega_U \to R$ be a genus with torsion-free R, and let M be a stably tangentially complex $2n$-dimensional T^k-manifold with isolated fixed points M^T. Then the equivariant genus $\phi^T(M) = \phi(M) + \cdots$ is given by
\[\phi^T(M) = \sum_{p \in M^T} \sigma(p) \prod_{j=1}^{n} \frac{1}{f(\langle w_j(p), x \rangle)}, \]
where $\langle w, x \rangle = w_1x_1 + \cdots + w_kx_k$ for $w = (w_1, \ldots, w_k)$.

Proof. By Theorem E.3.3, $f(x)$ is the exponential series of the formal group law ϕF_U, i.e. $\phi F_U(u_1, u_2) = f(f^{-1}(u_1) + f^{-1}(u_2))$, and therefore $h_{\phi F_U}(u_1, u_2) = f(x_1 + x_2)$. An iterated application of this formula gives $h_{\phi^T}(\langle w_j(p), x \rangle) = f(\langle w_j(p), x \rangle)$. Since $\phi^T = h_{\phi} \circ \phi$, the result follows from Theorem 9.4.1. \[\square\]

Example 9.4.4. The augmentation genus $\varepsilon : \Omega_U \to \mathbb{Z}$ corresponds to the series $f(x) = x$; it vanishes on any M^{2n} with $n > 0$. Formula (9.32) then gives
\[\sum_{p \in M^T} \sigma(p) \prod_{j=1}^{n} \frac{1}{\langle w_j(p), x \rangle} = 0. \]

Let $M = \mathbb{C}P^n$ on which T^{n+1} acts homogeneous coordinatewise. There are $n+1$ fixed points p_0, \ldots, p_n, each having a single nonzero coordinate. So the weight vector $w_j(p_k) = e_j - e_k$ for $0 \leq j \leq n$, $j \neq k$, and every $\sigma(p_k)$ is positive; thus (9.33) reduces to the classical identity
\[\sum_{k=0}^{n} \prod_{j \neq k} \frac{1}{x_j - x_k} = 0. \]

Example 9.4.5. Consider the S^1-action preserving the standard complex structure on $\mathbb{C}P^1$. It has two fixed points, both with signs 1 and weights 1 and -1, respectively (see Example B.6.4). Theorem 9.4.1 gives the following expression for the universal toric genus:
\[\Phi(\mathbb{C}P^1) = \frac{1}{u} + \frac{1}{\bar{u}}. \]
in $U^{-2}(CP^\infty)$ where $\bar{u} = [-1](u)$ is the inverse series in the formal group law of geometric cobordisms.

By Theorem 9.4.3, a genus $\varphi: \Omega_U \to R$ is rigid on CP^1 only if its defining series $f(x)$ satisfies the equation

$$\frac{1}{f(x)} + \frac{1}{f(-x)} = c$$

in $R \otimes Q[[x]]$. The general analytic solution is of the form

$$f(x) = \frac{x}{b(x^2) + cx/2}, \quad \text{where } b(0) = 1$$

(an exercise). The Todd genus td of Example E.3.9.3 is defined by the series $f(x) = 1 - e^{-x}$, and (9.35) holds with $c = 1$. So td is T-rigid on CP^1, and

$$b(x^2) = \frac{x}{2} \cdot e^{x^2/2} - e^{-x^2/2}$$

in $Q[[x]]$. In fact td is fibre multiplicative with respect to CP^1 by [187], so rigidity also follows from Theorem 9.3.6.

We can also consider the S^1-action on $M = CP^1$ with trivial stably complex structure. It has two fixed points of signs 1 and -1, both with weights 1. Theorem 9.4.1 gives the universal toric genus $\Phi(M) = \frac{1}{u} - \frac{1}{u} = 0$, which also follows from the fact that M bounds equivariantly.

The localisation formula for the universal toric genus can also be used to obtain a formula for every characteristic number. It is expressed most naturally in terms of the universal characteristic classes s_ω (see Appendix D.4):

Theorem 9.4.6. The tangential characteristic numbers of a stably complex $2n$-dimensional T^k-manifold M with isolated fixed points MT and fixed point data $\{w_j(p), \sigma(p) : 1 \leq j \leq n, p \in MT\}$ are given by

$$s_\omega[M] = \sum_{p \in MT} \sigma(p) P_\omega\left(\frac{(w_1(p), x), \ldots, (w_n(p), x)}{(w_1(p), x) \cdots (w_n(p), x)}\right),$$

where P_ω are the universal symmetric polynomials (D.7).

Proof. We apply formula (9.32) to the universal genus $\varphi_U = id: \Omega^U \to \Omega^U$. We have the universal identity

$$\prod_{i=1}^n \frac{1}{f_U(t_i)} = \sum_\omega P_\omega(t_1, \ldots, t_n) q^\omega$$

in $\Omega_U \otimes Q[[t_1, \ldots, t_n]]$, where $q^\omega = q_1^1 \cdots q_n^n$ and the q_i are the coefficients of the Q-series of the universal genus φ_U (see Proposition E.3.6). We denote $t^{(p)}_i = \langle w_i(p), x \rangle$. Substituting $t^{(p)}_i$ for t_i in (9.37) and summing up over $p \in MT$ we get

$$\sum_{p \in MT} \sigma(p) \prod_{i=1}^n \frac{1}{f_U(t^{(p)}_i)} = \sum_\omega \left(\sum_{p \in MT} \sigma(p) P_\omega(t^{(p)}_1, \ldots, t^{(p)}_n) \right) q^\omega,$$

where both sides are power series in $x = (x_1, \ldots, x_k)$ with coefficients in $\Omega^U_2 \otimes Q$. The constant term on the left hand side is $\varphi_U[M] = [M] \in \Omega^U_2$ by Theorem 9.4.3.
Calculating the constant term on the right hand side above we get
\[
[M] = \sum_{\omega: \|\omega\|=n} \left(\sum_{p \in M^T} \sigma(p) \frac{P_\omega(t_1^{(p)}, \ldots, t_n^{(p)})}{t_1^{(p)} \cdots t_n^{(p)}} \right) q^\omega.
\]
On the other hand,
\[
[M] = \sum_{\omega: \|\omega\|=n} s_\omega[M] q^\omega
\]
by Proposition E.3.6. Since \(q_1, q_2, \ldots\) is a basis of \(\Omega^U \otimes \mathbb{Q}\), the result follows. \(\square\)

Example 9.4.7. Let \(\omega = (n, 0, \ldots, 0)\). Then \(P_\omega(t_1, \ldots, t_n) = t_1 \cdots t_n\) and Theorem 9.4.6 gives
\[
s_{(n,0,\ldots,0)}[M] = c_n[M] = \sum_{p \in M^T} \sigma(p),
\]
as we already know.

Now let \(\omega = (0, \ldots, 0, 1)\). Then \(P_\omega(t_1, \ldots, t_n) = t_1^n + \cdots + t_n^n\) and we get
\[
s_{(0,\ldots,0,1)}[M] = s_n[M] = \sum_{p \in M^T} \sigma(p) \frac{\langle w_1(p), x \rangle^n + \cdots + \langle w_n(p), x \rangle^n}{\langle w_1(p), x \rangle \cdots \langle w_n(p), x \rangle}.
\]
For example, for \(M = \mathbb{C}P^n\) with the \(T^{n+1}\)-action from Example 9.4.4 we get
\[
s_n[\mathbb{C}P^n] = \sum_{j=0}^{n} \frac{\sum (x_j - x_k)^n}{\prod (x_j - x_k)} = n + 1
\]

Another classical application of the localisation formula is the Atiyah–Hirzebruch formula [13] expressing the \(\chi_a\)-genus of a complex \(S^1\)-manifold in terms of the fixed point data. We discuss a generalisation of this formula due to Krichever [221]. It refers to the \(\chi_{a,b}\)-genus corresponding to the series
\[
f(x) = \frac{e^{ax} - e^{bx}}{ae^{bx} - be^{ax}} \in \mathbb{Q}[a, b],
\]
see Example E.3.9.4.

We choose a circle subgroup in \(T^k\) defined by a primitive vector \(\nu \in \mathbb{Z}^k\):
\[
S(\nu) = \{(e^{2\pi i \nu_1 \varphi}, \ldots, e^{2\pi i \nu_k \varphi}) \in T^k : \varphi \in \mathbb{R}\}.
\]
We have \(M^S(\nu) = M^T\) for a generic circle \(S(\nu)\) (see Lemma 7.4.3). The weights of the tangential representation of \(S(\nu)\) at \(p\) are \(\langle w_j(p), \nu \rangle\), \(1 \leq j \leq n\). If the fixed points \(M^T\) are isolated and \(M^S(\nu) = M^T\), then
\[
\langle w_j(p), \nu \rangle \neq 0 \quad \text{for } 1 \leq j \leq n \text{ and any } p \in M^T.
\]
We define the index \(\text{ind}_\nu p\) as the number of negative weights at \(p\), i.e.
\[
\text{ind}_\nu p = \#\{j : \langle w_j(p), \nu \rangle < 0\}.
\]

Theorem 9.4.8 (generalised Atiyah–Hirzebruch formula [221]). The \(\chi_{a,b}\)-
genus is \(T^k\)-rigid. Furthermore, the \(\chi_{a,b}\)-genus of a stably tangentially complex \(2n\)-dimensional \(T^k\)-manifold \(M\) with finite \(M^T\) is given by
\[
\chi_{a,b}(M) = \sum_{p \in M^T} \sigma(p)(-a)^{\text{ind}_\nu p}(-b)^{n-\text{ind}_\nu p}
\]
for any \(\nu \in \mathbb{Z}^k\) satisfying \(M^S(\nu) = M^T\).
Remark. The original formula of Atiyah–Hirzebruch [13] was given for complex manifolds. Krichever implicitly assumed manifolds to be almost complex when deducing his formula, as no signs were mentioned in [221]. However his proof, presented below, automatically extends to the stably complex situation by incorporating the signs of fixed points.

Also, both Atiyah–Hirzebruch’s and Krichever’s formulae are valid without assuming the fixed points to be isolated, see Exercise 9.4.11. We give the formula in the case of isolated fixed points to emphasise the role of signs.

Proof of Theorem 9.4.8. We establish the rigidity and prove the formula for M with isolated fixed points; the proof in the general case is similar. By Theorem 9.4.3, to prove the T^k-rigidity on M it suffices to prove that $\chi_{a,b}^{S^1}$ is constant for any circle subgroup $S^1 = S(\nu) \subset T$ satisfying $MS^1 = M^T$. Formula (9.32) gives

$$\chi_{a,b}^{S^1}(M) = \sum_{p \in M^T} \sigma(p) \prod_{j=1}^{n} a \frac{e^{b(\omega_j(p),\nu)x} - e^{a(\omega_j(p),\nu)x}}{e^{b\omega_j x} - e^{a\omega_j x}}.$$

This expression belongs to $\mathbb{Z}[a,b][[x]]$ (that is, it is non-singular at zero) and its constant term is $\chi_{a,b}(M)$. We denote $\omega_j = \langle w_j(p), \nu \rangle$ and $e^{(a-b)x} = q$; then we may rewrite each factor in the product above as

$$\frac{a e^{b\omega_j x} - e^{a\omega_j x}}{e^{b\omega_j x} - e^{a\omega_j x}} = \frac{a - b q^{\omega_j}}{q^{\omega_j} - 1}.$$

Then (9.42) takes the following form:

$$\chi_{a,b}^{S^1}(M) = \sum_{p \in M^T} \sigma(p) \prod_{j=1}^{n} a \frac{b q^{\omega_j}}{q^{\omega_j} - 1}.$$

Now we let $q \to \infty$. Then (9.43) has limit $-b$ if $\omega_j > 0$ and limit $-a$ if $\omega_j < 0$. Therefore, the limit of (9.44) as $q \to \infty$ is

$$\sum_{p \in M^T} \sigma(p)(-a)^{\text{ind}_p} (-b)^{n-\text{ind}_p}.$$

Similarly, the limit of (9.44) as $q \to 0$ is

$$\sum_{p \in M^T} \sigma(p)(-a)^{n-\text{ind}_p} (-b)^{\text{ind}_p}.$$

The theorem would follow if one shows that (9.44) is constant in q; then it would coincide with either of the limits above. If M is a complex manifold, then it is clear from the index-theoretic interpretation of the $\chi_{a,b}$-genus (see e.g. [188]) that (9.44) is actually a Laurent polynomial in q, so it must be constant (because it has value for $q = 0$ and for $q = \infty$). In general, the idea is to view (9.44) as a rational function in complex variable q and study its analytic properties.

The argument below was provided by Yuri Ustinovsky; it is a modification of the original argument of Krichever [221].

We denote the right hand side of (9.44) by $f(M, q)$ or simply by $f(q)$; it is a meromorphic function in q. It does not have a pole at $q = 1$, because $f(M; 1) = \chi_{a,b}(M)$. Therefore, f may have poles only at the points of the form $q_0 = e^{\frac{2\pi i l}{m}}$ where m divides one of the weights ω_j and l is relatively prime with m. We choose such a q_0 and prove that $f(q_0)$ is finite.
Let $\mathcal{F} \subset M^T$ be the set of fixed points p whose corresponding sets of weights $\{\omega_1(p), \ldots, \omega_n(p)\}$ contain a weight divisible by m. Only those summands of (9.44) corresponding to points of \mathcal{F} may contribute to the pole at q_0.

Let $M^{\mathbb{Z}_m} \subset M$ be the set of fixed points with respect to the action of the cyclic subgroup $\mathbb{Z}_m \subset S^1$. Note that $\mathcal{F} \subset M^{\mathbb{Z}_m}$. The set $M^{\mathbb{Z}_m}$ consists of finitely many fixed submanifolds of even dimension. Let X be one of them, $\dim X = 2k$. Let $\mathcal{F}_X = X^T$ be the set of T-fixed points of M which are contained in X. Consider the summands in (9.44) corresponding to the points of \mathcal{F}_X:

$$f_X(q) = \sum_{p \in \mathcal{F}_X} \sigma(p) \prod_{j=1}^n \frac{a - bq_{\omega_j}^j}{q_{\omega_j}^j - 1};$$

we need to show that $f_X(q)$ does not have a pole at q_0.

The submanifold $X \subset M$ is S^1-invariant, so we may assume (after reordering) that the weights of the tangential S^1-representation at T_pX, $p \in X$, are $\omega_1, \ldots, \omega_k, \omega_{k+1}, \ldots, \omega_n$, where

- $\omega_1, \ldots, \omega_k$ are the weights of the representation of S^1 in T_pX; they are all divisible by m;
- $\omega_{k+1}, \ldots, \omega_n$ are the weights of the representation of S^1 in the normal space $\nu_p(X \subset M)$; none of them is divisible by m.

We rewrite $f_X(q)$ accordingly:

$$f_X(q) = \sum_{p \in \mathcal{F}_X} \sigma(p) \prod_{j=1}^k \frac{a - bq_{\omega_j}^j}{q_{\omega_j}^j - 1} \prod_{j=k+1}^n \frac{a - bq_{\omega_j}^j}{q_{\omega_j}^j - 1}. \quad (9.45)$$

As X is fixed by the action of \mathbb{Z}_m, the weights of the representation of \mathbb{Z}_m in any normal space $\nu_x(X \subset M)$, $x \in X$, are the same. We denote these weights by v_1, \ldots, v_{n-k}, $v_i \in \mathbb{Z}_m$. These weights are obtained by reduction modulo m from the weights $\omega_{k+1}, \ldots, \omega_n$ of the representation of S^1 at any S^1-fixed point $p \in X$. It follows that the sets of weights of all S^1-fixed points $p \in X$ become identical after reduction modulo m.

The function $f_X(q)$ given by (9.45) is meromorphic, so it has a finite or infinite limit as $q \to q_0$. We need to show that this limit is finite; to do this it is enough to consider the limit as $q \to q_0$ along the unit circle in \mathbb{C}. By the argument in the previous paragraph, with $|q| = 1$ the expression $\prod_{j=k+1}^n \frac{a - bq_{\omega_j}^j}{q_{\omega_j}^j - 1}$ does not depend on $p \in X$, so it can be put in front of the sum. Moreover, since none of the weights ω_i with $k+1 \leq i \leq n$ is divisible by m, this expression has a finite limit as $q \to q_0$.

It remains to prove that the expression

$$\sum_{p \in \mathcal{F}_X} \sigma(p) \prod_{j=1}^k \frac{a - bq_{\omega_j}^j}{q_{\omega_j}^j - 1} \quad (9.46)$$

has a finite limit as $q \to q_0$. To do this we consider the induced action of $S^1/\mathbb{Z}_m \cong S^1$ on X. The weights of this action at $p \in \mathcal{F}_X$ are $\omega_1/m, \ldots, \omega_k/m$. We write the formula (9.44) for this action:

$$f(X; q) = \sum_{p \in \mathcal{F}_X} \sigma(p) \prod_{j=1}^k \frac{a - bq_{\omega_j/m}^j}{q_{\omega_j/m}^j - 1}. \quad (9.44)$$
The function \(f(X; q) \) has a finite limit as \(q \to 1 \), because \(f(X; 1) = \chi_{a,b}(X) \), so (9.46) has a finite limit as \(q \to q_0 = e^{\frac{2\pi i}{m}} \).

We have therefore proved that the meromorphic function \(f(q; M) = \chi_{a,b}^S(M) \) does not have poles in \(\mathbb{C} \) and has a finite limit as \(q \to \infty \), so it is constant. \(\square \)

Remark. The right hand side of (9.41) is independent of \(\nu \); the limits of (9.44) as \(q \to \infty \) and \(q \to 0 \) are taken to each other by substitution \(\nu \to -\nu \).

Exercises.

9.4.9. Prove identities (9.34) and (9.38) directly.

9.4.10. The general analytic solution of (9.35) is given by (9.36).

9.4.11. Let \(M \) be a stably tangentially complex \(T^k \)-manifold \(M \) with fixed point set \(M^T \). Then
\[
\chi_{a,b}(M) = \sum_{F \subset M^T} \chi_{a,b}(F)(-a)^{\text{ind}_F} F(-b)^{\ell - \text{ind}_F} F
\]
for any \(\nu \subset \mathbb{Z}^k \) satisfying \(M^{S(\nu)} = M^T \), where the sum is taken over connected fixed submanifolds \(F \subset M^T \), \(2\ell = \dim M - \dim F \), and \(\text{ind}_F \) is the number of negative weights of the \(S(\nu) \)-action in the normal bundle of \(F \).

9.5. Quasitoric manifolds and genera

In the case of quasitoric manifolds, the combinatorial description of signs of fixed points and weights obtained in Section 7.3 opens the way to effective calculation of characteristic numbers and Hirzebruch genera using localisation techniques. We illustrate this approach by presenting formulae expressing the \(\chi_{a,b} \)-genus (in particular, the signature and the Todd genus) of a quasitoric manifold as a sum of contributions depending only on the 'local combinatorics' near the vertices of the quotient polytope. These formulae were obtained in [300]; they can also be deduced from the results of [249] in the more general context of torus manifolds.

Localisation formulae for genera on quasitoric manifolds can be interpreted as functional equations on the series \(f(x) \). By solving these equations for particular examples of quasitoric manifolds one may derive different 'universality theorems' for rigid genera. For example, according to a result of Musin [282], the \(\chi_{a,b} \)-genus is universal for \(T^k \)-rigid genera (this implies that any \(T^k \)-rigid rational genus is \(\chi_{a,b} \) for some rational parameters \(a, b \)). We prove this result as Theorem 9.5.6 by solving the functional equation coming from the localisation formula (9.32) on \(\mathbb{CP}^2 \) with a nonstandard omniorientation.

We assume given a combinatorial quasitoric pair \((P, \Lambda) \) (see Definition 7.3.10) and the corresponding omnioriented quasitoric manifold \(M = M(P, \Lambda) \). This fixes a \(T^n \)-invariant stably complex structure on \(M \) and the corresponding bordism class \([M] \in \Omega^n_{\mathbb{Z}} \), as described in Corollary 7.3.16.

Any fixed point \(v \in M \) is given by the intersection of \(n \) characteristic submanifolds \(v = M_{j_1} \cap \cdots \cap M_{j_n} \) and corresponds to a vertex of the polytope \(P \), which we also denote by \(v \). The expressions for the weights \(w_j(v) \) and the sign \(\sigma(v) \) in terms of the quasitoric pair \((P, \Lambda) \) are given by Proposition 7.3.18 and Lemma 7.3.19.

In the quasitoric case the condition (9.40) guarantees that the circle \(S(\nu) \) satisfies \(M^T = M^{S(\nu)} \) (an exercise).
Example 9.5.1 (Chern number $c_n[M]$). The series (9.39) defining the $\chi_{a,b}$-genus has a limit as $a-b \to 0$, which can be calculated as follows:

$$\frac{e^{ax} - e^{bx}}{ae^{bx} - be^{ax}} = 1 - \frac{e^{(b-a)x}}{a - b} = \frac{(a - b)x + \cdots}{(a - b) - a(a - b)x + \cdots} = \frac{x}{1 - ax}.$$

For $a = b = -1$ we obtain the defining series for the top Chern number $c_n[M]$ (see Example E.3.9.1). Plugging these values into (9.41) we obtain

$$c_n[M] = \sum_{v \in M^P} \sigma(M),$$

which we already know from Exercise 7.3.41. When all signs are positive, we obtain $c_n[M] = \chi(M) = f_0(P)$, i.e. the Euler characteristic of M is equal to the number of vertices of P.

Example 9.5.2 (signature). Substituting $a = 1$, $b = -1$ in (9.39) we obtain the series $\tanh(x)$ defining the L-genus or the signature (see Example E.3.9.2). Being an oriented cobordism invariant, the signature $\text{sign}(M)$ does not depend on the stably complex structure, i.e. only the global orientation part of the orientation data affects the signature. The following statement gives a formula for $\text{sign}(M)$ which depends only on the orientation:

Proposition 9.5.3. For an oriented quasitoric manifold M,

$$\text{sign}(M) = \sum_{v \in M^P} \det(\bar{w}_1(v), \ldots, \bar{w}_n(v)),$$

where $\bar{w}_j(v)$ are the vectors defined by the conditions

$$\bar{w}_j(v) = \pm w_j(v) \quad \text{and} \quad (\bar{w}_j(v), \nu) > 0, \quad 1 \leq j \leq n.$$

Proof. Plugging $a = 1$, $b = -1$ into (9.41) we obtain

$$\text{sign}(M) = \sum_{v \in M^P} (-1)^{\text{ind}_v} \sigma(v).$$

Using expression (7.16) for the sign $\sigma(v)$ we calculate

$$(-1)^{\text{ind}_v} \sigma(v) = (-1)^{\text{ind}_v} \det(w_1(v), \ldots, w_n(v)) = \det(\bar{w}_1(v), \ldots, \bar{w}_n(v)),$$

which implies the required formula. \Box

Remark. The number $\det(\bar{w}_1(v), \ldots, \bar{w}_n(v))$ is nothing but the ‘oriented sign’ $\hat{\sigma}(v)$ introduced in Section B.6.

If M is a projective toric manifold V_P, then $\sigma(v) = 1$ for any v and formula (9.47) gives

$$\text{sign}(V_P) = \sum_v (-1)^{\text{ind}_v}.$$

Furthermore, in this case the weights $w_1(v), \ldots, w_n(v)$ are the primitive vectors along the edges of P pointing out of v (see Example 7.3.20). It follows that the index $\text{ind}_v(v)$ coincides with the index defined in the proof of the Dehn–Sommerville equations (Theorem 1.3.4), and we obtain the formula known in toric geometry (see [296, Theorem 3.12]):

$$\text{sign}(V_P) = \sum_{k=0}^{n} (-1)^k h_k(P).$$
Note that if \(n \) is odd then the sum vanishes by the Dehn–Sommerville equations.

Example 9.5.4 (Todd genus). Substituting \(a = 0 \), \(b = -1 \) in (9.39) we obtain the series \(1 - e^{-x} \) defining the Todd genus (see Example E.3.9.3). We cannot plug \(a = 0 \) directly into (9.41), but it is clear from the proof that when \(a = 0 \), only vertices of index 0 contribute \((-b)^n\) to the sum. This gives the following formula for the Todd genus of a quasitoric manifold:

\[
(9.48) \quad \text{td}(M) = \sum_{v: \text{ind}_v(v) = 0} \sigma(v).
\]

When \(M \) is a projective toric manifold \(V_P \), there is only one vertex of index 0. It is the ‘bottom’ vertex, which has all incident edges pointing out (in the notation used in the proof of Theorem 1.3.4). Since \(\sigma(v) = 1 \) for every \(v \in P \), formula (9.48) gives \(\text{td}(V_P) = 1 \), which is well-known (see e.g. [146, §5.3]).

In the almost complex case we have the following result:

Proposition 9.5.5. If a quasitoric manifold \(M \) admits an equivariant almost complex structure, then \(\text{td}(M) > 0 \).

Proof. We choose a compatible omniorientation, so that \(\sigma(v) = 1 \) for any \(v \). Then (9.48) implies \(\text{td}(M) \geq 0 \), and we need to show that there is at least one vertex of index 0. Let \(v \) be any vertex. Since \(\omega_1(v), \ldots, \omega_n(v) \) are linearly independent, we may choose \(\nu \) so that \(\langle \omega_j(v), \nu \rangle > 0 \) for any \(j \). Then \(\text{ind}_v \nu = 0 \). The result follows by observing that \(\text{td}(M) \) is independent of \(\nu \). \(\square \)

A description of \(\text{td}(M) \) which is independent of \(\nu \) is outlined in Exercise 9.5.8.

The following result of Musin [281] can be proved by application of the localisation formula for quasitoric manifolds:

Theorem 9.5.6. The 2-parameter genus \(\chi_{a,b} \) is universal for \(T^k \)-rigid genera. In particular, any \(T^k \)-rigid rational genus is \(\chi_{a,b} \) for some rational parameters \(a, b \).

Proof. The rigidity of \(\chi_{a,b} \) is established by Theorem 9.4.8. To see that any \(T^k \)-rigid genus is \(\chi_{a,b} \) we solve the functional equation arising from the localisation formula for one particular example of \(T^k \)-manifold; the general solution will produce the required form of the series \(f(x) \).

We consider the quasitoric manifold \(M = \mathbb{C}P^2 \) with a nonstandard omniorientation defined by the characteristic matrix

\[
A = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & -1
\end{pmatrix}
\]

It has three fixed points \(v_1, v_2, v_3 \), whose corresponding minors \(A_{v_i} \) are obtained by deleting the \(i \)th column of \(A \). The weights are given by \(\{(1,0),(1,1)\}, \{(0,-1),(1,1)\} \) and \(\{(0,1),(1,0)\} \), respectively, see Figure 9.3. The signs are calculated using formula (7.16):

\[
\sigma(v_1) = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1, \quad \sigma(v_2) = \begin{vmatrix} 0 & 1 \\ -1 & 1 \end{vmatrix} = 1, \quad \sigma(v_3) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1.
\]

Plugging these data into formula (9.32) we obtain that a genus \(\varphi \) is rigid on \(M \) only if its defining series \(f(x) \) satisfies the equation

\[
- \frac{1}{f(x_1)f(x_1 + x_2)} + \frac{1}{f(-x_2)f(x_1 + x_2)} + \frac{1}{f(x_1)f(x_2)} = c.
\]
Interchanging x_1 and x_2 gives

\[\frac{1}{f(x_2)f(x_1 + x_2)} + \frac{1}{f(-x_1)f(x_1 + x_2)} + \frac{1}{f(x_2)f(x_1)} = c, \]

and subtraction yields

\[\left(\frac{1}{f(x_1)} + \frac{1}{f(-x_1)} \right) \frac{1}{f(x_1 + x_2)} = \left(\frac{1}{f(x_2)} + \frac{1}{f(-x_2)} \right) \frac{1}{f(x_1 + x_2)}. \]

It follows that

\[\frac{1}{f(x)} + \frac{1}{f(-x)} = c' \quad \text{and} \quad \frac{1}{f(-x)} = c' - \frac{1}{f(x)} \]

for some constant c'. Substituting in (9.49) gives

\[\left(\frac{1}{f(x_1)} + \frac{1}{f(x_2)} - c' \right) \frac{1}{f(x_1 + x_2)} = \frac{1}{f(x_1)f(x_2)} - c, \]

which rearranges to

\[f(x_1 + x_2) = \frac{f(x_1) + f(x_2) - c'f(x_1)f(x_2)}{1 - cf(x_1)f(x_2)}. \]

So f is the exponential series of the formal group law $F_{a,b}(u,v)$ corresponding to $\lambda_{a,b}$, with $c' = -a - b$ and $c = ab$, see (E.4). \hfill \Box

Exercises.

9.5.7. If $\nu \in \mathbb{Z}^n$ satisfies (9.40), then the circle subgroup $S(\nu) \subset T^n$ acts on the quasitoric manifold M with isolated fixed points corresponding to the vertices of the quotient polytope P.

9.5.8. Let $M = M(P, \Lambda)$ be a quasitoric manifold. We realise the dual complex K_P as a triangulated sphere with vertices at the unit vectors $\frac{a_i}{\|a_i\|}$, $i = 1, \ldots, m$. Then one can define a continuous piecewise smooth map $f: S^{n-1} \to S^{n-1}$ by sending $\frac{a_i}{\|a_i\|}$ to $\frac{\lambda_i}{\|\lambda_i\|}$ (here λ_i is the ith column of Λ) and extending the map smoothly...
on the spherical simplices corresponding to \(I \in \mathcal{K}_P \). Such an extension is well defined because the vectors \(\{ \lambda_i : i \in I \} \) are linearly independent, so one always chooses the smallest spherical simplex spanned by them.

Show that \(\operatorname{td}(M) = \deg f \). (Hint: the number of preimages of \(\frac{v}{|v|} \in S^{n-1} \) under \(f \) is equal to the number of maximal simplices \(I_v \in \mathcal{K} \) such that all coefficients in the decomposition of \(v \) via \(\{ \lambda_i : i \in I_v \} \) are positive; these coefficients are \(\langle w_i(v), v \rangle \).

More generally, the Todd genus of a torus manifold can be calculated in this way as the degree of the corresponding multi-fan, see [179, §3].

9.5.9. Calculate \(c_n[M] \), the signature and the Todd genus for the quasitoric manifolds of Example 7.3.22, Example 7.3.23 and Exercise 7.3.38.

9.6. Genera for homogeneous spaces of compact Lie groups

Homogeneous spaces of compact Lie groups provide another source of concrete examples of manifolds with torus actions and isolated fixed points. They often admit invariant almost complex structures, including integrable ones, which can be classified by the methods of representation theory as described in the classical work of Borel and Hirzebruch [38]. Particular examples of great importance for topology include complex and quaternionic projective spaces, the Cayley plane, Grassmann and flag manifolds. A systematic study of the universal toric genus and rigidity phenomena for equivariant genera of homogeneous spaces has been undertaken by Buchstaber and Terzić in [76] and [77]. Here we give a review of these results, together with an account of some earlier work and recent developments.

We consider compact homogeneous spaces \(G/H \) consisting of right cosets \(gH \), where \(G \) is a compact connected Lie group and \(H \) is its closed connected subgroup of maximal rank. (The case in which \(H \) has smaller rank is not readily available for application of cobordism theory, as \(G/H \) admits a free torus action and therefore is null-cobordant in this case.) We study complex and almost complex structures on \(G/H \) which are invariant under the canonical left action of the maximal torus \(T^k \) on \(G/H \). When an almost complex structure is invariant under the canonical left action of \(G \), the weights of the tangential \(T^k \)-representation at a fixed point can be described in terms of the weights at the unit element and the action of the Weyl group \(W_G \). This leads to explicit formulae for the universal toric genus and the cobordism class of \(G/H \).

Let \(\text{rank} G = \text{rank} H = k \), and let \(T = T^k \) be a common maximal torus for \(G \) and \(H \). The canonical action \(\theta \) of \(T \) on \(G/H \) is given by \(t(gH) = (tg)H \), where \(t \in T \) and \(gH \in G/H \). Denote by \(N_G(T) \) the normaliser of the torus \(T \) in \(G \). Then \(W_G = N_G(T)/T \) is the Weyl group of \(G \).

Proposition 9.6.1. The set of fixed points under the canonical action \(\theta \) of \(T \) on \(G/H \) is given by \(W_G \cdot eH \), where \(e \) is the unit. The number of fixed points is equal to \(|W_G|/|W_H| = \chi(G/H) \).

Proof. If \(g \in N_G(T) \), then \(tg = gt' \) for some \(t' \in T \), so that \(t(gH) = gt'H = gH \) and \(gH \) is a fixed point. Conversely, assume that \(gH \) is a fixed point of \(\theta \), i.e. \(t(gH) = gH \) for any \(t \in T \). Hence, \(g^{-1}tg \in H \) for any \(t \in T \), so that \(g^{-1}Tg \subset H \). This implies that \(g^{-1}Tg \) is a maximal torus in \(H \), whence \(g^{-1}Tg = hTg^{-1} \) for some \(h \in H \), as any two maximal tori in \(H \) are conjugate. Hence, \((gh)^{-1}T(gh) = T \) so that \(gh \in N_G(T) \). Now, \((gh)H = gH \), which proves the first statement.
The number of fixed points of a torus action equals the Euler characteristic. On the other hand, if \(g, g' \in N_G(T) \) represent the same fixed point, then \(g'g^{-1} \in H \), so that \(g'g^{-1} \in N_H(T) \). Hence, the number of fixed points is equal to

\[
\frac{|N_G(T)|}{|N_H(T)|} = \frac{|N_G(T)|}{|N_H(T)|} = \frac{|W_G|}{|W_H|}.
\]

Weights and invariant almost complex structures. Denote by \(g, h \) and \(t \) the Lie algebras of \(G, H \) and \(T = T^k \), respectively, where \(k = \text{rank } G = \text{rank } H \). Assume that \(\dim G = 2m + k \) and \(\dim H = 2(m - n) + k \), so that \(\dim G/H = 2n \).

Let \(\alpha_1, \ldots, \alpha_m \) be the roots of \(g \) with respect to \(t \), that is, the weights of the adjoint representation \(Ad_T \) of \(T \) (given by the differential at \(e \) of the action of \(T \) on \(G \) by inner automorphisms). One can always choose the roots of \(g \) such that \(\alpha_{n+1}, \ldots, \alpha_m \) are the roots of \(h \) with respect to \(t \). The roots \(\alpha_1, \ldots, \alpha_n \) are called the roots of \(g \) complementary to those of \(h \). The root decompositions for \(g \) and \(h \) give the decomposition

\[
T_e(G/H) \cong g_{\alpha_1} \oplus \cdots \oplus g_{\alpha_n},
\]

where \(T_e(G/H) \) is the tangent space for \(G/H \) at the \(e \cdot H \) and \(g_{\alpha_i} \) is the real 2-dimensional root subspace corresponding to \(\alpha_i \). Obviously, \(\dim g_{\alpha_i} = 2n \).

Now assume we are given a \(G \)-invariant almost complex structure \(J \) on \(G/H \). This means that \(J \) is invariant under the canonical action of \(G \) on \(G/H \) (note that this a stronger condition than \(T \)-invariance). It follows that \(J \) commutes with the adjoint representation \(Ad_T \), so \(J \) induces a complex structure on each complementary root subspace \(g_{\alpha_1}, \ldots, g_{\alpha_n} \). Therefore, \(J \) can be completely described by the root system \(\varepsilon_1 \alpha_1, \ldots, \varepsilon_n \alpha_n \), where \(\varepsilon_i = \pm 1 \) depending on whether \(J \) and the adjoint representation \(Ad_T \) define the same or different orientations of \(g_{\alpha_i} \) (see Appendix B.6). The roots \(\varepsilon_i \alpha_k \) are called the roots of the almost complex structure \(J \).

Proposition 9.6.2 ([38, Proposition 13.4]). Let \(I_e \) be the isotropy representation of \(H \) in \(T_e(G/H) \), and let

\[
T_e(G/H) = i_1 \oplus \cdots \oplus i_s
\]

be the decomposition of \(T_e(G/H) \) into a sum of real irreducible \(I_e \)-representation subspaces. If \(G/H \) admits a \(G \)-invariant almost complex structure, then there are exactly \(2^s \) such structures.

Sketch of proof. The subspaces \(i_1, \ldots, i_s \) are invariant under \(T \) and therefore each of them is a sum of root subspaces, i.e. \(i_k = g_{\alpha_1} \oplus \cdots \oplus g_{\alpha_n} \), for some complementary roots \(\alpha_i, \ldots, \alpha_i \). Any linear transformation that commutes with \(I_e \) leaves each \(i_k \) invariant. By assumption, \(G/H \) admits an invariant almost complex structure, so we have at least one linear transformation without real eigenvalues that commutes with \(I_e \). This implies that on each \(i_k \) there are exactly two invariant complex structures.

Remark. The proposition above shows that the numbers \(\varepsilon_1, \ldots, \varepsilon_n \) that define a \(G \)-invariant almost complex structure cannot vary independently.

A criterion for integrability of a \(G \)-invariant almost complex structure on \(G/H \) in terms of its roots is given in [38, Lemma 12.4].
Example 9.6.3.
1. The complex projective space $\mathbb{C}P^n$ can be identified with the homogeneous space $U(n+1)/(U(1) \times U(n))$. The isotropy representation of $H = U(1) \times U(n)$ for $\mathbb{C}P^n$ is irreducible (an exercise), so we have only two $U(n+1)$-invariant almost complex structures, which are the standard complex structure and its conjugate.

2. The complex flag manifold Fl_n can be identified with the homogeneous space $U(n)/T^n$. Since $H = T^n$ is a torus, the isotropy representation splits into a sum of $m = \dim \mathbb{R} Fl_n = \frac{n(n-1)}{2}$ real 2-dimensional representations. Therefore, Fl_n admits 2^m invariant almost complex structures. By a result of [38], only two of them, conjugate to each other, are integrable.

Other examples of homogeneous spaces G/H with G-invariant complex structure include complex Grassmannians $Gr_k(\mathbb{C}^n) = U(n)/(U(k) \times U(n-k))$ and generalised flag manifolds $U(n)/(U(k_1) \times \cdots \times U(k_m))$ where $k_1 + \cdots + k_m = n$.

In general, a homogeneous space G/H with rank $G = \text{rank } H$ and H connected) admits a G-invariant complex structure if and only if H is the centraliser of a torus subgroup in G, and in this case $H^2(G/H; \mathbb{R}) \neq 0$, see [38, §13].

A G-invariant almost complex structure exists on a wider class of homogeneous spaces, which includes a finite list of examples of homogeneous spaces G/H in which H is the connected centraliser of an element of order 3 or 5 in G. In all these cases, G is an exceptional Lie group [38, §13]. The simplest case is $S^6 = G_2/SU(3)$; it is considered in more detail in Example 9.6.10 below.

We recall from Proposition 9.6.1 that a fixed point for the T-action θ on G/H is given by wH, where $w \in W_G$. We get a \mathbb{C}-linear map $d_w \theta(t) : T_w(G/H) \rightarrow T_w(G/H)$ and therefore a complex representation $d_w \theta$ of T in $T_w(G/H)$. The weights of this representation are called the weights at the fixed point wH.

Theorem 9.6.4. Let G/H be a homogeneous space with a G-invariant almost complex structure and let T be a common maximal torus of G and H.

(a) The weights of the T-action on G/H at the fixed point eH are the roots of the almost complex structure on G/H.

(b) The weights at a fixed point wH are obtained by the action of the element $w \in W_G$ on the weights of the almost complex structure.

Proof. The inner automorphism $i_t : G \rightarrow G$ corresponding to $t \in T$ induces a map $i_t : G/H \rightarrow G/H$ given by $i_t(gH) = t(gH)t^{-1} = (tg)H$. Hence, $\theta(t) = i_t$ and $d_w \theta = Ad$, where Ad is the T-representation in $g/h = T_e(G/H)$ obtained as the quotient of the adjoint representation. The weights of Ad, as a complex representation, are the roots of the almost complex structure on G/H. This proves (a).

To prove (b), consider the identity
\[\theta(wtw^{-1})(gH) = w\theta(t)(w^{-1}gH) \]
for $t \in T$ and $g \in G$. We can think of gH as a point in a neighbourhood $U(wH)$ of the fixed point $wH \in G/H$; then $w^{-1}gH \in U(eH)$. The identity above expresses the fact that the T-action near wH is obtained from the T-action near eH by twisting by the automorphism of the torus T corresponding to the element w of the Weyl group W_G. Recall that the weights of a T-representations are homomorphisms $T \rightarrow \mathbb{R}$ by definition, so the set of weights at wH is obtained from the set of weights at eH by the action of the same element $w \in W_G$. This proves (b).

\[\square\]
Localisation formulae. Here we give localisation formulae for the universal toric genus and characteristic numbers of \(G/H\) in terms of the roots of the almost complex structure and the action of the Weyl group. Both formulae are direct corollaries of the results of Section 9.4 and the general theory above.

Theorem 9.6.5. The universal toric genus of a \(G\)-invariant almost complex homogeneous space \(G/H\) with the action of a common maximal torus is given by

\[
\Phi(G/H) = \sum_{w \in W_G/W_H} \prod_{j=1}^{n} \frac{1}{|w(\alpha_j)|(u)}
\]

where \(\alpha_1, \ldots, \alpha_n\) are the roots of the almost complex structure on \(G/H\), \(u = (u_1, \ldots, u_k)\) and \([w(\alpha_j)](u)\) denote the powers in the formal group of geometric cobordisms given by (9.18). The equation above is satisfied in \(U^{-2n}(BT^k)\).

Proof. This follows from Theorem 9.4.1, the fact that the signs of all fixed points of an invariant almost complex \(T^k\)-manifold are positive, and the description of weights in Theorem 9.6.4. \(\square\)

A formula valid for all equivariant genera follows from Theorem 9.4.3:

Theorem 9.6.6. Let \(\varphi : \Omega_U \to R\) be a Hirzebruch genus with the corresponding series \(f(x) = x + \cdots \in R \otimes \mathbb{Q}[x]\). Then the equivariant genus \(\varphi^T(G/H) = \varphi(G/H) + \cdots \in R \otimes \mathbb{Q}[x_1, \ldots, x_k]\) is given by

\[
\varphi^T(G/H) = \sum_{w \in W_G/W_H} \prod_{j=1}^{n} \frac{1}{f([w(\alpha_j)], x)}
\]

where \(\alpha_1, \ldots, \alpha_n\) are the roots of the almost complex structure and \(x = (x_1, \ldots, x_k)\) are coordinates in the Lie algebra \(\mathfrak{t}\) of the torus \(T\).

Similarly, a formula for characteristic classes follows from Theorem 9.4.6:

Theorem 9.6.7. The tangential characteristic numbers of a \(G\)-invariant almost complex homogeneous space \(G/H\) are given by

\[
s_\omega[G/H] = \sum_{w \in W_G/W_H} \frac{P_\omega([w(\alpha_1), x], \ldots, [w(\alpha_n), x])}{[w(\alpha_1), x] \cdots [w(\alpha_n), x]},
\]

where \(P_\omega\) are the universal symmetric polynomials (D.7).

Example 9.6.8. Let \(G/H = \mathbb{C}P^n\) where \(G = U(n+1), H = U(1) \times U(n)\) with the action of \(T^{n+1}\) and the standard complex structure. The weights at \(eH\) are given by \(\alpha_j = e_j - e_0\) for \(j = 1, \ldots, n\) (compare Example 9.4.4). The Weyl group \(W_G\) is the symmetric group \(S_{n+1}\), so \(W_G/W_H = Z_{n+1}\) is a cyclic group. We obtain from Theorem 9.6.5 the following expression for the universal toric genus:

\[
\Phi(\mathbb{C}P^n) = \sum_{k=0}^{n} \prod_{j \neq k} \frac{1}{F_U(u_j, \bar{u}_k)},
\]

where \(\bar{u}_k = [-1](u_k)\) is the inverse series in the formal group law \(F_U\). Theorem 9.6.6 gives the following formula for an equivariant genus of \(\mathbb{C}P^n\):

\[
\varphi^T(\mathbb{C}P^n) = \sum_{k=0}^{n} \prod_{j \neq k} \frac{1}{f(x_j - x_k)}.
\]

(9.50)
The formula for $s_n[\mathbb{C}P^n]$ obtained from Theorem 9.6.7 coincides with (9.38).

Example 9.6.9. We consider the flag manifold $Fl_n = G/H$ where $G = U(n)$, $H = T^n$ with the action of T^n and the standard complex structure. The roots for $U(n)$ are given by $\alpha_{ij} = e_i - e_j$ for $1 \leq i < j \leq n$. The Weyl group W_G is the symmetric group S_n acting on t by permutations of coordinates, and W_H is trivial. Theorem 9.6.6 gives the following expression for an equivariant genus:

$$\varphi^T(Fl_n) = \sum_{\sigma \in S_n} \sigma \left(\prod_{1 \leq i < j \leq n} \frac{1}{f(x_i - x_j)} \right) = \sum_{\sigma \in S_n} \sigma \left(\prod_{1 \leq i < j \leq n} \frac{Q(x_i - x_j)}{(x_i - x_j)} \right).$$

Applying this formula for the universal genus $\varphi_U = \text{id}: \Omega^U \to \Omega^U$ we obtain an expression for the bordism class $[Fl_n] \in \Omega^U$ as the constant term of the above series in x_1, \ldots, x_n. This constant term is a polynomial in the coefficients q_i of the Q-series $Q_U(x) = \prod_{i,j} q_i(x)$, as in the proof of Theorem 9.4.6. The coefficients of this polynomial are the characteristic numbers $s_\omega[Fl_n]$. For example,

$$[Fl_3] = 6(q_1^3 + q_1 q_2 - q_3)$$

(an exercise), so the characteristic numbers are

$$s_{(3,0,0)}[Fl_3] = c_3[Fl_3] = \chi(Fl_3) = 6, \ s_{(1,1,0)}[Fl_3] = 6, \ s_{(0,0,1)}[Fl_3] = s_3[Fl_3] = -6.$$

Remark. We can consider the following linear operator:

$$L: \mathbb{Z}[x_1, \ldots, x_n] \to \text{Sym}_n, \quad Lx^\omega = \frac{1}{\Delta_n} \sum_{\sigma \in S_n} (\text{sign} \sigma) \sigma(x^\omega),$$

where $\text{Sym}_n \subset \mathbb{Z}[x_1, \ldots, x_n]$ is the ring of symmetric polynomials and $\Delta_n = \prod_{1 \leq i < j \leq n}(x_i - x_j)$. Then we can rewrite formula (9.51) as

$$\varphi^T(Fl_n) = L \left(\prod_{1 \leq i < j \leq n} Q(x_i - x_j) \right).$$

The operator L was used in [244] to define an additive basis of Sym_n consisting of **Schur polynomials**. This link was further explored in [76, §8], where the bordism class of Fl_n was expressed in terms of Schur polynomials. The operator L can also be expressed via **divided difference operators** of [32], linking the calculations of [76] to the calculation of the complex cobordism ring of Fl_n in [48].

Example 9.6.10. The 6-dimensional sphere S^6 can be obtained as the homogeneous space $G_2/SU(3)$ for the exceptional Lie group G_2. Here $SU(3)$ is the centraliser of an element of order 3. Furthermore, $S^6 = G_2/SU(3)$ admits a G_2-invariant almost complex structure, but does not admit a G_2-invariant complex structure [38, §13]. As the corresponding isotropy representation is irreducible, a G_2-invariant almost complex structure is unique up to conjugation.

A maximal torus is 2-dimensional, and the roots for the Lie algebra g_2 are

$$\pm v_1, \pm v_2, \pm v_3, \pm(v_1 - v_2), \pm(v_2 - v_3), \pm(v_1 - v_3),$$

where v_1, v_2 is a basis of t' and $v_1 + v_2 + v_3 = 0$. The complementary roots for g_2 related to su_3 are $\pm v_1, \pm v_2, \pm v_3$. The roots of the G_2-invariant almost complex structure on S^6 are

$$\alpha_1 = v_1, \ \alpha_2 = v_2, \ \alpha_3 = v_3 = -(v_1 + v_2).$$
The action of the maximal torus T^2 has $\chi(S^6) = 2$ fixed points, which form the orbit of eH under the action of the Weyl group W_{G_2}. By Theorem 9.6.4, the weights of the T^2-action at these two fixed points are given by α_1, α_2 and $-\alpha_1, -\alpha_2, -\alpha_3$. We therefore obtain the following formulae for the universal toric genus and any equivariant Hirzebruch genus of S^6:

\[
\phi(S^6) = \frac{1}{u_1 u_2 F_U(u_1, u_2)} + \frac{1}{\bar{u}_1 \bar{u}_2 F_U(u_1, u_2)},
\]

\[
\varphi^T(S^6) = \frac{1}{f(x_1)f(x_2)f(-x_1 - x_2)} + \frac{1}{f(-x_1)f(-x_2)f(x_1 + x_2)}.
\]

Exercises.

9.6.11. Let $\mathbb{C}P^n = U(n+1)/(U(n) \times U(1))$. Show that the isotropy representation of $H = U(n) \times U(1)$ in $T_0 \mathbb{C}P^n$ is irreducible.

9.6.12. Calculate the characteristic numbers of the flag manifold Fl_3 as described in Example 9.6.9.

9.6.13. Show that

\[
s_m[Fl_n] = \sum_{1 \leq i < j \leq n} L(x_i - x_j)^m,
\]

where $m = \frac{n(n-1)}{2}$ and L is the operator (9.52). Deduce that $s_m[Fl_n] = 0$ for $n > 3$.

9.6.14. The T^2-action on S^6 from Example 9.6.10 can be obtained by restriction of the T^3-action from Example 7.4.11. However, S^6 does not admit an almost complex structure which is invariant with respect to the T^3-action.

9.6.15. Show that the bordism class of $G_2/SU(3) = S^6$ is given by

\[
[S^6] = 2q_1^3 - 6q_1 q_2 + 6q_3,
\]

where the q_i are the coefficients of the series $Q_U(x) = \frac{x}{f_U(x)} = 1 + \sum_{k \geq 1} q_k x^k$.

9.7. Rigid genera and functional equations

By further application of the localisation formulae to homogeneous spaces, we obtain a series of rigidity and fibre multiplicativity results for bundles with fibre $\mathbb{C}P^2$, $\mathbb{H}P^2$, $\mathbb{O}P^2$ (Cayley plane) and S^6.

We recall from Definition 9.3.4 that a genus $\varphi : \Omega^U \to R$ is rigid on a T-manifold M if $\varphi^T(M) = \text{const} = \varphi(M)$. In the case when M has only isolated T-fixed points, the localisation formula of Theorem 9.4.3 tells us that a genus φ is rigid on M if and only if its corresponding series $f(x)$ satisfies the functional equation

\[
\sum_{p \in M^T} \sigma(p) \prod_{j=1}^n \frac{1}{f(w_j(p), x)} = c,
\]

where $c \in R$ is a constant. We refer to (9.53) as the *rigidity equation*.
\(\mathbb{CP}^2\)-multiplicative genera. In the proof of Theorem 9.5.6 we considered genera which are rigid on \(\mathbb{CP}^2\) with a non-standard stably complex structure. In this case the rigidity equation is given by (9.49), and its universal solution gives the 2-parameter genus \(\chi_{a,b}\). The case of the standard complex structure on \(\mathbb{CP}^2\) turns out to be more subtle: the general result is given below as Theorem 9.7.3.

We say that a genus \(\varphi: \Omega^E \to R\) is \(\mathbb{CP}^2\)-multiplicative if \(\varphi(\mathbb{CP}(\xi)) = \varphi(\mathbb{CP}^2(\varphi(B))\) for any complex 3-plane bundle \(\xi\) over \(B\), where \(\mathbb{CP}(\xi)\) denotes the complex projectivisation. A \(\mathbb{CP}^2\)-multiplicative genus \(\varphi\) is special if \(\varphi(\mathbb{CP}^2) = 0\).

Proposition 9.7.1. A genus \(\varphi\) is \(\mathbb{CP}^2\)-multiplicative if and only if it is rigid on \(\mathbb{CP}^2\).

Proof. By Theorem 9.3.6, if \(\varphi\) is rigid on \(\mathbb{CP}^2\), then it is fibre multiplicative for bundles \(E \times_G \mathbb{CP}^2 \to B\) with \(U^*(BG)\) torsion-free. This condition is satisfied for complex projectivisations, as one can take \(G = U(3)\) in this case.

On the other hand, if \(\varphi\) is \(\mathbb{CP}^2\)-multiplicative, then it vanishes on all manifolds \((S^3)^{\omega} \times \mathbb{CP}^2\) with \(|\omega| > 0\), because they are complex projectivisations of 3-plane bundles over the null-bordant base \(B_{\omega}\), as in the proof of Theorem 9.3.6. Therefore, \(\varphi\) is rigid on \(\mathbb{CP}^2\).

The rigidity equation (9.53) for the \(T^3\)-action on \(\mathbb{CP}^2\) has the following form:

\[
\frac{1}{f(x_1 - x_0)f(x_2 - x_0)} + \frac{1}{f(x_0 - x_1)f(x_2 - x_1)} + \frac{1}{f(x_0 - x_2)f(x_1 - x_2)} = c,
\]

see Example 9.6.8. Setting \(x = x_1 - x_0\), \(y = x_2 - x_1\), above, we get the equation

\[
\frac{1}{f(x)f(x + y)} + \frac{1}{f(-x)f(y)} + \frac{1}{f(-x - y)f(-y)} = c.
\]

As a warm-up, we prove the following result:

Theorem 9.7.2. The signature is the only \(\mathbb{CP}^2\)-multiplicative oriented genus (i.e. with the corresponding \(f(x)\) being an odd series) taking value 1 on \(\mathbb{CP}^2\).

Proof. If \(f(-x) = -f(x)\), then the rigidity equation (9.54) takes the form

\[
f(x + y) = \frac{f(x) + f(y)}{1 + cf(x)f(y)}.
\]

Taking the derivative with respect to \(y\), setting \(y = 0\) and using the fact that \(f(0) = 0\), \(f'(0) = 1\), we obtain \(f'(x) = 1 - cf^2(x)\). The general solution is therefore given by \(f(x) = \frac{\tanh(\sqrt{c_0})}{\sqrt{c}}\). When \(c = 1\), we obtain the \(L\)-genus (the signature), see Example E.3.9.2. It follows that the signature is rigid on \(\mathbb{CP}^2\), so it is \(\mathbb{CP}^2\)-multiplicative by Proposition 9.7.1.

Remark. According to a result of Borel and Hirzebruch [39, Theorem 28.4] (see also [188]), the signature is the only genus taking value 1 on \(\mathbb{CP}^2\) which is fibre multiplicative for all bundles \(E \to B\) with \(B\) and \(F\) connected oriented and \(\pi_1(B)\) acting trivially on \(H^*(F; \mathbb{R})\). Without the assumption on \(\pi_1(B)\) the signature is not fibre multiplicative. A counterexample is provided by a complex Kodaira surface [219] (of real dimension 4); it is the total space of a bundle with fibre and base a Riemannian surface, but has a positive signature. Equally, Theorem 9.3.6 does not apply to this bundle.
Note that no assumptions on $\pi_1(B)$ are made in Theorem 9.7.2; instead, one utilises the fact that the bundle in question is a complex projectivisation to deduce that $U^*(B)$ is torsion-free.

In general, CP^2-multiplicative genera are described by the following result of Buchstaber and Netay:

Theorem 9.7.3 ([63]). Let $\varphi : \text{CP}^2 \to R$ be a CP^2-multiplicative genus corresponding to $f(x) = x + \sum f_i x^{i+1}$, $f_i \in R \otimes \mathbb{Q}$.

(a) If $\varphi[\text{CP}^2] \neq 0$, then $f(x) = \frac{e^{ax}-e^{bx}}{ae^{ax}+be^{bx}}$, i.e. φ is the $\chi_{a,b}$-genus.

(b) If $\varphi[\text{CP}^2] = 0$ (i.e. φ is a special CP^2-multiplicative genus), then φ is the 2-parameter genus corresponding to the elliptic function

$$f(x) = -2\frac{\wp(x) + \frac{a^2}{x}}{\wp'(x) - a\wp(x) + b - \frac{a^2}{x}},$$

where \wp is the Weierstrass function of the elliptic curve $y^2 = 4x^3 - g_2x - g_3$ with $g_2 = \frac{1}{4}(3a^4 - 8ab)$, $g_3 = \frac{1}{64}(3a^6 - 12a^3b + 8b^2)$.

Remark. The exponential series $f(x)$ of the case (b) is a particular case of the exponential for the general elliptic formal group law considered in [62, Theorem 3.1]. We do not derive this general form here; instead we just check that the given series is the general analytic solution of (9.54) with $c = 0$.

Proof. We need to check that every solution $f(x) = x + \cdots$ of equation (9.54) has the form (a) or (b), and both these genera are CP^2-multiplicative.

In the case (a), the fact that the $\chi_{a,b}$-genus is CP^2-multiplicative follows from Proposition 9.7.1 and Theorem 9.5.6. (Alternatively, one can check (9.54) directly for $f(x) = e^{ax}-e^{bx}$, although it is a quite tedious computation.)

We now turn to the case (b). Setting $q(x) = \frac{1}{f(x)}$ in (9.54), we obtain

$$q(x)q(x+y) + q(-x)q(y) + q(-x-y)q(-y) = c.$$ \(9.55\)

Substituting here $c = 0$ and

$$q(x) = \frac{a}{2} - \frac{b}{2\wp(x)} + \frac{\wp'(x)}{2\wp(x)}$$

and noticing that $\wp(-x) = \wp(x)$ and $\wp'(-x) = -\wp'(x)$ we obtain

$$\left(\frac{a}{2} - \frac{b}{2\wp(x)} + \frac{\wp'(x)}{2\wp(x)}\right)\left(\frac{a}{2} - \frac{b}{2\wp(x+y)} + \frac{\wp'(x+y)}{2\wp(x+y)}\right) + \left(\frac{a}{2} - \frac{b}{2\wp(x)} + \frac{\wp'(x)}{2\wp(x)}\right)\left(\frac{a}{2} - \frac{b}{2\wp(y)} + \frac{\wp'(y)}{2\wp(y)}\right)$$

$$\left(\frac{a}{2} - \frac{b}{2\wp(x+y)} + \frac{\wp'(x+y)}{2\wp(x+y)}\right)\left(\frac{a}{2} - \frac{b}{2\wp(y)} + \frac{\wp'(y)}{2\wp(y)}\right) = 0.$$

Bringing this expression to a common denominator (here we use that $c = 0$) we get

$$\left(\wp(y) + \frac{a^2}{2}\right)\left(\wp'(x) + b - a\wp(x) + \frac{a^2}{2}\right)\left(\wp'(x+y) + b - a\wp(x+y) + \frac{a^2}{2}\right)$$

$$- \left(\wp(x+y) + \frac{a^2}{2}\right)\left(\wp'(x) - b + a\wp(x) + \frac{a^2}{2}\right)\left(\wp'(y) + b - a\wp(y) + \frac{a^2}{2}\right)$$

$$+ \left(\wp(x) + \frac{a^2}{2}\right)\left(\wp'(x+y) - b + a\wp(x+y) + \frac{a^2}{2}\right)\left(\wp'(y) - b + a\wp(y) + \frac{a^2}{2}\right) = 0.$$ \(9.56\)
Consider the left hand side as a function of x where y is a parameter. It is doubly periodic and may have poles of order at most 3 at $x = 0$ or $x = -y$ modulo the lattice. Consider $x = 0$ first. The coefficient of $\frac{1}{x}$ is zero. To calculate the coefficient of $\frac{1}{x^2}$ we use the expansions

\[\varphi(x) = \frac{1}{x} + \cdots, \quad \varphi'(x) = -\frac{2}{x^2} + \cdots, \]

\[\varphi(x + y) = \varphi(y) + \varphi'(y)x + \cdots, \quad \varphi'(x + y) = \varphi'(y) + \varphi''(y)x + \cdots \]

and the equations

\[(\varphi'(y))^2 = 4\varphi^3(y) - g_2\varphi(y) - g_3, \quad 2\varphi''(y) = 12\varphi^2(y) - g_2. \]

The result is

\[(\frac{3}{4}a^4 - 4ab - 2g_2)\varphi(y) + \frac{3}{16}a^6 - a^3b + \frac{a^2}{4}g_2 - 3g_3 + b^2, \]

which becomes 0 after substituting the values of g_2 and g_3 given in the theorem.

Similarly, the coefficient of $\frac{1}{x}$ is

\[\frac{1}{4}(3a^4 - 8ab - 4g_2)\varphi'(y) = 0. \]

It follows that the function on the left hand side of (9.56) does not have poles at $x = 0$. As the equation is invariant under changes of variables $x \to y, y \to x, a \to -a, b \to -b$ and $x \to y, y \to -x - y, a \to a, b \to b$, its left hand side has no poles at $x = -y$. Being a meromorphic function without poles, the left hand side of (9.56) must be constant. Finally, calculation of the free term at $x = 0$ shows that the constant is zero. We have therefore proved that the case (b) of the theorem gives a special $\mathbb{C}P^2$-multiplicative genus.

It remains to show that there are no other solutions of (9.54). Writing the expansion of this equation in y and calculating the constant term we get

\[(9.57) \quad q^2(x) - 2f_1q(-x) + q'(-x) = c = 6f_1^2 - 3f_2. \]

Writing

\[q(x) = \frac{1}{x} + \sum_{i \geq 0} q_i + 1x^i = \frac{1}{x} - f_1 + (f_1^2 - f_2)x + (2f_1f_2 - f_3 - f_3)x^2 + \cdots, \]

we obtain from (9.57) that the coefficients q_i with $i > 3$ are expressible uniquely as rational polynomials in g_1, g_2, g_3. Equivalently, the coefficients $f_i, i > 3$, in the series $f(x) = x + \sum f_i x^{i+1}$ satisfying the rigidity equation (9.54) are rational polynomials in f_1, f_2, f_3.

For the series of the case (a), a simple calculation shows that

\[f_1 = \frac{a + b}{2}, \quad f_2 = \frac{a^2 + 4ab + b^2}{6}, \quad 2f_1f_2 - f_3 - f_3 = 0. \]

By the argument in the previous paragraph, these identities determine the series of (a) (the exponential of the $\chi_{a,b}$-genus) uniquely.

Similarly, for the series of the case (b),

\[f_1 = \frac{-a}{2}, \quad f_2 = \frac{a^2}{4}, \quad f_3 = \frac{a^3 - 3a^3}{2}, \quad 2f_1^2 - f_2 = 0, \]

these identities determine the series of (b) uniquely.

Let $\sum_{i \geq 0} E_i(x)q^i = c$ be the expansion of (9.55) in y. The equation $E_0(x) = c$ is (9.57). The equation $E_1(x) = 0$ is equivalent to the equation obtained by taking the derivative of (9.57) with respect to x. However, the equation $E_2(x) = 0$ is new; it has the following form:

\[\frac{1}{2}q(x)q''(x) + 2(2f_1f_2 - f_3 - f_3)q(-x) + (f_1^2 - f_2)q'(x) - \frac{f_4}{2}q'(x) - \frac{f_4''(-x)}{2} = 0. \]

Now, calculating the coefficient of x^{k-4} for $k \geq 4$ in the equation above gives an expression for f_k as a polynomial P_k in f_i with $i < k$. Similarly, calculating the coefficient of x^{k-2} in (9.57), gives an expression for f_k as a polynomial Q_k in f_i with $i < k$. We have $P_k = Q_k$ for $k < 7$, but $P_8 \neq Q_8$. The difference $P_8 - Q_8$ is a
polynomial in f_1, \ldots, f_7; substituting the expressions of f_4, \ldots, f_7 via f_1, f_2, f_3 into the equation $P_8 - Q_8 = 0$ we finally obtain
\[(2f_1f_2 - f_1^3 - f_3)(2f_2^2 - f_2) = 0.\]
(The details can be found in [64].) This implies that either $2f_1f_2 - f_1^3 - f_3 = 0$, giving the case (a), or $2f_2^2 - f_2 = 0$, giving the case (b).

Rigidity on SU-manifolds. A stably complex manifold M is special unitary (SU-manifold for short) if $c_1(M) = 0$.

Lemma 9.7.4 ([221]). Let M be a stably complex S^1-manifold. Given an S^1-fixed submanifold $F \subset M$, dim $M -$ dim $F = 2k$, let $\omega_1(F), \ldots, \omega_k(F)$ be the weights of the S^1-representation in the normal bundle of F. Assume that $c_1(M)$ is divisible by m. Then all sums $\omega_1(F) + \cdots + \omega_k(F)$ corresponding to fixed submanifolds $F \subset M$ are equal modulo m.

In particular if M is a special unitary S^1-manifold, then $\omega_1(F) + \cdots + \omega_k(F) = N$ is independent of the fixed submanifold $F \subset M$. The number N is called the type of the S^1-action on M. We give a proof of Lemma 9.7.4 in the case of quasitoric manifolds below.

The Krichever genus is the Hirzebruch genus corresponding to the series $f(x) = \frac{e^{\alpha x}}{\Phi(x, z)}$, where $\Phi(x, z) = \frac{\sigma(z-x)}{\sigma(z)} e^{\sigma(z)x}$ is the Baker–Akhiezer function of the elliptic curve $y^2 = 4x^2 - g_2x - g_3$ (see the details in Section E.5). The universal Krichever genus φ_K depends on 4 parameters $\alpha, \varphi(z), \varphi'(z), g_2, g_3$, viewed as formal variables.

The following rigidity result is due to Krichever; the argument is similar to his earlier proof of the generalised Atiyah–Hirzebruch formula (Theorem 9.4.8):

Theorem 9.7.5 ([224]). The Krichever genus φ_K is rigid on SU-manifolds. Furthermore, if the S^1-action on an SU-manifold M has type $N \neq 0$, then $\varphi_K^S[M] = \varphi_K[M] = 0$.

Remark. The factor $e^{\alpha x}$ in the exponential $f(x) = \frac{e^{\alpha x}}{\Phi(x, z)}$ of the Krichever genus does not affect its values on SU-manifolds. Indeed, let φ be the genus corresponding to $f(x)$, and φ_α the genus corresponding to $e^{\alpha x} f(x)$. If $c_1(M) = 0$ and $\dim M = 2n$, then
\[
\varphi_\alpha[M] = \left(\prod_{i=1}^{n} \frac{x_i}{e^{\alpha x_i f(x_i)}} \right) (M) = \left(e^{-\alpha c_1(M)} \prod_{i=1}^{n} \frac{x_i}{f(x_i)} \right) (M) = \varphi[M].
\]
We therefore can set $\alpha = 0$ when dealing with SU-manifolds.

The $\chi_{\alpha, \beta}$-genus and the elliptic genus are particular cases of the Krichever genus. The special $\mathbb{C}P^2$-multiplicative genus of Theorem 9.7.3 (b) is also a particular case, as was observed in [63];

Theorem 9.7.6. The special $\mathbb{C}P^2$-multiplicative genus of Theorem 9.7.3 (b) is the Krichever genus corresponding to the parameters
\[
\alpha = -\frac{1}{2}, \quad \varphi(z) = \frac{3}{4}a^2, \quad \varphi'(z) = a^3 - 3b, \quad g_2 = \frac{1}{2}(3a^4 + 72ab).
\]

Proof. Let $f(x)$ be the exponential of special $\mathbb{C}P^2$-multiplicative genus; it satisfies the rigidity equation (9.54) with $c = 0$. Setting $b(x) = -\frac{f(x)}{f(-x)}$, we rewrite (9.54) as
\[
f(y) - b(x)f(x + y) + f(x)b(y)b(x + y) = 0.
\]
Interchanging \(x \) and \(y \), we get

\[f(x) - b(y)f(x + y) + f(y)b(x)f(x + y) = 0. \]

Resolving the last two equations with respect to \(f(x + y) \) we get

\[(9.58) \quad f(x + y) = \frac{f(x)^2 b(y) - f(y)^2 b(x)}{f(x) b(y) - f(y) b(x)^2}. \]

This is a particular case of the addition law (E.31), with \(\xi(x) = b(x) \) and \(\eta(x) = b(x)^2 \). Therefore, \(f(x) \) has the form \(\frac{a^2}{b(x)} \) by Theorem E.5.4, which is the exponential of the Krichever genus. The identities for the parameters follow by comparing the expansion of \(f(x) \),

\[f(x) = x - a_2 x^2 + a_3 x^3 + \frac{4b-3a^3}{8} x^4 + \frac{13a^4-28ab}{40} x^5 + \ldots \]

with the expansion (E.29).

\(\square \)

Remark. The special \(\mathbb{C}P^2 \)-multiplicative genus of Theorem 9.7.3 (b) has the associated elliptic curve \(y^2 = 4x^3 - g_2 x - g_3 \); the exponential \(f(x) \) is doubly periodic with respect to this curve. When the same genus is written as the Krichever genus, the corresponding Baker–Akhiezer function \(\Phi(x, z) \) also has the associated elliptic curve. These two curves are different: \(g_2 = \frac{1}{4}(3a^4 - 8ab) \) for the first one, and \(g_2 = \frac{1}{4}(3a^4 + 72ab) \) for the second.

Example 9.7.7. Consider the special \(\mathbb{C}P^2 \)-multiplicative genus with \(a = 0 \). By Theorem 9.7.6, its exponential \(f(x) \) has the form \(\frac{1}{\Phi(x,z)} \) for a special Baker–Akhiezer function \(\Phi(x,z) \) with \(\varphi(z) = 0 \) and \(g_2 = 0 \). Comparing the addition law (9.58) with the one given by Proposition E.5.3, one obtains that \(f(x) \) satisfies the equation \(b(x)^2 = \frac{f(x)^2}{f(x)} = f(x) \). Rewriting this in terms of \(\Phi(x) \) gives \(\Phi(x) + \Phi(-x)^2 = 0 \).

After differentiating we obtain \(\Phi''(x) - 2\Phi(-x)\Phi'(-x) = \Phi''(x) + 2\Phi(x)^2\Phi(-x) = 0 \).

Using the identity (E.28) we finally get \((\frac{d^2}{dx^2} - 2\varphi(x))\Phi(x) = 0 \), which is the Lame equation with \(\varphi(z) = 0 \).

As both cases of Theorem 9.7.3 are particular cases of the Krichever genus, we obtain the following unexpected corollary:

Corollary 9.7.8. Any \(\mathbb{C}P^2 \)-multiplicative genus is rigid on \(SU \)-manifolds.

We next consider the Krichever genus for quasitoric \(SU \)-manifolds.

Proposition 9.7.9. An omnioriented quasitoric manifold \(M = M(P,A) \) has \(c_1(M) = 0 \) if and only if there exists a vector \(u \in \mathbb{Z}^n \) such that \(\langle u, \lambda_i \rangle = 1 \) for \(i = 1, \ldots, m \). Here the \(\lambda_i \) are the columns of characteristic matrix \(A \).

In particular, if \(A \) has the refined form (7.7), then \(M \) is \(SU \) if and only if the column sums of \(A \) are all equal to 1.

Proof. By Theorem 7.3.29, \(c_1(M) = v_1 + \cdots + v_m \). By Theorem 7.3.28, \(v_1 + \cdots + v_m \) is zero in \(H^2(M) \) if and only if \(v_1 + \cdots + v_m = \sum_i \langle u, \lambda_i \rangle v_i \) for some linear function \(u \in \mathbb{Z}^n \), whence the result follows.

Proposition 9.7.10. Let \(M \) be a quasitoric \(SU \)-manifold of dimension 2n. Then there exists a circle subgroup \(S^1 = S(\nu) \subset T \) such that \(M^{S^1} = M^T \) and the type of the \(S^1 \)-action on \(M \) is nonzero.
Proof. Let $v = F_{j_1} \cap \cdots \cap F_{j_n}$ be a T-fixed point, and let $w_1(v), \ldots, w_n(v)$ be the weights of the T-representation at F_v. Then $w_1(v), \ldots, w_n(v)$ and $\lambda_{j_1}, \ldots, \lambda_{j_n}$ are coprime lattice bases. For any circle subgroup $S^1 = S(\nu) \subset T$, the weights of the S^1-representation at F_v are given by $\langle w_1(v), \nu \rangle, \ldots, \langle w_n(v), \nu \rangle$. If we write $\nu = \nu_1 \lambda_{j_1} + \cdots + \nu_n \lambda_{j_n}$, then $\langle w_i(v), \nu \rangle = \nu_i$. Let $u \in \mathbb{Z}^n$ be a vector described in Proposition 9.7.9, so that $\langle u, \lambda_k \rangle = 1$ for any λ_k. Then
$$\langle w_1(v), \nu \rangle + \cdots + \langle w_n(v), \nu \rangle = \nu_1 + \cdots + \nu_n = \nu_1 \langle u, \lambda_{j_1} \rangle + \cdots + \nu_n \langle u, \lambda_{j_n} \rangle = \langle u, \nu \rangle$$
(note that this sum is independent of u, in accordance with Lemma 9.7.4).

Now, the condition $M^{S^1} = M^T$ is equivalent to $\langle w_k(v), \nu \rangle \neq 0$ for $k = 1, \ldots, n$ and any v, and the S^1-action has nonzero type whenever $\langle u, \nu \rangle \neq 0$. The result follows as one can always choose a vector $\nu \in \mathbb{Z}^n$ which does not belong to the given finitely many rational hyperplanes. \hfill \Box

Theorem 9.7.11 ([71]). Let M be an omnioriented quasitoric SU-manifold.

(a) The Krichever genus φ_K vanishes on M.

(b) M represents 0 in Ω^U whenever $\dim M < 10$.

Proof. Statement (a) follows from Proposition 9.7.10 and Theorem 9.7.5. Statement (b) follows from Theorem E.5.6. \hfill \Box

Example 9.7.12. Quasitoric SU-manifolds which are not bordant to zero were constructed in [240] and [239] in all even dimensions ≥ 10. A 10-dimensional example L_{23} is obtained by twisting the complex structure on $L_{23} = CP(\eta \oplus \mathbb{C}^3)$, where η is the tautological line bundle over CP^2 (compare Exercise 9.1.27). This L_{23} is a quasitoric manifold over $\Delta^2 \times \Delta^3$ with characteristic matrix
$$A = \begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{pmatrix}$$
The column sums are 1 by inspection, so $c_1(L_{23}) = 0$. Furthermore, a calculation shows that $s_3(L_{23}) = 5$, so L_{23} is in Ω^U_{10} and $[L_{23}]$ represents a generator of infinite order in the SU-bordism group $\Omega^{SU}_{10} \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_2$ (see [239]).

Rigidity on S^6. Next we consider genera which are rigid on a particular SU-manifold, the 6-dimensional sphere. It has a T^2-action preserving the almost complex structure coming from its realisation as the homogeneous space $G_2/SU(3)$, see Example 9.6.10. The corresponding rigidity equation is given by
$$f(x)f(y)f(-x-y) + \frac{1}{f(-x)f(-y)f(x+y)} = c.$$ We also note that $s_3(S^6) = 6$, so S^6 represents a generator of the SU-bordism group $\Omega^{SU}_{6} \cong \mathbb{Z}$ (see [340]).

Theorem 9.7.13. Let $\varphi : \Omega^U \rightarrow R$ be a genus which is rigid on S^6.

(a) If $\varphi(S^6) \neq 0$, then φ is the Krichever genus with parameter $\varphi'(z) \neq 0$;

(b) If $\varphi(S^6) = 0$, then φ is any genus corresponding to a series of the form $f(x) = e^{\beta x} \tilde{f}(x)$, where $\tilde{f}(x) = x + \cdots$ is an odd power series.
Proof. Setting \(b(x) = -\frac{f(x)}{f(-x)} = 1 + \sum_{k \geq 1} b_k x^k \), we rewrite (9.39) as

(9.60)
\[
b(x+y) = b(x)b(y) - cf(x)f(y)f(x+y).
\]

For \(c = 0 \) we obtain \(b(x) = e^{2\beta x} \) for some \(\beta \). This implies that \(f(-x) = -e^{-2\beta x} f(x) \).

Equivalently, \(\bar{f}(x) = e^{-2\beta x} f(x) \) is an odd series, which proves (b).

Now let \(c \neq 0 \). Applying the operator \(D = \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \) to (9.60), we obtain

\[
ce f(x+y) = \frac{b'(x)b(y) - b'(y)b(x)}{f'(x)f(y) - f'(y)f(x)}.
\]

For \(y = 0 \) this equation becomes \(b'(x) = b_1 b(x) - cf(x)^2 \). Plugging this into the identity above we get

\[
f(x+y) = \frac{f(x)^2 b(y) - f(y)^2 b(x)}{f(x)f'(y) - f(y)f'(x)}.
\]

Now it follows from Proposition E.5.3 and Theorem E.5.4 that \(\varphi \) is the Krichever genus. Also, the identity \(b'(x) = b_1 b(x) - cf(x)^2 \) together with the expansion (E.29) imply that

\[
\varphi[S^6] = c = b_1 b_2 - 3b_3 = -2f_1^3 + 6f_1 f_2 - 6f_3 = \varphi'(z),
\]

so the statement (a) follows.

The conditions \(\alpha = \varphi'(z) = 0 \) specify exactly the elliptic genus as a particular case of the Krichever genus with parameters \(\alpha, \varphi(z), \varphi'(z), g_2 \) (see Exercise E.5.9).

The following question remains open:

Problem 9.7.14. Let \(\varphi \) be a genus which is rigid on any special unitary \(T^k \)-manifold. Is it true that \(\varphi \) is the Krichever genus for some values of the parameters \(\alpha, \varphi(z), \varphi'(z), g_2 \)?

By Theorem 9.7.13, the answer is positive when \(\varphi[S^6] \neq 0 \).

Rigidity on \(\mathbb{H}P^2 \). The quaternionic projective plane \(\mathbb{H}P^2 \) is a well-known example of an orientable manifold which does not admit a stably complex structure \([189]\). Nevertheless, we can study the rigidity of oriented genera on \(\mathbb{H}P^2 \) (see Section E.4). There are analogues of the localisation formula (Theorem 9.4.1) and Theorem 9.4.3 for oriented genera.

The quaternionic projective space \(\mathbb{H}P^n \) is the quotient of \(\mathbb{H}^{n+1} \setminus \{0\} \) by the right action of the multiplicative group \(\mathbb{H}^* = \mathbb{H} \setminus \{0\} \) of quaternions. Points of \(\mathbb{H}P^n \) are represented by \((n+1)\)-tuples of homogeneous coordinates \([q_0 : q_1 : \cdots : q_n] \) with identifications \([q_0 : q_1 : \cdots : q_n] = [q_0 : q_1 q : \cdots : q_n q] \) for \(q \in \mathbb{H}^* \).

We define the action of \(T^{n+1} \) on \(\mathbb{H}P^n \) by

\[
(t_0, t_1, \ldots, t_n) \cdot [q_0 : q_1 : \cdots : q_n] = [t_0 q_0 : t_1 q_1 : \cdots : t_n q_n],
\]

where each \(t_i \) is understood as a complex number of absolute value 1. This action has \(n+1 \) fixed points \(p_0, \ldots, p_n \), where \(p_i \) has only the \(i \)-th coordinate nonzero. The weights at \(p_k \) are given by the \(2n \) vectors \(w_j^\pm(p_k) = e_j \pm e_k \in \mathbb{Z}^{n+1} \) where \(j \neq k \).

We therefore have \(\langle w_j^\pm(p_k), x \rangle = x_j \pm x_k \) where \(x = (x_0, x_1, \ldots, x_n) \). Furthermore, the signs of all fixed points are positive.
Given an oriented genus \(\varphi : \Omega^{SO} \to R \) corresponding to an odd power series
\[f(x) = x + \sum_{k \geq 1} f_{2k}x^{2k+1}, \]
the oriented analogue of Theorem 9.4.3 gives the following expression for the equivariant genus \(\varphi^T : \Omega^{SO} \to R[[x_0^2, x_1^2, \ldots, x_n^2]]: \)
\begin{equation}
\varphi^T(\mathbb{H}P^n) = \sum_{k=0}^{n} \prod_{j \neq k} \frac{1}{f(x_j + x_k)f(x_j - x_k)}.
\end{equation}

We can therefore consider the corresponding rigidity equations and study oriented genera which are rigid on \(\mathbb{H}P^n. \)

Example 9.7.15. The rigidity equation for \(\mathbb{H}P^1 \) has the form
\[
\frac{1}{f(x_1 + x_0)f(x_1 - x_0)} + \frac{1}{f(x_0 + x_1)f(x_0 - x_1)} = c.
\]
We have \(c = \varphi(\mathbb{H}P^1) = 0, \) and the rigidity equation is satisfied for any odd series \(f(x). \) This expresses the fact that \(\mathbb{H}P^1 = S^4 \) is \(T^2 \)-equivariantly bordant to zero.

Substituting \(x_0 = x, \ x_1 = y, \ x_2 = z \) into identity (9.61) with \(n = 2 \) we obtain the following rigidity equation for \(\mathbb{H}P^2: \)
\[
\frac{1}{f(x+y)f(y-z)f(z-x)} + \frac{1}{f(x+y)f(z-y)f(z+y)} + \frac{1}{f(x+z)f(y-z)f(y+z)} = c.
\]
Setting \(z = 0 \) and using that \(f(x) \) is odd, we obtain the functional equation
\begin{equation}
f(x+y)f(x-y) = \frac{f(x)^2 - f(y)^2}{1 - cf(x)^2f(y)^2}.
\end{equation}

Theorem 9.7.16. The general analytic solution of (9.62) is the Jacobi elliptic sine \(f(x) = \operatorname{sn}(x) \) with parameters \(\delta = -3f_2, \ \varepsilon = c = 10f_4 - 3f_2^2. \)

Proof. After differentiating equation (9.62) twice and setting \(y = 0 \) we get
\begin{equation}
(f')^2 = 1 + f f'' - cf^4.
\end{equation}
As \(f'(x) \) is even and \(f'(0) = 1, \) we can set \((f')^2 = 1 + \sum_{k \geq 1} b_k f^{2k} \) for some \(b_k. \)
Hence, \(f f'' = \sum_{k \geq 1} b_k f^{2k}. \) Now from (9.63) we immediately obtain \(b_1 = 6f_2, \ b_2 = c = 10f_4 - 3f_2^2 \) and \(b_k = 0 \) for \(k > 2. \) The resulting equation is therefore \((f')^2 = 1 + b_1 f^2 + b_2 f^4, \) and the result follows. \(\square \)

We say that an oriented genus \(\varphi : \Omega^{SO} \to R \) is \(\mathbb{H}P^2 \)-multiplicative if \(\varphi(\mathbb{H}P(\xi)) = \varphi(\mathbb{H}P^2) \varphi(B) \) for any quaternionic 3-plane bundle \(\xi \) over \(B, \) where \(\mathbb{H}P(\xi) \) denotes the quaternionic projectivisation. Theorem 9.7.16 can be used to prove the following result of Kreck and Stolz:

Theorem 9.7.17 ([220]). The elliptic genus \(\varphi_{ell} \) is universal for \(\mathbb{H}P^2 \)-multiplicative oriented genera.

Proof. By the oriented analogue of Theorem 9.3.6, an \(\mathbb{H}P^2 \)-multiplicative genus \(\varphi \) is rigid on \(\mathbb{H}P^2. \) Then \(\varphi \) is the elliptic genus by Theorem 9.7.16.

On the other hand, the elliptic sine satisfies (9.62) and therefore the elliptic genus is rigid on \(\mathbb{H}P^2. \) As \(\mathbb{H}P^2 \) is a spin manifold, rigidity is equivalent to fibre multiplicativity by the result of Ochanine [295, Proposition 1]. \(\square \)

Remark. Unlike the situation with \(\mathbb{C}P^2 \) and \(S^6, \) the case \(c = 0 \) is not so special for \(\mathbb{H}P^2 \)-multiplicative oriented genera. Indeed, setting \(c = \varepsilon = 0 \) in the elliptic genus gives the \(A \)-genus (see Example E.4.1.2), and (9.62) becomes the standard
formula for \(\sin(x) \). According to a result of Atiyah and Hirzebruch [13], the \(A \)-genus vanishes on any spin manifold with nontrivial \(S^1 \)-action.

Rigidity on \(\mathbb{O} \mathbb{P}^2 \). The Cayley plane \(\mathbb{O} \mathbb{P}^2 \) can be described as the homogeneous space \(F_4/\text{Spin}(9) \) (see [38, §19]), and therefore has an action of the maximal torus \(T^4 \) of the exceptional Lie group \(F_4 \). This action has three fixed points \(p_0, p_1, p_2 \), where \(p_0 \) is the orbit of the unit of \(F_4 \) under the action of \(\text{Spin}(9) \), see Proposition 9.6.1. The weights of the fixed points are also described in [38, §19].

The Witten genus \(\varphi_W \) (see Example E.4.1.3) satisfies \(\varphi_W[\mathbb{O} \mathbb{P}^2] = 0 \) and is known to be fibre multiplicative on bundles \(E \to B \) with fibre \(\mathbb{O} \mathbb{P}^2 \) and compact connected structure group. See [266] for the history of this result. We may therefore ask if the Witten genus is universal for genera with these properties, and whether this can be proved by the techniques developed in this section, i.e. by solving the appropriate rigidity functional equation.

Exercises.

9.7.18. Calculate the characteristic number \(s_5[\tilde{L}_{23}] \) for the 10-dimensional quasitoric \(SU \)-manifold \(\tilde{L}_{23} \) of Example 9.7.12.

9.7.19. Calculate the signs and weights of the fixed points for \(\tilde{L}_{23} \), calculate the equivariant toric genus, and write the corresponding rigidity equation.

9.7.20. Use the Landweber Exact Functor Theorem to prove that the special \(\mathbb{C} \mathbb{P}^2 \)-multiplicative genus \(\varphi \) defines a cohomology theory \(h^*(X) = U^* \otimes_{\mathbb{Z}_2} \mathbb{Z}_{(2)}[a,b] \), where \(\mathbb{Z}_{(2)} \) denotes the ring of 2-adic integers, \(\deg a = -2 \), \(\deg b = -6 \), and the \(\Omega^U \)-module structure on \(\mathbb{Z}_{(2)}[a,b] \) is defined via the appropriate localisation of \(\varphi \).

9.7.21. Use the expansion (E.22) to produce the following formula for the Witten genus of a 16-dimensional manifold in terms of its Pontryagin numbers:

\[
\varphi_W[M^{16}] = \frac{g_2^2}{806400} \left(19p_1^4 - 76p_1^2p_2 + 52p_2^2 + 48p_1p_3 - 48p_4\right).
\]

The Pontryagin numbers of the Cayley plane are given by \(p_1 = p_3 = 0 \), \(p_2 = 36 \), \(p_4 = 39 \) (see [38, §19]), so we obtain \(\varphi_W[\mathbb{O} \mathbb{P}^2] = 0 \).
Appendix A

Commutative and Homological Algebra

Here we review some basic algebraic notions and results in a way suited for topological applications. In order to make algebraic constructions compatible with topological ones we sometimes use a notation which may seem unusual to a reader with an algebraic background. This in particular concerns the way we treat gradings and resolutions.

We fix a ground ring k, which is always assumed to be a field or the ring \mathbb{Z} of integers. In the latter case by a ’k-vector space’ we mean an abelian group.

A.1. Algebras and modules

A k-algebra (or simply algebra) A is a ring which is also a k-vector space, and whose multiplication $A \times A \to A$ is k-bilinear. (The latter condition is void if $k = \mathbb{Z}$, so \mathbb{Z}-algebras are ordinary rings.) All our algebras will be commutative and with unit 1, unless explicitly stated otherwise. The basic example is $A = k[v_1, \ldots, v_m]$, the polynomial algebra on m generators, for which we shall often use a shortened notation $k[m]$.

An algebra A is finitely generated if there are finitely many elements a_1, \ldots, a_n of A such that every element of A can be written as a polynomial in a_1, \ldots, a_n with coefficients in k. Therefore, a finitely generated algebra is the quotient of a polynomial algebra by an ideal.

An A-module is a k-vector space M on which A acts linearly, that is, there is a map $A \times M \to M$ which is k-linear in each argument and satisfies $1m = m$ and $(ab)m = a(bm)$ for all $a, b \in A, m \in M$. Any ideal I of A is an A-module. If $A = k$, then an A-module is a k-vector space.

An A-module M is finitely generated if there exist x_1, \ldots, x_n in M such that every element x of M can be written (not necessarily uniquely) as $x = a_1x_1 + \cdots + a_nx_n$, $a_i \in A$.

An algebra A is \mathbb{Z}-graded (or simply graded) if it is represented as a direct sum $A = \bigoplus_{i \in \mathbb{Z}} A^i$ such that $A^i \cdot A^j \subset A^{i+j}$. Elements $a \in A^i$ are said to be homogeneous of degree i, denoted $\deg a = i$. The set of homogeneous elements of A is denoted by $\mathcal{H}(A) = \bigcup_i A^i$. An ideal I of A is homogeneous if it is generated by homogeneous elements. In most cases our graded algebras will be either nonpositively graded (i.e. $A^i = 0$ for $i > 0$) or nonnegatively graded (i.e. $A^i = 0$ for $i < 0$); the latter is also called an \mathbb{N}-graded algebra. A nonnegatively graded algebra A is connected if $A^0 = k$. For a nonnegatively graded algebra A, define the positive ideal by $A^+ = \bigoplus_{i>0} A^i$; if A is connected and k is a field then A^+ is a maximal ideal.

If A is a graded algebra, then an A-module M is graded if $M = \bigoplus_{i \in \mathbb{Z}} M^i$ such that $A^i \cdot M^j \subset M^{i+j}$. An A-module map $f : M \to N$ between two graded
modules is degree-preserving (or of degree 0) if $f(M^i) \subset N^i$, and is of degree k if $f(M^i) \subset N^{i+k}$ for all i.

Graded algebras arising in topology are often graded-commutative (or skew-commutative) rather than commutative in the usual sense. This means that

$$ab = (-1)^{ij} ba \quad \text{for any } a \in A^i, b \in A^j.$$

If the characteristic of k is not 2, then the square of an odd-degree element in a graded-commutative algebra is zero. To avoid confusion we often double the grading in commutative algebras A; the resulting graded algebras $A = \bigoplus_{i \in \mathbb{Z}} A^{2i}$ are commutative in either sense.

For example, we make the polynomial algebra $k[v_1, \ldots, v_m]$ graded by setting $\deg v_i = 2$. It then becomes a free graded commutative algebra on m generators of degree two (free means no relations apart from the graded commutativity). The exterior algebra $\Lambda[u_1, \ldots, u_m]$ has relations $u_i^2 = 0$ and $u_i u_j = -u_j u_i$. We shall assume $\deg u_i = 1$ unless otherwise specified. An exterior algebra is a free graded commutative algebra if the characteristic of k is not 2.

Bigraded (i.e., $\mathbb{Z} \oplus \mathbb{Z}$-graded) and multigraded (\mathbb{Z}^m-graded) algebras A are defined similarly; their homogeneous elements $a \in A$ have bidegree $\text{bideg } a = (i, j) \in \mathbb{Z} \oplus \mathbb{Z}$ or multidegree $\text{md}eg a = i \in \mathbb{Z}^m$ respectively.

An A-module F is free if it is isomorphic to a direct sum $\bigoplus_{i \in I} F_i$, where each F_i is isomorphic to A as an A-module. If both A and F are graded then every F_i is isomorphic to a j-fold suspension $s^j A$ for some j, where $s^j A$ is the graded A-module with $(s^j A)^k = A^{k-j}$. A basis of a free A-module F is a set S of elements of F such that each $x \in F$ can be uniquely written as a finite linear combination of elements of S with coefficients in A. If A is finitely generated then all bases have the same cardinality (an exercise), called the rank of F. If S is a basis of a free A-module F, then for any A-module M a set map $S \to M$ extends uniquely to an A-module homomorphism $F \to M$.

We continue assuming A to be (graded) commutative. The tensor product $M \otimes_A N$ of A-modules M and N is the quotient of a free A-module with generator set $M \times N$ by the submodule generated by all elements of the following types:

$$(x + x', y) - (x, y) - (x', y), \quad (x, y + y') - (x, y) - (x, y'),$$

$$(ax, y) - a(x, y), \quad (x, ay) - a(x, y),$$

where $x, x' \in M$, $y, y' \in N$, $a \in A$. For each basis element (x, y), its image in $M \otimes_A N$ is denoted by $x \otimes y$.

We shall denote the tensor product $M \otimes_k N$ of k-vector spaces by simply $M \otimes N$. For example, if $M = N = k[v]$, then $M \otimes N = k[v_1, v_2]$.

The tensor product $A \otimes B$ of graded-commutative algebras A and B is a graded commutative algebra, with the multiplication defined on homogeneous elements by

$$(a \otimes b) \cdot (a' \otimes b') = (-1)^{\deg b \deg a'} a' b \otimes b'.$$

A module P is projective if for any epimorphism of modules $p : M \to N$ and homomorphism $f : P \to N$, there exists a homomorphism $f' : P \to M$ such that
\[pf' = f. \] This is described by the following commutative diagram:

\[
\begin{array}{ccc}
M & \xrightarrow{p} & N \\
\downarrow f' & & \downarrow f \\
P & & 0
\end{array}
\]

Equivalently \(P \) is projective if it is a direct summand of a free module (an exercise).
In particular, free modules are projective.

A sequence of homomorphisms of \(A \)-modules

\[
\cdots \rightarrow M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \xrightarrow{f_3} M_4 \rightarrow \cdots
\]

is called an exact sequence if \(\text{Im} \ f_i = \text{Ker} \ f_{i+1} \) for all \(i \).

A chain complex is a sequence \(C_* = \{C_i, \partial_i\} \) of \(A \)-modules \(C_i \) and homomorphisms \(\partial_i : C_i \rightarrow C_{i-1} \) such that \(\partial_i \partial_{i+1} = 0 \). This is usually written as

\[
\cdots \rightarrow C_{i+1} \xrightarrow{\partial_{i+1}} C_i \xrightarrow{\partial_i} C_{i-1} \rightarrow \cdots
\]

The condition \(\partial_i \partial_{i+1} = 0 \) implies that \(\text{Im} \ \partial_{i+1} \subset \text{Ker} \ \partial_i \). Elements of \(\text{Ker} \ \partial \) are called cycles, and elements of \(\text{Im} \ \partial \) are boundaries. The \(i \)th homology group (or homology module) of \(C_* \) is defined by

\[
H_i(C_*) = \text{Ker} \ \partial_i / \text{Im} \ \partial_{i+1}.
\]

A cochain complex is a sequence \(C^* = \{C^i, d^i\} \) of \(A \)-modules \(C^i \) and homomorphisms \(d^i : C^i \rightarrow C^{i+1} \) such that \(d^i d^{i-1} = 0 \). This is usually written as

\[
\cdots \rightarrow C^{i-1} \xrightarrow{d^{i-1}} C^i \xrightarrow{d^i} C^{i+1} \rightarrow \cdots
\]

Elements of \(\text{Ker} \ d \) are called cocycles, and elements of \(\text{Im} \ d \) are coboundaries. The \(i \)th cohomology group (or cohomology module) of \(C^* \) is defined by

\[
H^i(C^*) = \text{Ker} \ d^i / \text{Im} \ d^{i-1}.
\]

A cochain complex may be also viewed as a graded \(k \)-vector space \(C^* = \bigoplus_i C^i \) in which every graded component \(C^i \) is an \(A \)-module, together with an \(A \)-linear map \(d : C^* \rightarrow C^* \) raising the degree by 1 and satisfying the condition \(d^2 = 0 \).

Note that a chain complex may be turned to a cochain complex by inverting the grading (i.e. turning the \(i \)th graded component into the \((-i)\)th).

A map of cochain complexes is a graded \(A \)-module map \(f : C^* \rightarrow D^* \) such that \(f d = df \). Such a map induces a map in cohomology \(f : H(C^*) \rightarrow H(D^*) \), which is also an \(A \)-module map.

Let \(f, g : C^* \rightarrow D^* \) be two maps of cochain complexes. A cochain homotopy between \(f \) and \(g \) is a set of maps \(s = \{s^i : C^i \rightarrow D^{i-1}\} \) satisfying the identities

\[
ds^i + s^i d^i = f^i - g^i
\]

(more precisely, \(d^{i-1} s^i + s^{i+1} d^i = f^i - g^i \)). This is described by the following commutative diagram

\[
\begin{array}{cccc}
\cdots & \xrightarrow{s^{i-1}} & C^{i-1} & \xrightarrow{d^{i-1}} & C^i & \xrightarrow{d^i} & C^{i+1} & \xrightarrow{s^i} & \cdots \\
\urcorner & & \urcorner & & \urcorner & & \urcorner & & \urcorner \\
\cdots & \xrightarrow{d^{i-1}} & D^{i-1} & \xrightarrow{s^{i-1}} & D^i & \xrightarrow{s^i} & D^{i+1} & \xrightarrow{d^i} & \cdots
\end{array}
\]
If there is a cochain homotopy between \(f \) and \(g \), then \(f \) and \(g \) induce the same map in cohomology (an exercise). A \textit{chain homotopy} between maps of chain complexes is defined similarly.

A \textit{differential graded algebra} (a \textit{dg-algebra} for short) is a graded algebra \(A \) together with a \(k \)-linear map \(d: A \to A \), called the \textit{differential}, which raises the degree by one, and satisfies the identity \(d^2 = 0 \) (so that \(\{A^i, d^i\} \) is a cochain complex) and the \textit{Leibniz identity}

\[
d(a \cdot b) = da \cdot b + (-1)^i a \cdot db \quad \text{for } a \in A^i, b \in A. \tag{A.1}
\]

In order to emphasize the differential, we may display a dg-algebra \(A \) as \((A, d) \). Its cohomology \(H(A, d) = \text{Ker } d/ \text{Im } d \) is a graded algebra (an exercise). Differential graded algebras whose differential lowers the degree by one are also considered, in which case the homology is a graded algebra.

A \textit{quasi-isomorphism} between dg-algebras is a homomorphism \(f: A \to B \) which induces an isomorphism in cohomology, \(\tilde{f}: H(A) \cong H(B) \).

\section*{Exercises.}

A.1.1. If \(A \) is a finitely generated algebra, then all bases of a free \(A \)-module have the same cardinality.

A.1.2. A module is projective if and only if it is a direct summand of a free module.

A.1.3. Prove the following extended version of the 5-lemma. Let

\[
\begin{array}{cccccc}
C^1 & \longrightarrow & C^2 & \longrightarrow & C^3 & \longrightarrow & C^4 & \longrightarrow & C^5 \\
\downarrow f^1 & & \downarrow f^2 & & \downarrow f^3 & & \downarrow f^4 & & \downarrow f^5 \\
D^1 & \longrightarrow & D^2 & \longrightarrow & D^3 & \longrightarrow & D^4 & \longrightarrow & D^5
\end{array}
\]

be a commutative diagram with exact rows. Then

(a) if \(f^2 \) and \(f^4 \) are monomorphisms and \(f^1 \) is an epimorphism, then \(f^3 \) is a monomorphism;

(b) if \(f^2 \) and \(f^4 \) are epimorphisms and \(f^5 \) is a monomorphism, then \(f^3 \) is an epimorphism.

Therefore, if \(f^1, f^2, f^4, f^5 \) are isomorphisms, then \(f^3 \) is also an isomorphism.

A.1.4. Cochain homotopic maps between cochain complexes induce the same maps in cohomology.

A.1.5. The cohomology of a differential graded algebra is a graded algebra.

\section*{A.2. Homological theory of graded rings and modules}

From now on we assume that \(A \) is a commutative finitely generated \(k \)-algebra with unit, graded by nonnegative even numbers (i.e. \(A = \bigoplus_{i \geq 0} A^{2i} \)) and connected (i.e. \(A^0 = k \)). The basic example to keep in mind is \(A = k[m] = k[v_1, \ldots, v_m] \) with \(\deg v_i = 2 \), however we shall need a greater generality occasionally. We also assume that all \(A \)-modules \(M \) are nonnegatively graded and finitely generated, and all module maps are degree-preserving, unless the contrary is explicitly stated.
A free (respectively, projective) resolution of M is an exact sequence of A-modules

\[\ldots \xrightarrow{d} R^{-i} \xrightarrow{d} \ldots \xrightarrow{d} R^{-1} \xrightarrow{d} R^0 \to M \to 0 \]

in which all R^{-i} are free (respectively, projective) A-modules. A free resolution exists for every M (an exercise, or see constructions below). The minimal number p for which there exists a projective resolution (A.2) with $R^{-i} = 0$ for $i > p$ is called the projective (or homological) dimension of the module M; we shall denote it by $\text{pd}_A M$ or simply $\text{pd} M$. If such p does not exist, we set $\text{pd} M = \infty$. The module $M_i = \text{Ker}(d: R^{-i+1} \to R^{-i+2})$ is called an ith syzygy module.

If k is a field and A is as above, then an A-module is projective if and only if it is free (see Exercise A.2.15), and we therefore need not to distinguish between free and projective resolutions in this case.

We can convert a resolution (A.2) into a bigraded k-vector space $R = \bigoplus_{i,j} R^{-i,j}$ where $R^{-i,j} = (R^{-i})^j$ is the jth graded component of the module R^{-i}, and the $(-i,j)$th component of d acts as $d^{-i,j}: R^{-i,j} \to R^{-i+1,j}$. We refer to the first grading of R as external; it comes from the indexing of the terms in the resolution and is therefore nonpositive by our convention. The second, internal, grading of R comes from the grading in the modules R^{-i} and is therefore even and nonnegative. The total degree of an element of R is defined as the sum of its external and internal degrees. We can view A as a bigraded algebra with trivial first grading (i.e. $A^{-i,j} = 0$ for $i \neq 0$ and $A^{0,j} = A^j$); then R becomes a bigraded A-module.

If we drop the term M in resolution (A.2), then the resulting cochain complex is exactly R (with respect to its external grading), and we have

\[H^{-i,j}(R, d) = \text{Ker} d^{-i,j} / \text{Im} d^{-i-1,j} = 0 \quad \text{for } i > 0, \]

\[H^{0,j}(R, d) = M^j. \]

We may view M as a trivial cochain complex $0 \to M \to 0$, or as a bigraded module with trivial external grading, i.e. $M^{-i,j} = 0$ for $i \neq 0$ and $M^{0,j} = M^j$. Then resolution (A.2) can be interpreted as a map of cochain complexes of A-modules:

\[\cdots \xrightarrow{d} R^{-i} \xrightarrow{d} \cdots \xrightarrow{d} R^{-1} \xrightarrow{d} R^0 \xrightarrow{d} 0 \]

(A.3)

or simply as a map $(R, d) \to (M, 0)$ inducing an isomorphism in cohomology.

The Poincaré series of a graded k-vector space $V = \bigoplus_i V^i$ whose graded components are finite-dimensional is given by

\[F(V; \lambda) = \sum_i (\dim_k V^i) \lambda^i. \]

Proposition A.2.1. Let (A.2) be a finite free resolution of an A-module, in which R^{-i} is a free module of rank q_i on generators of degrees d_{1i}, \ldots, d_{ni}. Then

\[F(M; \lambda) = F(A; \lambda) \sum_{i \geq 0} (-1)^i (\lambda^{d_{1i}} + \cdots + \lambda^{d_{ni}}). \]

Proof. Since $H^{-i,j}(R, d) = 0$ for $i > 0$ and $H^{0,j}(R, d) = M^j$, we obtain

\[\sum_{i \geq 0} (-1)^i \dim_k R^{-i,j} = \dim_k M^j \]
by a basic property of the Euler characteristic. Multiplying by λ^j and summing up over j we obtain

$$
\sum_{i \geq 0} (-1)^i F(R^{-i}; \lambda) = F(M; \lambda).
$$

Since each R^{-i} is a free A-module, its Poincaré series is given by $F(R^{-i}; \lambda) = F(A; \lambda)(1 + \lambda^{d_1} + \cdots + \lambda^{d_{i+1}})$, which implies the required formula. \square

Construction A.2.2 (minimal resolution). Let k be a field, and let $M = \bigoplus_{i \geq 0} M^i$ be a graded A-module, which is not necessarily finitely generated, but for which each graded component M^i is finite-dimensional as a k-vector space. There is the following canonical way to construct a free resolution for M.

Take the lowest degree i in which $M^i \neq 0$ and choose a k-vector space basis in M^i. Span an A-submodule M_1 by this basis and then take the lowest degree in which $M \neq M_1$. In this degree choose a k-vector space basis for a complement of M_1, and span a module M_2 by this basis and M_1. Continuing this process we obtain a system of generators for M which has a finite number of elements in each degree, and has the property that the images of the generators form a basis of the k-vector space $M \otimes_A k = M/(A^+ \cdot M)$. A system of generators of M obtained in this way is referred to as minimal (or as a minimal basis).

Now choose a minimal generating set in M and span by its elements a free A-module R_0^min. Then we have an epimorphism $R_0^\text{min} \rightarrow M$. Next we choose a minimal basis in the kernel of this epimorphism, and span by it a free module R_{min}^{-1}. Then choose a minimal basis in the kernel of the map $R_{\text{min}}^{-1} \rightarrow R_0^\text{min}$, and so on. At the ith step we choose a minimal basis in the kernel of the map $d: R_{\text{min}}^{-i+1} \rightarrow R_{\text{min}}^{-i+2}$ constructed in the previous step, and span a free module R_{min}^{-i} by this basis. As a result we obtain a free resolution of M, which is referred to as minimal. A minimal resolution is unique up to an isomorphism.

Proposition A.2.3. For a minimal resolution of M, the induced maps

$$
R_{\text{min}}^{-i} \otimes_A k \rightarrow R_{\text{min}}^{-i+1} \otimes_A k
$$

are zero for $i \geq 1$.

Proof. By construction, the map $R_{\text{min}}^0 \otimes_A A \rightarrow M \otimes_A A$ is an isomorphism, which implies that the kernel of the map $R_{\text{min}}^0 \rightarrow M$ is contained in $A^+ \cdot R_{\text{min}}^{-i}$. Similarly, for each $i \geq 1$ the kernel of the map $d: R_{\text{min}}^{-i} \rightarrow R_{\text{min}}^{-i+1}$ is contained in $A^+ \cdot R_{\text{min}}^{-i}$, and therefore the image of the same map is contained in $A^+ \cdot R_{\text{min}}^{-i+1}$. This implies that the induced maps $R_{\text{min}}^{-i} \otimes_A k \rightarrow R_{\text{min}}^{-i+1} \otimes_A k$ are zero. \square

Remark. If $k = \mathbb{Z}$ then the above described inductive procedure still gives a minimal basis for an A-module M, but the kernel of the map $d: R_{\text{min}}^0 \rightarrow M$ may be not contained in $A^+ \cdot R_{\text{min}}^{-i}$, and the induced map $R_{\text{min}}^{-i} \otimes_A \mathbb{Z} \rightarrow R_{\text{min}}^{-i} \otimes_A \mathbb{Z}$ may be nonzero.

Construction A.2.4 (Koszul resolution). Let $A = k[v_1, \ldots, v_m]$ and $M = k$ with the A-module structure given by the augmentation map sending each v_i to zero. We turn the tensor product

$$
E = E_m = \Lambda[u_1, \ldots, u_m] \otimes k[v_1, \ldots, v_m]
$$
into a bigraded differential algebra by setting

\[\text{bideg } u_i = (-1, 2), \quad \text{bideg } v_i = (0, 2), \]
\[du_i = v_i, \quad dv_i = 0 \]

and requiring \(d \) to satisfy the Leibniz identity (A.1). Then \((E, d)\) together with the augmentation map \(\varepsilon : E \to k \) defines a cochain complex of \(k[m] \)-modules

\[0 \to \Lambda^m [u_1, \ldots, u_m] \otimes k[v_1, \ldots, v_m] \xrightarrow{d} \cdots \]
\[\xrightarrow{d} \Lambda^1 [u_1, \ldots, u_m] \otimes k[v_1, \ldots, v_m] \xrightarrow{d} k[v_1, \ldots, v_m] \xrightarrow{\varepsilon} k \to 0, \]

where \(\Lambda^i [u_1, \ldots, u_m] \) is the subspace of \(\Lambda[u_1, \ldots, u_m] \) generated by monomials of length \(i \). We shall show that the complex above is an exact sequence, or equivalently, that \(\varepsilon : (E, d) \to (k, 0) \) is a quasi-isomorphism. There is an obvious inclusion \(\eta : k \to E \) such that \(\varepsilon \eta = id \). To finish the proof we shall construct a cochain homotopy between \(id \) and \(\eta \varepsilon \), that is, a set of \(k \)-linear maps \(s = \{ s^{-i,j} : E^{-i,j} \to E^{-i-1,j} \} \) satisfying the identity

\[ds + sd = id - \eta \varepsilon. \]

For \(m = 1 \) we define the map \(s_1 : E_1^{0,*} = k[v] \to E_1^{-1,*} \) by the formula

\[s_1(a_0 + a_1 v + \cdots + a_j v^j) = u(a_1 + a_2 v + \cdots + a_j v^{j-1}). \]

Then for \(f = a_0 + a_1 v + \cdots + a_j v^j \in E_1^{0,*} \) we have \(ds_1 f = f - a_0 = f - \varepsilon f \) and \(s_1 df = 0 \). On the other hand, for \(u f \in E_1^{-1,*} \) we have \(s_1 d(u f) = u f \) and \(ds_1(u f) = 0 \). In any case (A.6) holds. Now we may assume by induction that for \(m = k - 1 \) the required cochain homotopy \(s_{k-1} : E_{k-1} \to E_{k-1} \) is already constructed. Since \(E_k = E_{k-1} \otimes E_1, \varepsilon_k = \varepsilon_{k-1} \otimes \varepsilon_1 \) and \(\eta_k = \eta_{k-1} \otimes \eta_1 \), a direct calculation shows that the map

\[s_k = s_{k-1} \otimes id + \eta_{k-1} \varepsilon_{k-1} \otimes s_1 \]

is a cochain homotopy between \(id \) and \(\eta_k \varepsilon_k \).

Since \(\Lambda^i [u_1, \ldots, u_m] \otimes k[m] \) is a free \(k[m] \)-module, (A.5) is a free resolution for the \(k[m] \)-module \(k \). It is known as the Koszul resolution. It can be shown to be minimal (an exercise).

Let \((A.2)\) be a projective resolution of an \(A \)-module \(M \), and \(N \) be another \(A \)-module. Applying the functor \(\otimes_A N \) to \((A.3)\) we obtain a homomorphism of cochain complexes

\[(R \otimes_A N, d) \to (M \otimes_A N, 0), \]

which does not induce a cohomology isomorphism in general. The \((-i)\)th graded cohomology module of the cochain complex

\[\cdots \to R^{-1} \otimes_A N \to \cdots \to R^{-1} \otimes_A N \to R^0 \otimes_A N \to 0 \]

is denoted by \(\text{Tor}_A^{-i}(M, N) \). We shall also consider the bigraded \(A \)-module

\[\text{Tor}_A(M, N) = \bigoplus_{i,j \geq 0} \text{Tor}_A^{-i,j}(M, N) \]

where \(\text{Tor}_A^{-i,j}(M, N) \) is the \(j \)th graded component of \(\text{Tor}_A^{-i}(M, N) \).

The following properties of \(\text{Tor}_A^{-i}(M, N) \) are well-known (see e.g. [245]).
Theorem A.2.5.
(a) The module \(\text{Tor}^{-i}_A(M, N) \) does not depend, up to isomorphism, on a choice of resolution (A.2);
(b) \(\text{Tor}^{-i}_A(\cdot, N) \) and \(\text{Tor}^{-i}_A(M, \cdot) \) are covariant functors;
(c) \(\text{Tor}^{-i}_A(M, N) = M \otimes_A N \);
(d) \(\text{Tor}^{-i}_A(M, N) \cong \text{Tor}^{-i}_A(N, M) \);
(e) An exact sequence of \(A \)-modules
\[0 \to M_1 \to M_2 \to M_3 \to 0 \]
induces the following long exact sequence:
\[\cdots \to \text{Tor}^{-i}_A(M_1, N) \to \text{Tor}^{-i}_A(M_2, N) \to \text{Tor}^{-i}_A(M_3, N) \to \cdots \]
\[\to \text{Tor}^{-1}_A(M_1, N) \to \text{Tor}^{-1}_A(M_2, N) \to \text{Tor}^{-1}_A(M_3, N) \]
\[\to \text{Tor}^0_A(M_1, N) \to \text{Tor}^0_A(M_2, N) \to \text{Tor}^0_A(M_3, N) \to 0. \]

In the case \(N = k \) the Tor-modules can be read off from a minimal resolution of \(M \) as follows:

Proposition A.2.6. Let \(k \) be a field, and let (A.2) be a minimal resolution of an \(A \)-module \(M \). Then
\[\text{Tor}^{-i}_A(M, k) \cong R^{-i}_{\text{min}} \otimes_A k, \]
\[\dim_k \text{Tor}^{-i}_A(M, k) = \text{rank} R^{-i}_{\text{min}}. \]

Proof. Indeed, the differentials in the cochain complex
\[\cdots \to R^{-i}_{\text{min}} \otimes_A k \to \cdots \to R^{-1}_{\text{min}} \otimes_A k \to R^0_{\text{min}} \otimes_A k \to 0 \]
are all trivial by Proposition A.2.3. \(\square \)

Corollary A.2.7. Let \(k \) be a field, and let \(M \) be an \(A \)-module. Then
\[\text{pd} m = \max \{ i : \text{Tor}^{-i}_A(M, k) \neq 0 \}. \]

Corollary A.2.8 (Hilbert Syzygy Theorem). If \(k \) is a field, then \(\text{pd} m \leq m \) for any \(k[v_1, \ldots, v_m] \)-module \(M \).

Proof. By the previous corollary and Theorem A.2.5 (d),
\[\text{pd} m = \max \{ i : \text{Tor}^{-i}_{k[m]}(M, k) \neq 0 \} = \max \{ i : \text{Tor}^{-i}_{k[m]}(k, M) \neq 0 \}. \]
Using the Koszul resolution for the \(k[m] \)-module \(k \) we obtain
\[\text{Tor}^{-i}_{k[m]}(k, M) = H^{-i}(A[u_1, \ldots, u_m] \otimes k[m] \otimes k[m], d) \]
\[= H^{-i}(A[u_1, \ldots, u_m] \otimes M, d). \]
Therefore,
\[\text{pd} m = \max \{ i : \text{Tor}^{-i}_{k[m]}(k, M) \neq 0 \} \leq \max \{ i : A'[u_1, \ldots, u_m] \otimes M \neq 0 \} = m. \]

Example A.2.9. Let \(A = k[v_1, \ldots, v_m] \) and \(M = N = k \). By the minimality of the Koszul resolution,
\[\text{Tor}_{k[v_1, \ldots, v_m]}(k, k) = A[u_1, \ldots, u_m] \]
and \(\text{pd} A k = m \).
When \(A = \k[\mu] \) and \(M \) is an algebra, there is the following way to make \(\Tor_{\k[\mu]}(M, \k) \) into a (bi)graded algebra. We consider the differential bigraded algebra \((A[u_1, \ldots, u_m] \otimes M, d) \) with bigrading and differential defined similarly to (A.4):

\[
\begin{align*}
\text{bideg } u_i &= (-1, 2), \\
\text{bideg } x &= (0, \deg x) \quad \text{for } x \in M,
\end{align*}
\]

(A.8)

\[
du_i = v_i \cdot 1, \\
dx = 0
\]

(here \(v_i \cdot 1 \) is the element of \(M \) obtained by applying \(v_i \in \k[\mu] \) to \(1 \in M \), and we identify \(u_i \) with \(u_i \otimes 1 \) and \(x \) with \(1 \otimes x \) for simplicity). Using the fact that the cohomology of a differential graded algebra is a graded algebra we obtain:

Lemma A.2.10. Let \(M \) be a graded \(\k[v_1, \ldots, v_m] \)-algebra. Then \(\Tor_{\k[\mu]}(M, \k) \) is a bigraded \(\k \)-algebra whose product is defined via the isomorphism

\[
\Tor_{\k[v_1, \ldots, v_m]}(M, \k) \cong H(A[u_1, \ldots, u_m] \otimes M, d).
\]

Proof. Using the Koszul resolution in the definition of \(\Tor_{\k[\mu]}(k, M) \) and Theorem A.2.5 (d) we calculate

\[
\Tor_{\k[\mu]}(M, \k) \cong \Tor_{\k[\mu]}(k, M)
\]

\[
= H(A[u_1, \ldots, u_m] \otimes \k[\mu] \otimes_{\k[\mu]} M, d) \cong H(A[u_1, \ldots, u_m] \otimes M, d).
\]

The algebra \((A[u_1, \ldots, u_m] \otimes M, d) \) is known as the **Koszul algebra** (or the **Koszul complex**) of \(M \).

Remark. Lemma A.2.10 holds also in the case when \(M \) does not have a unit (e.g., when it is a graded ideal in \(\k[\mu] \)). In this case formula (A.8) for the differential needs to be modified as follows:

\[
d(u_i x) = v_i \cdot x, \\
dx = 0 \quad \text{for } x \in M.
\]

We finish this discussion of \(\Tor_{\k[\mu]}(M, \k) \) by mentioning an important conjecture of commutative homological algebra.

Conjecture A.2.11 (Horrocks, see [53, p. 433]). Let \(M \) be a graded \(\k[v_1, \ldots, v_m] \)-module such that \(\dim_{\k} M < \infty \), where \(\k \) is a field. Then

\[
\dim_{\k} \Tor^{-1}_{\k[v_1, \ldots, v_m]}(M, \k) \geq \binom{m}{i}.
\]

It is sometimes formulated in a weaker form:

Conjecture A.2.12 (weak Horrocks’ Conjecture). Let \(M \) be a graded \(\k[v_1, \ldots, v_m] \)-module such that \(\dim_{\k} M < \infty \), where \(\k \) is a field. Then

\[
\dim_{\k} \Tor_{\k[v_1, \ldots, v_m]}(M, \k) \geq 2^m.
\]

If the algebra \(A \) is not necessarily commutative, then \(\Tor_A(M, N) \) is defined for a right \(A \)-module \(M \) and a left \(A \)-module \(N \) in the same way as above. However, in this case \(\Tor_A(M, N) \) is no longer an \(A \)-module, and is just a \(\k \)-vector space. If both \(M \) and \(N \) are \(A \)-bimodules, then \(\Tor_A(M, N) \) is an \(A \)-bimodule itself.

The construction of \(\Tor \) can also be extended to the case of differential graded modules and algebras, see Section B.3.

In the standard notation adopted in the algebraic literature, the modules in a resolution (A.2) are numbered by nonnegative rather than nonpositive integers:

\[
\ldots \xrightarrow{d} R^i \xrightarrow{d} \ldots \xrightarrow{d} R^1 \xrightarrow{d} R^0 \to M \to 0.
\]
In this notation, the ith Tor-module is denoted by $\text{Tor}_A^i(M, N)$, $i \geq 0$ (note that (A.7) becomes a chain complex, and $\text{Tor}_A^i(M, N)$ is its homology). Therefore, the two notations are related by

$$\text{Tor}_A^{-i}(M, N) = \text{Tor}_A^i(M, N).$$

Applying the functor $\text{Hom}_A(\cdot, N)$ to (A.3) (with R^{-i} replaced by R^i) we obtain the cochain complex

$$0 \rightarrow \text{Hom}_A(R^0, N) \rightarrow \text{Hom}_A(R^1, N) \rightarrow \cdots \rightarrow \text{Hom}_A(R^i, N) \rightarrow \cdots.$$

Its ith cohomology module is denoted by $\text{Ext}_A^i(M, N)$.

The properties of the functor Ext are similar to those given by Theorem A.2.5 for Tor, with the exception of (d):

Theorem A.2.13.

(a) The module $\text{Ext}_A^1(M, N)$ does not depend, up to isomorphism, on a choice of resolution (A.2);

(b) $\text{Ext}_A^i(\cdot, N)$ is a contravariant functor, and $\text{Ext}_A^i(M, \cdot)$ is a covariant functor;

(c) $\text{Ext}_A^i(M, N) = \text{Hom}_A(M, N)$;

(d) An exact sequence of A-modules

$$0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$$

induces the following long exact sequence:

$$0 \rightarrow \text{Ext}_A^0(M_3, N) \rightarrow \text{Ext}_A^0(M_2, N) \rightarrow \text{Ext}_A^0(M_1, N)$$

$$\rightarrow \text{Ext}_A^1(M_3, N) \rightarrow \text{Ext}_A^1(M_2, N) \rightarrow \text{Ext}_A^1(M_1, N) \rightarrow \cdots$$

$$\cdots \rightarrow \text{Ext}_A^i(M_3, N) \rightarrow \text{Ext}_A^i(M_2, N) \rightarrow \text{Ext}_A^i(M_1, N) \rightarrow \cdots;$$

(e) An exact sequence of A-modules

$$0 \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow 0$$

induces the following long exact sequence:

$$0 \rightarrow \text{Ext}_A^0(M, N_1) \rightarrow \text{Ext}_A^0(M, N_2) \rightarrow \text{Ext}_A^0(M, N_3)$$

$$\rightarrow \text{Ext}_A^1(M, N_1) \rightarrow \text{Ext}_A^1(M, N_2) \rightarrow \text{Ext}_A^1(M, N_3) \rightarrow \cdots$$

$$\cdots \rightarrow \text{Ext}_A^i(M, N_1) \rightarrow \text{Ext}_A^i(M, N_2) \rightarrow \text{Ext}_A^i(M, N_3) \rightarrow \cdots.$$

Exercises.

A.2.14. Show that a free resolution exists for every A-module M. (Hint: use the fact that every module is the quotient of a free module.)

A.2.15. If k is a field and $A = k[m]$, then every projective graded A-module is free (hint: see [245, Lemma VII.6.2]). This is also true in the ungraded case, but is much harder to prove (a theorem of Quillen and Suslin, settling the famous problem of Serre). More generally, if A is a finitely generated nonnegatively graded commutative connected algebra over a field k, then every projective A-module is free (see [129, Theorem A3.2]). Give an example of a projective module over a ring which is not free.

A.2.16. The Koszul resolution is minimal.
A.3. Regular sequences and Cohen–Macaulay algebras

Cohen–Macaulay algebras and modules play an important role in commutative algebra, algebraic geometry and combinatorics. Their definition uses the notion of a regular sequence, which also features in algebraic topology, namely in the construction of new cohomology theories (see [226] and Section E.3). In the case of finitely generated algebras over a field k, an algebra is Cohen–Macaulay if and only if it is a free module of finite rank over a polynomial subalgebra.

Here we consider nonnegatively even graded finitely generated commutative connected algebras A over a field k and finitely generated nonnegatively graded A-modules M (the case $k = \mathbb{Z}$ requires extra care, and is treated separately in some particular cases in the main chapters of the book). The positive part A^+ is the unique homogeneous maximal ideal of A, and the results we discuss here are parallel to those from the homological theory of Noetherian local rings (we refer to [52, Chapters 1–2] or [129, Chapter 19] for the details).

Given a sequence of elements $t = (t_1, \ldots , t_k)$ of A, we denote by A/t the quotient of A by the ideal generated by t, and denote by M/tM the quotient of M by the submodule $t_1 M + \cdots + t_k M$. An element $t \in A$ is called a zero divisor on M if $tx = 0$ for some nonzero $x \in M$. An element $t \in A$ is not a zero divisor on M if and only if the map $M \rightarrow M$ given by multiplication by t is injective.

Definition A.3.1. Let M be an A-module. A homogeneous sequence $t = (t_1 , \ldots , t_k) \in \mathcal{H}(A^+)$ is called an M-regular sequence if t_{i+1} is not a zero divisor on $M/(t_1 M + \cdots + t_i M)$ for $0 \leq i < k$. An A-regular sequence is called simply regular.

The importance of regular sequences in homological algebra builds on the fundamental fact that an exact sequence of modules remains exact after taking quotients by a regular sequence:

Proposition A.3.2. Assume given an exact sequence of A-modules:

$$
\cdots \rightarrow S^i \xrightarrow{f_i} S^{i-1} \xrightarrow{f_{i-1}} \cdots \xrightarrow{f_1} S^0 \xrightarrow{f_0} M \rightarrow 0
$$

If t is an M-regular and S^i-regular sequence for all $i \geq 0$, then

$$
\cdots \rightarrow S^i/tS^i \xrightarrow{\overline{f}_i} S^{i-1}/tS^{i-1} \xrightarrow{\overline{f}_{i-1}} \cdots \xrightarrow{\overline{f}_1} S^0/tS^0 \xrightarrow{\overline{f}_0} M/tM \rightarrow 0
$$

is an exact sequence of A/t-modules.

Proof. Using induction we reduce the statement to the case when t consists of a single element t. Since

$S^i/tS^i = S^i \otimes_A (A/t),$

and $\otimes_A (A/t)$ is a right exact functor, it is enough to verify exactness of the quotient sequence starting from the term S^1/tS^1.

Consider the following fragment of the quotient sequence ($i \geq 1$):

$$
S^{i+1}/tS^{i+1} \xrightarrow{\overline{f}_{i+1}} S^i/tS^i \xrightarrow{\overline{f}_i} S^{i-1}/tS^{i-1} \xrightarrow{\overline{f}_{i-1}} S^{i-2}/tS^{i-2}
$$

(where we denote $S^{-1} = M$). For any element $x \in S^i$ we denote by $x_\overline{f}$ its residue class in S^i/tS^i. Let $\overline{f}_i(x_{\overline{f}}) = 0$, then $f_i(x) = ty$ for some $y \in S^{i+1}$ and $t_{i-1}(y) = 0$.

Since t is S^{i-2}-regular, we have $f_{i-1}(y) = 0$. Hence, there is $x' \in S^i$ such that $y = f_{i-1}(x')$. This implies that $f_i(x - tx') = 0$. Therefore, $x - tx' \in f_{i+1}(S^{i+1})$ and $x_{\overline{f}} \in \overline{f}_{i+1}(S^{i+1}/tS^{i+1})$. Thus, the quotient sequence is exact. \qed
The following proposition is often used as the definition of regular sequences:

Proposition A.3.3. A sequence \(t_1, \ldots, t_k \in \mathcal{H}(A^+) \) is \(M \)-regular if and only if \(M \) is a free (not necessarily finitely generated) \(k[t_1, \ldots, t_k] \)-module.

Proof. If \(M \) is a free \(k[t_1, \ldots, t_k] \)-module, then \(M/(t_1 M + \cdots + t_{i-1} M) \) is a free \(k[t_1, \ldots, t_k] \)-module, which implies that \(t_i \) is \(M/(t_1 M + \cdots + t_{i-1} M) \)-regular for \(1 \leq i \leq k \). Therefore, \(t_1, \ldots, t_k \) is an \(M \)-regular sequence.

Conversely, let \(t = (t_1, \ldots, t_k) \) be an \(M \)-regular sequence. Consider a minimal resolution \((\mathcal{R}(M), d) \) for the \(k[t] \)-module \(M \). Then, by Proposition A.3.2, the sequence of \(k \)-modules

\[
\cdots \rightarrow R_{-1}^1 / t R_{-1}^1 \rightarrow R_0^0 / t R_0^0 \rightarrow M / t M \rightarrow 0
\]

is exact. Note that \(R_{-1}^1 / t R_{-1}^1 = R_{-1}^1 \otimes_{k[t]} k \). Since the resolution is minimal, the map \(R_0^0 \otimes_{k[t]} k \rightarrow M \otimes_{k[t]} k \) is an isomorphism. Hence, \(R_{-1}^1 \otimes_{k[t]} k = 0 \) for \(i > 0 \), which implies that \(R_{-1}^1 = 0 \). Thus, \(R_0^0 \rightarrow M \) is an isomorphism, i.e. \(M \) is a free \(k[t] \)-module.

The following is a direct corollary of Proposition A.3.3:

Proposition A.3.4. The property of being a regular sequence does not depend on the order of elements in \(t = (t_1, \ldots, t_k) \).

Lemma A.3.5. Let \(t \) be a sequence of elements of \(A \) which is \(A \)-regular and \(M \)-regular. Then

\[
\operatorname{Tor}_{-i}^A (M, k) = \operatorname{Tor}_{-i}^A (M/t M, k).
\]

Proof. Applying Proposition A.3.2 to a minimal resolution of \(M \), we obtain a minimal resolution of the \(A/t A \)-module \(M / t M \). The result follows from Proposition A.2.6.

An \(M \)-regular sequence is **maximal** if it is not contained in an \(M \)-regular sequence of greater length.

Theorem A.3.6 (D. Rees). All maximal \(M \)-regular sequences in \(A \) have the same length given by

\[
\text{depth}_A M = \min \{ i : \operatorname{Ext}_A^i (k, M) \neq 0 \}. \tag{A.9}
\]

This number given by (A.9) is referred to as the depth of \(M \); the simplified notation \(\text{depth} M \) will be used whenever it creates no confusion. The proof of Theorem A.3.6 uses the following fact:

Lemma A.3.7. Let \(t = (t_1, \ldots, t_n) \in \mathcal{H}(A^+) \) be an \(M \)-regular sequence. Then

\[
\operatorname{Ext}_A^i (k, M) \cong \operatorname{Hom}_A (k, M / t_n M).
\]

Proof. We use induction on \(n \). The case \(n = 0 \) is tautological. It follows from Proposition A.3.4 that \(t_n \) is an \(M \)-regular element, so we have the exact sequence

\[
0 \rightarrow M \xrightarrow{t_n} M \rightarrow M / t_n M \rightarrow 0.
\]

The map \(\operatorname{Ext}_A^i (k, M) \rightarrow \operatorname{Ext}_A^i (k, M) \) induced by multiplication by \(t_n \) is zero (an exercise). Therefore, the second long exact sequence for \(\operatorname{Ext} \) induced by the short exact sequence above splits into short exact sequences of the form

\[
0 \rightarrow \operatorname{Ext}_A^{n-1} (k, M) \rightarrow \operatorname{Ext}_A^{n-1} (k, M / t_n M) \rightarrow \operatorname{Ext}_A^n (k, M) \rightarrow 0.
\]
Let $t' = (t_1, \ldots, t_{n-1})$. By induction,

$$\text{Ext}^{n-1}_A(k, M) \cong \text{Hom}_A(k, M/t'M) = 0,$$

where the latter identity follows from Exercise A.3.16, since t_n is $M/t'M$-regular. Now the exact sequence above implies that

$$\text{Ext}^n_A(k, M) \cong \text{Ext}^{n-1}_A(k, M/t_nM) \cong \text{Hom}_A(k, M/tM),$$

where the latter identity follows by induction. \qed

Proof of Theorem A.3.6. Let $t = (t_1, \ldots, t_n)$ be a maximal M-regular sequence. Then, by Lemma A.3.7 and Exercise A.3.16,

$$\text{Ext}^n_A(k, M) \cong \text{Hom}_A(k, M/tM) \neq 0,$$

as A does not contain an M/tM-regular element. On the other hand, for $i < n$,

$$\text{Ext}^i_A(k, M) \cong \text{Hom}_A(k, M/(t_1M + \cdots + t_iM)) = 0,$$

since t_{i+1} is $M/(t_1M + \cdots + t_iM)$-regular. \qed

The following fundamental result relates the depth to the projective dimension:

Theorem A.3.8 (Auslander–Buchsbaum). Let $M \neq 0$ be an A-module such that $\text{pdim} M < \infty$. Then

$$\text{pdim} M + \text{depth} M = \text{depth} A.$$

Proof. First let $\text{depth} A = 0$. Assume that $\text{pdim} M = p > 0$. Consider a minimal resolution for M (which is finite by hypothesis):

$$0 \rightarrow R^{-p}_{\min} \xrightarrow{d_p} R^{-p+1}_{\min} \rightarrow \cdots \rightarrow R^0_{\min} \rightarrow M \rightarrow 0.$$

Since $\text{depth} A = 0$, we have $\text{Hom}_A(k, A) = \text{Ext}^0_A(k, A) \neq 0$ by Theorem A.3.6, i.e. there is a monomorphism of A-modules $i : k \rightarrow A$. In the commutative diagram

$$\begin{array}{ccc}
R^{-p} \otimes_A k & d_p \otimes_A k & R^{-p+1} \otimes_A k \\
id \otimes_A i & & \text{id} \otimes_A i \\
\downarrow & & \downarrow \\
R^{-p} & d_p & R^{-p+1}
\end{array}$$

the maps d_p and $\text{id} \otimes_A i$ are injective (the latter because the module R^{-p} is free). Hence $d_p \otimes_A k$ is also injective, which contradicts minimality of the resolution. We obtain $\text{pdim} M = 0$, i.e. M is a free A-module and $\text{depth} M = \text{depth} A = 0$.

Now let $\text{depth} A > 0$. Assume that $\text{depth} M = 0$. Consider a first syzygy module $M_1 = \text{Ker}[R^0 \rightarrow M]$ for M. It follows from (A.9) and the exact sequence for Ext that $\text{depth} M_1 = 1$. Since $\text{pdim} M_1 = \text{pdim} M - 1$, it is enough to prove the Auslander–Buchsbaum formula for the module M_1. Hence, we may assume that $\text{depth} M > 0$. This implies that there is an element $t \in A$ which is A-regular and M-regular (an exercise). Then

$$\begin{array}{c}
\text{depth}_{A/t} A/t = \text{depth}_A A - 1, \\
\text{depth}_{A/t} M/tM = \text{depth}_A M - 1
\end{array}$$

by the definition of depth, and

$$\text{pdim}_{A/t} M/tM = \text{pdim}_A M$$

by Corollary A.2.7 and Lemma A.3.5. Now we finish by induction on $\text{depth} A$. \qed
The dimension of A, denoted $\dim A$, is the maximal number of elements of A algebraically independent over k. The dimension of an A-module M is $\dim M = \dim(A/\text{Ann } M)$, where $\text{Ann } M = \{a \in A : aM = 0\}$ is the annihilator of M.

Definition A.3.9. A sequence t_1, \ldots, t_n of algebraically independent homogeneous elements of A is called a homogeneous system of parameters (briefly h sop) for M if $M/(t_1M + \cdots + t_nM) = 0$. Equivalently, t_1, \ldots, t_n is an h sop if $n = \dim M$ and M is a finitely-generated $k[t_1, \ldots, t_n]$-module.

An h sop consisting of linear elements (i.e. elements of lowest positive degree 2) is referred to as a linear system of parameters (briefly l sop).

Theorem A.3.10 ([52, Theorem 1.5.17]). An h sop exists for any A-module M. If k is an infinite field and A is generated by degree-two elements, then a l sop can be chosen for M.

It is easy to see that a regular sequence consists of algebraically independent elements, which implies that depth $M \leq \dim M$.

Definition A.3.11. M is a Cohen–Macaulay A-module if depth $M = \dim M$, that is, if A contains an M-regular sequence t_1, \ldots, t_n of length $n = \dim M$. If A is a Cohen–Macaulay A-module, then it is called a Cohen–Macaulay algebra.

Proposition A.3.12. Let M be a Cohen–Macaulay A-module. Then a sequence $t = (t_1, \ldots, t_i)$ is M-regular if and only if it is a part of an h sop for M.

Proof. Let $\dim M = n$. Assume that t is an M-regular sequence. The fact that t_i is an $M/(t_1M + \cdots + t_{i-1}M)$-regular element implies that

$$\dim M/(t_1M + \cdots + t_iM) = \dim M/(t_1M + \cdots + t_{i-1}M) - 1,$$

for $i = 1, \ldots, k$ (an exercise). Therefore, $\dim M/tM = n - k$, i.e. t is a part of an h sop for M.

For the other direction, see [52, Theorem 2.1.2 (c)].

In particular, any h sop in a Cohen–Macaulay algebra A is regular.

Proposition A.3.13. An algebra is Cohen–Macaulay if and only if it is a free finitely generated module over a polynomial subalgebra.

Proof. Assume that A is Cohen–Macaulay and $\dim A = n$. Then there is a regular sequence $t = (t_1, \ldots, t_n)$ in A. By the previous proposition, t is an h sop, so that $\dim A/t = 0$ and therefore A is a finitely generated $k[t_1, \ldots, t_n]$-module. This module is also free by Proposition A.3.3.

On the other hand, if A is free finitely generated over $k[t_1, \ldots, t_n]$ where $t_1, \ldots, t_n \in A$, then $\dim A = n$ and t_1, \ldots, t_n is a regular sequence by Proposition A.3.3, so that A is Cohen–Macaulay.

Proposition A.3.14. If A is Cohen–Macaulay with an l sop $t = (t_1, \ldots, t_n)$, then there is the following formula for the Poincaré series of A:

$$F(A; \lambda) = \frac{F(A/(t_1, \ldots, t_n); \lambda)}{(1 - \lambda^2)^n},$$

where $F(A/(t_1, \ldots, t_n); \lambda)$ is a polynomial with nonnegative integer coefficients.

Proof. Since A is a free finitely generated module over $k[t_1, \ldots, t_n]$, we have an isomorphism of k-vector spaces $A \cong (A/t) \otimes k[t_1, \ldots, t_n]$. Calculating the Poincaré series of both sides yields the required formula.
Remark. If A is generated by its elements a_1, \ldots, a_n of positive degrees d_1, \ldots, d_n respectively, then it may be shown that the Poincaré series of A is a rational function of the form

$$F(A; \lambda) = \frac{P(\lambda)}{(1 - \lambda^{d_1})(1 - \lambda^{d_2}) \cdots (1 - \lambda^{d_n})},$$

where $P(\lambda)$ is a polynomial with integer coefficients. However, in general the polynomial $P(\lambda)$ cannot be given explicitly, and some of its coefficients may be negative.

Exercises.

A.3.15. The map $\text{Ext}^j_A(k, M) \to \text{Ext}^j_A(k, M)$ induced by multiplication by an element $x \in \mathcal{H}(A^+)$ is zero.

A.3.16. The following conditions are equivalent for an A-module M:

(a) Every element of $\mathcal{H}(A^+)$ is a zero divisor on M, i.e. depth $M = 0$;

(b) $\text{Hom}_A(k, M) \neq 0$.

(Hint: show that if $\mathcal{H}(A^+)$ consists of zero divisors on M then the ideal A^+ annihilates a homogeneous element of M, see [129, Corollary 3.2].)

A.3.17. Let depth $A > 0$, let M be an A-module with depth $M = 0$, and let $M_1 = \text{Ker}[R^0 \to M]$ be a first syzygy module for M. Then depth $M_1 = 1$.

A.3.18. If depth $A > 0$ and depth $M > 0$, then there exists an element $t \in A$ which is A-regular and M-regular.

A.3.19. Theorem A.3.8 does not hold if pdim $M = \infty$.

A.3.20. Show that dim $A = 0$ if and only if A is finite-dimensional as a k-vector space. Is it true that depth $A = 0$ implies that dim$_k A$ is finite?

A.3.21. Give an example of an algebra A over a field k of finite characteristic which is generated by linear elements, but does not have an isolated.

A.3.22. A regular sequence consists of algebraically independent elements.

A.3.23. If $t \in \mathcal{H}(A^+)$ is an M-regular element, then dim $M/tM = \dim M - 1$.

A.3.24. Let $k = \mathbb{Z}$. Show that if A is a free finitely generated module over a polynomial subalgebra $\mathbb{Z}[t_1, \ldots, t_k]$ then i_{i+1} is not a zero divisor on $A/(t_1, \ldots, t_i)$ for $0 \leq i < k$, but the converse is not true. Therefore, the two possible definitions of a regular sequence over \mathbb{Z} do not agree. (The reason why Proposition A.3.13 fails over \mathbb{Z} is that minimal resolutions do not have the required good properties, see the remark after Construction A.2.2.)

A.4. Formality and Massey products

Here we develop the algebraic formalism used in rational homotopy theory. We work with dg-algebras $A = \bigoplus_{i \geq 0} A^i$ with cochain differentials over a field k of zero characteristic (usually \mathbb{R} or \mathbb{Q}). We do not assume A to be finitely generated. Commutativity of dg-algebras is always understood in the graded sense.

A dg-algebra A is called homologically connected if $H^0(A, d) = k$.

Recall that a homomorphism between dg-algebras (A, d_A) and (B, d_B) is a k-linear map $f: A \to B$ which preserves degrees, i.e. $f(A^i) \subset B^i$, and satisfies $f(ab) = f(a)f(b)$ and $d_B f(a) = f(d_A a)$ for all $a, b \in A$. Such a homomorphism
induces a homomorphism \(\tilde{f}: H(A, d_A) \to H(B, d_B) \) of cohomology algebras. We refer to \(f \) as a \textit{quasi-isomorphism} if \(\tilde{f} \) is an isomorphism. The equivalence relation generated by quasi-isomorphisms of dg-algebras is referred to as \textit{weak equivalence}. Since quasi-isomorphisms are often not invertible, a weak equivalence between \(A \) and \(B \) implies only the existence of a \textit{zigzag} of quasi-isomorphisms of the form

\[
A \leftarrow A_1 \to A_2 \leftarrow A_3 \to \cdots \leftarrow A_k \to B.
\]

A dg-algebra \(B \) weakly equivalent to \(A \) is called a \textit{model} of \(A \). The above ‘long’ zigzag of quasi-isomorphisms can be reduced to a ‘short’ zigzag \(A \leftarrow M \to B \) using the notion of a minimal model.

Definition A.4.1. A commutative dg-algebra \(M = \bigoplus_{i \geq 0} M^i \) is called minimal (in the sense of Sullivan) if the following three conditions are satisfied:

(a) \(M^0 = k \) and \(d(M^0) = 0 \);

(b) \(M \) is free as a graded commutative algebra, i.e.

\[
M = \Lambda[x_k: \deg x_k \text{ is odd}] \otimes k[x_k: \deg x_k \text{ is even}],
\]

there are only finitely many generators in each degree, and

\[
\deg x_k \leq \deg x_1 \quad \text{for} \quad k \leq l;
\]

(c) \(dx_k \) is a polynomial on generators \(x_1, \ldots, x_{k-1} \), for each \(k \geq 1 \) (this is called the \textit{nilpotence condition} on \(d \)).

Clearly, a minimal dg-algebra \(M \) is \textit{simply connected} (i.e. \(H^1(M, d) = 0 \)) if and only if \(M^1 = 0 \). In this case \(\deg x_k \geq 2 \) for each \(k \), and the nilpotence condition is equivalent to the \textit{decomposability} of \(d \), i.e.

\[
d(M) \subset M^+ \cdot M^+,
\]

where \(M^+ \) is the subspace generated by elements of positive degree. For non-simply connected dg-algebras decomposability does not imply nilpotence: the algebra \(\Lambda[x,y] \), \(\deg x = \deg y = 1 \), with \(dx = 0 \), \(dy = xy \) is not minimal.

Definition A.4.2. A minimal dg-algebra \(M \) is called a \textit{minimal model} for a commutative dg-algebra \(A \) if there is a quasi-isomorphism \(h: M \to A \).

Theorem A.4.3.

(a) For each homologically connected commutative dg-algebra \(A \) satisfying the condition \(\dim H^i(A) < \infty \) for all \(i \), there exists a minimal model \(M_A \), which is unique up to isomorphism.

(b) A homomorphism of commutative dg-algebras \(f: A \to B \) lifts to a homomorphism \(\tilde{f}: M_A \to M_B \) closing the commutative diagram

\[
\begin{array}{ccc}
M_A & \xrightarrow{\tilde{f}} & M_B \\
h_A & & h_B \\
A & \xrightarrow{f} & B.
\end{array}
\]

(c) If \(f \) is a quasi-isomorphism, then \(\tilde{f} \) is an isomorphism.

Remark. Minimal models can be also defined for dg-algebras \(A \) which do not satisfy the finiteness condition \(\dim H^i(A) < \infty \), but we shall not need this.
Theorem A.4.3 is due to Sullivan (simply connected case) and Halperin (general). A proof can be found in [231, Theorem II.6] or [136, §I.2].

Corollary A.4.4. A weak equivalence between two commutative dg-algebras A, B satisfying the condition of Theorem A.4.3 can be represented by a ‘short’ zigzag $A \leftarrow M \rightarrow B$ of quasi-isomorphisms, where M is the minimal model for A (or B).

Definition A.4.5. A dg-algebra is A called *formal* if it is weakly equivalent to its cohomology $H(A)$ (viewed as a dg-algebra with zero differential).

Corollary A.4.6. A commutative dg-algebra A with the minimal model M_A is formal if and only if M_A in formal. In this case there is a zigzag of quasi-isomorphisms $A \leftarrow M_A \rightarrow H(A)$.

If A is formal with minimal model M_A, then the minimal model can be recovered from the cohomology algebra $H(A)$ using an inductive procedure.

Remark. Even if A is formal, the zigzag $A \leftarrow M_A \rightarrow H(A)$ usually cannot be reduced to a single quasi-isomorphism $A \rightarrow H(A)$ or $H(A) \rightarrow A$.

Example A.4.7. Let M be a dg-algebra with three generators a_1, a_2, a_3 of degree 1 and differential given by

$$da_1 = da_2 = 0, \quad da_3 = a_1a_2.$$

This M is minimal, but not formal. Indeed the first degree cohomology $H^1(M)$ is generated by the classes α_1, α_2 corresponding to the cocycles a_1, a_2, and we have $\alpha_1\alpha_2 = 0$. Assume there is a quasi-isomorphism $f: M \rightarrow H(M)$; then we have $f(a_3) = k_1\alpha_1 + k_2\alpha_2$ for some $k_1, k_2 \in k$. This implies that $f(a_1a_3) = 0$, which is impossible since a_1a_3 represents a nontrivial cohomology class.

We next review Massey products, which provide a simple and effective tool for establishing nonformality of a dg-algebra. Massey products constitute a series of higher-order operations (or brackets) in the cohomology of a dg-algebra, with the second-order operation coinciding with the cohomology multiplication, while the higher-order brackets only defined for certain tuples of cohomology classes. We only consider triple (third-order) Massey products here.

Construction A.4.8 (triple Massey product). Let A be a dg-algebra, and let $\alpha_1, \alpha_2, \alpha_3$ be three cohomology classes such that $\alpha_1\alpha_2 = \alpha_2\alpha_3 = 0$ in $H(A)$. Choose their representing cocycles $a_i \in A^{k_i}, \quad i = 1, 2, 3$. Since the pairwise cohomology products vanish, there are elements $a_{12} \in A^{k_1+k_2-1}$ and $a_{23} \in A^{k_2+k_3-1}$ such that

$$da_{12} = a_1a_2 \quad \text{and} \quad da_{23} = a_2a_3.$$

Then one easily checks that

$$(-1)^{k_1+1}a_1a_{23} + a_{12}a_3$$

is a cocycle in $A^{k_1+k_2+k_3-1}$. Its cohomology class is called a (triple) *Massey product* of α_1, α_2 and α_3, and denoted by $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$.

More precisely, the Massey product $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ is the set of all elements in $H^{k_1+k_2+k_3-1}(A)$ obtained by the above procedure. Since there are choices of a_{12} and a_{23} involved, the set $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ may consist of more than one element. In fact, a_{12} is defined up to addition of a cocycle in $A^{k_1+k_2-1}$, and a_{23} is defined up
to a cocycle in $A^{k_2+k_3-1}$. Therefore, any two elements in $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ differ by an element of the subset

$$\alpha_1 \cdot H^{k_2+k_3-1}(A) + \alpha_3 \cdot H^{k_1+k_2-1}(A) \subset H^{k_1+k_2+k_3-1}(A),$$

which is called the indeterminacy of the Massey product $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$.

A Massey product $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ is called trivial (or vanishing) if it contains zero. Clearly, a Massey product $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ is trivial if and only if its image in the quotient algebra $H(A)/\langle \alpha_1, \alpha_3 \rangle$ is zero.

Proposition A.4.9. Let $f: A \to B$ be a quasi-isomorphism of dg-algebras. Then all Massey products in $H(A)$ are trivial if and only they are all trivial in $H(B)$.

Proof. Assume that all Massey products in $H(B)$ are trivial. Let $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ be a Massey product in $H(A)$. We define elements $a_1, a_2, a_3, a_{12}, a_{23} \in A$ as in Construction A.4.8, and set $b_i = f(a_i), b_{ij} = f(a_{ij})$. Let β_i denote the cohomology class corresponding to the cocycle b_i. Since $\beta_1\beta_2 = \bar{f}(\alpha_1\alpha_2) = 0$ and $\beta_2\beta_3 = 0$, the Massey product $\langle \beta_1, \beta_2, \beta_3 \rangle$ is defined. By the assumption, $0 \in \langle \beta_1, \beta_2, \beta_3 \rangle$. This means that we may choose $b'_{12}, b'_{23} \in B$ in such a way that

$$b_1b_2 = db'_{12}, \quad b_2b_3 = db'_{23}, \quad \text{and} \quad (-1)^{k_1+1} b_1b'_{23} + b'_{12}b_3 = db'_{123}$$

for some $b_{123} \in B^{k_1+k_2+k_3-2}$. Since $db'_{12} = b_1b_2$, we have $d(b'_{12} - b_{12}) = 0$. Since $f: A \to B$ is a quasi-isomorphism, there is a cocycle $c_{12} \in A$ such that $f(c_{12}) = b'_{12} - b_{12}$, and similarly there is a cocycle $c_{23} \in A$ such that $f(c_{23}) = b'_{23} - b_{23}$. Set

$$a'_{12} = a_{12} + c_{12}, \quad a'_{23} = a_{23} + c_{23}.$$

Then $da'_{12} = da_{12} = a_{12}$ and similarly $da'_{23} = a_{23}$. Therefore, the cohomology class of $c = (-1)^{k_1+1} a_1a'_{23} + a'_{12}a_3$ is a Massey product of $\alpha_1, \alpha_2, \alpha_3$. Then

$$f(c) = (-1)^{k_1+1} b_1b'_{23} + b'_{12}b_3 = db'_{123}.$$

Since f is a quasi-isomorphism, c is a coboundary, i.e. $c = da'_{123}$ for some $a'_{123} \in A$. Therefore, the Massey product $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ is trivial.

The fact that the triviality of Massey products in $H(A)$ implies their triviality in $H(B)$ is proved similarly (an exercise).

Corollary A.4.10. If a dg-algebra A is formal, then all Massey products in $H(A)$ are trivial.

Proof. Apply Proposition A.4.9 to a zigzag $A \leftarrow \cdots \to H(A)$ of quasi-isomorphisms and use that fact that all Massey products for the dg-algebra $H(A)$ with zero differential are trivial.

Exercises.

A.4.11. Let $A \to B$ be a quasi-isomorphism of dg-algebras. Show that the triviality of Massey products in $H(A)$ implies their triviality in $H(B)$.

APPENDIX B

Algebraic Topology

B.1. Homotopy and homology

Here we collect basic constructions and facts, with almost no proofs. For the details the reader is referred to standard sources on algebraic topology, such as [138], [177] or [293].

All spaces here are topological spaces, and all maps are continuous. We denote by \(k \) a commutative ring with unit (usually \(\mathbb{Z} \) or a field; in fact an abelian group is enough until we start considering the multiplication in cohomology).

Basic homotopy theory. Two maps \(f, g : X \to Y \) of spaces are homotopic (denoted by \(f \simeq g \)) if there is a map \(F : X \times [0, 1] \to Y \) (where \([0, 1] \) is the unit interval) such that \(F|_{X \times 0} = f \) and \(F|_{X \times 1} = g \). We denote the map \(F|_{X \times t} : X \to Y \) by \(F_t \), for \(t \in [0, 1] \). Homotopy is an equivalence relation, and we denote by \([X, Y] \) the set of homotopy classes of maps from \(X \) to \(Y \).

Two spaces \(X \) and \(Y \) are homotopy equivalent if there are maps \(f : X \to Y \) and \(g : Y \to X \) such that \(g \circ f \) and \(f \circ g \) are homotopic to the identity maps of \(X \) and \(Y \) respectively. The homotopy type of a space \(X \) is the class of spaces homotopy equivalent to \(X \).

A space \(X \) is contractible if it is homotopy equivalent to a point.

A pair \((X, A)\) of spaces consists of a space \(X \) and its subspace \(A \). A map of pairs \(f : (X, A) \to (Y, B) \) is a continuous map \(f : X \to Y \) such that \(f(A) \subseteq B \).

A pointed space (or based space) is a pair \((X, pt)\) where \(pt \) is a point of \(X \), called the basepoint. We denote by \(X_+ \) the pointed space \((X \cup pt, pt)\), where \(X \cup pt \) is \(X \) with a disjoint point added. A pointed map is a map of pairs \((X, pt) \to (Y, pt)\). We denote a pointed space \((X, pt)\) simply by \(X \) whenever the choice of the basepoint is clear or irrelevant. Given two pointed spaces \((X, pt)\) and \((Y, pt)\), their wedge (or bouquet) is the pointed space \(X \vee Y \) obtained by attaching \(X \) and \(Y \) at the basepoints. Then \(X \vee Y \) is contained as a pointed subspace in the product \(X \times Y \), and the quotient \(X \wedge Y = (X \times Y)/(X \vee Y) \) is called the smash product of \(X \) and \(Y \).

For any pointed space \((X, pt)\) the set of homotopy classes of pointed maps \((S^k, pt) \to (X, pt)\) (where \(S^k \) is a \(k \)-dimensional sphere, \(k \geq 0 \)) is a group for \(k > 0 \), which is called the \(k \)th homotopy group of \((X, pt)\) and denoted by \(\pi_k(X, pt) \) or simply \(\pi_k(X) \). We have that \(\pi_0(X) \) is the set of path connected components of \(X \). The group \(\pi_1(X) \) is called the fundamental group of \(X \). The groups \(\pi_k(X) \) are abelian for \(k > 1 \). A pointed map \(f : X \to Y \) induces a homomorphism \(f_* : \pi_k(X) \to \pi_k(Y) \) for each \(k \), and the homomorphisms induced by homotopic maps are the same.

A locally trivial fibration (or a fibre bundle) is a quadruple \((E, B, F, p)\) where \(E, B, F \) are spaces and \(p \) is a map \(E \to B \) such that for any point \(x \in B \) there is a neighbourhood \(U \subseteq B \) and a homeomorphism \(\varphi : p^{-1}(U) \to \mathbb{R} \times F \) closing the
The space E is called the total space, B the base, and F the fibre of the fibre bundle. The terms ‘locally trivial fibration’ and ‘fibre bundle’ are also often used for the map $p: E \to B$.

A cell complex (or a CW-complex) is a Hausdorff topological space X represented as a union $\bigcup e_i^q$ of pairwise nonintersecting subsets e_i^q, called cells, in such a way that for each cell e_i^q there is a map of a closed q-disk D^q to X (the characteristic map of e_i^q) whose restriction to the interior of D^q is a homeomorphism onto e_i^q. Furthermore, the following two conditions are assumed:

(C) the boundary $e_i^q \setminus e_i^q$ of a cell is contained in a union of finitely many cells of dimensions $< q$;

(W) a subset $Y \subset X$ is closed if and only the intersection $Y \cap \overline{e_i^q}$ is closed for every cell e_i^q (i.e. the topology of X is the weakest topology in which all characteristic maps are continuous).

The union of cells of X of dimension $\leq n$ is called the nth skeleton of X and denoted by $sk^n X$ or by X^n. A cell complex X can be obtained from its 0th skeleton $sk^0 X$ (which is a discrete set) by iterating the operation of attaching a cell: a space Z is obtained from Y by attaching an n-cell along a map $f: S^{n-1} \to Y$ if Z is the pushout of the form

$$
\begin{array}{ccc}
S^{n-1} & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
D^n & \longrightarrow & Z
\end{array}
$$

We use the notation $Z = Y \cup_f D^n$.

A cell subcomplex of a cell complex X is a closed subspace which is a union of cells of X. Each skeleton of X is a cell subcomplex.

A map $f: X \to Y$ between cell complexes is called a cellular map if $f(sk^n X) \subset sk^n Y$ for all n.

Theorem B.1.1 (Cellular approximation). A map between cell complexes is homotopic to a cellular map.

For any integer $n > 0$ and any group π (which is assumed to be abelian if $n > 1$) there exists a connected cell complex $K(\pi, n)$ such that $\pi_n (K(\pi, n)) \cong \pi$ and $\pi_k (K(\pi, n)) = 0$ for $k \neq n$. (A cell complex $K(\pi, n)$ can be constructed by taking the wedge of n-spheres corresponding to a set of generators of π and then killing the higher homotopy groups by attaching cells.) The space $K(\pi, n)$ is called the Eilenberg–Mac Lane space (corresponding to n and π), and it is unique up to homotopy equivalence. Examples of Eilenberg–Mac Lane spaces include the circle $S^1 = K(\mathbb{Z}, 1)$, the infinite-dimensional real projective space $\mathbb{R}P^{\infty} = K(\mathbb{Z}, 1)$ and the infinite-dimensional complex projective space $\mathbb{C}P^{\infty} = K(\mathbb{Z}, 2)$.
A space X which is homotopy equivalent to $K(\pi, 1)$ for some π is called aspherical. Any surface (a closed 2-dimensional manifold) which is not a 2-sphere or a real projective plane is aspherical.

A locally trivial fibration $p: E \to B$ satisfies the following covering homotopy property (CHP for short) with respect to maps of cell complexes Y: for any homotopy $F: Y \times I \to B$ and any map $f: Y \to E$ such that $p \circ f = F_0$ there is a covering homotopy $\tilde{F}: Y \times I \to E$, satisfying $\tilde{F}_0 = f$ and $p \circ \tilde{F} = F$. This is described by the commutative diagram

$$
\begin{array}{ccc}
Y & \xrightarrow{f} & E \\
\downarrow{i_0} & & \downarrow{\tilde{p}} \\
Y \times I & \xrightarrow{F} & B.
\end{array}
$$

A map $p: E \to B$ satisfying the CHP with respect to maps of cell complexes $Y \to B$ is called a Serre fibration. A map $p: E \to B$ satisfying the CHP with respect to all maps $Y \to B$ is called a Hurewicz fibration. The difference between Serre and Hurewicz fibrations is not important for our constructions and will be ignored; we shall use the term fibration for both of them. A fibre bundle is a fibration, but not every fibration is a fibre bundle. All fibres $p^{-1}(b), b \in B$, of a fibration are homotopy equivalent if B is connected.

Theorem B.1.2 (Exact sequence of fibration). For a fibration $p: E \to B$ with fibre F there exists a long exact sequence

$$
\cdots \to \pi_k(F) \xrightarrow{i_*} \pi_k(E) \xrightarrow{p_*} \pi_k(B) \xrightarrow{\partial} \pi_{k-1}(F) \to \cdots
$$

where the map i_* is induced by the inclusion of the fibre $i: F \to E$, the map p_* is induced by the projection $p: E \to B$, and ∂ is the connecting homomorphism.

The connecting homomorphism ∂ is defined as follows. Take an element $\gamma \in \pi_k(B)$ and choose a representative $g: S^k \to B$ in the homotopy class γ. By considering the composition $S^{k-1} \times I \to S^k \xrightarrow{\partial} B$ (where the first map contracts the top and bottom bases of the cylinder to the north and south poles of the sphere), we may view the map g as a homotopy $F: S^{k-1} \times I \to B$ of the trivial map $F_0: S^{k-1} \to pt$ with F_1 also being trivial. Using the CHP we lift F to a homotopy $\tilde{F}: S^{k-1} \times I \to E$ with \tilde{F}_0 still trivial, but $\tilde{F}_1: S^{k-1} \to E$ being trivial only after projecting onto B. The latter condition means that \tilde{F}_1 is in fact a map $S^{k-1} \to F$, homotopy class of which we take for $\partial \gamma$.

The path space of a space X is the space PX of pointed maps $(\mathbb{I}, 0) \to (X, pt)$. The loop space ΩX is the space of pointed maps $f: (\mathbb{I}, 0) \to (X, pt)$ such that $f(1) = pt$. The map $p: PX \to X$ given by $p(f) = f(1)$ is a fibration, with fibre (homotopy equivalent to) ΩX.

Proposition B.1.3. For any map $f: X \to Y$ there exist a homotopy equivalence $h: X \to \tilde{X}$ and a fibration $p: \tilde{X} \to Y$ such that $f = p \circ h$. Furthermore, this decomposition is functorial in the sense that a commutative diagram of maps

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{h} & & \downarrow{\tilde{f}} \\
\tilde{X} & \xrightarrow{f} & Y.
\end{array}
$$
induces a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & X' \\
\downarrow{h} & & \downarrow{h'} \\
\tilde{X} & \xrightarrow{f} & \tilde{X}'
\end{array}
\]

\[
\begin{array}{ccc}
\tilde{X} & \xrightarrow{p} & \tilde{Y} \\
\downarrow{h} & & \downarrow{h'} \\
X & \xrightarrow{f} & Y
\end{array}
\]

where \(Y^I \) is the space of all paths \(g: I \to Y \) and the map \(p_0 \) takes \(g \) to \(g(0) \).

Then the homotopy equivalence \(h: X \to \tilde{X} \) is given by \(h(x) = (x, c_{f(x)}) \), where \(c_{f(x)}: I \to Y \) is the constant path \(t \mapsto f(x) \), and the fibration \(p: \tilde{X} \to Y \) is given by \(p(x, g) = g(1) \). The functoriality property follows by inspection. \(\square \)

A space homotopy equivalent to the fibre of the fibration \(p: \tilde{X} \to Y \) from Proposition B.1.3 is referred to as the homotopy fibre of the map \(f: X \to Y \), and denoted by hofib \(f \). The functoriality of the construction of \(\tilde{X} \) implies that the homotopy fibre is well-defined: for any other decomposition \(f = p' \circ h' \) into a composition of a fibration \(p' \) and a homotopy equivalence \(h' \) the homotopy fibre of \(f \) is homotopy equivalent to the fibre of \(p' \). The homotopy fibre of the inclusion \(pt \to X \) is the loop space \(\Omega X \).

An inclusion \(i: A \to X \) of a cell subcomplex in a cell complex \(X \) satisfies the following homotopy extension property (HEP for short): for any map \(f: X \to Y \), a homotopy \(F: A \times I \to Y \) such that \(F_0 = f|_A \) can be extended to a homotopy \(\tilde{F}: X \times I \to Y \) such that \(\tilde{F}_0 = f \) and \(\tilde{F}|_{A \times 1} = F \). This is described by the commutative diagram

\[
\begin{array}{ccc}
A & \xrightarrow{F'} & Y^I \\
\downarrow{i} & \downarrow{\tilde{F}} & \\
X & \xrightarrow{f} & Y
\end{array}
\]

where \(F' \) is the adjoint of \(F \) (i.e. \(F'(a) = h \) where \(h(t) = F(a, t) \in Y \)), the map \(p_0 \) takes \(h \) to \(h(0) \), and \(\tilde{F}' \) is the adjoint of \(\tilde{F} \).

A map \(i: A \to X \) satisfying the HEP is called a cofibration, and \(X/i(A) \) is its cofibre. A pair \((X, A)\) for which \(i: A \to X \) is a cofibration is called a Borsuk pair.

Diagram (B.2) expresses the fact that fibrations obey the right lifting property with respect to particular cofibrations \(Y \to Y \times I \), which are also homotopy equivalences. Similarly, diagram (B.3) expresses the fact that cofibrations obey the left lifting property with respect to particular fibrations \(Y^I \to Y \), which are also
homotopy equivalences. This will be important for axiomatising homotopy theory via the concept of model category, see Section C.1.

The cone over a space X is the quotient space $\text{cone} X = (X \times \mathbb{I})/(X \times 0)$. The suspension ΣX is the quotient $(\text{cone} X)/(X \times 0)$. There are inclusions $X \hookrightarrow \text{cone} X \hookrightarrow \Sigma X$ of closed subspaces, where the first map is given by $x \mapsto (x, 0)$ and the second by $(x, t) \mapsto (x, (t+1)/2)$ for $x \in X$, $t \in \mathbb{I}$. The inclusion $i : X \to \text{cone} X$ is a cofibration, with cofibre ΣX.

Proposition B.1.4. For any map $f : X \to Y$ there exist a cofibration $i : X \to \hat{Y}$ and a homotopy equivalence $h : \hat{Y} \to Y$ such that $f = h \circ i$. This decomposition is functorial.

Proof. Let \hat{Y} be the quotient of $(X \times \mathbb{I}) \cup Y$ obtained by identifying $x \times 0 \in X \times \mathbb{I}$ with $f(x) \in Y$. This is described by the pushout diagram

$$
\begin{array}{ccc}
X & \to & Y \\
\downarrow & & \downarrow \\
X \times \mathbb{I} & \to & \hat{Y}
\end{array}
$$

where the map i_0 takes x to $x \times 0$.

The cofibration $i : X \to \hat{Y}$ is given by $i(x) = x \times 1$, and the homotopy equivalence $h : \hat{Y} \to Y$ is given by $h(x \times t) = f(x)$ and $h(y) = y$. \hfill \Box

The space \hat{Y} from Proposition B.1.4 is known as the mapping cylinder of the map $f : X \to Y$. The space $\hat{Y}/i(X) = \hat{Y}/(X \times 1)$ is known as the mapping cone of $f : X \to Y$. A space homotopy equivalent to the mapping cone of f is called the homotopy cofibre of the map $f : X \to Y$. The homotopy cofibre of the projection $X \to pt$ is the suspension ΣX.

Simplicial homology and cohomology. Let \mathcal{K} be a simplicial complex on the set $[m] = \{1, \ldots, m\}$. An oriented q-simplex σ of \mathcal{K} is a nonempty q-simplex $I = \{i_1, \ldots, i_{q+1}\} \in \mathcal{K}$ together with an equivalence class of total orderings of the set I, two orderings being equivalent if they differ by an even permutation. Denote by $[I]$ the oriented q-simplex with the equivalence class of orderings containing $i_1 < \cdots < i_{q+1}$.

Define the qth simplicial chain group (or module) $C_q(\mathcal{K}; \mathbf{k})$ with coefficients in \mathbf{k} as the free \mathbf{k}-module with basis consisting of oriented q-simplices of \mathcal{K}, modulo the relations $\sigma + \bar{\sigma} = 0$ whenever σ and $\bar{\sigma}$ are differently oriented q-simplices corresponding to the same simplex of \mathcal{K}. Therefore, $C_q(\mathcal{K}; \mathbf{k})$ is a free \mathbf{k}-module of rank $f_q(\mathcal{K})$ (the number of q-simplices of \mathcal{K}) for $q \geq 0$, and $C_q(\mathcal{K}; \mathbf{k}) = 0$ for $q < 0$. Define the simplicial chain boundary homomorphisms

$$
\partial_q : C_q(\mathcal{K}; \mathbf{k}) \to C_{q-1}(\mathcal{K}; \mathbf{k}), \quad q \geq 1,
$$

$$
\partial_q[i_1, \ldots, i_{q+1}] = \sum_{j=1}^{q+1} (-1)^{j-1} [i_1, \ldots, \hat{i}_j, \ldots, i_{q+1}],
$$

where \hat{i}_j denotes that i_j is missing. It is easily checked that $\partial_q \partial_{q+1} = 0$, so that $C_*(\mathcal{K}; \mathbf{k}) = \{C_q(\mathcal{K}; \mathbf{k}), \partial_q\}$ is a chain complex, called the simplicial chain complex of \mathcal{K} (with coefficients in \mathbf{k}).
The \(q\)th simplicial homology group of \(\mathcal{K}\) with coefficients in \(k\), denoted by \(H_q(\mathcal{K}; k)\), is the \(q\)th homology group of the simplicial chain complex \(C_*(\mathcal{K}; k)\).

The Euler characteristic \(\chi(\mathcal{K})\) of \(\mathcal{K}\) is defined by
\[
\chi(\mathcal{K}) = \sum_{q \geq 0} (-1)^q \text{rank } H_q(\mathcal{K}; k).
\]
It is also given by
\[
\chi(\mathcal{K}) = f_0 - f_1 + f_2 - \cdots,
\]
where \(f_i\) is the number of \(i\)-simplices of \(\mathcal{K}\), and therefore \(\chi(\mathcal{K})\) is independent of \(k\).

The augmented simplicial chain complex \(\widetilde{C}_*(\mathcal{K}; k)\) is obtained by taking into account the empty simplex \(\emptyset \in \mathcal{K}\). That is, \(\widetilde{C}_q(\mathcal{K}; k) = C_q(\mathcal{K}; k)\) for \(q \neq -1\) and \(\widetilde{C}_{-1}(\mathcal{K}; k) \cong k\) is a free \(k\)-module with basis \([\emptyset]\), so that \(\widetilde{C}_*(\mathcal{K}; k)\) is written as
\[
\cdots \rightarrow C_q(\mathcal{K}; k) \xrightarrow{\partial_q} \cdots \rightarrow C_1(\mathcal{K}; k) \xrightarrow{\partial_1} C_0(\mathcal{K}; k) \xrightarrow{\varepsilon} \widetilde{C}_{-1}(\mathcal{K}; k) \rightarrow 0,
\]
where \(\varepsilon = \partial_0\) is the augmentation taking each vertex \([i]\) to \([\emptyset]\).

The \(q\)th homology group of \(C_*(\mathcal{K}; k)\) is called the \(q\)th reduced simplicial homology group of \(\mathcal{K}\) with coefficients in \(k\) and is denoted by \(\widetilde{H}_q(\mathcal{K}; k)\). We have that \(H_q(\mathcal{K}; k) = \widetilde{H}_q(\mathcal{K}; k)\) for \(q \geq 1\), and \(H_0(\mathcal{K}; k) \cong \widetilde{H}_0(\mathcal{K}; k) \oplus k\) unless \(\mathcal{K}\) consists of \(\emptyset\) only, in which case \(\widetilde{H}_{-1}(\emptyset; k) \cong k\).

The simplicial cochain complex of \(\mathcal{K}\) with coefficients in \(k\) is defined to be
\[
C^*(\mathcal{K}; k) = \text{Hom}_k(C_*(\mathcal{K}; k), k).
\]
In explicit terms, \(C^*(\mathcal{K}; k) = \{C^q(\mathcal{K}; k), d_q\}\). Here \(C^q(\mathcal{K}; k)\) is the \(q\)th simplicial cochain group (or module) of \(\mathcal{K}\) with coefficients in \(k\); it is a free \(k\)-module with basis consisting of simplicial cochains \(\alpha_I\) corresponding to \(q\)-simplices \(I \in \mathcal{K}\); the cochain \(\alpha_I\) takes value 1 on the oriented simplex \([I]\) and vanishes on all oriented simplices \([J]\) with \(J \neq I\). The value of the cochain differential
\[
d_q = \partial^*_q : C^q(\mathcal{K}; k) \rightarrow C^{q+1}(\mathcal{K}; k)
\]
on the basis elements is given by
\[
d_{\alpha_I} = \sum_{j \in [m] \setminus I, j \cup I \in \mathcal{K}} \varepsilon(j, j \cup I) \alpha_{j \cup I},
\]
where the sign is given by \(\varepsilon(j, j \cup I) = (-1)^{r-1}\) if \(j\) is the \(r\)th element of the set \(j \cup I \subset [m]\), written in increasing order.

The \(q\)th simplicial cohomology group of \(\mathcal{K}\) with coefficients in \(k\), denoted by \(H^q(\mathcal{K}; k)\), is defined as the \(q\)th cohomology group of the cochain complex \(C^*(\mathcal{K}; k)\).

The \(q\)th reduced simplicial cohomology group of \(\mathcal{K}\) with coefficients in \(k\), denoted by \(\widetilde{H}^q(\mathcal{K}; k)\), is defined as the \(q\)th cohomology group of the cochain complex
\[
0 \rightarrow k \xrightarrow{d_{-1}} C^0(\mathcal{K}; k) \xrightarrow{d_0} C^1(\mathcal{K}; k) \xrightarrow{d_1} \cdots \rightarrow C^q(\mathcal{K}; k) \xrightarrow{d_q} \cdots
\]
on obtained by applying the functor \(\text{Hom}\) to the augmented chain complex \(\widetilde{C}_*(\mathcal{K}; k)\). The map \(d_{-1}\) takes \(1 = \alpha_{\emptyset}\) to the sum of \(\alpha_i\) corresponding to all vertices \([i]\) \(\in \mathcal{K}\).
We have that \(H^q(\mathcal{K}; k) = \widetilde{H}^q(\mathcal{K}; k)\) for \(q \geq 1\), and \(H^0(\mathcal{K}; k) \cong \widetilde{H}^0(\mathcal{K}; k) \oplus k\) unless \(\mathcal{K}\) consists of \(\emptyset\) only, in which case \(\widetilde{H}_{-1}(\emptyset; k) \cong k\).
Singular homology and cohomology. Let X be a topological space. A singular q-simplex of X is a continuous map $f: \Delta^q \to X$. The qth singular chain group $C_q(X; k)$ of X with coefficients in k is the free k-module generated by all singular q-simplices. For each $i = 1, \ldots, q + 1$ there is a linear map $\varphi^i_q: \Delta^{q-1} \to \Delta^q$ which sends Δ^{q-1} opposite its ith vertex, preserving the order of vertices. The ith face of a singular simplex $f: \Delta^q \to X$, denoted by $f^{(i)}$, is defined to be the singular $(q-1)$-simplex given by the composition

$$f^{(i)} = f \circ \varphi^i_q: \Delta^{q-1} \to \Delta^{q-1} \to \Delta^q \to X.$$

The singular chain boundary homomorphisms are given by

$$\partial_q: C_q(X; k) \to C_{q-1}(X; k), \quad q \geq 1,$$

$$\partial_q f = \sum_{i=1}^{q+1} (-1)^{i-1} f^{(i)}.$$

Then $\partial_q \partial_{q+1} = 0$, so that $C_*(X; k) = \{C_q(X; k), \partial_q\}$ is a chain complex, called the singular chain complex of X (with coefficients in k).

The qth singular homology group of X with coefficients in k, denoted by $H_q(X; k)$, is the qth homology group of the singular chain complex $C_*(X; k)$.

Assume that a space X has only finite number of nontrivial homology groups (with \mathbb{Z} coefficients), and each of these groups has finite rank. Then the Euler characteristic $\chi(X)$ of X is defined by

$$\chi(X) = \sum_{q \geq 0} (-1)^q \text{rank } H_q(X; \mathbb{Z}).$$

Proposition B.1.5. The group $H_0(X; k)$ is a free k-module of rank equal to the number of path connected components of X.

The augmented singular chain complex $\tilde{C}_*(X; k)$ is defined by $\tilde{C}_q(X; k) = \tilde{C}_q(X; k) = C_q(X; k)$ for $q \neq -1$ and $\tilde{C}_{-1}(X; k) = k$; the augmentation $\varepsilon = \partial_0: C_0(X; k) \to k$ is given by $\varepsilon(f) = 1$ for all singular 0-simplices f.

The qth homology group of $\tilde{C}_*(X; k)$ is called the qth reduced singular homology group of X with coefficients in k and is denoted by $\tilde{H}_q(X; k)$. We have $H_q(X; k) = \tilde{H}_q(X; k)$ for $q \geq 1$, and $H_0(X; k) \cong \tilde{H}_0(X; k) \oplus k$ if X is nonempty.

A nonempty space X is acyclic if $\tilde{H}_q(X; k) = 0$ for all q.

We shall drop the coefficient group k in the notation of chains and homology occasionally.

For any simplicial complex \mathcal{K}, there is an obvious inclusion $i: C_*(\mathcal{K}) \to C_*(|\mathcal{K}|)$ of the simplicial chain groups into the singular chain groups of the geometric realisation \mathcal{K}, defining an inclusion of chain complexes.

Theorem B.1.6. The map $i: C_*(\mathcal{K}) \to C_*(|\mathcal{K}|)$ induces an isomorphism $H_q(\mathcal{K}) \xrightarrow{\sim} H_q(|\mathcal{K}|)$ between the simplicial homology groups of \mathcal{K} and the singular homology groups of $|\mathcal{K}|$.

If (X, A) is pair of spaces, then $C_*(A)$ is a chain subcomplex in $C_*(X)$ (that is, $C_q(A)$ is a submodule of $C_q(X)$ and $\partial_q C_q(A) \subseteq C_{q-1}(A)$). The quotient complex $C_*(X, A) = \{C_q(X, A) = C_q(X)/C_q(A), \quad \partial_q: C_q(X, A) \to C_{q-1}(X, A)\}$

This yields a homological long exact sequence that is a version of the Mayer-Vietoris sequence.
is called the singular chain complex of the pair \((X, A)\). Its \(q\)th homology group
\(H_q(X, A)\) is called the \(q\)th singular homology group of \((X, A)\), or \(q\)th relative singular homology group of \(X\) modulo \(A\). Note that \(H_q(X) = H_q(X, \varnothing)\) and \(\bar{H}_q(X) = H_q(X, pt)\).

The singular cochain complex \(C^*(X; k) = \{C^q(X; k), d_q\}\) is defined to be
\[
C^*(X; k) = \text{Hom}_k(C_*(X; k), k).
\]
Its \(q\)th cohomology group is called the \(q\)th singular cohomology group of \(X\) and denoted by \(H^q(X; k)\). The reduced singular cohomology groups \(\bar{H}^q(X; k)\) and the relative cohomology groups \(H^q(X, A)\) are defined similarly.

The ranks of the groups \(H_q(X; \mathbb{Z})\) and \(H^q(X; \mathbb{Z})\) coincide, and the number \(b^q(X) = \text{rank} H^q(X; \mathbb{Z})\) is called the \(q\)th Betti number of \(X\). The Betti numbers with coefficients in a field \(k\) are defined similarly.

The (co)homology groups have the following fundamental properties.

Theorem B.1.7 (Functoriality and homotopy invariance). A map \(f : X \to Y\) induces homomorphisms \(f_* : H_q(X; k) \to H_q(Y; k)\) and \(f^* : H^q(Y; k) \to H^q(X; k)\). If two maps \(f, g : X \to Y\) are homotopic, then \(f_* = g_*\) and \(f^* = g^*\).

We omit the coefficient group \(k\) in the notation for the rest of this subsection.

Theorem B.1.8 (Exact sequences of pairs). For any pair \((X, A)\) there are long exact sequences
\[
\cdots \to H_q(A) \xrightarrow{i_*} H_q(X) \xrightarrow{j_*} H_q(X, A) \xrightarrow{\partial} H_{q-1}(A) \to \cdots,
\]
\[
\cdots \to H^q(X, A) \xrightarrow{j^*} H^q(X) \xrightarrow{i^*} H^q(A) \xrightarrow{\partial^*} H^{q+1}(X, A) \to \cdots.
\]
Furthermore, if the inclusion \(A \to X\) is a cofibration (e.g., if it is an inclusion of a cell subcomplex), then the quotient projection \((X, A) \to (X/A, pt)\) induces isomorphisms
\[
H_q(X, A) \cong H_q(X/A, pt) = \bar{H}_q(X/A), \quad H^q(X, A) \cong H^q(X/A, pt) = \bar{H}^q(X/A).
\]

In the homology exact sequence of a pair, the map \(i_*\) is induced by the inclusion \(A \to X\), the map \(j_*\) is induced by the map of pairs \((X, \varnothing) \to (X, A)\), and the connecting homomorphism \(\partial\) is the homology homomorphism corresponding the homomorphism sending a relative cocycle \(c \in C_q(X, A)\) to \(\partial c \in C_q(A)\). The maps in the cohomology exact sequence are defined dually.

Let \((X, A)\) be a pair and \(B \subset A\) be a subspace. The inclusion of pairs \((X \setminus B, A \setminus B) \to (X, A)\) induces maps
\[
H_q(X \setminus B, A \setminus B) \to H_q(X, A),
\]
which are referred to as the excision homomorphisms.

Theorem B.1.9 (Excision). If the closure of \(B\) is contained in the interior of \(A\), then the excision homomorphisms \(H_q(X \setminus B, A \setminus B) \to H_q(X, A)\) are isomorphisms.

Theorem B.1.10 (Mayer–Vietoris exact sequences). Let \(X\) be a space, \(A \subset X\), \(B \subset X\) and \(A \cup B = X\). Assume that the excision homomorphisms
\[
H_q(B, A \cap B) \to H_q(X, A) \quad \text{and} \quad H_q(A, A \cap B) \to H_q(X, B)
\]
are isomorphisms for all \(q \). Then there are exact sequences

\[
\cdots \to H_q(A \cap B) \xrightarrow{\partial} H_q(A) \oplus H_q(B) \xrightarrow{\alpha} H_q(X) \xrightarrow{\delta} H_{q-1}(A \cap B) \to \cdots ,
\]

\[
\cdots \to H^q(X) \xrightarrow{\alpha} H^q(A) \oplus H^q(B) \xrightarrow{\beta} H^q(A \cap B) \xrightarrow{\delta} H^{q+1}(X) \to \cdots .
\]

In the homology Mayer–Vietoris sequence, the map \(\beta \) is the difference of the homomorphisms induced by the inclusions \(A \cap B \to A \) and \(A \cap B \to B \), the map \(\alpha \) is the sum of the homomorphisms induced by the inclusions \(A \to X \) and \(B \to X \), and the connecting homomorphism \(\delta \) is the composite

\[
H_q(X) \xrightarrow{\partial} H_q(X, A) = H_q(B, A \cap B) \xrightarrow{\delta} H_{q-1}(A \cap B).
\]

The first key calculation of homology groups follows directly from the general properties above:

Proposition B.1.11. The \(n \)-disk \(D^n \) is acyclic, and the reduced homology of an \(n \)-sphere \(S^n \) is given by \(\tilde{H}_n(S^n; k) \cong k \) and \(H_i(S^n; k) = 0 \) for \(i \neq n \).

Here is another direct corollary:

Theorem B.1.12 (Suspension isomorphism). For any space \(X \) and any \(q > 0 \) there are isomorphisms

\[
\tilde{H}_q(\Sigma X) \cong \tilde{H}_{q-1}(X) \quad \text{and} \quad \tilde{H}^q(\Sigma X) \cong \tilde{H}^{q-1}(X).
\]

A closed connected topological \(n \)-dimensional manifold \(X \) is orientable over \(k \) if \(H_0(X; k) \cong k \). Every compact connected manifold is oriented over \(\mathbb{Z}_2 \) or any field of characteristic two.

Theorem B.1.13 (Poincaré duality). If a closed connected \(n \)-manifold is orientable over \(k \), then \(H_q(X; k) \cong H^{n-q}(X; k) \).

Cellular homology, and cohomology multiplication. Let \(X \) be a cell complex with skeletons \(sk^n X = X^n \) for \(n = 0, 1, 2, \ldots \)

We start with the case \(k = \mathbb{Z} \), and omit this coefficient group in the notation. The group \(C_q(X) = H_q(X^q, X^{q-1}) \) is called the \(q \)th **cellular chain group**. This is a free abelian group with basis the \(q \)-dimensional cells of \(X \), and therefore a cellular chain may be viewed as an integral combination of cells of \(X \).

The **cellular boundary homomorphism** \(\partial_q : C_q(X) \to C_{q-1}(X) \) is defined as the composition

\[
\partial_q : C_q(X) = H_q(X^q, X^{q-1}) \to H_{q-1}(X^{q-1}) \to H_{q-1}(X^{q-1}, X^{q-2}) = C_{q-1}(X)
\]

of homomorphisms from the homology exact sequences of pairs \((X^q, X^{q-1}) \) and \((X^{q-1}, X^{q-2}) \). The resulting chain complex

\[
\cdots \to C_q(X) \xrightarrow{\partial_q} \cdots \to C_1(X) \xrightarrow{\partial_1} C_0(X) \to 0
\]

is called the **cellular chain complex** of \(X \). Its \(q \)th homology group, which we denote by \(H_q(X) \) for the moment, is called the **\(q \)th cellular homology group** of \(X \).

Theorem B.1.14. For any cell complex \(X \), there is a canonical isomorphism \(H_q(X) \cong H_q(X) \) between the cellular and singular homology groups.
The cellular homology groups $\mathcal{H}_q(X; k)$ with coefficients in k and the cohomology groups $\mathcal{H}^q(X; k)$ are defined similarly; they are canonically isomorphic to the appropriate singular homology and cohomology groups.

We shall therefore not distinguish between the singular and cellular homology and cohomology groups of cell complexes.

The product $X_1 \times X_2$ of cell complexes is a cell complex with cells of the form $e_1 \times e_2$, where e_1 is a cell of X_1 and e_2 is a cell of X_2.

Given two cellular cochains $c_1 \in C^q(X)$ and $c_2 \in C^q(X)$, define their product as the cochain $c_1 \times c_2 \in C^{q_1+q_2}(X \times X)$ whose value on a cell $e_1 \times e_2$ of $X \times X$ is given by $(-1)^{q_1q_2}c_1(e_1)c_2(e_2)$. This product satisfies the identity

$$\delta(c_1 \times c_2) = \delta c_1 \times c_2 + (-1)^q c_1 \times \delta c_2,$$

where δ is the cellular cochain differential, and therefore defines a map of cochain complexes

$$C^*(X) \otimes C^*(X) \to C^*(X \times X)$$

and induces a cohomology map

$$\times : H^q(X) \otimes H^q(X) \to H^{q_1+q_2}(X \times X),$$

which is called the (cohomology) \times-product.

The composition of the \times-product with the cohomology map induced by the diagonal map $\Delta : X \to X \times X$, $\Delta(x) = (x, x)$, defines a product

$$\circ : H^q(X) \otimes H^q(X) \xrightarrow{\times} H^{q_1+q_2}(X \times X) \xrightarrow{\Delta^*} H^{q_1+q_2}(X),$$

which is called the cup product, or cohomology product. It turns $H^*(X) = \bigoplus_{q \geq 0} H^q(X)$ into an associative and graded commutative ring. This ring structure on $H^*(X)$ is a homotopy invariant of X; it does not depend on the cell complex structure. It is also functorial, in the sense that a map $f : X \to Y$ induces a ring homomorphism $f^* : H^*(Y) \to H^*(X)$.

There is also a relative version of the cohomology product, given by the map

$$H^q(X; A) \otimes H^q(X, B) \to H^{q_1+q_2}(X, A \cup B).$$

Whitehead product, Samelson product and Pontryagin product. Let $w : S^{k+l-1} \to S^k \vee S^l$ be the attaching map of the $(k+l)$-cell of $S^k \times S^l$ with the standard cell structure. Explicitly, the map w can be defined as the composition

$$S^{k+l-1} = \partial(D^k \times D^l) = D^k \times S^{l-1} \cup_{S^{k-1} \times S^{l-1}} S^{k-1} \times D^l \to S^k \vee S^l,$$

where the last map consists of two projections

$$D^k \times S^{l-1} \to D^k \to D^k/S^{k-1} = S^k \to S^k \vee S^l$$

and

$$S^{k-1} \times D^l \to D^l \to D^l/S^{l-1} = S^l \to S^k \vee S^l$$

and maps $S^{k-1} \times S^{l-1}$ to the basepoint.

Given two pointed maps $f : S^k \to X$ and $g : S^l \to X$, their Whitehead product is defined as the composition

$$[f, g]_w : S^{k+l-1} \xrightarrow{w} S^k \vee S^l \xrightarrow{f \vee g} X.$$

It gives rise to a well-defined product

$$[\cdot, \cdot]_w : \pi_k(X) \times \pi_l(X) \to \pi_{k+l-1}(X),$$
which is also called the Whitehead product. When \(k = l = 1 \), the Whitehead product is the commutator product in \(\pi_l(X) \). We have \([f,g]_w = 0 \) in \(\pi_{k+l-1}(X) \) whenever the map \(f \vee g : S^k \vee S^l \to X \) extends to a map \(S^k \times S^l \to X \).

Theorem B.1.15.

(a) If \(\alpha \in \pi_k(X) \) and \(\beta, \gamma \in \pi_l(X) \) with \(l > 1 \), then
\[
[\alpha, \beta + \gamma]_w = [\alpha, \beta]_w + [\alpha, \gamma]_w.
\]

(b) If \(\alpha \in \pi_k(X) \) and \(\beta \in \pi_l(X) \) with \(k, l > 1 \), then
\[
[\alpha, \beta]_w = (-1)^k[\beta, \alpha]_w.
\]

(c) If \(\alpha \in \pi_k(X) \), \(\beta \in \pi_l(X) \) and \(\gamma \in \pi_m(X) \) with \(k, l, m > 1 \), then
\[
(-1)^{km}[[\alpha, \beta]_w, \gamma]_w + (-1)^{ik}[[\beta, \gamma]_w, \alpha]_w + (-1)^{ml}[[\gamma, \alpha]_w, \beta]_w = 0.
\]

Now consider the loop space \(\Omega X \). The commutator of loops, \((x, y) \mapsto xyx^{-1}y^{-1} \), induces a map \(c : \Omega X \wedge \Omega X \to \Omega X \). Given two pointed maps \(f : S^p \to \Omega X \) and \(g : S^q \to \Omega X \), their *Samelson product* is defined as
\[
[f,g]_s : S^{p+q} = S^p \wedge S^q \xrightarrow{f\wedge g} \Omega X \wedge \Omega X \xrightarrow{c} \Omega X.
\]

It gives rise to a well-defined product
\[
[\cdot, \cdot]_s : \pi_p(\Omega X) \times \pi_q(\Omega X) \to \pi_{p+q}(\Omega X),
\]
which is also called the *Samelson product*.

Theorem B.1.16.

(a) If \(\varphi \in \pi_p(\Omega X) \) and \(\psi, \eta \in \pi_q(\Omega X) \), then
\[
[\varphi, \psi + \eta]_s = [\varphi, \psi]_s + [\varphi, \eta]_s.
\]

(b) If \(\varphi \in \pi_p(\Omega X) \) and \(\psi \in \pi_q(\Omega X) \), then
\[
[\varphi, \psi]_s = (-1)^{pq}[\psi, \varphi]_s.
\]

(c) If \(\varphi \in \pi_p(\Omega X) \) and \(\psi, \eta \in \pi_q(\Omega X) \), then
\[
[\varphi, [\psi, \eta]]_s = [[\varphi, \psi]_s, \eta]_s + (-1)^{pq}[\psi, [\varphi, \eta]]_s.
\]

The Samelson bracket makes the rational vector space \(\pi_*(\Omega X) \otimes \mathbb{Q} \) into a graded Lie algebra, see (C.8). It is called the *rational homotopy Lie algebra* of \(X \).

The *Pontryagin product* is defined as the composition
\[
H_*(\Omega X; k) \otimes H_*(\Omega X; k) \xrightarrow{\times} H_*(\Omega X \times \Omega X; k) \xrightarrow{m_*} H_*(\Omega X; k),
\]
where \(k \) is a commutative ring with unit, \(\times \) is the homology cross-product, and \(m : \Omega X \times \Omega X \to \Omega X \) is the loop multiplication. The Pontryagin product makes \(H_*(\Omega X; k) \) into an associative (but not generally commutative) algebra with unit.

Whitehead, Samelson and Pontryagin products are related by the following classical result of Samelson:

Theorem B.1.17 ([323]). There is a choice of adjunction isomorphism \(t : \pi_n(X) \to \pi_{n-1}(\Omega X) \) such that
\[
t[\alpha, \beta]_w = (-1)^{k-1}[t\alpha, t\beta]_s
\]
for \(\alpha \in \pi_k(X) \) and \(\beta \in \pi_l(X) \). Furthermore, if \(h : \pi_n(\Omega X) \to H_*(\Omega X) \) is the Hurewicz homomorphism and \(\star \) denotes the Pontryagin product, then
\[
h[\varphi, \psi]_s = h(\varphi) \ast h(\psi) - (-1)^{pq}h(\psi) \ast h(\varphi)
\]
for \(\varphi \in \pi_p(\Omega X) \) and \(\psi \in \pi_q(\Omega X) \).

It follows that the Pontryagin algebra \(H_*(\Omega X, \mathbb{Q}) \) is the universal enveloping algebra of the graded Lie algebra \(\pi_*(\Omega X) \otimes \mathbb{Q} \), and \(\pi_*(\Omega X) \otimes \mathbb{Q} \) is the Lie algebra of primitive elements in the Hopf algebra \(H_*(\Omega X, \mathbb{Q}) \).

More details on the relationship between the three products, including their generalisations to \(H \)-spaces, can be found in the monograph by Neisendorfer [285].

B.2. Elements of rational homotopy theory

We review some basic notions and results here. For a detailed account of this elaborate theory we refer to [45], [231] and [136].

Definition B.2.1. A map \(f: X \to Y \) between spaces is called a rational equivalence if it induces isomorphisms in all rational homotopy groups, that is,
\[
\pi_i(X) \otimes \mathbb{Q} \to \pi_i(Y) \otimes \mathbb{Q}
\]
is an isomorphism for all \(i \).

The **rational homotopy type** of \(X \) is its equivalence class in the equivalence relation generated by rational equivalences.

Proposition B.2.2. If both \(X \) and \(Y \) are simply connected, then \(f: X \to Y \) is a rational equivalence if and only if
\[
f_*: H_i(X; \mathbb{Q}) \to H_i(Y; \mathbb{Q}) \quad \text{(or equivalently,} \quad f^*: H^i(Y; \mathbb{Q}) \to H^i(X; \mathbb{Q}) \text{)}
is an isomorphism for each \(i \).

A space \(X \) is nilpotent if its fundamental group \(\pi_1(X) \) is nilpotent and \(\pi_1(X) \) acts nilpotently on higher homotopy groups \(\pi_n(X) \). Simply connected spaces are obviously nilpotent.

Rational homotopy theory, whose foundation was laid in the work of Quillen [314] and Sullivan [341], translates the study of the rational homotopy type of nilpotent spaces \(X \) into the algebraic language of dg-algebras and minimal models (see Section A.4). This translation is made via Sullivan’s algebra of piecewise polynomial differential forms \(A_{PL}(X) \), whose properties we briefly discuss below. Further remarks relating rational homotopy theory to the theory of model categories are given in Section C.1.

The most basic dg-algebra model of a space \(X \) is its singular cochains \(C^*(X; k) \). However, this dg-algebra is non-commutative, and therefore is difficult to handle. If \(X \) is a smooth manifold, and \(k = \mathbb{R} \), then we may consider the dg-algebra \(\Omega^*(X) \) of de Rham differential forms instead of \(C^*(X; \mathbb{R}) \). It provides a functorial (with respect to smooth maps) and commutative dg-algebra model for \(X \), with the same cohomology \(H^*(X; \mathbb{R}) \). It is therefore natural to ask whether a functorial commutative dg-algebra model exists for arbitrary cell complexes \(X \) over a field \(k \) of characteristic zero (over finite fields there are secondary cohomological operations obstructing such a construction). A first construction of a commutative dg-algebra model which worked for simplicial complexes was suggested by Thom in the 1950s. Later, in the mid-1970s, Sullivan provided a functorial construction of a dg-algebra model \(A_{PL}(X) \) whose cohomology is \(H^*(X; \mathbb{Q}) \), using similar ideas as those of Thom (a combinatorial version of differential forms).

The algebra \(A_{PL}(X) \) has the following two important properties.

Theorem B.2.3 (PL de Rham Theorem).

(a) \(A_{PL}(X) \) is weakly equivalent to \(C^*(X; \mathbb{Q}) \) via a short zigzag of the form
\[
A_{PL}(X) \to D(X) \leftarrow C^*(X; \mathbb{Q}),
\]
where \(D(X) \) is another naturally defined dg-algebra;
(b) there is a natural map of cochain complexes $A_{PL}(X) \to C^{\ast}(X; \mathbb{Q})$, the ‘Stokes map’, which induces an isomorphism in cohomology.

(c) if X is a smooth manifold, then the dg-algebra $\Omega^{\ast}(X)$ of de Rham forms is weakly equivalent to $A_{PL}(X) \otimes_{\mathbb{Q}} \mathbb{R}$.

The proof of (a) can be found in [231, §II.3] or in [136, Corollary 10.10]. For (b), see [45, §2], and for (c), see [231, Theorem V.2] or [136, Theorem 11.4].

Definition B.2.4. Given a cell complex X, we refer to any commutative dg-algebra A weakly equivalent to $A_{PL}(X)$ as a (rational) model of X. The minimal model of $A_{PL}(X)$ is called the minimal model of X, and is denoted by M_X.

In the case of nilpotent spaces, the rational homotopy type of X is fully determined by the commutative dg-algebra $A_{PL}(X)$ or its minimal model M_X. More precisely, there is the following fundamental result.

Theorem B.2.5. There is a bijective correspondence between the set of rational homotopy types of nilpotent spaces and the set of classes of isomorphic minimal dg-algebras over \mathbb{Q}. Under this correspondence, there is a natural isomorphism

$\text{Hom}(\pi_i(X), \mathbb{Q}) \cong M^i_X / (M^+_X \cdot M^-_X),$

i.e. the rank of the ith rational homotopy group of X equals the number of generators of degree i in the minimal model of X.

For the proof, see [231, Theorem IV.8].

Definition B.2.6. A space X is formal if $C^{\ast}(X; \mathbb{Q})$ is a formal dg-algebra (equivalently, if $A_{PL}(X)$ is a formal commutative dg-algebra, see Definition A.4.5).

If X in nilpotent, then it is formal if and only if there is a quasi-isomorphism $M_X \to H^{\ast}(X; \mathbb{Q})$. If X is a smooth manifold, then it is formal if and only if the de Rham algebra $\Omega^{\ast}(X)$ is formal; in this case we can define M_X as the minimal model of $\Omega^{\ast}(X)$ instead of $A_{PL}(X)$.

Example B.2.7.

1. Let $X = S^{2n+1}$ be an odd sphere, $n \geq 1$. Then

$M_X = \Lambda[x], \quad \text{deg } x = 2n + 1, \quad dx = 0.$

There is a quasi-isomorphism $M_X \to \Omega^{\ast}(X)$ sending x to the volume form of S^{2n+1}.

2. Let $X = S^{2n}, n \geq 1$. Then

$M_X = \Lambda[y] \otimes \mathbb{R}[x], \quad \text{deg } x = 2n, \text{deg } y = 4n - 1, \quad dx = 0, dy = x^2.$

The map $M_X \to \Omega^{\ast}(X)$ sends x to the volume form of S^{2n} and y to zero.

3. Let $X = \mathbb{C}P^n$, $n \geq 1$. Then

$M_X = \Lambda[y] \otimes \mathbb{R}[x], \quad \text{deg } x = 2, \text{deg } y = 2n + 1, \quad dx = 0, dy = x^{n+1}.$

There is a quasi-isomorphism $M_X \to \Omega^{\ast}(X)$ sending x to the Fubini-Study 2-form $\omega = \frac{1}{2\pi} \partial \bar{\partial} \log |z|^2 \in \Omega^2(\mathbb{C}P^n)$ and y to zero.

4. Let $X = \mathbb{C}P^{\infty}$. Then

$M_X = \mathbb{Q}[v] = H^{\ast}(X; \mathbb{Q}), \quad \text{deg } v = 2, \quad dv = 0.$

5. Let $X = \mathbb{C}P^{\infty} \vee \mathbb{C}P^{\infty}$. Then

$H^{\ast}(X; \mathbb{Q}) = \mathbb{Q}[v_1, v_2]/(v_1v_2), \quad \text{deg } v_1 = \text{deg } v_2 = 2,$

$M_X = \mathbb{Q}[v_1, v_2, w], \quad \text{deg } w = 3, \quad dv_1 = dv_2 = 0, dw = v_1v_2.$
and the map $M_X \to H^*(X; \mathbb{Q})$ sends w to zero. Theorem B.2.5 gives the following nontrivial rational homotopy groups:

$$\pi_2(X) \otimes \mathbb{Q} = \mathbb{Q}^2, \quad \pi_3(X) \otimes \mathbb{Q} = \mathbb{Q}.$$

This conforms with the homotopy fibration

$$S^3 \to \mathbb{C}P^\infty \vee \mathbb{C}P^\infty \to \mathbb{C}P^\infty \times \mathbb{C}P^\infty$$

(see Example 4.3.4).

In all examples above the space X is formal (an exercise). Here is an example of a nonformal manifold.

Example B.2.8. Let G be the Heisenberg group consisting of matrices

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}, \quad x, y, z \in \mathbb{R},$$

and let $\Gamma = G_2$ be the subgroup consisting of matrices with $x, y, z \in \mathbb{Z}$. The quotient manifold $X = G/\Gamma$ is the classifying space for the nilpotent group $\Gamma = \pi_1(X)$, i.e. $X = K(\Gamma, 1)$. The minimal model M_X is generated by the left-invariant forms

$$\omega_1 = dx, \quad \omega_2 = dy, \quad \omega_3 = xdy - dz.$$

This dg-algebra is isomorphic to the dg-algebra of Example A.4.7. Therefore, the manifold X is not formal.

Exercises.

B.2.9. Show that all spaces of Example B.2.7 are formal.

B.3. Eilenberg–Moore spectral sequences

In their paper [128] of 1966, Eilenberg and Moore constructed a spectral sequence, which became one of the important computational tools of algebraic topology. It particular, it provides a method for calculation of the cohomology of the fibre of a bundle $E \to B$ using the canonical $H^*(B)$-module structure on $H^*(E)$. This spectral sequence can be considered as an extension of Adams’ approach to calculating cohomology of loop spaces [1]. In the 1960–70s applications of the Eilenberg–Moore spectral sequence led to many important results on cohomology of homogeneous spaces for Lie groups. More recently it has been used for different calculations with toric spaces. This section contains the necessary information about the spectral sequence; we mainly follow L. Smith’s paper [330] in this description. For a detailed account of differential homological algebra and the Eilenberg–Moore spectral sequence, as well as its applications which go beyond the scope of this book, we refer to McCleary’s book [258].

Here we assume that k is a commutative ring with unit. The following theorem provides an algebraic setup for the Eilenberg–Moore spectral sequence.

Theorem B.3.1 (Eilenberg–Moore [330, Theorem 1.2]). Let A be a differential graded k-algebra, and let M, N be differential graded A-modules. Then there exists a spectral sequence $\{E_r, d_r\}$ converging to $\text{Tor}_A(M, N)$ and whose E_2-term is

$$E_2^{-i, j} = \text{Tor}_{H(A)}^{-i, j}(H(M), H(N)), \quad i, j \geq 0,$$

where $H(\cdot)$ denotes the algebra or module of cohomology.
Remark. The construction of Tor for differential graded objects requires some additional considerations (see e.g. [330] or [245, Chapter XIII]).

The spectral sequence of Theorem B.3.1 is located in the second quadrant and its differentials d_r add $(r, 1 - r)$ to the bidegree, for $r \geq 1$. We shall refer to it as the algebraic Eilenberg–Moore spectral sequence. Its E_∞-term is expressed via a certain decreasing filtration $\{F^{-p} \text{Tor}_A(M, N)\}$ in $\text{Tor}_A(M, N)$ by the formula

$$E_{r, n+p}^{-, i} = F^{-r} \left(\sum_{-i+j=n} \text{Tor}_A^{i,j}(M, N) \right) / F^{-r+1} \left(\sum_{-i+j=n} \text{Tor}_A^{i,j}(M, N) \right).$$

Topological applications of Theorem B.3.1 arise in the case when A, M, N are cochain algebras of topological spaces. The classical situation is described by the commutative diagram

$$\begin{array}{ccc}
E & \longrightarrow & E_0 \\
\downarrow & & \downarrow \\
B & \longrightarrow & B_0,
\end{array}$$

where $E_0 \rightarrow B_0$ is a Serre fibre bundle with fibre F over a simply connected base B_0, and $E \rightarrow B$ is the pullback along a continuous map $B \rightarrow B_0$. For any space X, let $C^*(X)$ denote the singular k-cochain algebra of X. Then $C^*(E_0)$ and $C^*(B)$ are $C^*(B_0)$-modules. Under these assumptions the following statement holds.

Lemma B.3.2 ([258, Proposition 7.17]). $\text{Tor}_{C^*(B_0)}(C^*(E_0), C^*(B))$ is a k-algebra in a natural way, and there is a canonical isomorphism of algebras

$$\text{Tor}_{C^*(B_0)}(C^*(E_0), C^*(B)) \cong H^*(E).$$

Applying Theorem B.3.1 in the case $A = C^*(B_0), M = C^*(E_0), N = C^*(B)$ and taking into account Lemma B.3.2, we come to the following statement.

Theorem B.3.3 (Eilenberg–Moore). There exists a spectral sequence $\{E_r, d_r\}$ of commutative algebras converging to $H^*(E)$ with

$$E_r^{i,j} = \text{Tor}_{H^*(E)}^{i,j}(H^*(E_0), H^*(B)).$$

The spectral sequence of Theorem B.3.3 is known as the (topological) Eilenberg–Moore spectral sequence. The case when B is a point is of particular importance, and we state the corresponding result separately.

Theorem B.3.4. Let $E \rightarrow B$ be a fibration over a simply connected space B with fibre F. Then there exists a spectral sequence $\{E_r, d_r\}$ of commutative algebras converging to $H^*(F)$ with

$$E_2 = \text{Tor}_{H^*(B)}(H^*(E), k).$$

We refer to the spectral sequence of Theorem B.3.4 as the Eilenberg–Moore spectral sequence of the fibration $E \rightarrow B$. In the case when E_0 is a contractible we obtain a spectral sequence converging to the cohomology of the loop space ΩB_0.

Remark. As we outlined in Section B.2, the Sullivan algebra $A_{PL}(X)$ provides a commutative rational model for X. It can be proved [45, §3] that the above results on the Eilenberg–Moore spectral sequence hold over \mathbb{Q} with C^* replaced by A_{PL}. This result is not a direct corollary of algebraic properties of Tor, since the integration map $A_{PL}(X) \rightarrow C^*(X, \mathbb{Q})$ is not multiplicative.
B.4. Group actions and equivariant topology

There is a vast literature available on this classical subject; we mention the monographs of Bredon [47], Hsiang [191], Allday–Puppe [7] and Guillemin–Ginzburg–Karshon [168], among others. We briefly review some basic concepts and results used in the main part of the book.

Let X be a Hausdorff space and G a Hausdorff topological group. One says that G acts on X if for any element $g \in G$ there is a homeomorphism $\varphi_g : X \to X$, and the assignment $g \mapsto \varphi_g$ respects the algebraic and topological structure. In more precise terms, a (left) action of G on X is given by a continuous map

$$G \times X \to X, \quad (g, x) \mapsto gx$$

such that $g(hx) = (gh)x$ for any $g, h \in G$, $x \in X$, and $ex = x$, where e is the unit of G. The space X is called a (left) G-space. Right actions and right G-spaces are defined similarly. A right action $X \times G \to X$, $(x, g) \mapsto x \cdot g$ can be turned into a left action $G \times X \to X$, $(g, x) \mapsto x \cdot g^{-1}$. In the case when G is an abelian group, the notions of left and right action coincide.

A continuous map $f : X \to Y$ of G-spaces is equivariant if it commutes with the group actions, i.e. $f(gx) = g \cdot f(x)$ for all $g \in G$ and $x \in X$. A map f is weakly equivariant if there is an automorphism $\psi : G \to G$ such that $f(gx) = \psi(g)(f(x))$ for all $g \in G$ and $x \in X$. A weakly equivariant map corresponding to an automorphism ψ is also referred to as ψ-equivariant.

Let $x \in X$. The set

$$G_x = \{g \in G : gx = x\}$$

of elements of G fixing the point x is a closed subgroup in G, called the stationary subgroup, or the stabiliser of x. The subspace

$$Gx = \{gx \in X : g \in G\} \subset X$$

is called the orbit of x with respect to the action of G (or the G-orbit for short). If points x and y are in the same orbit, then their stabilisers G_x and G_y are conjugate subgroups in G. The type of an orbit Gx is the conjugation class of stabiliser subgroups of points in Gx.

The set of all orbits is denoted by X/G, and we have the canonical projection $\pi : X \to X/G$. The space X/G with the standard quotient topology (a subset $U \subset X/G$ is open if and only if $\pi^{-1}(U)$ is open) is referred to as the orbit space, or the quotient space. If G is a compact group, then the quotient X/G is Hausdorff, and the projection $\pi : X \to X/G$ is a closed and proper map (i.e. the image of a closed subset is closed, and the preimage of a compact subset is compact).

A point $x \in X$ is fixed if $Gx = x$, i.e. $G_x = G$. The set of all fixed points of a G-space X will be denoted by X^G. A G-action on X is

- **effective** if the trivially acting subgroup $\{g \in G : gx = x \text{ for all } x \in X\}$ is trivial (consists of the single element $e \in G$);
- **free** if all stabilisers G_x are trivial;
- **almost free** if all stabilisers G_x are finite subgroups of G;
- **semifree** if any stabiliser G_x is either trivial or is the whole G;
- **transitive** if for any two points $x, y \in X$ there is an element $g \in G$ such that $gx = y$ (i.e. X is a single orbit of the G-action).

A principal G-bundle is a locally trivial bundle $p : X \to B$ such that G acts on X preserving fibres, and the induced G-action on each fibre is free and transitive. It
follows that each fibre is homeomorphic to \(G \), the \(G \)-action on \(X \) is free, the \(G \)-orbits are precisely the fibres, and the projection \(p: X \to B \) induces a homeomorphism between the quotient \(X/G \) and the base \(B \). Therefore \(p \) can be regarded as the projection onto the orbit space of a free \(G \)-action. If the group \(G \) is compact, the converse is also true under some mild topological assumptions on \(X \): a free \(G \)-space \(X \) is the total space of a principal \(G \)-bundle (see [47, Chapter II]). Therefore, in this case the notions of a principal \(G \)-bundle and a free \(G \)-action are equivalent.

Now let \(G \) be a compact Lie group. Then there exists a principal \(G \)-bundle \(EG \to BG \) whose total space \(EG \) is contractible. This bundle has the following universality property. Let \(E \to B \) be another principal \(G \)-bundle over a cell complex \(B \). Then there is a unique up to homotopy map \(f: B \to BG \) such that the pullback of the bundle \(EG \to BG \) along \(f \) is the bundle \(E \to B \). The space \(EG \) is referred to as the universal \(G \)-space, and the space \(BG \) is the classifying space for free \(G \)-actions (or simply the classifying space for \(G \)).

Let \(X \) be a \(G \)-space. The diagonal \(G \)-action on \(EG \times X \), given by
\[
g(e, x) = (ge, gx), \quad g \in G, \quad e \in EG, \quad x \in X,
\]
is free. Its orbit space is denoted by \(EG \times_G X \) (we shall also use the notation \(BG \times X \)) and is called the Borel construction, or the homotopy quotient of \(X \) by \(G \). (The latter term is used since the free \(G \)-space \(EG \times X \) is homotopy equivalent to the \(G \)-space \(X \).) There are two canonical projections
\[
(\text{B.5}) \quad \begin{align*}
EG \times X & \to EG & \text{and} & \quad EG \times X & \to X \\
(e, x) & \mapsto e & & & & (e, x) \mapsto x.
\end{align*}
\]
After taking quotient by the \(G \)-actions, the second projection above induces a map \(EG \times_G X \to X/G \) between the homotopy and ordinary quotients, which is a homotopy equivalence when the \(G \)-action is free. The first projection gives rise to a bundle \(EG \times_G X \to BG \) with fibre \(X \) and structure group \(G \), called the bundle associated with the \(G \)-space \(X \).

More generally, if \(E \to B \) is a principal \(G \)-bundle (i.e. \(E \) is a free \(G \)-space) and \(X \) is a \(G \)-space, then we have a bundle \(E \times_G X \to B \) over \(B \) with fibre \(X \). When \(X \) is an \(n \)-dimensional linear \(G \)-representation space, we obtain a vector bundle over \(B \) with structure group \(G \). Real, oriented and complex \(n \)-dimensional (\(n \)-plane) vector bundles correspond to the cases \(G = GL(n, \mathbb{R}) \), \(GL_+(n, \mathbb{R}) \) and \(GL(n, \mathbb{C}) \), respectively. By introducing appropriate metrics, their structure groups can be reduced to \(O(n) \), \(SO(n) \) and \(U(n) \), respectively.

Example B.4.1. The complex projective space \(\mathbb{C}P^n \) can be identified with the quotient of the \((2n + 1)\)-dimensional sphere
\[
S^{2n+1} = \{ (z_0, z_1, \ldots, z_n) \in \mathbb{C}^{n+1} : |z_0|^2 + \cdots + |z_n|^2 = 1 \}
\]
by the diagonal action of the circle \(S^1 \). We therefore have a principal \(S^1 \)-bundle \(S^{2n+1} \to \mathbb{C}P^n \). Any complex line bundle over the \(\mathbb{C}P^n \) has the form \(S^{2n+1} \times_{S^1} \mathbb{C} \) for some complex 1-dimensional \(S^1 \)-representation space \(\mathbb{C} \). The same line bundle can be also given as \((\mathbb{C}^{n+1} \setminus \{0\}) \times_{S^1} \mathbb{C} \), where \(\mathbb{C}^\times = GL(1, \mathbb{C}) \).

The tautological (or Hopf) line bundle \(\eta \), whose fibre over a line \(\ell \in \mathbb{C}P^n \) is \(\ell \) itself, is obtained as \(S^{2n+1} \times_{S^1} \mathbb{C} \) corresponding to the \(S^1 \)-representation of weight \(-1\), given by \(S^1 \times \mathbb{C} \to \mathbb{C}, \ (t, z) \mapsto t^{-1}z \). The conjugate bundle \(\bar{\eta} \) is \(S^{2n+1} \times_{S^1} \mathbb{C} \) for the \(S^1 \)-representation of weight \(1 \), given by \((t, z) \mapsto tz \). It corresponds to
the codimension-two submanifold $\mathbb{C}P^{n-1} \subset \mathbb{C}P^n$ (see Construction D.3.7) and is denoted by $O(1)$ in the algebraic geometry literature.

Remark. In the topology literature, the term ‘canonical line bundle’ refers to either η or $\bar{\eta}$ depending on the source. We therefore avoid using this term. ‘Tautological line bundle’ is more definite; it always refers to a bundle whose fibre over a line is this line itself.

Now let a compact Lie group G act on a smooth manifold M by diffeomorphisms. Given a point $x \in M$ with stabiliser G_x and orbit Gx, the differential of the action of an element $g \in G_x$ is a linear transformation of the tangent space $T_x M$ which is the identity on the tangent space to the orbit of x. Therefore, we obtain the induced representation of G_x in the space $T_x M/T_x (Gx)$ of the orbit, which is called the isotropy representation. In particular, when x is a fixed point (i.e. $G_x = G$ and $Gx = x$), we obtain a representation of G in $T_x M$, which is also called the tangential representation of G at a fixed point x.

Theorem B.4.2 (Slice Theorem). Let a compact Lie group G act on a smooth manifold M. Then, for each point $x \in M$, the orbit Gx has a G-invariant neighbourhood G-equivariantly diffeomorphic to $G \times_G \left(T_x M/T_x (Gx) \right)$. The latter is a vector bundle with fibre $T_x M/T_x (Gx)$ over $G/G_x \cong Gx$ and the diffeomorphism takes the orbit Gx to the zero section of this bundle.

The slice theorem was proved by Koszul in the beginning of 1950s. Its more general version for proper actions of noncompact Lie groups was proved by Palais; this proof can be found e.g. in [168, Theorem B.23]. The slice theorem has many important consequences. One is that the union of orbits of a given type is a smooth, but possibly disconnected submanifold of M. In particular, the fixed point set M^G is a submanifold. Another consequence is that the quotient M/G by a free action of G is a smooth manifold.

Another fundamental result is the equivariant embedding theorem:

Theorem B.4.3. Let a compact Lie group G act on a compact smooth manifold M. Then there exist an equivariant embedding of M into a finite-dimensional linear representation space of G.

This theorem was proved by Mostow and Palais in 1957; instead of compactness of M they only assumed it to have a finite number of G-orbit types. A simple proof in the case of compact M (due to Mostow) can be found in [168, Theorem B.50].

A bundle $\pi: E \to X$ with fibre F is called a G-equivariant bundle if π is an equivariant map of G-spaces.

Let $\xi: E \to B$ be a principal G-bundle, where B is a compact smooth manifold and G is a compact Lie group. We denote by $T_F(\xi)$ the tangent bundle along the fibres of ξ, i.e. the bundle of vectors in TE tangent to fibres. Let $i: E \to V$ be a G-equivariant embedding of E into a finite-dimensional G-representation space V, and let $\nu(i)$ be the normal bundle of the embedding i. Both $T_F(\xi)$ and $\nu(i)$ are G-equivariant vector bundles, and we denote by $T_F(\xi)/G$ and $\nu(i)/G$ the quotient vector bundles over $E/G = B$. We also denote by $\alpha(\xi, i)$ the associated vector bundle $E \times_G V \to B$.

The following result of Szczarba gives a description of the tangent bundle for the base B of a principal G-bundle ξ via the G-equivariant embedding $E \to V$:
Theorem B.4.4 ([343, Theorem 1.1]). Under the assumptions above, there is an isomorphism of vector bundles

\[TB \oplus \nu(i)/G \oplus T_F(\xi)/G \cong \alpha(\xi, i). \]

Example B.4.5. Let \(i : S^{2n+1} \to \mathbb{C}^{n+1} \) be the embedding given by the equation \(|z_0|^2 + \cdots + |z_n|^2 = 1 \). Consider the principal \(S^1 \)-bundle \(\xi : S^{2n+1} \to \mathbb{C}P^n \) of Example B.4.1. The normal bundle \(\nu(i) \) and the tangent bundle along the fibres \(T_F(\xi) \) are both trivial (see Exercise B.4.12), while the associated bundle \(\alpha(\xi, i) : S^{2n+1} \times S^1 \mathbb{C}^{n+1} \to \mathbb{C}P^n \) is the sum \(\tilde{\eta}^{\oplus(n+1)} \) of \(n+1 \) copies of the conjugate tautological line bundle \(\tilde{\eta} \). Theorem B.4.4 gives

\[\mathcal{T}CP^n \oplus \mathbb{R}^2 \cong \tilde{\eta}^{\oplus(n+1)}, \]

where \(\mathbb{R}^2 \) denotes a trivial real 2-plane bundle. On the other hand, it is well known (see [271]) that there is an isomorphism of complex bundles

\[\mathcal{T}C\mathbb{P}^n \oplus \mathbb{C} \cong \tilde{\eta}^{\oplus(n+1)}. \]

Example B.4.6. Now consider the embedding \(i : S^3 \to \mathbb{H} \) into a quaternionic line, given by the equation \(|q|^2 = 1 \). This embedding is equivariant with respect to the circle action given by \(q \mapsto tq \), where \(t = e^{2\pi i \varphi} \in \mathbb{C} \) and \(q \in \mathbb{H} \). The \(S^3 \)-action is free on \(S^3 \), giving rise to a principal \(S^1 \)-bundle \(\xi : S^3 \to S^2 \). In the complex coordinates \((z_1, z_2)\), where \(q = z_1 + jz_2 \), the equation of the sphere is \(|z_1|^2 + |z_2|^2 = 1\), and the action of the circle is \(t \cdot (z_1, z_2) = (tz_1, t^{-1}z_2) \) (as \(t(z_1 + jz_2) = tz_1 + jtz_2 \)). The bundles \(\nu(i) \) and \(T_F(\xi) \) are trivial, as in the previous example. However, the associated bundle \(\alpha(\xi, i) : S^3 \times_{S^1} \mathbb{C}^2 \to S^2 \) is \(\tilde{\eta} \oplus \eta \), which is a trivial bundle, unlike the case \(n = 1 \) of the previous example. Theorem B.4.4 gives

\[\mathcal{T}S^2 \oplus \mathbb{R}^2 \cong \mathbb{R}^4, \]

and this isomorphism does not come from an isomorphism of complex bundles.

The **equivariant cohomology** of \(X \) with coefficients in a ring \(k \) is defined by

\[H^*_G(X; k) = H^*(EG \times_G X; k). \]

Hence, \(H^*_G(pt; k) = H^*(BG; k) \), and the projection \(EG \times_G X \to BG \) turns \(H^*_G(X; k) \) into a \(H^*_G(pt; k) \)-module.

For a pair of \(G \)-spaces \((X, A)\) (where the inclusion \(A \subset X \) is an equivariant map), there is a long exact sequence

\[\cdots \to H^q_G(X, A) \overset{j^*}{\to} H^q_G(X) \overset{i^*}{\to} H^q_G(A) \overset{d}{\to} H^{q+1}_G(X, A) \to \cdots \]

Its follows from the exact sequence in ordinary cohomology and the equivariant homeomorphism \((EG \times X)/(EG \times A)) \cong (EG \times (X/A))/(EG \times pt)\).

By applying the Borel construction to a \(G \)-equivariant bundle \(\pi : E \to X \) we obtain a bundle \(B_G E \to B_G X \) with the same fibre \(F \). The **equivariant characteristic classes** of a \(G \)-equivariant vector bundle \(\pi : E \to X \) are defined as the ordinary characteristic classes of the bundle \(B_G E \to B_G X \). For example, the **equivariant Stiefel-Whitney classes** of a \(G \)-equivariant vector bundle \(\pi : E \to X \) belong to \(H^*_G(X; \mathbb{Z}_2) \) and are denoted by \(w^G_*(E) \). If \(E \to X \) is an oriented \(G \)-equivariant vector bundle, then the **equivariant Euler class** \(e^G(E) \in H^*_G(X; \mathbb{Z}) \) is defined. If \(E \to X \) is a complex bundle and the \(G \)-action preserves the fibrewise complex structure, then the **equivariant Chern classes** \(c^G_*(E) \in H^{2*}_G(X; \mathbb{Z}) \) are defined.
Now let M be a smooth oriented G-manifold of dimension n, where G is a compact Lie group. Let $N \subset M$ be a G-invariant (e.g., fixed) oriented submanifold of codimension k. We can identify the G-equivariant normal bundle $\nu(N \subset M)$ with a G-invariant tubular neighbourhood U of N in M by means of a G-equivariant diffeomorphism. The same diffeomorphism identifies the Thom space $Th\nu$ (see Section D.2) of the bundle ν with the quotient space $\overline{U}/\partial\overline{U}$. We have the embedding $i: N \subset M$, the projection $\pi: U \to N$, and the Pontryagin–Thom map $p: M \to Th\nu$ contracting the complement $M \setminus U$ to a point. In equivariant cohomology, the Thom class $\tau_N \in H^n_G(Th\nu)$ is uniquely determined by the identity

$$(\alpha \cdot p^*(\tau_N), (M)) = (i^*\alpha, (N)),$$

for any $\alpha \in H^{n-k}_G(M)$. Here $(M) \in H^n_G(M)$ denotes the fundamental class of M in equivariant homology. The Gysin homomorphism in equivariant cohomology is defined by the composition

$$H^{n-k}_G(N) \xrightarrow{\pi^*} H^{n-k}_G(U) \xrightarrow{\tau_N} H^n_G(Th\nu) \xrightarrow{p^*} H^n_G(M),$$

and is denoted by i_*. Then $i^*(i_* (1)) \in H^n_G(N)$ is the equivariant Euler class of the normal bundle $\nu(N \subset M)$.

Exercises.

B.4.7. Let G be a compact group acting on a Hausdorff space X. Show that all G-orbits are closed, the orbit space X/G is Hausdorff, and the projection $\pi: X \to X/G$ is a closed and proper map.

B.4.8. If the quotient X/G is Hausdorff, then all G-orbits are closed.

B.4.9. Give an example of a Hausdorff space X with a G-action whose orbits are closed, but the quotient X/G is not Hausdorff.

B.4.10. Deduce from the slice theorem that if a compact Lie group G acts smoothly on a smooth manifold M, then the union of orbits of a given type (in particular, the fixed point set M^G) is a submanifold of M. Also, deduce that if the action is free then the quotient M/G is a smooth manifold.

B.4.11. Show that if a compact Lie group G acts on M effectively and M is connected, then the isotropy representation $G_x \to GL(T_x M/T_x(Gx))$ is faithful.

B.4.12. The tangent bundle $T_F(\xi)$ along the fibres of a principal G-bundle $\xi: E \to B$ can be identified with $\xi^*(E \times_G g)$, where $E \times_G g \to B$ is the associated bundle of the adjoint representation of G in its Lie algebra g. In particular, $T_F(\xi)$ is trivial if G is commutative.

B.5. Stably complex structures

Let M be a smooth manifold with tangent bundle TM. An almost complex structure on M is an endomorphism $J: TM \to TM$ such that $J^2 = -\text{id}$. Equivalently, an almost complex structure on M is a choice of an isomorphism of real vector bundles $TM \cong \xi$, where ξ is a complex vector bundle over M. Only even-dimensional manifolds can admit an almost complex structure. If M is a complex manifold, then its tangent bundle is also complex, so M admits an almost complex structure. Almost complex structures arising in this way are called integrable.
A tangential stably complex structure on M is an equivalence class of isomorphisms of real vector bundles

(B.6) \[c_T : TM \oplus \mathbb{R}^k \rightarrow \xi \]

between the ‘stable’ tangent bundle and a complex vector bundle ξ over M. (Here \mathbb{R}^k denotes the standard trivial real k-plane bundle over M.) The equivalence relation is generated by

(a) additions of trivial complex summands; that is, c_T is equivalent to

\[TM \oplus \mathbb{R}^k \oplus \mathbb{C} \xrightarrow{c_T \oplus \text{id}} \xi \oplus \mathbb{C} \]

where \mathbb{C} on the left hand side is canonically identified with \mathbb{R}^2;

(b) compositions with isomorphisms of complex bundles; that is, c_T is equivalent to $\varphi \cdot c_T$ for every \mathbb{C}-linear isomorphism $\varphi : \xi \rightarrow \zeta$.

The equivalence class of c_T may be described homotopically as the equivalence class of lifts of the map $M \rightarrow BO(2N)$ classifying the stable tangent bundle to a map $M \rightarrow BU(N)$ up to homotopy and stabilisation (see [340, Chapters II, VIII]). A tangential stably complex manifold is a pair consisting of M and an equivalence class of isomorphisms c_T; we shall use a simplified notation (M, c_T) for such pairs. This notion is a generalisation of complex and almost complex manifolds (where the latter means a manifold with a choice of an almost complex structure, that is, a stably complex structure (B.6) with $k = 0$).

Example B.5.1. The standard complex structure on $\mathbb{C}P^1$ is equivalent to the stably complex structure determined by the isomorphism

(B.7) \[T\mathbb{C}P^1 \oplus \mathbb{R}^2 \xrightarrow{\rho} \hat{\eta} \oplus \hat{\eta} \]

where η is the tautological line bundle (see Example B.4.5). On the other hand, one can view $\mathbb{C}P^1$ as S^2 embedded into $\mathbb{R}^4 \cong \mathbb{C}^2$ with trivial normal bundle (see also Example B.4.6). We therefore have an isomorphism

(B.8) \[T\mathbb{C}P^1 \oplus \mathbb{R}^2 \xrightarrow{\rho} \mathbb{C}^2 \cong \hat{\eta} \oplus \eta \]

which determines a trivial stably complex structure on $\mathbb{C}P^1 \cong S^2$.

We say that M admits a normal complex structure if there is an embedding $i : M \hookrightarrow \mathbb{R}^N$ with the property that the normal bundle $\nu(i)$ admits a structure of a complex vector bundle. There is an appropriate notion of stable equivalence for such embeddings i, and a normal complex structure c_ν on M is defined as the corresponding equivalence class. Tangential and normal stably complex structures on M determine each other by means of the canonical isomorphism $TM \oplus \nu(i) \cong \mathbb{R}^N$.

Both tangential and normal stably complex structures feature in the geometric approach to complex cobordism, see Section D.3.

B.6. Weights and signs of torus actions

Here we consider torus actions on stably complex and oriented manifolds, and define the related notions of weights and signs of isolated fixed points.
Complex case. Let M be a $2n$-dimensional manifold with a stably complex structure determined by the isomorphism

$$(B.9) \quad c_T : TM \oplus \mathbb{R}^{2(l-n)} \to \xi.$$
Assume that a torus \mathbb{T}^k acts on M.

Definition B.6.1. A stably complex structure c_T is \mathbb{T}^k-invariant if for every $t \in \mathbb{T}^k$ the composition

$$(B.10) \quad r(t) : \xi \xrightarrow{c_T^{-1}} TM \oplus \mathbb{R}^{2(l-n)} \overset{dt \oplus \text{id}}{\longrightarrow} TM \oplus \mathbb{R}^{2(l-n)} \overset{c_T}{\longrightarrow} \xi$$

is a complex bundle map, where dt is the differential of the action by t. In other words, (B.10) determines a representation $r : \mathbb{T}^k \to \text{Hom}_C(\xi, \xi)$.

Let $x \in M$ be an isolated fixed point of the \mathbb{T}^k-action on M. Then we have a representation $r_x : \mathbb{T}^k \to GL(l, \mathbb{C})$ in the fibre of ξ over x. This fibre $\xi_x \cong \mathbb{C}^l$ decomposes as $V \oplus W$, where r_x has no trivial summands on V and is trivial on W. We have $\dim_C V = n$ because $x \in M$ is an isolated fixed point. The nontrivial part of V of r_x decomposes into a sum $\tau_1 \oplus \cdots \oplus \tau_n$ of one-dimensional complex \mathbb{T}^k-representations. In the corresponding coordinates $(z_1, \ldots, z_n) \in V$, an element $t = (e^{2\pi i \varphi_1}, \ldots, e^{2\pi i \varphi_k}) \in \mathbb{T}^k$ acts by

$$t \cdot (z_1, \ldots, z_n) = (e^{2\pi i (w_1, \varphi)} z_1, \ldots, e^{2\pi i (w_n, \varphi)} z_n),$$

where $\varphi = (\varphi_1, \ldots, \varphi_k) \in \mathbb{R}^k$ and $w_j \in \mathbb{Z}^k$, $1 \leq j \leq n$, are the weights of the representation r_x at the fixed point x. (In the coordinate free notation, each w_j is an element of the weight lattice $\text{Hom}(\mathbb{T}^k, S^1) \cong \mathbb{Z}^k$.)

Also, the isomorphism c_T, x of (B.9) induces an orientation of the tangent space $T_x(M)$, as both $\mathbb{R}^{2(l-n)}$ and ξ are canonically oriented.

Definition B.6.2. For any fixed point $x \in M$, the sign $\sigma(x)$ is $+1$ if the isomorphism

$$T_x M \overset{\text{id} \oplus 0}{\longrightarrow} T_x M \oplus \mathbb{R}^{2(l-n)} \overset{c_T, x}{\longrightarrow} \xi_x = V \oplus W \overset{p}{\longrightarrow} V,$$

respects the canonical orientations, and -1 if it does not; here p is the projection onto the first summand.

If M is an almost complex T^k-manifold (i.e. $l = n$) then $T_x(M) = V$ and $\sigma(x) = 1$ for every fixed point x.

Oriented case. We now let \mathbb{T}^k act on an oriented $2n$-manifold M. Let $x \in M$ be an isolated fixed point of this action. We obtain a representation of \mathbb{T}^k in the tangent space $T_x(M)$, which decomposes into a sum $\mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_n$ of nontrivial two-dimensional real \mathbb{T}^k-representations. An element $t \in \mathbb{T}^k$ acts in each \mathfrak{g}_j by

$$
\begin{pmatrix}
\cos 2\pi \alpha_j(t) & -\sin 2\pi \alpha_j(t) \\
\sin 2\pi \alpha_j(t) & \cos 2\pi \alpha_j(t)
\end{pmatrix}
$$

where α_j can be thought of as a nonzero element of the weight lattice $\text{Hom}(\mathbb{T}^k, S^1) = \mathbb{Z}^k$ defined up to a sign. We choose this sign so that the first nonzero coordinate of α_j is positive. (Note that this choice cannot be made using coordinate free notation; it depends on an identification of T^k with \mathbb{T}^k or, equivalently, on a choice of basis in the weight lattice $\text{Hom}(\mathbb{T}^k, S^1)$.) Our choice of α_j provides an orientation for the 2-dimensional space \mathfrak{g}_j: a positive basis is given by (v, tv) for any $v \neq 0$ and
t with $0 < \alpha_j(t) < \frac{1}{2}$ (a pair consisting of a nonzero vector and its image under rotation by an angle $< \pi$).

As $T_x M$ itself is oriented, we can define the (oriented) sign $\bar{\sigma}(x)$ of x as $+1$ if the orientations of $T_x M$ and $g_1 \oplus \cdots \oplus g_n$ coincide and -1 otherwise.

The signs $\sigma(x)$ and $\bar{\sigma}(x)$ are of different nature; they do not coincide when the orientation of $T_x M$ is induced by a stably complex structure, as shown next.

If the fixed point set M^T of a stably complex \mathbb{T}^k-manifold M consists of isolated points only, then $\sum_{x \in M^T} \sigma(x)$ gives the top Chern number $c_n[M]$, while $\sum_{x \in M^T} \bar{\sigma}(x)$ gives the signature $\text{sign}(M)$ (see Section 9.5).

Example B.6.3. Let M be an S^1-invariant almost complex manifold. Then $\sigma(x) = 1$ for any isolated fixed point $x \in M$, while $\bar{\sigma}(x) = (-1)^k$, where k is the number of negative weights $w_j \in \mathbb{Z}$ at x.

Example B.6.4. We calculate and compare the complex and oriented signs for $T^1 = S^1$ acting on S^2 by rotations along the axis through the north and south poles, or, equivalently, acting on CP^1 in homogeneous coordinates by $t[z_1 : z_2] = [z_1 : tz_2]$. This action has two fixed points $x = [1 : 0]$ and $y = [0 : 1]$.

The rotations induced on the tangent planes at the two fixed points are in different directions. Therefore the signs $\bar{\sigma}(x)$ and $\bar{\sigma}(y)$ are different. More precisely, we give both spaces $T_x S^2$ and $T_y S^2$ orientations so that the induced rotation is in ‘positive’ direction, and then compare with the orientations coming from the global orientation of S^2; the result is different for the two fixed points. Which sign is positive depends on how we orient S^2 globally.

Now let us calculate the signs $\sigma(x)$ and $\sigma(y)$ for the S^1-invariant stably complex structures (B.7) and (B.8) using Szczarba’s decomposition (see Theorem B.4.4). We consider the principal S^1-bundles $p_1 : S^3 \to S^2 = CP^1$ where the S^1-action is given in the standard coordinates (z_1, z_2) of S^3 by $t \cdot (z_1, z_2) = (t z_1, t z_2)$ (see Example B.4.5), and $p_2 : S^3 \to S^2$ where the S^1-action is given by $t \cdot (z_1, z_2) = (t z_1, t^{-1} z_2)$ (see Example B.4.6). We identify \mathbb{C}^2 with \mathbb{R}^4 using the map $(z_1, z_2) \mapsto (x_1, y_1, x_2, y_2)$ where $z_k = x_k + iy_k$ for $k = 1, 2$.

According to Definition B.6.2, the sign $\sigma(x)$ is equal to the sign of the determinant of the composite

$$\tag{B.11} T_x CP^1 \xrightarrow{\text{id} \oplus 0} T_x CP^1 \oplus \mathbb{R}^2 \xrightarrow{e_T \cdot} \mathbb{C}^2 \xrightarrow{\pi_2} \mathbb{C}^1 = \mathbb{R}^2,$$

where π_2 is the second coordinate projection. Similarly, $\sigma(y)$ is equal to the sign of the determinant of a similar composition in which the last map is replaced by the first coordinate projection π_1.

The map $T_x CP^1 \oplus \mathbb{R}^2 \xrightarrow{e_T \cdot} \mathbb{C}^2$ in (B.11) for each of the two stably complex structures on CP^1 is defined via Szczarba’s decomposition and is given by

$$T_x CP^1 \oplus (\nu(i)/S^1)_x \oplus (T_F(\xi)/S^1)_x \xrightarrow{e_T \cdot} \mathbb{C}^2$$

where i is the embedding $S^3 \to \mathbb{C}^2$ and ξ is the fibre bundle p_1 or p_2 above.

The fibre over the fixed point $x = [1 : 0] \in CP^1$ is given by $|z_1|^2 = x_1^2 + y_1^2 = 1$, and we choose the point $\bar{x} = (0, 0, 0, 0) \in S^3 \subset \mathbb{R}^4$ which projects to x. Similarly, $\bar{y} = (0, 0, 1, 0) \in S^3 \subset \mathbb{R}^4$ projects to y. The normal vector to S^3 at \bar{x} is e_1, i.e. $\nu(i)_{\bar{x}} = (e_1)$. The tangent vector along the fibre of ξ at \bar{x} is the tangent to the orbit of the corresponding S^1-action on S^3. It is $(0, 1, 0, 0)$ for each of p_1 and p_2, so that $T_F(p_1)_{\bar{x}} = T_F(p_2)_{\bar{x}} = (e_2)$. Similarly, $\nu(i)_{\bar{y}} = (e_3)$, while $T_F(p_1)_{\bar{y}} = (e_4)$.
and $\mathcal{T}_F(p_2) \tilde{y} = (-e_4)$. We summarise these data in the following table:

<table>
<thead>
<tr>
<th>$\nu(i)$</th>
<th>p_1,x</th>
<th>p_1,y</th>
<th>p_2,x</th>
<th>p_2,y</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{T}_F</td>
<td>$(0,1,0,0)$</td>
<td>$(0,0,0,1)$</td>
<td>$(0,1,0,0)$</td>
<td>$(0,0,0,-1)$</td>
</tr>
</tbody>
</table>

A basis of $p_1^*(\mathcal{T}_x \mathbb{C}P^1)$ is a pair of vectors which completes $\nu(i) \mathbb{Z} \oplus \mathcal{T}_F(p_1) \mathbb{Z}$ to a basis of \mathbb{R}^4 respecting the orientation. A good choice is $(1,0,-1,0), (0,1,0,-1)$ as it works for y as well. We therefore obtain that each of the maps $\mathcal{T}_x \mathbb{C}P^1 \to \mathbb{C}^2$ and $\mathcal{T}_y \mathbb{C}P^1 \to \mathbb{C}^2$ from (B.11) is given by the matrix

$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}^t$$

The signs of the fixed points x, y of the first (standard) stably complex structure (B.7) are obtained by composing the above map with the second and the first coordinate projection, respectively, and calculating the determinant:

$$\sigma(x) = \begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix} = 1, \quad \sigma(y) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1.$$

This conforms with Example B.6.3.

Now let us calculate the signs for the second (trivial) stably complex structure (B.7). We need to choose a basis for $p_2^*(\mathcal{T}_x \mathbb{C}P^1)$, i.e. a pair of vectors which completes $\nu(i) \mathbb{Z} \oplus \mathcal{T}_F(p_2) \mathbb{Z}$ to a basis of \mathbb{R}^4 respecting the orientation. We take $(1,0,-1,0), (0,-1,0,-1)$, and it works for y as well. Each of the maps $\mathcal{T}_x \mathbb{C}P^1 \to \mathbb{C}^2$ and $\mathcal{T}_y \mathbb{C}P^1 \to \mathbb{C}^2$ from (B.11) is now given by

$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{pmatrix}^t$$

and the signs are

$$\sigma(x) = \begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix} = 1, \quad \sigma(y) = \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} = -1.$$

Exercises.

B.6.5. Consider the sphere $S^{2k+4l-1}$ given in $\mathbb{C}^k \times \mathbb{H}^l$ by the equation

$$|z_1|^2 + \cdots + |z_k|^2 + |q_1|^2 + \cdots + |q_l|^2 = 1$$

and the action of \mathbb{T}^{k+l} given by

$$(t_1, \ldots, t_{k+l}) \cdot (z_1, \ldots, z_k, q_1, \ldots, q_l) = (t_1 z_1, \ldots, t_k z_k, t_{k+l} q_1, \ldots, t_{k+l} q_l).$$

Taking the quotient by the action of the diagonal circle $S^1 \subset \mathbb{T}^{k+l}$ we obtain an action of \mathbb{T}^{k+l} on $P(k,l) = S^{2k+4l-1}/S^1$. Define a \mathbb{T}^{k+l}-invariant stably complex structure on $P(k,l)$ using Szczarba’s decomposition and calculate the weights and signs of isolated fixed points.
Categorical Constructions

In this appendix we introduce aspects of category theory that are directly related to the study of toric spaces. Our exposition follows closely the introductory sections of the work of Panov and Ray [302].

C.1. Diagrams and model categories

We use small capitals to denote categories. The set of morphisms between objects c and d in a category C will be denoted by $\text{Mor}_C(c,d)$, or simply by $C(c,d)$. The opposite category C^{op} has the same objects with morphisms reversed.

We shall work with the following categories of combinatorial origin:

- set: sets and set maps;
- Δ: finite ordered sets $[n]$ and nondecreasing maps;
- $\text{cat}(K)$: simplices of a finite simplicial complex K and their inclusions (the face category of K).

Here $\text{cat}(K)$ is an example of a more general poset category P, whose objects are elements σ of a poset (P, \leq) and there is a morphism $\sigma \to \tau$ whenever $\sigma \leq \tau$.

A category is small if both its objects and morphisms are sets. Among the three basic categories above, Δ and $\text{cat}(K)$ are small, while set is not. Furthermore, $\text{cat}(K)$ is finite.

Given a small category s and an arbitrary category c, a covariant functor $D : s \to c$ is known as an s-diagram in c. The source s is referred to as the indexing category of the diagram D. Such diagrams are themselves the objects of a diagram category $[s,c]$, whose morphisms are natural transformations. When s is Δ^{op}, the diagrams are known as simplicial objects in c, and are written as D_s; the object $D[n]$ is abbreviated to D_n for every $n \geq 0$, and forms the n-simplices of D_s. A simplicial set is therefore a simplicial object in set, i.e. an object in the diagram category $[\Delta^{op}, \text{set}]$.

We may interpret every object c of c as a constant s-diagram, and so define the constant functor $\kappa : c \to [s,c]$. Whenever κ admits a right or left adjoint $[s,c] \to c$, it is known as the limit or colimit functor respectively (in other terminology, inverse limit or direct limit respectively). Hence, the limit of a diagram $D : s \to c$ is an object $\text{lim}D$ in c for which there are natural identifications of the morphism sets

$$\text{Mor}_{[s,c]}(\kappa(c), D) \cong \text{Mor}_c(c, \text{lim}D)$$

for any object c of c. Similarly, colim D satisfies

$$\text{Mor}_c(\text{colim} D, c) \cong \text{Mor}_{[s,c]}(D, \kappa(c)).$$

Simple examples are products and more generally pullbacks, which are limits over the indexing category $\bullet \to \bullet \leftarrow \bullet$. Similarly, coproducts and more generally pushouts are colimits over the indexing category $\bullet \leftarrow \bullet \to \bullet$.

445
For any object c of \mathcal{C}, the objects of the overcategory $\mathcal{C} \downarrow c$ are morphisms $f : b \to c$ with fixed target, and the morphisms are the corresponding commutative triangles; the full subcategory $\mathcal{C} \downarrow c$ is given by restricting attention to non-identities f. Similarly, the objects of the undercategory $\mathcal{C} \downarrow c$ are morphisms $f : c \to d$ with fixed source, and the morphisms are the corresponding triangles; $\mathcal{C} \downarrow c$ is given by restriction to the non-identities. In $\text{CAT}(\mathcal{K})$ for example, we have

\[
\text{CAT}(\mathcal{K}) \downarrow I = \text{CAT}(\Delta(I)), \quad \text{CAT}(\mathcal{K}) \downarrow I = \text{CAT}(\partial \Delta(I)), \\
I \downarrow \text{CAT}(\mathcal{K}) = \text{CAT}(\text{st}_K I), \quad I \downarrow \text{CAT}(\mathcal{K}) = \text{CAT}(\text{lk}_K I),
\]

for any $I \in \mathcal{K}$, where $\Delta(I)$ and $\partial \Delta(I)$ denote the simplex with vertices I and its boundary, and star and link are given in Definition 2.2.13.

A model category \mathcal{M} is a category which is closed with respect to formation of small limits and colimits, and contains three distinguished classes of morphisms: weak equivalencies w, fibrations p, and cofibrations i. Unless otherwise stated, these letters denote such morphisms henceforth. A fibration or cofibration is acyclic whenever it is also a weak equivalence. The three distinguished morphisms are required to satisfy the following axioms (see Hirschhorn [185, Definition 7.1.3]):

(a) a retract of a distinguished morphism is a distinguished morphism of the same class;
(b) if $f' \cdot f$ is the composition of morphisms f and f', and two of the three morphisms f, f' and $f' \cdot f$ are weak equivalences, then so is the third;
(c) acyclic cofibrations obey the left lifting property with respect to fibrations, and cofibrations obey the left lifting property with respect to acyclic fibrations;
(d) every morphism f factorises functorially as

\[
f = p \cdot i = p' \cdot i',
\]

where p is an acyclic fibration, i is a cofibration, p' is a fibration and i' is an acyclic cofibration.

These strengthen Quillen’s original axioms for a closed model category [313] in two minor but significant ways. Quillen demanded only closure with respect to finite limits and colimits, and only existence of factorisations (C.1) rather than their functoriality. When using results of pioneering authors such as Bousfield and Gugenheim [45] and Quillen [314], we must take account of these differences.

The axioms for a model category are actually self-dual, in the sense that any general statement concerning fibrations, cofibrations, limits, and colimits is equivalent to the statement in which they are replaced by cofibrations, fibrations, colimits, and limits respectively. In particular, \mathcal{M}^{op} always admits a dual model structure.

The axioms imply that initial and terminal objects \circ and $*$ exist in \mathcal{M}, and that $\mathcal{M} \downarrow M$ and $M \downarrow \mathcal{M}$ inherit model structures for any object M.

An object of \mathcal{M} is cofibrant when the natural morphism $\circ \to M$ is a cofibration, and is fibrant when the natural morphism $M \to *$ is a fibration. A cofibrant approximation to an object N is a weak equivalence $N' \to N$ with cofibrant source, and a fibrant approximation is a weak equivalence $N \to N''$ with fibrant target. The full subcategories \mathcal{M}_c, \mathcal{M}_f and $\mathcal{M}_{c,f}$ are defined by restricting attention to those objects of \mathcal{M} that are respectively cofibrant, fibrant, and both. When applied to $\circ \to N$ and $N \to *$, the factorisations (C.1) determine a cofibrant replacement
functor \(\omega : \text{MC} \to \text{MC}_H \), and a \textit{fibrant replacement} functor \(\varphi : \text{MC} \to \text{MC}_f \). It follows from the definitions that \(\omega \) and \(\varphi \) preserve weak equivalences, and that the associated acyclic fibrations \(\omega(N) \to N \) and acyclic cofibrations \(N \to \varphi(N) \) form cofibrant and fibrant approximations respectively. These ideas are central to the definition of homotopy limits and colimits given in Section C.3 below.

Weak equivalences need not be invertible, so objects \(M \) and \(N \) are deemed to be \textit{weakly equivalent} if they are linked by a zigzag \(M \xrightarrow{\sim} \ldots \xrightarrow{\sim} N \) in \(\text{MC} \); this is the smallest equivalence relation generated by the weak equivalences. An important consequence of the axioms is the existence of a localisation functor \(\gamma : \text{MC} \to \text{Ho}(\text{MC}) \), such that \(\gamma(w) \) is an isomorphism in the homotopy category \(\text{Ho}(\text{MC}) \) for every weak equivalence \(w \) (i.e. \(\text{Ho}(\text{MC}) \) is obtained from \(\text{MC} \) by inverting all weak equivalences). Here \(\text{Ho}(\text{MC}) \) has the same objects as \(\text{MC} \), and is equivalent to a category whose objects are those of \(\text{MC}_f \), but whose morphisms are homotopy classes of morphisms between them.

Any functor \(F \) of model categories that preserves weak equivalences induces a functor \(\text{Ho}(F) \) on their homotopy categories. Examples include:

\[
(\text{C.2}) \quad \text{Ho}(\omega) : \text{Ho}(\text{MC}) \to \text{Ho}(\text{MC}_c) \quad \text{and} \quad \text{Ho}(\varphi) : \text{Ho}(\text{MC}) \to \text{Ho}(\text{MC}_f).
\]

Such functors often occur as adjoint pairs

\[
(\text{C.3}) \quad F : \text{MB} \rightleftarrows \text{MC} : G,
\]

where \(F \) is \textit{left Quillen} if it preserves cofibrations and acyclic cofibrations, and \(G \) is \textit{right Quillen} if it preserves fibrations and acyclic fibrations. Either of these implies the other, leading to the notion of a \textit{Quillen pair} \((F, G) \); then Ken Brown’s Lemma \[185\] Lemma 7.7.1] applies to show that \(F \) and \(G \) preserve all weak equivalences on \(\text{MB}_e \) and \(\text{MC}_f \) respectively. So they may be combined with \((\text{C.2}) \) to produce an adjoint pair of \textit{derived functors}

\[
LF : \text{Ho}(\text{MB}) \rightleftarrows \text{Ho}(\text{MC}) \quad : RG,
\]

which are equivalences of the homotopy categories (or certain of their full subcategories) in favourable cases.

Our first examples of model categories are of topological origin, as follows:

- \text{TOP}: pointed topological spaces and pointed continuous maps;
- \text{TMON}: topological monoids and continuous homomorphisms;
- \text{SSET}: simplicial sets.

Homotopy theorists often impose restrictions on topological spaces defining the category \text{TOP}, ensuring that it behaves nicely with respect to formation of limits and colimits, etc. For example, \text{TOP} is often defined to consist of \textit{compactly generated} Hausdorff spaces (a space \(X \) is compactly generated if a subset \(A \) is closed whenever the intersection of \(A \) with any compact subset of \(X \) is closed), or \textit{k-spaces} \[356\]. We ignore this subtlety however, as spaces we work with will be nice enough anyway.

There is a model structure on \text{TOP} in which fibrations are Hurewicz fibrations, cofibrations are defined by the homotopy extension property (B.3), and weak equivalences are homotopy equivalences. However, in the more convenient and standard model structure on \text{TOP}, weak equivalences are maps inducing isomorphisms of homotopy groups, fibrations are Serre fibrations, and cofibrations obey the left lifting property with respect to acyclic fibrations (this is a narrower class than maps obeying the the HEP (B.3)). The axioms for this model structure on \text{TOP} are verified in [190, Theorem 2.4.23], for example.
In either of the model structures above, cell complexes are cofibrant objects in Top. Recall that a cell complex can be defined as a result of iterating the operation of attaching a cell, i.e. pushing out the standard cofibration $S^{n-1} \to D^n$, see (B.1). In the second (standard) model structure on Top, every space X has a cellular model, i.e. there is a weak equivalence $W \to X$ with W a cell complex, providing a cofibrant approximation. Two weakly equivalent topological spaces have homotopy equivalent cellular models. Cellular models are not functorial, however. A genuine cofibrant replacement functor $\omega(X) \to X$ must be constructed with care, and is defined in [125, §98], for example.

A topological monoid is a space with a continuous associative product and identity element. We assume that topological monoids are pointed by their identities, so that TMon is a subcategory of Top. The model structure for TMon is originally due to Schwänzl and Vogt [324], and may also be deduced from Schwede and Shipley’s theory [326] of monoids in monoidal model categories; weak equivalences and fibrations are those homomorphisms which are weak equivalences and fibrations in Top, and cofibrations obey the appropriate lifting property.

In the standard model structure on Sset, weak equivalences are maps of simplicial sets whose realisations are weak equivalences of spaces, fibrations are Kan fibrations (whose realisations are Serre fibrations), and cofibrations are monomorphisms of simplicial sets. There is a Quillen equivalence

$$| - | : \text{Sset} \rightleftarrows \text{Top} : S_* ,$$

where $| - |$ denotes the geometric realisation of a simplicial set, and S_* is the total singular complex of a space. It induces an equivalence of homotopy categories of simplicial sets and topological spaces.

Our algebraic categories are defined over arbitrary commutative rings k, but tend only to acquire model structures when k is a field of characteristic zero.

- Ch_k and Coch_k: augmented chain and cochain complexes;
- CDGA_k: commutative augmented differential graded algebras, with cohomology differential (raising the degree by 1);
- CDGC_k: cocommutative coaugmented differential graded coalgebras, with homology differential (lowering the degree by 1);
- DGA_k: augmented differential graded algebras, with homology differential;
- DGC_k: coaugmented differential graded coalgebras, with homology differential;
- DGL: differential graded Lie algebras over \mathbb{Q}, with homology differential.

For any model structure on these categories, weak equivalences are the quasi-isomorphisms, which induce isomorphisms in homology or cohomology. The fibrations and cofibrations are described in Section C.2 below. The augmentations and coaugmentations act as algebraic analogues of basepoints.

We reserve the notation AMC for any of the algebraic model categories above, and assume that objects are graded over the nonnegative integers. We denote the full subcategory of connected objects by AMC_0. In order to emphasise the differential, we may display an object M as (M, d). The (co)homology group $H(M, d)$ is also a k-module, and inherits all structure on M except for the differential. Nevertheless, we may interpret any graded algebra, coalgebra or Lie algebra as an object of the corresponding differential category, by imposing $d = 0$.

Extending Definition A.4.5, we refer to an object \((M, d)\) is formal in AMC whenever there exists a zigzag of quasi-isomorphisms
\[
(M, d) = M_1 \xrightarrow{\sim} \cdots \xrightarrow{\sim} M_k = (H(M), 0).
\]
Formality only has meaning in an algebraic model category.

There is special class of cofibrant objects in \(\text{CDGA}_Q\), which are analogous to cell complexes in \(\text{TOP}\). These are minimal dg-algebras, see Definition A.4.1. Any minimal dg-algebra can be constructed by successive pushouts of the form
\[
\begin{array}{c}
S(x) \xrightarrow{f} (A, d_A) \\
\downarrow j \\
S(w, dw) \longrightarrow B = (A \otimes S(w), d_B)
\end{array}
\]
in a way similar to constructing cell complexes by pushouts (B.1). Here \(S(x)\) denotes a free commutative dg-algebra with one generator \(x\) of positive degree and zero differential, so that \(S(x)\) is the exterior algebra \(\Lambda[x]\) when \(\text{deg} x\) is odd and the polynomial algebra \(Q[x]\) when \(\text{deg} x\) is even. The dg-algebra \(S(x, dx)\) has zero cohomology. The map \(j\) is defined by \(j(x) = dw\). The differential in the pushout dg-algebra \(B \cong A \otimes S(w)\) is given by
\[
d_B(a \otimes 1) = d_A a \otimes 1, \quad d_B(1 \otimes w) = f(x) \otimes 1.
\]

Theorem A.4.3 asserts the existence of a cofibrant approximation \(f: M_A \to A\) for a homologically connected dg-algebra \(A\), where \(M_A\) is a minimal model for \(A\); any two minimal models for \(A\) are necessarily isomorphic, and \(M_A\) and \(M_B\) are isomorphic for quasi-isomorphic \(A\) and \(B\). The advantage of \(M_A\) is that it simplifies many calculations concerning \(A\); disadvantages include the fact that it may be difficult to describe for relatively straightforward objects \(A\), and that it cannot be chosen functorially. A genuine cofibrant replacement functor requires additional care, and seems first to have been made explicit in [45, §4.7].

Sullivan’s approach to rational homotopy theory is based on the PL-cochain functor \(A_{PL}: \text{TOP} \to \text{CDGA}_Q\). Basic results related to this approach are given in Section B.2. Following [136], \(A_{PL}(X)\) is defined as \(A^*(S_*X)\), where \(S_*X\) denotes the total singular complex of \(X\) and \(A^*: \text{SET} \to \text{CDGA}_Q\) is the polynomial de Rham functor of [45]. The PL de Rham Theorem (Theorem B.2.3) yields a natural isomorphism \(H(A_{PL}(X)) \to H^*(X, Q)\), so \(A_{PL}(X)\) provides a commutative replacement for rational singular cochains, and \(A_{PL}\) descends to homotopy categories. Bousfield and Gugenheim prove that it restricts to an equivalence of appropriate full subcategories of \(Ho(\text{TOP})\) and \(Ho(\text{CDGA}_Q)\). In other words, it provides a contravariant algebraic model for the rational homotopy theory of well-behaved spaces.

Quillen’s approach involves the homotopy groups \(\pi_*(\Omega X) \otimes_\mathbb{Z} \mathbb{Q}\), which form the rational homotopy Lie algebra of \(X\) under the Samelson product. He constructs a covariant functor \(Q: \text{TOP} \to \text{DGL}\), and a natural isomorphism
\[
H(Q(X)) \xrightarrow{\cong} \pi_*(\Omega X) \otimes_\mathbb{Z} \mathbb{Q},
\]
for any simply connected \(X\). He concludes that \(Q\) passes to an equivalence of homotopy categories; in other words, its derived functor provides a covariant algebraic model for the rational homotopy theory of simply connected spaces.

We recall from Definition B.2.6 that a space \(X\) is formal when \(A_{PL}(X)\) is formal in \(\text{CDGA}_Q\). A space \(X\) is referred to as coformal when \(Q(X)\) is formal in \(\text{DGL}\).
The importance of categories of simplicial objects is due in part to the structure of the indexing category Δ^{op}. Every object $[n]$ has degree n, and every morphism may be factored uniquely as a composition of morphisms that raise and lower degree. These properties are formalised in the notion of a Reedy category Λ, which admits generating subcategories Λ_+ and Λ_- whose non-identity morphisms raise and lower degree respectively. The diagram category $[\Lambda, MC]$ then supports a canonical model structure of its own [185, Theorem 15.3.4]. By duality, Λ^{op} is also Reedy, with $(\Lambda^{op})_+ = (\Lambda_-)^{op}$ and vice-versa. A simple example is provided by $\text{cat}(K)$, whose degree function assigns the dimension $|I| - 1$ to each simplex I of K. So $\text{cat}_+(K)$ is the same as $\text{cat}(K)$, and $\text{cat}_-(K)$ consists entirely of identities.

In the Reedy model structure on $[\text{cat}(K), MC]$, weak equivalences $w: C \to D$ are given objectwise, in the sense that $w(I): C(I) \to D(I)$ is a weak equivalence in MC for every $I \in K$. Fibrations are also objectwise. To describe the cofibrations, we restrict C and D to the overcategories $\text{cat}(K) \downarrow I = \text{cat}(\partial \Delta(I))$, and write $L_I C$ and $L_I D$ for their respective colimits. So L_I is the matching functor of [190], and $g: C \to D$ is a cofibration precisely when the induced maps

$$C(I) \amalg_{L_I C} L_I D \to D(I)$$

are cofibrations in MC for all $I \in K$. Thus $D: \text{cat}(K) \to MC$ is cofibrant when every canonical map colim $D|_{\text{cat}(\partial \Delta(I))} \to D(I)$ is a cofibration.

In the dual model structure on $[\text{cat}^{op}(K), MC]$, weak equivalences and cofibrations are given objectwise. To describe the fibrations, we restrict C and D to the undercategories $\text{cat}^{op}(\partial \Delta(I))$, and write $M_I C$ and $M_I D$ for their respective limits. So M_I is the matching functor of [190], and $f: C \to D$ is a fibration precisely when the induced maps

$$C(I) \to D(I) \times_{M_I D} M_I C$$

are fibrations in MC for all $I \in K$. Thus $C: \text{cat}^{op}(K) \to MC$ is fibrant when every canonical map $C(I) \to \lim C|_{\text{cat}^{op}(\partial \Delta(I))}$ is a fibration.

C.2. Algebraic model categories

Here we give further details of the algebraic model categories introduced in the previous section. We describe the fibrations and cofibrations in each category, comment on the status of the strengthened axioms, and give simple examples in less familiar cases. We also discuss two important adjoint pairs.

So far as general algebraic notation is concerned, we work over an arbitrary commutative ring k. We indicate the coefficient ring k by means of a subscript when necessary, but often omit it. In some situations k is restricted to the rational numbers \mathbb{Q}, in which case we always clearly indicate it in the notation.

We consider finite sets W of generators w_1, \ldots, w_m. We write the graded tensor k-algebra on W as $T(w_1, \ldots, w_m)$, and use the abbreviation $T(W)$ whenever possible. Its symmetrisation $S(W)$ is the graded commutative k-algebra generated by W. If $U, V \subseteq W$ are the subsets of odd and even grading respectively, then $S(V)$ is the tensor product of the exterior algebra $\Lambda[U]$ and the polynomial algebra $k[V]$. When k is a field of characteristic zero, it is also convenient to denote the free graded Lie algebra on W and its commutative counterpart by $FL(W)$ and $CL(W)$ respectively; the latter is nothing more than a free k-module.

Almost all of our graded algebras have finite type, leading to a natural coalgebraic structure on their duals. We write the free tensor coalgebra on W as $T(W)$;
it is isomorphic to $T(W)$ as k-modules, and its diagonal is given by

$$
\Delta(w_{j_1} \otimes \cdots \otimes w_{j_r}) = \sum_{k=0}^{r} (w_{j_1} \otimes \cdots \otimes w_{j_k}) \otimes (w_{j_{k+1}} \otimes \cdots \otimes w_{j_r}).
$$

The submodule $S(W)$ of symmetric elements $(w_i \otimes w_j + (-1)^{\deg_w_i \deg_w_j} w_j \otimes w_i$, for example) is the graded cocommutative k-coalgebra cogenerated by W.

Given W, we may sometimes define a differential by denoting the set of elements dw_1, \ldots, dw_m by dW. For example, we write the free dg-algebra on a single generator w of positive dimension as $T(w, dw)$; the notation is designed to reinforce the fact that its underlying algebra is the tensor k-algebra on elements w and dw. Similarly, $T(w, dw)$ is the free differential graded coalgebra on w. For further information on differential graded coalgebras, [193] remains a valuable source.

Chain and cochain complexes. The existence of a model structure on categories of chain complexes was first proposed by Quillen [313], whose view of homological algebra as homotopy theory in CH_k was a crucial insight. Variations involving bounded and unbounded complexes are studied by Hovey [190], for example. In CH_k, we assume that the fibrations are epimorphic in positive degrees and the cofibrations are monomorphic with degree-wise projective cokernel [125]. In particular, every object is fibrant.

The existence of limits and colimits is assured by working dimensionwise, and functoriality of the factorisations (C.1) follows automatically from the fact that CH_k is cofibrantly generated [190, Chapter 2].

Model structures on CCH_k are established by analogous techniques. It is usual to assume that the fibrations are epimorphic with degree-wise injective kernel, and the cofibrations are monomorphic in positive degrees. Then every object is cofibrant. There is an alternative structure based on projectives, but we shall only refer to the rational case so we ignore the distinction.

Tensor product of (co)chain complexes invests CH_k and CCH_k with the structure of a monoidal model category, as defined by Schwede and Shipley [326].

Commutative differential graded algebras. We consider commutative differential graded algebras over \mathbb{Q} with cohomology differentials, so they are commutative monoids in CCH_Q. A model structure on $CDGA_Q$ was first defined in this context by Bousfield and Gugenheim [45], and has played a significant role in the theoretical development of rational homotopy theory ever since. The fibrations are epimorphic, and the cofibrations are determined by the appropriate lifting property; some care is required to identify sufficiently many explicit cofibrations.

Limits in $CDGA_Q$ are created in the underlying category CCH_Q and endowed with the natural algebra structure, whereas colimits exist because $CDGA_Q$ has finite coproducts and filtered colimits. The proof of the factorisation axioms in [45] is already functorial.

By way of example, we note that the product of algebras A and B is their augmented sum $A \oplus B$, defined by pulling back the diagram of augmentations,

$$
\begin{array}{ccc}
A \oplus B & \longrightarrow & A \\
\downarrow & & \downarrow \varepsilon_A \\
B & \longrightarrow & \mathbb{Q} \\
\varepsilon_B & & \\
\end{array}
$$
in coCH and imposing the standard multiplication on the result. The coproduct is their tensor product $A \otimes B$ over \mathbb{Q}. Examples of cofibrations include extensions $A \to (A \otimes S(w), d)$ given by (C.5); such an extension is determined by a cocycle $z = f(x)$ in A. This illustrates the fact that the pushout of a cofibration is a cofibration. A larger class of cofibrations $A \to A \otimes S(W)$ is given by iteration, for any set W of positive dimensional generators corresponding to cocycles in A.

The factorisations (C.1) are only valid over fields of characteristic 0, so the model structure does not extend to CDGA_k for arbitrary rings k.

Differential graded algebras. Our differential graded algebras have homology differentials, and are the monoids in ch_k. A model category structure in DGA_k is therefore induced by applying Quillen’s path object argument, as in [326]; a similar structure was first proposed by Jardine [204] (albeit with cohomology differentials), who proceeds by modifying the methods of [45]. Fibrations are epimorphisms, and cofibrations are determined by the appropriate lifting property.

Limits are created in ch_k, whereas colimits exist because DGA_k has finite coproducts and filtered colimits. Functoriality of the factorisations follows by adapting the proofs of [45], and works over arbitrary k.

For example, the coproduct of algebras A and B is the free product $A \star B$, formed by factoring out an appropriate differential graded ideal [204] from the free (tensor) algebra $T(A \otimes B)$ on the chain complex $A \otimes B$. Examples of cofibrations include the extensions $A \to (A \star T(w), d)$, determined by cycles z in A. By analogy with the commutative case, such an extension is defined by the pushout diagram

$$
\begin{array}{ccc}
T(x) & \xrightarrow{f} & A \\
\downarrow j & & \downarrow \\
T(w, dw) & \longrightarrow & A \star T(w)
\end{array}
$$

where $f(x) = z$ and $j(x) = dw$. The differential on $A \star T(w)$ is given by

$$d(a \star 1) = d_A a \star 1, \quad d(1 \star w) = f(x) \star 1.$$

Further cofibrations $A \to A \star T(W)$ arise by iteration, for any set W of positive dimensional generators corresponding to cycles in A.

Cocommutative differential graded coalgebras. The cocommutative comonoids in ch_k are the objects of CDGC_k, and the morphisms preserve co-multiplication. The model structure is defined only over fields of characteristic 0; in view of our applications, we shall restrict attention to the case \mathbb{Q}. In practice, we interpret $\text{CDGC}_\mathbb{Q}$ as the full subcategory CDGC_0,\mathbb{Q} of connected objects C, which are necessarily coaugmented. Model structure was first defined on the category of simply connected rational cocommutative coalgebras by Quillen [314], and refined to CDGC_0,\mathbb{Q} by Neisendorfer [284]. The cofibrations are monomorphisms, and the fibrations are determined by the appropriate lifting property.

Limits exist because $\text{CDGC}_\mathbb{Q}$ has finite products and filtered limits, whereas colimits are created in $\text{ch}_\mathbb{Q}$, and endowed with the natural coalgebra structure. Functoriality of the factorisations again follows by adapting the proofs of [45].

For example, the product of coalgebras C and D is their tensor product $C \otimes D$ over \mathbb{Q}. The coproduct is their coaugmented sum, given by pushing out the diagram
of coaugmentations

\[
\begin{array}{ccc}
\mathbb{Q} & \xrightarrow{\delta_C} & C \\
\delta_D & \downarrow & \\
D & \longrightarrow & C \oplus D
\end{array}
\]

in \(\mathbb{Q}\) and imposing the standard comultiplication on the result. Examples of fibrations include the projections \((C \otimes S(dt), d) \rightarrow C\), which are determined by cycles \(z\) in \(C\) and defined by the pullback diagram

\[
\begin{array}{ccc}
C \otimes S(dt) & \longrightarrow & S(t, dt) \\
\downarrow & & \downarrow q \\
C & \xrightarrow{h} & S(x)
\end{array}
\]

where \(q(t) = x\), \(q(dt) = 0\) and \(h(z) = x\). The differential on \(C \otimes S(dt)\) satisfies

\[d(z \otimes 1) = 1 \otimes dt, \quad d(1 \otimes dt) = 0.\]

This illustrates the fact that the pullback of a fibration is a fibration. Further fibrations \(C \otimes S(dT) \rightarrow C\) are given by iteration, for any set \(T\) of generators corresponding to elements of degree \(\geq 2\) in \(C\).

Differential graded coalgebras. Model structures on more general categories of differential graded coalgebras have been publicised by Getzler and Goerss in [151]; they also work over a field. Once again, we restrict attention to \(\mathbb{Q}\). The objects of \(d\mathbb{Q}\) are comonoids in \(\mathbb{Q}\), and the morphisms preserve comultiplication. The cofibrations are monomorphisms, and the fibrations are determined by the appropriate lifting property.

Limits exist because \(d\mathbb{Q}\) has finite products and filtered limits, and colimits are created in \(\mathbb{Q}\). Functoriality of factorisations follows from the fact that the model structure is cofibrantly generated.

For example, the product of coalgebras \(C\) and \(D\) is the cofree product \(C \star D\) [151]. Their coproduct is the coaugmented sum, as in the case of \(d\mathbb{Q}\). Examples of fibrations include the projections \((C \star T(dt), d) \rightarrow C\), which are determined by cycles \(z\) in \(C\) and defined by the pullback diagram

\[
\begin{array}{ccc}
C \star T(dt) & \longrightarrow & T(t, dt) \\
\downarrow & & \downarrow q \\
C & \xrightarrow{h} & T(x)
\end{array}
\]

where \(q(t) = x\), \(q(dt) = 0\) and \(h(z) = x\).

Differential graded Lie algebras. A (rational) differential graded Lie algebra \(L\) is a chain complex in \(\mathbb{Q}\), equipped with a bracket morphism \([, ,]: L \otimes L \rightarrow L\) satisfying signed versions of the antisymmetry and Jacobi identity:

\[
\begin{align*}
(C.8) \quad [x, y] &= -(-1)^{\deg x \deg y} [y, x], \\
[x, [y, z]] &= [[x, y], z] + (-1)^{\deg x \deg y} [y, [x, z]].
\end{align*}
\]

Differential graded Lie algebras over \(\mathbb{Q}\) are the objects of the category \(d\mathbb{Q}\). Quillen [314] originally defined a model structure on the subcategory of reduced objects, which was extended to \(d\mathbb{Q}\) by Neisendorfer [284]. Fibrations are epimorphisms, and cofibrations are determined by the appropriate lifting property.
Limits are created in Ch, whereas colimits exist because DGL has finite coproducts and filtered colimits. Functoriality of the factorisations follows by adapting the proofs of [284].

For example, the product of Lie algebras L and M is their product $L \oplus M$ as chain complexes, with the induced bracket structure. Their coproduct is the free product $L \ast M$, obtained by factoring out an appropriate differential graded ideal from the free Lie algebra $FL(L \otimes M)$ on the chain complex $L \otimes M$. Examples of cofibrations include the extensions $L \to (L \ast FL(w), d)$, which are determined by cycles z in L and defined by the pushout diagram

$$
\begin{array}{ccc}
FL(x) & \xrightarrow{f} & L \\
\downarrow \quad j & & \downarrow \\
FL(w, dw) & \longrightarrow & L \ast FL(w)
\end{array}
$$

where $f(x) = z$ and $j(x) = dw$. The differential on $L \ast FL(w)$ is given by

$$d(l \ast 1) = d_L l \ast 1, \quad d(1 \ast w) = z \ast 1.$$

For historical reasons, a differential graded Lie algebra L is said to be coformal whenever it is formal in DGL.

Adjoint pairs. Following Moore [278], [193], we consider the algebraic classifying functor B_* and the loop functor Ω_* as an adjoint pair

(C.9) \quad $\Omega_* : \text{DGC}_0, k \cong \text{DGA}_k : B_*.$

For any object A of DGA_k, the classifying coalgebra $B_\ast A$ agrees with Eilenberg and Mac Lane’s normalised bar construction as objects of Ch_k. For any object C of DGC_0, k, the loop algebra $\Omega_* C$ is given by the tensor algebra $T(s^{-1}C)$ on the desuspended k-module $C = \text{Ker}(\varepsilon : C \to k)$, and agrees with Adams’ cobar construction [1] as objects of Ch_k.

The classical result of Adams links the Moore loop functor $\Omega : \text{TOP} \to \text{TMON}$ with its algebraic analogue $\Omega_*:

Theorem C.2.1 ([1]). For a simply connected pointed space X and a commutative ring k, there is a natural isomorphism of graded algebras

$$H(\Omega_* C_\ast (X; k)) \cong H_\ast (\Omega X; k),$$

where $C_\ast (X; k)$ denotes the suitably reduced singular chain complex of X.

The isomorphism of Theorem C.2.1 is induced by a natural homomorphism

$$\Omega_* C_\ast (X; k) \longrightarrow CU_\ast (\Omega X; k)$$

of DGA_k, where $CU_\ast (\Omega X; k)$ denotes the suitably reduced cubical chains on ΩX with the dg-algebra structure induced from composition of Moore loops.

The graded homology algebra $H(\Omega_* C)$ is denoted by $\text{Cotor}_C(k, k)$. When k is a field, there is an isomorphism

(C.10) \quad $\text{Cotor}_C(k, k) \cong \text{Ext}_{C^\ast}(k, k)$

of graded algebras [310, page 41], where C^\ast is the graded algebra dual to C and $\text{Ext}_{C^\ast}(k, k)$ is the Yoneda algebra of C^\ast [245].
Proposition C.2.2. The loop functor \(\Omega_* \) preserves cofibrations of connected coalgebras and weak equivalences of simply connected coalgebras; the classifying functor \(B_* \) preserves fibrations of connected algebras and all weak equivalences.

Proof. The fact that \(B_* \) and \(\Omega_* \) preserve weak equivalences of algebras and simply connected coalgebras respectively is proved by standard arguments with the Eilenberg–Moore spectral sequence [135, page 538]. The additional assumption for coalgebras is necessary to ensure that the cobar spectral sequence converges, because the relevant filtration is decreasing.

Given any cofibration \(i: C_1 \to C_2 \) of connected coalgebras, we must check that \(\Omega_* i: \Omega_* C_1 \to \Omega_* C_2 \) satisfies the left lifting property with respect to any acyclic fibration \(p: A_1 \to A_2 \) in \(\text{dga}_k \). This involves finding lifts \(\Omega_* C_2 \to A_1 \) and \(C_2 \to B_* A_1 \) in the respective diagrams

\[
\begin{array}{ccc}
\Omega_* C_1 & \longrightarrow & A_1 \\
\downarrow \quad & & \downarrow \quad \\
\Omega_* C_2 & \longrightarrow & A_2
\end{array}
\quad \quad \text{and} \quad \quad
\begin{array}{ccc}
C_1 & \longrightarrow & B_* A_1 \\
\downarrow \quad & & \downarrow \quad \\
C_2 & \longrightarrow & B_* A_2
\end{array}
\]

each lift implies the other, by adjointness. Since \(p \) is an acyclic fibration, its kernel \(A \) satisfies \(H(A) \cong k \). In these circumstances, the projection \(B_* p \) splits by [193, Theorem IV.2.5], so \(B_* A_1 \) is isomorphic to the cofree product \(B_* A_2 \ast B_* A \). Therefore, \(B_* p \) is an acyclic fibration in \(\text{dgc}_{0,k} \), and our lift is assured.

A second application of adjointness shows that \(B_* \) preserves all fibrations of connected coalgebras. \(\square \)

Remark. It follows from Proposition C.2.2 that the restriction of (C.9) to simply connected coalgebras and connected algebras respectively,

\[\Omega_*: \text{dgc}_{1,k} \rightleftarrows \text{dga}_{0,k}: B_* \]

acts as a Quillen pair, and induces an adjoint pair of equivalences on appropriate full subcategories of the homotopy categories. An example is given in [135, p. 538] which shows that \(\Omega_* \) fails to preserve quasi-isomorphisms (or even acyclic cofibrations) if the coalgebras are not simply connected.

Over \(\mathbb{Q} \), the adjunction maps \(C \mapsto B_* \Omega_* C \) and \(\Omega_* B_* A \mapsto A \) are quasi-isomorphisms for any objects \(A \) and \(C \).

Following Neisendorfer [284, Proposition 7.2], we consider a second pair of adjoint functors

\[L_*: \text{cdgc}_{0,\mathbb{Q}} \rightleftarrows \text{dgl}: M_* \]

whose derived functors induce an equivalence between \(H_0(\text{cdgc}_{0,\mathbb{Q}}) \) and a certain full subcategory of \(H_0(\text{dgl}) \). This extends Quillen’s original results [314] for \(L_* \) and \(M_* \), which apply only to simply connected coalgebras and connected Lie algebras. Given a connected cocommutative coalgebra \(C \), the underlying graded Lie algebra of \(L_* C \) is the free Lie algebra \(FL(s^{-1}C) \subset T(s^{-1}C) \). This is preserved by the differential in \(\Omega_* C \) because \(C \) is cocommutative, thereby identifying \(L_* C \) as the differential graded Lie algebra of primitives in \(\Omega_* C \). The right adjoint functor \(M_* \) may be regarded as a generalisation to differential graded objects of the standard complex for calculating the cohomology of Lie algebras. Given any \(L \) in \(\text{dgl} \), the underlying cocommutative coalgebra of \(M_* L \) is the symmetric coalgebra \(S(sL) \) on the suspended vector space \(L \).
The ordinary (topological) classifying space functor $B : \text{Top} \to \text{TMon}$ and the Moore loop functor $\Omega : \text{TMon} \to \text{Top}$ are not formally adjoint, because Ω does not preserve products. However, as it was shown by Vogt [358], after passing to appropriate localisations, Ω becomes right adjoint to B in the homotopy categories.

There is also a similar result for simplicial categories: the loop functor from simplicial sets to simplicial groups is left adjoint to the classifying functor, as in the case of algebraic functors Ω_* and B_*.

C.3. Homotopy limits and colimits

The \lim and \colim functors $[A,MC] \to MC$ do not generally preserve weak equivalences, and the theory of homotopy limits and colimits has been developed to remedy this deficiency. We outline their construction in this section, and discuss basic properties.

With $\text{Cat}(K)$ and $\text{Cat}^{op}(K)$ in mind as primary examples, we assume throughout that A is a finite Reedy category.

A Reedy category A has cofibrant constants if the constant A-diagram M is cofibrant in $[A,MC]$, for any cofibrant object M of an arbitrary model category MC. Similarly, A has fibrant constants if the constant A-diagram N is fibrant for any fibrant object N of MC.

As shown in [185, Theorem 15.10.8], a Reedy category A has fibrant constants if and only if the first pair of adjoint functors

\[(\text{C.12})\]

\[\text{colim} : [A,MC] \rightleftarrows MC : \kappa, \quad \kappa : MC \rightleftarrows [A,MC] : \lim\]

is a Quillen pair (i.e. colim is left Quillen) for every model category MC. Similarly, A has cofibrant constants if and only if the second pair above is a Quillen pair, i.e. lim is right Quillen.

We now apply the fibrant and cofibrant replacement functors associated to the Reedy model structure on $[A,MC]$, and their homotopy functors (C.2).

Definition C.3.1. For any Reedy category A with fibrant and cofibrant constants, and any model category MC:

(a) the homotopy colimit functor is the composition

\[\text{hocolim} : Ho[A,MC] \xrightarrow{Ho(\omega)} Ho[A,MC]_{f} \xrightarrow{Ho(\text{colim})} Ho(MC) ;\]

(b) the homotopy limit functor is the composition

\[\text{holim} : Ho[A,MC] \xrightarrow{Ho(\varphi)} Ho[A,MC]_{f} \xrightarrow{Ho(\text{lim})} Ho(MC).\]

Remark. Definition C.3.1 incorporates the fact that holim and hocolim map objectwise weak equivalences of diagrams to weak equivalences in MC.

The Reedy categories $\text{Cat}(K)$ and $\text{Cat}^{op}(K)$ satisfy the criteria of [185, Proposition 15.10.2] and therefore have fibrant and cofibrant constants, for every simplicial complex K. This implies that holim and hocolim: $Ho[\text{Cat}(K),MC] \to Ho(MC)$ are defined; and similarly for $\text{Cat}^{op}(K)$.

Describing explicit models for homotopy limits and colimits has been a major objective for homotopy theorists since their study was initiated by Bousfield and Kan [46] and Vogt [357]. In terms of Definition C.3.1, the issue is to choose fibrant and cofibrant replacement functors φ and ω. Many alternatives exist, including those defined by the two-sided bar and cobar constructions of [303] or the frames
of [185, §16.6], but no single description yet appears to be convenient in all cases. Instead, we accept a variety of possibilities, which are often implicit; the next few results ensure that they are as compatible and well-behaved as we need.

Proposition C.3.2. Any cofibrant approximation \(D' \xrightarrow{\simeq} D \) of diagrams induces a weak equivalence \(\operatorname{colim} D' \xrightarrow{\simeq} \operatorname{hocolim} D \) in \(\mathcal{M} \); and any fibrant approximation \(D \xrightarrow{\simeq} D'' \) induces a weak equivalence \(\operatorname{holim} D \xrightarrow{\simeq} \operatorname{lim} D'' \).

Proof. Using the left lifting property (axiom (c)) of the cofibration \(\circ \to D' \) with respect to the acyclic fibration \(\omega(D) \to D \) we obtain a factorisation \(D' \to \omega(D) \to D \), in which the left hand map is a weak equivalence by axiom (b). But \(D' \) and \(\omega(D) \) are cofibrant, and \(\operatorname{colim} \omega(D) \) is a weak equivalence, as required. The proof for \(\operatorname{lim} \) is dual. \(\square \)

Remark. Such arguments may be strengthened to include uniqueness statements, and show that the replacements \(\varphi(D) \) and \(\omega(D) \) are themselves unique up to homotopy equivalence over \(D \), see [185, Proposition 8.1.8].

Proposition C.3.3. For any cofibrant diagram \(D \) and fibrant diagram \(E \), there are natural weak equivalences \(\operatorname{holim} D \xrightarrow{\simeq} \operatorname{colim} D \) and \(\operatorname{lim} E \xrightarrow{\simeq} \operatorname{holim} E \).

Proof. For \(D \), it suffices to apply the left Quillen functor \(\operatorname{colim} \) to the acyclic fibration \(\omega(D) \to D \). The proof for \(E \) is dual. \(\square \)

Proposition C.3.4. A weak equivalence \(D' \xrightarrow{\simeq} D \) of cofibrant diagrams induces a weak equivalence \(\operatorname{colim} D' \xrightarrow{\simeq} \operatorname{colim} D \), and a weak equivalence \(E \xrightarrow{\simeq} E' \) of fibrant diagrams induces a weak equivalence \(\operatorname{lim} E \xrightarrow{\simeq} \operatorname{lim} E' \).

Proof. This follows from Propositions C.3.2 and C.3.3. \(\square \)

Proposition C.3.5. In any model category \(\mathcal{M} \):

(a) if all three objects of a pushout diagram \(D : L \leftarrow M \to N \) are cofibrant, and either of the maps is a cofibration, then there exists a weak equivalence \(\operatorname{holim} D \xrightarrow{\simeq} \operatorname{colim} D \);

(b) if all three objects of a pullback diagram \(E : P \to Q \leftarrow R \) are fibrant, and either of the maps is a fibration, then there exists a weak equivalence \(\operatorname{lim} E \xrightarrow{\simeq} \operatorname{holim} E \).

Proof. For (a), assume that \(M \to N \) is a cofibration, and that the indexing category \(\mathcal{B} \) for \(D \) has non-identity morphisms \(\lambda \leftarrow \mu \to \nu \). The degree function \(\operatorname{deg}(\lambda) = 0 \), \(\operatorname{deg}(\mu) = 1 \), and \(\operatorname{deg}(\nu) = 2 \) turns \(\mathcal{B} \) into a Reedy category with fibrant constants, and ensures that \(D \) is cofibrant. So Proposition C.3.3 applies. If \(M \to L \) is a cofibration, the corresponding argument holds by symmetry.

For (b), the proofs are dual. \(\square \)

There is an important situation when the homotopy colimit over a poset category can be described explicitly:

Lemma C.3.6 (Wedge Lemma [362, Lemma 4.9]). Let \((\mathcal{P}, \leq)\) be a poset with initial element \(0 \), and let \(\mathcal{P} \) be the corresponding poset category. Suppose there is diagram \(D : \mathcal{P} \to \text{Top} \) of spaces so that \(D(\emptyset) = pt \) and \(D(\sigma) \to D(\tau) \) is the constant map to the basepoint for all \(\sigma < \tau \) in \(\mathcal{P} \). Then there is a homotopy equivalence

\[
\operatorname{holim} D \xrightarrow{\simeq} \bigvee_{\sigma \in \mathcal{P}} (|\operatorname{ord}(\mathcal{P}_{\geq \sigma})| \ast D(\sigma)),
\]

where \(\operatorname{ord}(\mathcal{P}_{\geq \sigma}) \) is the set of all \(\mathcal{P} \) elements \(\sigma' \) such that \(\sigma' \geq \sigma \).
where $|\text{ord}(P_{>\sigma})|$ is the geometric realisation of the order complex of the upper semi-interval $P_{>\sigma} = \{ \tau \in P : \tau > \sigma \}$.

According to a result of Panov, Ray and Vogt, the classifying space functor $B : \text{TMON} \to \text{TOP}$ commutes with homotopy colimits (of topological monoids and topological spaces, respectively) in the following sense:

Theorem C.3.7 ([303, Theorem 7.12, Proposition 7.15]). For any diagram $\mathcal{D} : A \to \text{TMON}$ of well-pointed topological monoids with the homotopy types of cell complexes, there is a natural homotopy equivalence

$$g : \text{hocolim}^{\text{TOP}}{BD} \xrightarrow{\simeq} B \text{hocolim}^{\text{TMON}}{\mathcal{D}}.$$

Furthermore, there is a commutative square

$$\begin{array}{cc}
\text{hocolim}^{\text{TOP}}{BD} & \xrightarrow{\simeq} & B \text{hocolim}^{\text{TMON}}{\mathcal{D}} \\
|p_{\text{TOP}}| & & |Bp_{\text{TMON}}|
\end{array}$$

(C.13)

$$\begin{array}{ccc}
\text{colim}^{\text{TOP}}{BD} & \longrightarrow & B \text{colim}^{\text{TMON}}{\mathcal{D}}
\end{array}$$

where p_{TOP} and p_{TMON} are the natural projections.

A weaker version of the theorem above can be stated for the Moore loop functor:

Corollary C.3.8. For $\mathcal{D} : A \to \text{TMON}$ as above, there is a commutative square

$$\begin{array}{ccc}
\Omega \text{hocolim}^{\text{TOP}}{BD} & \xrightarrow{\simeq} & \text{hocolim}^{\text{TMON}}{\mathcal{D}} \\
\Omega p_{\text{TOP}} & & \Omega p_{\text{TMON}}
\end{array}$$

in $\text{Ho}(\text{TMON})$, where the upper homomorphism is a homotopy equivalence.

Proof. This follows by applying Ω to (C.13) and then composing the horizontal maps with the canonical weak equivalence $\Omega BG \to G$ in TMON, where $G = \text{hocolim}^{\text{TMON}}{\mathcal{D}}$ and $\text{colim}^{\text{TMON}}{\mathcal{D}}$ respectively. \hfill \Box

The lower map in the diagram above is not a homotopy equivalence in general, although Ω preserves coproducts. Appropriate examples are given in Section 8.4.
APPENDIX D

Bordism and Cobordism

Cobordism theory is one of the deepest and most influential parts of algebraic topology, which experienced a spectacular development in the 1960s. Here we summarise the required facts on bordism and cobordism, with the most attention given to complex (co)bordism. Proofs of results presented here would require a separate monograph and a substantial background in algebraic topology. There are exceptions where the proofs are concise and included here. For the rest an interested reader is referred to the works of Novikov [291], [293], the monographs of Conner–Floyd [100], [102], Ravenel [318] and Stong [340], and the survey by Buchstaber [58].

We consider topological spaces which have the homotopy type of cell complexes. All manifolds are assumed to be smooth, compact and closed (without boundary), unless otherwise specified.

D.1. Bordism of manifolds

Given two n-dimensional manifolds M_0 and M_1, a bordism between them is an $(n+1)$-dimensional manifold W with boundary, whose boundary is the disjoint union of M_0 and M_1, that is, $\partial W = M_0 \cup M_1$. If such a W exists, M_0 and M_1 are called bordant. The bordism relation splits the set of manifolds into equivalence classes, which are called bordism classes.

We denote the bordism class of M by $[M]$, and denote by Ω^n_0 the set of bordism classes of n-dimensional manifolds. Then Ω^n_0 is an Abelian group with respect to the disjoint union operation: $[M_1] + [M_2] = [M_1 \cup M_2]$. Zero is represented by the bordism class of the empty set (which is counted as a manifold in any dimension), or by the bordism class of any manifold which bounds. We also have $\partial(M \times I) = M \cup M$. Hence, $2[M] = 0$ and Ω^n_0 is a 2-torsion group.

Set $\Omega^n = \bigoplus_{n \geq 0} \Omega^n_0$. The direct product of manifolds induces a multiplication of bordism classes, namely $[M_1] \times [M_2] = [M_1 \times M_2]$. It makes Ω^n a graded commutative ring, the unoriented bordism ring.

For any space X the bordism relation can be extended to maps of manifolds to X: two maps $M_1 \to X$ and $M_2 \to X$ are bordant if there is a bordism W between M_1 and M_2 and the map $M_1 \cup M_2 \to X$ extends to a map $W \to X$. The set of bordism classes of maps $M \to X$ with $\dim M = n$ forms an abelian group called the n-dimensional unoriented bordism group of X and denoted $\Omega_n(X)$ (other notations: $\Omega_n(X)$, $MO_n(X)$). We note that $\Omega_n(pt) = \Omega^n_0$, where pt is a point.

The bordism group $\Omega_n(X, A)$ of a pair $A \subset X$ is defined as the set of bordism classes of maps of manifolds with boundary, $(M, \partial M) \to (X, A)$, where $\dim M = n$. (Two such maps $f_0 : (M_0, \partial M_0) \to (X, A)$ and $f_1 : (M_1, \partial M_1) \to (X, A)$ are bordant if there is W such that $\partial W = M_0 \cup M_1 \cup M$, where M is a bordism between ∂M_0 and ∂M_1.)
and \(\partial M \), and a map \(f: W \to X \) such that \(f|_{M_0} = f_0, f|_{M_1} = f_1 \) and \(f(M) \subset A \). We have \(O_n(X, \varnothing) = O_n(X) \).

There is an obviously defined map \(O_n^0 \times O_n(X) \to O_{m+n}(X) \) turning \(O_*(X) = \bigoplus_{n \geq 0} O_n(X) \) into a graded \(\Omega^* \)-module. The assignment \(X \mapsto O_*(X) \) defines a generalised homology theory, that is, it is functorial in \(X \), homotopy invariant, has the excision property and exact sequences of pairs.

D.2. Thom spaces and cobordism functors

A remarkable geometric construction due to Pontryagin and Thom reduces the calculation of the bordism groups \(O_n(X) \) to a homotopical problem. Here we assume known basic facts from the theory of vector bundles.

Given an \(n \)-dimensional real Euclidean vector bundle \(\xi \) with total space \(E = E\xi \) and compact Hausdorff base \(X \), the Thom space of \(\xi \) is defined as the quotient

\[
\text{Th } \xi = E/E_{\geq 1},
\]

where \(E_{\geq 1} \) is the subspace consisting of vectors of length \(\geq 1 \) in the fibres of \(\xi \). Equivalently, \(\text{Th } \xi = BE/SE \), where \(BE \) is the total space of the \(n \)-ball bundle associated with \(\xi \) and \(SE = \partial BE \) is the \((n-1) \)-sphere bundle. Also, \(\text{Th } \xi \) is the one-point compactification of \(E \). The Thom space \(\text{Th } \xi \) has a canonical basepoint, the image of \(E_{\geq 1} \).

Proposition D.2.1. If \(\xi \) and \(\eta \) are vector bundles over \(X \) and \(Y \) respectively, and \(\xi \times \eta \) is the product vector bundle over \(X \times Y \), then

\[
\text{Th}(\xi \times \eta) = \text{Th } \xi \wedge \text{Th } \eta.
\]

The proof is left as an exercise.

Example D.2.2.

1. Regarding \(\mathbb{R}^k \) as the total space of a \(k \)-plane bundle over a point, we obtain that the corresponding Thom space \(\text{Th}(\mathbb{R}^k) \) is a \(k \)-sphere \(S^k \).

2. If \(\xi \) is a 0-dimensional bundle over \(X \), then \(\text{Th } \xi = X_+ = X \cup \text{pt} \).

3. Let \(\mathbb{R}^k \) denote the trivial \(k \)-plane bundle over \(X \). The Whitney sum \(\xi \oplus \mathbb{R}^k \) can be identified with the product bundle \(\xi \times \mathbb{R}^k \), where \(\mathbb{R}^k \) is the \(k \)-plane bundle over a point. Then Proposition D.2.1 implies that

\[
\text{Th}(\xi \oplus \mathbb{R}^k) = \Sigma^k \text{Th } \xi,
\]

where \(\Sigma^k \) denote the \(k \)-fold suspension.

4. Combining the previous two examples, we obtain

\[
\text{Th}(\mathbb{R}^k) = \Sigma^k X \vee S^k.
\]

Construction D.2.3 (Pontryagin–Thom construction). Let \(M \) be a submanifold in \(\mathbb{R}^m \) with normal bundle \(\nu = \nu(M \subset \mathbb{R}^m) \). The Pontryagin–Thom map

\[
S^m \to \text{Th } \nu
\]

identifies a tubular neighbourhood of \(M \) in \(\mathbb{R}^m \subset S^m \) with the set of vectors of length \(< 1 \) in the fibres of \(\nu \), and collapses the complement of a tubular neighbourhood to the basepoint of the Thom space \(\text{Th } \nu \).

This construction can be generalised to submanifolds \(M \subset E\xi \) in the total space of a smooth \(m \)-plane bundle \(\xi \) over a manifold, giving the collapse map

\[
(D.1) \quad \text{Th } \xi \to \text{Th } \nu,
\]
where \(\nu = \nu(M \subset E\xi) \). Note that the Pontryagin–Thom collapse map is a particular case of (D.1), as \(S^n \) is the Thom space of an \(m \)-plane bundle over a point.

Recall that a smooth map \(f : W \to Z \) of manifolds is called transverse along a submanifold \(Y \subset Z \) if, for every \(w \in f^{-1}(Y) \), the image of the tangent space to \(W \) at \(w \) together with the tangent space to \(Y \) at \(f(w) \) spans the tangent space to \(Z \) at \(f(w) \):

\[
f_*T_wW + T_{f(w)}Y = T_{f(w)}Z.
\]

If \(f : W \to Z \) is transverse along \(Y \subset Z \), then \(f^{-1}(Y) \) is a submanifold in \(W \) of codimension equal to the codimension of \(Y \) in \(Z \).

Construction D.2.4 (cobordism classes of \(\eta \)-submanifolds in \(E\xi \)). Let \(\xi \) be an \(m \)-plane bundle with total space \(E\xi \) over a manifold \(X \), and let \(\eta \) be an \(n \)-plane bundle over a manifold \(Y \). An \(\eta \)-submanifold of \(E\xi \) is a pair \((M, f)\) consisting of a submanifold \(M \) in \(E\xi \) and a map

\[
f : \nu(M \subset E\xi) \to \eta
\]

such that \(f \) is an isomorphism on each fibre (so that the codimension of \(M \) in \(E\xi \) is \(n \)). Two \(\eta \)-submanifolds \((M_0, f_0)\) and \((M_1, f_1)\) are cobordant if there is an \(\eta \)-submanifold with boundary \((W, f)\) in the cylinder \(E\xi \times I \subset E(\xi \oplus \mathbb{R}) \) such that

\[
\partial(W, f) = ((M_0, f_0) \times 0) \cup ((M_1, f_1) \times 1).
\]

Theorem D.2.5. The set of cobordism classes of \(\eta \)-submanifolds in \(E\xi \) is in one-to-one correspondence with the set \([\text{Th} \xi, \text{Th} \eta]\) of homotopy classes of based maps of Thom spaces.

Proof. Assume given a based map \(g : \text{Th} \xi \to \text{Th} \eta \). By changing \(g \) within its homotopy class we may achieve that \(g \) is transverse along the zero section \(Y \subset \text{Th} \eta \) (transversality is a local condition, and both \(\text{Th} \xi \) and \(\text{Th} \eta \) are manifolds outside the basepoints). Since \(\eta \) is an \(n \)-plane bundle, \(M = g^{-1}(Y) \) is a submanifold of codimension \(n \) in \(E\xi = \text{Th} \xi \setminus \text{pt} \) such that

\[
\nu(M \subset E\xi) = g^* (\nu(Y \subset E\eta)) = g^* \eta.
\]

That is, \(M \) is an \(\eta \)-submanifold in \(E\xi \).

Conversely, assume given an \(\eta \)-submanifold \(M \subset E\xi \). We therefore have the map of Thom spaces \(\text{Th} \nu \to \text{Th} \eta \) (induced by the map of \(\nu \) to \(\eta \)), whose composition with the collapse map (D.1) gives the required map \(\text{Th} \xi \to \text{Th} \eta \).

The fact that homotopic based maps \(\text{Th} \xi \to \text{Th} \eta \) correspond to cobordant \(\eta \)-submanifolds, and vice versa, is left as an exercise. \(\square \)

Construction D.2.6 (cobordism groups). Let \(\eta_k \) be the universal vector \(k \)-plane bundle over the classifying space \(BO(k) \). Following the original notation of Thom, we denote \(MO(k) = \text{Th} \eta_k \).

Every submanifold \(M \subset \mathbb{R}^{n+k} \) of dimension \(n \) is an \(\eta_k \)-submanifold via the classifying map of the normal bundle \(\nu(M \subset \mathbb{R}^{n+k}) \). Denote by \(\Omega_{O}^{-n,k} \) the set of cobordism classes of \(M \subset \mathbb{R}^{n+k} \). The base of \(\eta_k \) is not a manifold, but it is a direct limit of Grassmannians, and a simple limit argument shows that Theorem D.2.5 still holds for \(\eta_k \)-submanifolds. Hence,

\[
\Omega_{O}^{-n,k} = [S^{n+k}, \text{Th} \eta_k] = \pi_{n+k}(MO(k)).
\]
There is the stabilisation map $\Omega^{-n,k}_O \to \Omega^{-n,k+1}_O$ obtained by composing the suspended map $S^{n+k+1} \to \Sigma MO(k)$ with the map $\Sigma MO(k) \to MO(k+1)$ induced by the bundle map $\eta_k \otimes \mathbb{R} \to \eta_{k+1}$. The $(-n)$th cobordism group is defined by

$$\Omega^{-n}_O = \lim_{k \to \infty} \Omega^{-n,k}_O = \lim_{k \to \infty} \pi_{n+k}(MO(k)).$$

Proposition D.2.7. We have a canonical isomorphism

$$\Omega^{-n}_O \cong \Omega^n_O$$

between the cobordism and bordism groups, for $n \geq 0$. In other words, two n-dimensional manifolds M_0 and M_1 are bordant if and only if there exist embeddings of M_0 and M_1 in the same \mathbb{R}^{n+k} which are cobordant.

Proof. Forgetting the embedding $M \subset \mathbb{R}^{n+k}$ we obtain a map $\Omega^{-n,k}_O \to \Omega^n_O$, which may be shown to be a group homomorphism. It is compatible with the stabilisation maps, and therefore defines a homomorphism $\Omega^{-n}_O \to \Omega^n_O$. Since every manifold M may be embedded in some \mathbb{R}^{n+k}, it is an isomorphism. \qed

Together with (D.2), Proposition D.2.7 gives a homotopical interpretation for the (unoriented) bordism groups. This also implies that the notions of the 'bordism class' and 'cobordism class' of a manifold M are interchangeable. Theorem D.2.5 may be applied further to obtain a homotopical interpretation for the bordism groups $O_n(X)$ of a space X:

Construction D.2.8 (bordism and cobordism groups of a space). Let X be a space. We set $\xi = \mathbb{R}^{n+k}$ (an $(n+k)$-plane bundle over a point) and $\eta = X \times \eta_k$ (the product of a 0-plane bundle over X and the universal k-plane bundle η_k over $BO(k)$), and consider cobordism classes of η-submanifolds in $E\xi$. Such a submanifold is described by a pair (f,i) consisting of a map $f: M \to X$ from an n-dimensional manifold to X and an embedding $\nu: M \to \mathbb{R}^{n+k}$ (the bundle map from $\nu(i)$ to η is the product of the map $E\nu(i) \to M \to X$ and the classifying map of $\nu(i)$). By Theorem D.2.5, the set of cobordism classes of η-submanifolds in $E\xi$ is given by

$$[S^{n+k}, Th(X \times \eta_k)] = \pi_{n+k}((X_+) \wedge MO(k)).$$

As in the proof of Proposition D.2.7, there is the map from the above set of cobordism classes to the bordism group $O_n(X)$, which forgets the embedding $M \subset \mathbb{R}^{n+k}$. A stabilisation argument shows that

$$O_n(X) = \lim_{k \to \infty} \pi_{k+n}((X_+) \wedge MO(k)),$$

providing a homotopical interpretation for the bordism groups of X.

We define the *cobordism groups* of X as

$$O^n(X) = \lim_{k \to \infty} [\Sigma^{k-n}(X_+), MO(k)].$$

If X is a (not necessarily compact) manifold, then the groups $O^n(X)$ may also be obtained by stabilising the set of cobordism classes of η-submanifolds in $E\xi$. Namely, we need to set $\xi = \mathbb{R}^{k-n}$ (the trivial $(k-n)$-plane bundle over X), and $\eta = \eta_k$. In other words, a cobordism class in $O^n(X)$ is described by the composition

$$M \hookrightarrow X \times \mathbb{R}^{k-n} \to X,$$

where the first map is an embedding of codimension k.

The maps of Thom spaces $MO(k) \wedge MO(l) \to MO(k+l)$ (induced by the classifying maps $\eta_k \times \eta_l \to \eta_{k+l}$) turn $O^n(X) = \prod_{n \in \mathbb{Z}} O^n(X)$ into a graded ring.
called the unoriented cobordism ring of X. (One needs to consider direct product instead of direct sum to take care of infinite complexes like $\mathbb{R}P^\infty$.)

The construction is summarised by saying that the assignment $X \mapsto O^*(X)$ defines a multiplicative generalised cohomology theory.

Exercises.

D.2.10. If η is the tautological line bundle over $\mathbb{R}P^n$ (respectively, $\mathbb{C}P^n$), then $Th \eta$ can be identified with $\mathbb{R}P^{n+1}$ (respectively, $\mathbb{C}P^{n+1}$).

D.2.11. Prove that cobordism of η-submanifolds is an equivalence relation.

D.2.12. Complete the proof of Theorem D.2.5.

D.2.13. The forgetful map $\Omega^{n,k}_O \to \Omega^k_n$ is a homomorphism of groups.

D.2.14. Given any $(k-n)$-plane bundle ξ over a manifold X and an embedding $M \hookrightarrow E\xi$ of codimension k, the composition

$$M \hookrightarrow E\xi \to X$$

determines a cobordism class in $O^n(X)$. (Hint: reduce to (D.5) by embedding ξ into a trivial bundle over the same X.)

D.2.15 (Poincaré–Atiyah duality in unoriented bordism [10]). If X is an n-dimensional manifold, then

$$O^{n-k}(X) \cong O_k(X) \text{ for any } k.$$

In particular, for $X = pt$ we obtain the isomorphisms of Proposition D.2.7.

D.3. Oriented and complex bordism

The bordism relation may be extended to manifolds endowed with some additional structure, which leads to important bordism theories.

The simplest additional structure is an orientation. By definition, two oriented n-dimensional manifolds M_1 and M_2 are oriented bordant if there is an oriented $(n+1)$-dimensional manifold W with boundary such that $\partial W = M_1 \sqcup \overline{M}_2$, where \overline{M}_2 denotes M_2 with the orientation reversed. The oriented bordism groups Ω^n_{SO} and the oriented bordism ring $\Omega^{SO} = \bigoplus_{n \geq 0} \Omega^n_{SO}$ are defined accordingly. Given an oriented manifold M, the manifold $M \times I$ has the canonical orientation such that $\partial (M \times I) = M \sqcup \overline{M}$. Hence, $-[M] = [\overline{M}]$ in Ω^n_{SO}. Unlike Ω^n_{O}, elements of Ω^{SO} generally do not have order 2.

Complex structure gives another important example of an additional structure on manifolds. However, a direct attempt to define the bordism relation on complex manifolds fails because the manifold W must be odd-dimensional and therefore cannot be complex. This can be remedied by considering stably complex (also known as stably almost complex or quasicomplex) structures, see Section B.5.

The bordism relation can be defined between stably complex manifolds by taking account of the stably complex structure in the bordism relation. The details of this geometric construction can be found, for example, in [101]. As in the case of unoriented bordism, the set of bordism classes $[M, c_T]$ of n-dimensional stably complex manifolds is an Abelian group with respect to disjoint union. This group is called the n-dimensional complex bordism group and denoted by Ω^n_{SO}. The sphere
S^n has the canonical normal complex structure determined by a complex structure on the trivial normal bundle of the embedding $S^n \hookrightarrow \mathbb{R}^{n+2}$. The corresponding bordism class represents the zero element in Ω^n_U. The opposite element to the bordism class $[M, c_T]$ in the group Ω^n_U may be represented by the same manifold M with the stably complex structure determined by the isomorphism

$$TM \oplus \mathbb{R}^k \oplus \mathbb{C} \xrightarrow{c_T \oplus \tau} \xi \oplus \mathbb{C}$$

where $\tau: \mathbb{C} \to \mathbb{C}$ is the complex conjugation. We shall use the abbreviated notations $[M]$ and $[\overline{M}]$ for the complex bordism class and its opposite whenever the stably complex structure c_T is clear from the context. There is a stably complex structure on $M \times I$ such that $\partial(M \times I) = M \sqcup \overline{M}$.

The direct product of stably complex manifolds turns $\Omega^U = \bigoplus_{n \geq 0} \Omega^n_U$ into a graded ring, called the complex bordism ring.

Construction D.3.1 (homotopic approach to cobordism). The complex bordism groups $U_n(X)$ and cobordism groups $U^n(X)$ may be defined homotopically similarly to (D.3) and (D.4):

$$U_n(X) = \lim_{k \to \infty} \pi_{2k+n}(\{X_+ \wedge MU(k)\})$$

$$U^n(X) = \lim_{k \to \infty} \left[\Sigma^{2k-n}(X_+), MU(k) \right],$$

where $MU(k)$ is the Thom space of the universal complex k-plane bundle over $BU(k)$. Here the direct limit uses the maps $\Sigma^2 MU(k) \to MU(k+1)$.

Construction D.3.2 (geometric approach to cobordism). Both groups $U_n(X)$ and $U^n(X)$ may also be defined geometrically, in a way similar to the geometric construction of unoriented bordism and cobordism groups (Construction D.2.8). The complex bordism group $U_n(X)$ consists of bordism classes of maps $M \to X$ of stably complex n-dimensional manifolds M to X.

The complex cobordism group $U^n(X)$ of a manifold X may be defined via cobordisms of η-submanifolds in $E\xi$, as in the unoriented case. Let $\xi = \mathbb{C} \times \mathbb{R}^{2k-n}$ (a trivial bundle), and let η be the universal (tautological) complex k-plane bundle over $BU(k)$. Then an η-submanifold M in $E\xi$ defines a composite map of manifolds

$$M \hookrightarrow \mathbb{C} \times \mathbb{R}^{2k-n} \longrightarrow X$$

(compare (D.5)), where the first map is an embedding whose normal bundle has a structure of a complex k-plane bundle, and the second map is the projection onto the first factor. A map $M \to X$ between manifolds which can be decomposed as above is said to be complex orientable of codimension n. A choice of this decomposition together with a complex bundle structure in the normal bundle is called a complex orientation of the map $M \to X$. As usual, the equivalence relation on the set of complex orientations of $M \to X$ is generated by bundle isomorphisms and stabilisations. The group $U^n(X)$ consists of cobordism classes of complex oriented maps $M \to X$ of codimension n.

Let $y \in U^n(Y)$ be a cobordism class represented by a complex oriented map $M \to Y$, and let $f: X \to Y$ be a map of manifolds. If these two maps are transverse, the cobordism class $f^*(y) \in U^n(X)$ is represented by the pullback $X \times_Y M \to X$ with the induced complex orientation.

When $M \to X$ is a fibre bundle with fibre F, the normal structure used in the definition of a complex orientation can be converted to a tangential structure. Namely, an equivalence class of complex orientations of the projection $M \to X$
is determined by a choice of stably complex structure for the bundle $T_F(M)$ of
tangents along the fibres of $M \to X$ (an exercise). Such a bundle $M \to X$ is called
stably tangentially complex.

The equivalence of the homotopic and geometric approaches to cobordism is
established using transversality arguments and the Pontryagin–Thom construction,
as in the unoriented case.

If $X = pt$, then we obtain

$$U^{-n}(pt) = U_n(pt) = \Omega^n_U$$

for $n \geq 0$, from either the homotopic or geometric description of the (co)bordism
groups. We also set $\Omega^{-n}_U = U^{-n}(pt)$ and $\Omega_U = \bigoplus_{n \geq 0} \Omega^{-n}_U$.

Construction D.3.3 (pairing and products). The product operations in
cobordism are defined using the maps of Thom spaces $MU(k) \wedge MU(l) \to MU(k+l)$
induced by the classifying maps of the products of tautological bundles.

There is a canonical pairing (the Kronecker product)

$$\langle , \rangle : U^m(X) \otimes U_n(X) \to \Omega^{n-m}_U,$$

defined as follows. Assume given a cobordism class $x \in U^m(X)$ represented by a
map $S^{2m} X_+ \to MU(l)$ and a bordism class $\alpha \in U_n(X)$ represented by a map
$S^{2k+2m} \to X_+ \wedge MU(k)$. Then $(x, \alpha) \in \Omega^{n-m}_U$ is represented by the composite map

$$S^{2k+2l+m} \to S^{2l+m} X_+ \wedge MU(k) \xrightarrow{x \wedge id} MU(l) \wedge MU(k) \to MU(l+k)$$

If $\Delta : X_+ \to (X \times X)_+ = X_+ \wedge X_+$ is the diagonal map, then $x \sim \alpha \in U_{n-m}(X)$
is represented by the composite map

$$S^{2k+2l+m} \to S^{2l+m} X_+ \wedge MU(k) \xrightarrow{\Delta \wedge id} X_+ \wedge S^{2l-m} X_+ \wedge MU(k) \xrightarrow{\id \wedge x \wedge id} X_+ \wedge MU(l) \wedge MU(k) \to X_+ \wedge MU(l+k)$$

The \sim-product is defined similarly; it turns $U^*(X) = \prod_{n \in \mathbb{Z}} U^n(X)$ into a graded
ring, called the complex cobordism ring of X. It is a module over Ω_U.

The product operations can be also interpreted geometrically.

For example, assume that $x \in U^m(X)$ is represented by an embedding of manifolds $M^{k-m} \to X = X^k$ with a complex structure in the normal bundle, and
$\alpha \in U_n(X)$ is represented by an embedding $N^n \to X^k$ of a tangentially stably
complex manifold N. Assume further that M and N intersect transversely in X,
i.e. $\dim M \cap N = n - m$. Then (x, α) is the bordism class of the intersection $M \cap N$, and
$x \sim \alpha$ is the bordism class of the embedding $M \cap N \to X$. The tangential
complex structure of $M \cap N$ is defined by the tangent structure of N and the
complex structure in the normal bundle of $M \cap N \to N$ induced from the normal bundle of $M \to X$.

Similarly, if $x \in U^{-d}(X)$ is represented by a smooth fibre bundle $E^{k+d} \to X^k$
and $\alpha \in U_n(X)$ is represented by a smooth map $N \to X$, then $(x, \alpha) \in \Omega^{n+d}_U$ is the
bordism class of the pull-back E', and $x \sim \alpha \in U_{n+d}(X)$ is the bordism class of the composite map $E' \to X$ in the pull-back diagram

$$
\begin{array}{ccc}
E' & \longrightarrow & E \\
\downarrow & & \downarrow \\
N & \longrightarrow & X
\end{array}
$$

Construction D.3.4 (Poincaré–Atiyah duality in complex bordism [10]). Let X be a manifold of dimension d. The inclusion of a point $pt \subset X$ defines the bordism class $1 \in U_0(X)$ and the fundamental cobordism class of X in $U_d(X)$. (The normal bundle of a point has a complex structure if d is even, otherwise the normal bundle of a point in $X \times \mathbb{R}$ has a complex structure.)

The identity map $X \to X$ defines the cobordism class $1 \in U^0(X)$. It defines the fundamental bordism class of X in $U_d(X)$ only when X is stably complex.

Now let X be stably complex manifold with fundamental bordism class $[X] \in U_d(X)$. The map

$$D = \cdot \sim [X] : U^k(X) \to U_{d-k}(X), \quad x \mapsto x \sim [X]$$

is an isomorphism (an exercise); it is called the Poincaré–Atiyah duality map.

Construction D.3.5 (Gysin homomorphism). Let $f : X^k \to Y^{k+d}$ be a complex oriented map of codimension d between manifolds (manifolds may not be compact, in which case f is assumed to be proper). It induces a covariant map

$$f^! : U^n(X) \to U^{n+d}(Y)$$

called the Gysin homomorphism, whose geometric definition is as follows. Let $x \in U^n(X)$ be represented by a complex oriented map $g : M^{k-n} \to X^k$. Then $f^!(x)$ is represented by the composition fg.

Proposition D.3.6. The Gysin homomorphism has the following properties:

(a) $f^! : U^*(X) \to U^{*+d}(Y)$ depends only on the proper homotopy class of f;
(b) $f^!$ is a homomorphism of Ω_1-modules;
(c) $(fg)^! = f^!g^!$;
(d) $f^!(x \cdot f^*(y)) = f^!(x) \cdot y$ for any $x \in U^n(X)$, $y \in U^m(Y)$;
(e) assume that

$$
\begin{array}{ccc}
X \times_Y Z & \xrightarrow{g'} & X \\
\downarrow f' & & \downarrow f \\
Z & \xrightarrow{g} & Y
\end{array}
$$

is a pullback square of manifolds, where g is transverse to f and f' is endowed with the pullback of the complex orientation of f. Then

$$g^*f^! = f'^!g'^* : U^*(X) \to U^{*+d}(Z).$$

Proof. (a) is clear from the homotopic definition of cobordism, while the other properties follow easily from the geometric definition. For example, to prove (d) one needs to choose maps $Z \to X$ and $W \to Y$ representing x and y, respectively,
and consider the commutative diagram

\[
\begin{array}{ccc}
Z \times_Y W & \longrightarrow & X \times_Y W \\
\downarrow & & \downarrow \\
Z & \longrightarrow & X \\
& & f \\
& & Y
\end{array}
\]

Both sides of (d) are represented by the composite map \(Z \times_Y W \rightarrow Y \) above. \(\square \)

Let \(\xi \) be a complex \(n \)-plane bundle with total space \(E \) over a manifold \(X \) and let \(i : X \rightarrow E \) be the zero section. The element \(*i_1 \in U^{2n}(X) \) where \(1 \in U^{0}(X) \) is called the Euler class of \(\xi \) and is denoted by \(e(\xi) \).

Construction D.3.7 (geometric cobordisms). For any cell complex \(X \) the cohomology group \(H^2(X) \) can be identified with the set \([X, \mathbb{C}P^\infty] \) of homotopy classes of maps into \(\mathbb{C}P^\infty \). Since \(\mathbb{C}P^\infty = MU(1) \), it follows from (D.6) that every element \(x \in H^2(X) \) determines a cobordism class \(u_x \in U^2(X) \). The elements of \(U^2(X) \) obtained in this way are called geometric cobordisms of \(X \). We therefore may view \(H^2(X) \) as a subset in \(U^2(X) \), however the group operation in \(H^2(X) \) is not obtained by restricting the group operation in \(U^2(X) \) (the relationship between the two operations is discussed in Appendix E).

When \(X \) is a manifold, geometric cobordisms may be described by submanifolds \(M \subset X \) of codimension 2 with a fixed complex structure on the normal bundle.

Indeed, every \(x \in H^2(X) \) corresponds to a homotopy class of maps \(f_x : X \rightarrow \mathbb{C}P^\infty \). The image \(f_x(X) \) is contained in some \(\mathbb{C}P^N \subset \mathbb{C}P^\infty \), and we may assume that \(f_x(X) \) is transverse to a certain hyperplane \(H \subset \mathbb{C}P^N \). Then \(M_x = f_x^{-1}(H) \) is a codimension-2 submanifold in \(X \) whose normal bundle acquires a complex structure by restriction of the complex structure in the normal bundle of \(H \subset \mathbb{C}P^N \). Changing the map \(f_x \) within its homotopy class does not affect the bordism class of the embedding \(M_x \rightarrow X \).

Conversely, assume given a submanifold \(M \subset X \) of codimension 2 whose normal bundle is endowed with a complex structure. Then the composition

\[
X \rightarrow Th(\nu) \rightarrow MU(1) = \mathbb{C}P^\infty
\]

of the Pontryagin–Thom collapse map \(X \rightarrow Th(\nu) \) and the map of Thom spaces corresponding to the classifying map \(M \rightarrow BU(1) \) of \(\nu \) defines an element \(x_M \in H^2(X) \), and therefore a geometric cobordism.

If \(X \) is an oriented manifold, then a choice of complex structure on the normal bundle of a codimension-2 embedding \(M \subset X \) is equivalent to orienting \(M \). The image of the fundamental class of \(M \) in \(H_*(X) \) is Poincaré dual to \(x_M \in H^2(X) \).

Construction D.3.8 (connected sum). For manifolds of positive dimension the disjoint union \(M_1 \sqcup M_2 \) representing the sum of bordism classes \([M_1] + [M_2]\) may be replaced by their connected sum, which represents the same bordism class.

The connected sum \(M_1 \# M_2 \) of manifolds \(M_1 \) and \(M_2 \) of the same dimension \(n \) is constructed as follows. Choose points \(v_1 \in M_1 \) and \(v_2 \in M_2 \), and take closed \(\varepsilon \)-balls \(B_\varepsilon(v_1) \) and \(B_\varepsilon(v_2) \) around them (both manifolds may be assumed to be endowed with a Riemannian metric). Fix an isometric embedding \(f \) of a pair of standard \(\varepsilon \)-balls \(D^n \times S^0 \) (here \(S^0 = \{0,1\} \)) into \(M_1 \sqcup M_2 \) which maps \(D^n \times 0 \) onto \(B_\varepsilon(v_1) \) and \(D^n \times 1 \) onto \(B_\varepsilon(v_2) \). If both \(M_1 \) and \(M_2 \) are oriented we additionally require the embedding \(f \) to preserve the orientation on the first ball and reverse it on the second. Now, using this embedding, replace in \(M_1 \sqcup M_2 \) the pair of balls
\[D^n \times S^0 \] by a ‘pipe’ \(S^{n-1} \times D^1 \). After smoothing the angles in the standard way we obtain a smooth manifold \(M_1 \# M_2 \).

If both \(M_1 \) and \(M_2 \) are connected the smooth structure on \(M_1 \# M_2 \) does not depend on a choice of points \(v_1, v_2 \) and embedding \(D^n \times S^0 \rightarrow M_1 \sqcup M_2 \). It does however depend on the orientations; \(M_1 \# M_2 \) and \(M_1 \# \overline{M_2} \) are not diffeomorphic in general. For example, the manifolds \(\mathbb{C}P^2 \# \mathbb{C}P^2 \) and \(\mathbb{C}P^2 \# \overline{\mathbb{C}P^2} \) are not diffeomorphic (and not even homotopy equivalent).

There are smooth contraction maps \(p_1 : M_1 \# M_2 \rightarrow M_1 \) and \(p_2 : M_1 \# M_2 \rightarrow M_2 \). In the oriented case the manifold \(M_1 \# M_2 \) can be oriented in such a way that both contraction maps preserve the orientations.

A bordism between \(M_1 \sqcup M_2 \) and \(M_1 \# M_2 \) may be constructed as follows. Consider a cylinder \(M_1 \times I \), from which we remove an \(\varepsilon \)-neighbourhood \(U_{\varepsilon}(v_1 \times 1) \) of the point \(v_1 \times 1 \). Similarly, remove the neighbourhood \(U_{\varepsilon}(v_2 \times 1) \) from \(M_2 \times I \) (each of these two neighbourhoods can be identified with half of a standard open \((n+1)\)-ball). Now connect the two remainders of cylinders by a ‘pipe’ \(S^0 \times I \) in such a way that the half-sphere \(S^0_\varepsilon \times 0 \) is identified with the half-sphere on the boundary of \(U_{\varepsilon}(v_1 \times 1) \), and \(S^0_\varepsilon \times 1 \) is identified with the half-sphere on the boundary of \(U_{\varepsilon}(v_2 \times 1) \). Smoothing the angles we obtain a manifold with boundary \(M_1 \sqcup M_2 \sqcup (M_1 \# M_2) \) (or \(M_1 \sqcup \overline{M_2} \sqcup (M_1 \# M_2) \) in the oriented case).

Finally, if \(M_1 \) and \(M_2 \) are stably complex manifolds, then there is a canonical stably complex structure on \(M_1 \# M_2 \), which is constructed as follows. Assume the stably complex structures on \(M_1 \) and \(M_2 \) are determined by isomorphisms

\[
\begin{align*}
c_{\tau,1} : & TM_1 \oplus \mathbb{R}^{k_1} \rightarrow \xi_1, \\
c_{\tau,2} : & TM_2 \oplus \mathbb{R}^{k_2} \rightarrow \xi_2.
\end{align*}
\]

Using the isomorphism \(TM(\xi) \oplus \mathbb{R}^n \cong p_1^*TM_1 \oplus p_2^*TM_2 \), we define a stably complex structure on \(M_1 \# M_2 \) by the isomorphism

\[
\begin{align*}
TM(\xi) \oplus \mathbb{R}^{n+k_1+k_2} & \cong p_1^*TM_1 \oplus \mathbb{R}^{k_1} \oplus p_2^*TM_2 \oplus \mathbb{R}^{k_2} & \cong p_1^*\xi_1 \oplus p_2^*\xi_2.
\end{align*}
\]

We shall refer to this stably complex structure as the connected sum of stably complex structures on \(M_1 \) and \(M_2 \). The corresponding complex bordism class is \([M_1] + [M_2]\).

Exercises.

D.3.9. Assume given a complex \((k-l)\)-plane bundle \(\xi \) over a manifold \(X \) and an embedding \(M \hookrightarrow E\xi \) whose normal bundle has a structure of a complex \(k \)-plane bundle. Then the composition

\[M \hookrightarrow E\xi \rightarrow X \]

determines a complex orientation for the map \(M \rightarrow X \) of codimension \(2l \), and therefore a complex cobordism class in \(U^{2l}(X) \). (Compare Exercise D.2.14.)

Similarly, an embedding \(M \hookrightarrow E(\xi \oplus \mathbb{R}) \) whose normal bundle has a structure of a complex \(k \)-plane bundle determines a complex cobordism class in \(U^{2l-1}(X) \), via the composition

\[M \hookrightarrow E(\xi \oplus \mathbb{R}) \rightarrow X. \]

This is how complex orientations were defined in [316].
D.3.10. Let $\pi: E \to B$ be a bundle with fibre F. The map π is complex oriented if and only if a stably complex structure is chosen for the bundle $\mathcal{T}_F(E)$ of tangents along the fibres of π.

D.3.11. The Poincaré–Atiyah duality map

$$D = \cdot \cap [X]: U^k(X) \to U_{d-k}(X), \quad x \mapsto x \cap [X]$$

is an isomorphism for any stably complex manifold X of dimension d.

D.3.12. Let $f: X^d \to Y^{p+d}$ be a complex oriented map of manifolds, and let $D_X: U^k(X) \to U_{d-k}(X)$, $D_Y: U^{p+k}(Y) \to U_{d-k}(Y)$ be the duality isomorphisms for X, Y. Then the Gysin homomorphism satisfies $f_* = D_Y^{-1} f_* D_X$.

D.3.13. Let ξ be a complex n-plane bundle over a manifold M with total space E, and let $i: M \to E$ be the inclusion of zero section. Define the Gysin homomorphism

$$i^!: U^*(M) \to U^{*+2n}(E, E \setminus M) = U^{*+2n}(Th(\xi))$$

by analogy with Construction D.3.5 and show that $i^!$ is an isomorphism. It is called the Gysin–Thom isomorphism corresponding to ξ.

D.4. Characteristic classes and numbers

The cohomology of the classifying space $BU(m)$ of complex m-plane bundles is given by

$$H^*(BU(m)) = \mathbb{Z}[c_1, \ldots, c_m], \quad \deg c_i = 2i.$$

The elements $c_i \in H^{2i}(BU(m))$ are called the universal Chern characteristic classes. Given a complex m-plane bundle ξ over X, the ith Chern characteristic class of ξ is $c_i(\xi) = f^*(c_i) \in H^{2i}(X)$. The total Chern class of ξ is defined by

$$c(\xi) = 1 + c_1(\xi) + \cdots + c_n(\xi).$$

The Chern classes satisfy the following fundamental properties:

(a) (functoriality) If $g: X' \to X$ is a map, then $c(g^*(\xi)) = g^* c(\xi)$;

(b) (Whitney sum formula) If ξ and ζ are two vector bundles over X, then $c(\xi \oplus \zeta) = c(\xi) c(\zeta)$;

(c) (normalisation) If $\bar{\eta}$ is the conjugate tautological line bundle over $\mathbb{C}P^n$, then $c_1(\bar{\eta}) = u \in H^2(\mathbb{C}P^n)$ is the cohomology class dual to the submanifold $\mathbb{C}P^{n-1} \subset \mathbb{C}P^n$.

These properties can be taken as an axiomatic definition of Chern classes [271].

Let ξ be a complex n-plane bundle over X. Denote by $S(\xi)$ the unit sphere bundle, the set of all $v \in E(\xi)$ with $|v| = 1$. The circle S^1 acts freely on $S(\xi)$ by scalar multiplications. The (complex) projectivisation of ξ is defined as $\mathbb{C}P(\xi) = S(\xi)/S^1$. It is a bundle over X with fibre $\mathbb{C}P^{n-1}$.

The tautological line bundle over $\mathbb{C}P(\xi)$ is defined as

$$\eta: (S(\xi) \times \mathbb{C})/S^1 \to S(\xi)/S^1 = \mathbb{C}P(\xi),$$

where the S^1-action on $S(\xi) \times \mathbb{C}$ is given by $t \cdot (v, z) = (tv, tz)$. Obviously, if $X = pt$, then $\mathbb{C}P(\xi) = \mathbb{C}P^{n-1}$ and η is the tautological bundle over $\mathbb{C}P^{n-1}$.

The following two results concerning projectivisations are important for the theory of characteristic classes. Their original proof is due to Borel and Hirzebruch [38, §15], where the details can be found.
Theorem D.4.1. Let $p: CP(\xi) \to X$ be the projectivisation of a complex m-plane bundle ξ over a manifold X, and let η be the tautological line bundle over $CP(\xi)$. Then there is an isomorphism of real vector bundles
\[TCP(\xi) \oplus \underline{\mathbb{C}} \cong p^*TX \oplus (\bar{\eta} \otimes p^*\xi), \]
where $\underline{\mathbb{C}}$ denotes a trivial line bundle over $CP(\xi)$.

When X is a stably complex manifold, the isomorphism above defines a canonical stably complex structure on $CP(\xi)$.

Proof. By definition, $CP(\xi)$ consists of lines in the fibres of ξ, and the fibre of η over such a line ℓ is this line itself. Consider the complementary $(m-1)$-plane bundle η^\perp, whose fibre over ℓ is the orthogonal subspace ℓ^\perp in the corresponding fibre of ξ. It follows that $\eta \oplus \eta^\perp = p^*(\xi)$ and
\[TCP(\xi) \cong p^*TN \oplus T_F CP(\xi), \]
where $T_F(CP(\xi))$ is the tangent bundle along the fibres of the projection p. We have $T_F(CP(\xi)) \cong \text{Hom}(\eta, \eta^\perp)$ and $\text{Hom}(\eta, \eta) = \underline{\mathbb{C}}$, whence
\[T_F CP(\xi) \oplus \underline{\mathbb{C}} \cong \text{Hom}(\eta, \eta \oplus \eta^\perp) = \text{Hom}(\eta, p^*\xi). \]

Therefore,
\[TCP(\xi) \oplus \underline{\mathbb{C}} \cong p^*TN \oplus \text{Hom}(\eta, p^*\xi) \cong p^*TN \oplus (\bar{\eta} \otimes p^*\xi), \]
where $\bar{\eta} = \text{Hom}(\eta, \underline{\mathbb{C}})$.

When $X = pt$, we obtain the well-known isomorphism
\[TCP^n \oplus \underline{\mathbb{C}} \cong \eta \oplus \cdots \oplus \eta \quad (n+1 \text{ summands}). \]

Theorem D.4.2. Let ξ be a complex n-plane bundle over a finite cell complex X with complex projectivisation $CP(\xi)$, and let $v \in H^2(CP(\xi))$ be the first Chern class of the tautological line bundle over $CP(\xi)$. The integral cohomology ring of $CP(\xi)$ is the quotient of the polynomial ring $H^*(X)[v]$ on one generator v with coefficients in $H^*(X)$ by the single relation
\[v^n - c_1(\xi)v^{n-1} + \cdots + (-1)^nc_n(\xi) = 0. \]

Proof. By the previous theorem, the tangent bundle along the fibres is given by $T_F CP(\xi) \cong \bar{\eta} \otimes p^*\xi$, so its total Chern class is
\[c(T_F CP(\xi)) = (1 - v)^n + (1 - v)^{n-1} \cdot p^*c_1(\xi) + \cdots + p^*c_n(\xi). \]

We have $c_n(T_F CP(\xi)) = 0$ since $T_F CP(\xi)$ is an $(n-1)$-plane bundle. Calculating the $2n$-degree term above gives the required identity. The rest follows by considering the Serre spectral sequence of $CP(\xi) \to X$, see [340, Chapter V].

The Stiefel–Whitney characteristic classes $w_i(\xi) \in H^i(X; \mathbb{Z}_2)$, $i = 1, \ldots, m$, of a real m-plane bundle ξ over X are defined and treated similarly.

Analogues of Theorem D.4.2 exist for complex K-theory and complex cobordism, and can be used to define Chern classes in these theories [102], [340].

Now let (M, c_T) be a 2n-dimensional stably complex manifold with a complex m-plane bundle ξ stably isomorphic to TM, see (B.6). The ith Chern class $c_i(M)$ of (M, c_T) is defined as the ith Chern class of ξ.

Given a polynomial in Chern classes $c \in \mathbb{Z}[c_1, \ldots, c_n]$ of degree $2n$, the corresponding tangential Chern characteristic number $c[M] \in \mathbb{Z}$ is defined as the result
of pairing of \(c(M) \in H^{2n}(M) \) with the fundamental class \((M) \in H^2(M) \). The number \(c[M] \) depends only on the complex bordism class of \(M \).

Tangential Stiefel–Whitney characteristic numbers \(w[M] \in \mathbb{Z}_2 \) of \(n \)-manifolds and **Pontryagin characteristic numbers** \(p[M] \in \mathbb{Z} \) of oriented \(4n \)-manifolds are defined similarly; they are unoriented and oriented bordism invariants, respectively.

Normal characteristic numbers are of equal importance in cobordism theory. If \(M \hookrightarrow \mathbb{R}^N \) is an embedding with a fixed complex structure in the normal bundle \(\nu \), classified by a map \(g: M \to BU(k) \), then the **normal Chern characteristic number** \(c[M] \) corresponding to \(c \in H^*(BU(k)) = \mathbb{Z}[c_1, \ldots, c_k] \) is defined as \((g^\ast c)(M) \). Normal Stiefel–Whitney and Pontryagin numbers are defined similarly. As we have \(TM \oplus \nu = \mathbb{R}^N \), the addition formula for characteristic classes implies that the tangential and normal characteristic numbers determine each other.

From now on, we assume all characteristic numbers to be tangential, unless otherwise stated.

We proceed to describe two different ways of encoding characteristic classes and numbers by integer vectors. We work with Chern classes, as they are most common in the book; Stiefel–Whitney and Pontryagin classes are treated similarly.

We consider nonnegative integer vectors \(\omega = (i_1, \ldots, i_n) \) and denote

\[
\|\omega\| = \sum_{k=1}^{n} k i_k.
\]

Vectors \(\omega = (i_1, \ldots, i_n) \) encode partitions of \(\|\omega\| \) into a sum of positive integers; the \(k \)th component \(i_k \) of \(\omega \) is the number of summands \(k \). (Another common way to encode partitions by integer vectors is to write the sequence of summands \((j_1, j_2, \ldots, j_k) \) as a partition of \(N = \sum k j_k \), however the former way is more concise.)

To each \(\omega = (i_1, \ldots, i_n) \) one assigns the universal characteristic class

\[
c_\omega = c_1^{i_1} c_2^{i_2} \cdots c_n^{i_n} \in H^2(\|\omega\|)(BU(n)).
\]

Another way of assigning a characteristic class to an integer vector is described next; it is of more practical importance for cobordism theory. Let \(\xi \) be a complex \(n \)-plane bundle over a manifold \(M \). Write its total Chern class formally as follows:

\[
c(\xi) = 1 + c_1(\xi) + \cdots + c_n(\xi) = (1 + t_1) \cdots (1 + t_n),
\]

so that \(c_i(\xi) = \sigma_i(t_1, \ldots, t_n) \) is the ith elementary symmetric function in formal indeterminates. These indeterminates acquire a geometric meaning if \(\xi \) is a sum \(\xi_1 \oplus \cdots \oplus \xi_n \) of line bundles; then \(t_j = c_1(\xi_j), \ 1 \leq j \leq n \). From the viewpoint of universal characteristic classes, this corresponds to embedding the ring \(H^*(BU(n)) = \mathbb{Z}[c_1, \ldots, c_n] \) as the subring of symmetric polynomials in \(H^*(BT^n) = \mathbb{Z}[t_1, \ldots, t_n] \), where \(T^n \) is a maximal torus of \(U(n) \). This embedding is induced by the canonical fibre bundle \(BT^n \to BU(n) \) with fibre the (complete) flag manifold \(Fl_n \).

Given \(\omega = (i_1, \ldots, i_n) \), define the universal symmetric polynomial

\[
P_\omega(t_1, \ldots, t_n) = t_1 \cdots t_1 t_{i_1+1}^2 \cdots t_{i_1+i_2}^2 \cdots t_{i_1+i_2+\cdots+i_n}^n + \cdots
\]

as the smallest symmetric polynomial in \(t_1, \ldots, t_n \) containing the monomial above. We can express \(P_\omega \) via the elementary symmetric functions:

\[
P_\omega(t_1, \ldots, t_n) = s_\omega(\sigma_1, \ldots, \sigma_n).
\]
Substituting the Chern classes for the elementary symmetric functions we obtain a universal characteristic class
\[s_\omega = s_\omega(c_1, \ldots, c_n) \in H^{2\|\omega\|}(BU(n)). \]

Example D.4.3. Let \(\omega = (k, 0, \ldots, 0) \) be the partition into a sum of \(k \) units. Then
\[c_{(k,0,\ldots,0)} = c_1^k, \quad P_{(k,0,\ldots,0)} = \sigma_k, \quad s_{(k,0,\ldots,0)} = c_k. \]
Now let \(\omega = (0, \ldots, 0, 1, 0, \ldots, 0) \) with unit at the \(k \)th position. Then
\[c_{(0,\ldots,0,1,0,\ldots,0)} = c_k, \quad P_{(0,\ldots,0,1,0,\ldots,0)} = t_1^k + \cdots + t_n^k. \]
Traditionally, the characteristic class \(s_{(0,\ldots,0,1,0,\ldots,0)} \in H^{2k}(BU(n)) \) is denoted simply by \(s_k \). For example,
\[s_1 = c_1, \quad s_2 = c_1^2 - 2c_2, \quad s_3 = c_1^3 - 3c_1c_2 + 3c_3. \]

The characteristic classes \(s_\omega \) behave nicely with respect to the Whitney sum:

Theorem D.4.4. For complex vector bundles \(\xi \) and \(\eta \) over \(X \), the identity
\[s_\omega(\xi \oplus \eta) = \sum_{\omega = \omega' + \omega''} s_{\omega'}(\xi) s_{\omega''}(\eta) \]

holds in \(H^{2\|\omega\|}(X) \).

In particular, for the class \(s_k \) we obtain:

Proposition D.4.5. The characteristic class \(s_k \) satisfies
(a) \(s_k(\xi) = 0 \) if \(\xi \) is a bundle over \(X \) and \(\dim X < 2k \);
(b) \(s_k(\xi \oplus \eta) = s_k(\xi) + s_k(\eta) \);
(c) \(s_k(\xi) = c_k(\xi)^k \) if \(\xi \) is a line bundle.

Given a stably complex \(2n \)-dimensional manifold \((M, c_T)\), for each partition \(\omega = (i_1, \ldots, i_n) \) of \(n = \|\omega\| \) we can define the following characteristic numbers by evaluation of \(2n \)-dimensional characteristic classes on the fundamental class of \(M \):
\[c_\omega[M] = c_\omega(TM)(M) \quad \text{and} \quad s_\omega[M] = s_\omega(TM)(M). \]

Here \(s_\omega(TM) \) is understood to be \(s_\omega(\xi) \), where \(\xi \) is the complex bundle from (B.6).

In particular, we have the characteristic number
\[s_n[M] = s_n(TM)(M) \in \mathbb{Z}. \]

Corollary D.4.6. If a bordism class \([M] \in \Omega^U_{2n}\) decomposes as \([M_1] \times [M_2]\) where \(\dim M_1 > 0 \) and \(\dim M_2 > 0 \), then \(s_n[M] = 0 \).

To deal with characteristic classes of \(n \)-plane bundles with different \(n \) simultaneously it is convenient to consider the direct limit
\[BU = \lim_{n \to \infty} BU(n). \]

Then \(H^*(BU) \) is isomorphic to the ring of formal power series \(\mathbb{Z}[[c_1, c_2, \ldots]] \) in the universal Chern classes, \(\deg c_k = 2k \). The set of Chern characteristic numbers of a given \(2n \)-manifold \(M \) defines an element in \(\text{Hom}(H^*(BU), \mathbb{Z}) \) by evaluation. This element, as a function on \(H^*(BU) \) takes nonzero values only on the subgroup \(H^{2n}(BU) \) of finite rank, so it belongs to the subgroup \(H_*(BU) \subset \text{Hom}(H^*(BU), \mathbb{Z}) \).

We therefore obtain the evaluation homomorphism of groups
\[e: \Omega^U \to H_*(BU). \]
Since the product in $H_* (BU)$ arises from the maps $BU(k) \times BU(l) \to BU(k + l)$ corresponding to the product of vector bundles, and the Chern classes have the appropriate multiplicative property, the map (D.10) is a ring homomorphism.

The evaluation homomorphism (D.10) can be defined for either tangential or normal characteristic numbers. The latter can be identified with the Hurewicz homomorphism in complex cobordism, which is defined as the composite

$$\Omega^U_{2n} = \lim_{k \to \infty} \pi_{2k+2n}(MU(k)) \to \lim_{k \to \infty} H_{2k+2n}(MU(k))$$

$$\to \lim_{k \to \infty} H_{2n}(BU(k)) = H_{2n}(BU),$$

where h is the classical Hurewicz homomorphism and t is the Thom isomorphism.

Proposition D.4.7. The Hurewicz homomorphism (D.11) coincides with evaluation map (D.10) for normal Chern numbers.

Proof. Let $S^{2k+2n} \to MU(k)$ be a map representing a bordism class $[M] \in \Omega^U_{2n}$. It factors as

$$S^{2k+2n} \to Th \nu \to MU(k),$$

where ν is the normal bundle of an embedding $M \to \mathbb{R}^{2k+2n}$, endowed with a complex structure. By passing to homology, one obtains the commutative diagram

$$\begin{array}{ccc}
H_{2k+2n}(S^{2k+2n}) & \longrightarrow & H_{2k+2n}(Th \nu) \\
\cong & \downarrow & \cong \\
H_{2n}(M) & \longrightarrow & H_{2n}(BU(k))
\end{array}$$

where the vertical arrows are Thom isomorphisms and $g: M \to BU(k)$ is the classifying map for the normal bundle ν. Let \tilde{e} denote the composite map (D.11) and let $f: H_{2k+2n}(S^{2k+2n}) \to H_{2n}(BU(k))$ be defined by the diagram above. Then

$$\tilde{e}([M]) = f([S^{2k+2n}]) = g_* (\langle M \rangle) = e([M]).$$

Theorem D.4.8 (Thom [347]). The evaluation map (D.10) becomes an isomorphism after tensoring with \mathbb{Q}:

$$e \otimes \mathbb{Q}: \Omega^U \otimes \mathbb{Q} \xrightarrow{\cong} H_* (BU; \mathbb{Q}).$$

Corollary D.4.9. For any n and any set of integers $\{k_\omega\}$ parametrised by partitions ω with $||\omega|| = n$, there exists a stably complex manifold M such that $s_\omega [M] = Nk_\omega$ for some fixed $N \in \mathbb{Z}$ and any ω.

D.5. Structure results

The theory of unoriented (co)bdism was the first to be completed: the coefficient ring Ω^O was calculated by Thom, and the bordism groups $O_*(X)$ of cell complexes X were reduced to homology groups of X with coefficients in Ω^O. The corresponding results are summarised as follows.

Theorem D.5.1.

(a) Two manifolds are unorientedly bordant if and only if they have identical sets of Stiefel–Whitney characteristic numbers.

(b) Ω^O is a polynomial ring over \mathbb{Z}_2 with one generator a_i in every positive dimension $i \neq 2^k - 1$.
(c) For every cell complex X the module $O_*(X)$ is a free graded Ω^U-module isomorphic to $H_*(X; \mathbb{Z}_2) \otimes_{\mathbb{Z}_2} \Omega^U$.

Parts (a) and (b) were done by Thom [347]. Part (c) was first formulated by Conner and Floyd [100]; it also follows from the results of Thom.

The complex bordism ring Ω^U has a similar description:

Theorem D.5.2.

(a) $\Omega^U \otimes \mathbb{Q}$ is a polynomial ring over \mathbb{Q} generated by the bordism classes of complex projective spaces $\mathbb{C}P^i$, $i \geq 1$.

(b) Two stably complex manifolds are bordant if and only if they have identical sets of Chern characteristic numbers.

(c) Ω^U is a polynomial ring over \mathbb{Z} with one generator a_i in every even dimension $2i$, where $i \geq 1$.

Part (a) follows from Theorem D.4.8. Part (b) follows from the results of Milnor [270] and Novikov [289]. Part (c) is the most difficult one; it was done by Novikov [289] using the Adams spectral sequence and structure theory of Hopf algebras (see also [290] for a more detailed account) and Milnor (unpublished1). Another more geometric proof was given by Stong [340].

Note that part (c) of Theorem D.5.1 does not extend to complex bordism; $U_*(X)$ is not a free Ω^U-module in general (although it is a free Ω^U-module if $H_*(X; \mathbb{Z})$ is free abelian). Unlike the case of unoriented bordism, the calculation of complex bordism of a space X does not reduce to calculating the coefficient ring Ω^U and homology groups $H_*(X)$. The theory of complex (co)bordism is much richer than its unoriented analogue, and at the same time is not as complicated as oriented bordism or other bordism theories with additional structure, since the coefficient ring does not have torsion. Thanks to this, complex cobordism theory found many striking and important applications in algebraic topology and beyond. Many of these applications were outlined in the pioneering work of Novikov [291].

The calculation of the oriented bordism ring was completed by Novikov [289] (ring structure modulo torsion and odd torsion) and Wall [361] (even torsion), with important earlier contributions made by Rohlin, Averbuch, and Milnor. Unlike complex bordism, the ring Ω^{SO} has additive torsion. We give only a partial result here (which does not fully describe the torsion elements).

Theorem D.5.3.

(a) $\Omega^{SO} \otimes \mathbb{Q}$ is a polynomial ring over \mathbb{Q} generated by the bordism classes of complex projective spaces $\mathbb{C}P^i$, $i \geq 1$.

(b) The subring $\text{Tors} \subset \Omega^{SO}$ of torsion elements contains only elements of order 2. The quotient Ω^{SO}/Tors is a polynomial ring over \mathbb{Z} with one generator a_i in every dimension $4i$, where $i \geq 1$.

(c) Two oriented manifolds are bordant if and only if they have identical sets of Pontryagin and Stiefel–Whitney characteristic numbers.

D.6. Ring generators

Corollary D.4.6 implies that the characteristic number s_n given by (D.9) vanishes on decomposable elements of Ω^{2n}_U. Furthermore, this characteristic number

1Milnor’s proof was announced in [186]; it was intended to be included in the second part of [270], but has never been published.
detects indecomposables that may be chosen as polynomial generators. The following result featured in the proof of Theorem D.5.2.

Theorem D.6.1. A bordism class \([M] \in \Omega^U_{2n}\) may be chosen as a polynomial generator \(a_n\) of the ring \(\Omega^U\) if and only if

\[
s_n[M] = \begin{cases}
\pm 1, & \text{if } n \neq p^k - 1 \text{ for any prime } p; \\
\pm p, & \text{if } n = p^k - 1 \text{ for some prime } p.
\end{cases}
\]

There is no universal description of connected manifolds representing the polynomial generators \(a_n \in \Omega^U\). On the other hand, there is a particularly nice family of manifolds whose bordism classes generate the whole ring \(\Omega^U\). This family is redundant though, so there are algebraic relations between their bordism classes.

Construction D.6.2 (Milnor hypersurfaces). Fix a pair of integers \(j \geq i \geq 0\) and consider the product \(\mathbb{C}P^i \times \mathbb{C}P^j\). Its algebraic subvariety

\[(D.12) \quad H_{ij} = \{(z_0 : \cdots : z_i) \times (w_0 : \cdots : w_j) \in \mathbb{C}P^i \times \mathbb{C}P^j : z_0 w_0 + \cdots + z_i w_i = 0\}
\]

is called a Milnor hypersurface. Note that \(H_{0j} \cong \mathbb{C}P^{j-1}\).

Denote by \(p_1\) and \(p_2\) the projections of \(\mathbb{C}P^i \times \mathbb{C}P^j\) onto its factors. Let \(\eta\) be the tautological line bundle over a complex projective space and \(\bar{\eta}\) its conjugate. We have

\[
H^*(\mathbb{C}P^i \times \mathbb{C}P^j) = \mathbb{Z}[x, y]/(x^{i+1} = 0, y^{j+1} = 0)
\]

where \(x = p_1^*c_1(\bar{\eta}), y = p_2^*c_1(\bar{\eta})\).

Proposition D.6.3. The geometric cobordism in \(\mathbb{C}P^i \times \mathbb{C}P^j\) corresponding to the element \(x + y \in H^2(\mathbb{C}P^i \times \mathbb{C}P^j)\) is represented by the submanifold \(H_{ij}\). In particular, the image of the fundamental class \(\langle H_{ij} \rangle\) in \(H_{2(i+j-1)}(\mathbb{C}P^i \times \mathbb{C}P^j)\) is Poincaré dual to \(x + y\).

Proof. We have \(x + y = c_1(p_1^*(\bar{\eta}) \otimes p_2^*(\bar{\eta}))\). The classifying map \(f_{x+y} : \mathbb{C}P^i \times \mathbb{C}P^j \to \mathbb{C}P^\infty\) is the composition of the Segre embedding

\[
\sigma : \mathbb{C}P^i \times \mathbb{C}P^j \to \mathbb{C}P^{(i+1)(j+1)-1},
\]

\[(z_0 : \cdots : z_i) \times (w_0 : \cdots : w_j) \mapsto (z_0 w_0 : z_0 w_1 : \cdots : z_k w_l : \cdots : z_i w_j),
\]

and the embedding \(\mathbb{C}P^{i+j+1} \to \mathbb{C}P^\infty\). The codimension 2 submanifold in \(\mathbb{C}P^i \times \mathbb{C}P^j\) corresponding to the cohomology class \(x + y\) is obtained as the preimage \(\sigma^{-1}(H)\) of a generally positioned hyperplane in \(\mathbb{C}P^{i+j+1}\) (that is, a hyperplane \(H\) transverse to the image of the Segre embedding, see Construction D.3.7). By (D.12), the Milnor hypersurface is exactly \(\sigma^{-1}(H)\) for one such hyperplane \(H\).

Lemma D.6.4.

\[
s_{i+j-1}[H_{ij}] = \begin{cases}
1, & \text{if } i = 0; \\
2, & \text{if } i = j = 1; \\
0, & \text{if } i = 1, j > 1; \\
-(i+j), & \text{if } i > 1.
\end{cases}
\]

Proof. Let \(i = 0\). Since the stably complex structure on \(H_{0j} = \mathbb{C}P^{j-1}\) is determined by the isomorphism \(\mathcal{T}(\mathbb{C}P^{j-1}) \oplus \mathbb{C} \cong \bar{\eta} \oplus \cdots \oplus \bar{\eta}\) \((j\text{ summands})\) and \(x = c_1(\bar{\eta})\), we have

\[
s_{j-1}[\mathbb{C}P^{j-1}] = jx^{j-1}\{\mathbb{C}P^{j-1}\} = j.
\]
Now let $i > 0$. Then
\[s_{i+j-1}(T(\mathbb{CP}^i \times \mathbb{CP}^j)) = (i+1)x^{i+j-1} + (j+1)y^{i+j-1}. \]
\[= \begin{cases} 2x^j + (j+1)y^j, & \text{if } i = 1; \\ 0, & \text{if } i > 1. \end{cases} \]

Denote by ν the normal bundle of the embedding $\iota: H_{ij} \to \mathbb{CP}^i \times \mathbb{CP}^j$. Then
\[
\mathcal{T}(H_{ij}) \oplus \nu = \iota^*(\mathcal{T}(\mathbb{CP}^i \times \mathbb{CP}^j)).
\]

Since $c_1(\nu) = \iota^*(x + y)$, we obtain $s_{i+j-1}(\nu) = \iota^*(x + y)^{i+j-1}$. Assume $i = 1$. Then (D.13) and Proposition D.4.5 imply that
\[
\begin{align*}
\mathcal{T}(H_{1j}) &= s_j(\mathcal{T}(H_{1j})) = \iota^*(2x^j + (j+1)y^j - (x+y)^j)H_{1j} \\
&= (2x^j + (j+1)y^j - (x+y)^j)(x+y)(\mathbb{CP}^1 \times \mathbb{CP}^j) = \begin{cases} 2, & \text{if } j = 1; \\ 0, & \text{if } j > 1. \end{cases}
\end{align*}
\]

Assume now that $i > 1$. Then $s_{i+j-1}(T(\mathbb{CP}^i \times \mathbb{CP}^j)) = 0$, and we obtain from (D.13) and Proposition D.4.5 that
\[
s_{i+j-1}[H_{ij}] = -s_{i+j-1}(\nu)[H_{ij}] = -\iota^*(x+y)^{i+j-1}[H_{ij}]
\]
\[
= -(x+y)^{i+j}(\mathbb{CP}^i \times \mathbb{CP}^j) = -(i+j). \quad \Box
\]

Remark. Since $s_1[H_{11}] = 2 = s_1[\mathbb{CP}^1]$ the manifold H_{11} is bordant to \mathbb{CP}^1. In fact $H_{11} \cong \mathbb{CP}^1$ (an exercise).

Theorem D.6.5. The bordism classes $\{[H_{ij}], 0 \leq i \leq j\}$ multiplicatively generate the ring Ω^U.

Proof. A simple calculation shows that
\[
g.c.d.\left(\binom{n+1}{i}, \ 1 \leq i \leq n\right) = \begin{cases} p, & \text{if } n = p^k - 1, \\ 1, & \text{otherwise.} \end{cases}
\]

Now Lemma D.6.4 implies that a certain integer linear combination of bordism classes $[H_{ij}]$ with $i+j = n+1$ can be taken as the polynomial generator a_n of Ω^U, see Theorem D.6.1.

Remark. There is no universal description for a linear combination of bordism classes $[H_{ij}]$ with $i+j = n+1$ giving the polynomial generator of Ω^U. All algebraic relations between the classes $[H_{ij}]$ arise from the associativity of the formal group law of geometric cobordism (see Corollary E.2.4).

Example D.6.6. Since $s_1[\mathbb{CP}^1] = 2$, $s_2[\mathbb{CP}^2] = 3$, the bordism classes $[\mathbb{CP}^1]$ and $[\mathbb{CP}^2]$ may be taken as polynomial generators a_1 and a_2 of Ω^U. However $[\mathbb{CP}^3]$ cannot be taken as a_3, since $s_3[\mathbb{CP}^3] = 4$, while $s_3(a_3) = \pm 2$. The bordism class $[H_{22}] + [\mathbb{CP}^3]$ may be taken as a_3.

Theorem D.6.5 admits the following important addendum, which is due to Milnor (see [340, Chapter 7] for the proof).

Theorem D.6.7 (Milnor). Every bordism class $x \in \Omega^U_n$ with $n > 0$ contains a nonsingular algebraic variety (not necessarily connected).
The proof of this fact uses a construction of a (possibly disconnected) algebraic variety representing the class $-[M]$ for any bordism class $[M] \in \Omega_U^n$ of 2n-dimensional manifold. The following question is still open.

Problem D.6.8 (Hirzebruch). Describe the set of bordism classes in Ω^U containing connected nonsingular algebraic varieties.

Example D.6.9. The group Ω^n_U is isomorphic to \mathbb{Z} and is generated by $[\mathbb{C}P^1]$. Every class $k[\mathbb{C}P^1] \in \Omega^n_U$ contains a nonsingular algebraic variety, namely, a disjoint union of k copies of $\mathbb{C}P^1$ for $k > 0$ and a Riemann surface of genus $(1-k)$ for $k \leq 0$. Connected algebraic varieties are contained only in the classes $k[\mathbb{C}P^1]$ with $k \leq 1$.

Exercises.

D.6.10. Properties listed in Proposition D.4.5 determine the characteristic class s_n uniquely.

D.6.11. Show that $H_{11} \cong \mathbb{C}P^1$.

D.6.12. Show that H_{3j} is complex bordant to $\mathbb{C}P^1 \times \mathbb{C}P^{j-1}$. (Hint: calculate the characteristic numbers; no geometric construction of this bordism is known!)

D.6.13. An alternative set of ring generators of Ω^n_U can be constructed as follows. Let M_k^{2n} be a submanifold in $\mathbb{C}P^{n+1}$ dual to $kx \in H^2(\mathbb{C}P^{n+1})$, where k is a positive integer, and x is the first Chern class of the hyperplane section bundle. For example, one can take M_k^{2n} to be a nonsingular hypersurface of degree k. Then the set $\{[M_k^{2n}]: n \geq 1, k \geq 1\}$ multiplicatively generates the ring Ω^n_U.
APPENDIX E

Formal Group Laws and Hirzebruch Genera

The theory of *formal groups* originally appeared in algebraic geometry and plays an important role in number theory. We refer to the monograph by Hazewinkel [182] for the algebraic background of the theory. Formal groups laws were brought into cobordism theory by Mishchenko and Novikov [291], who constructed and studied the ‘formal group law of geometric cobordisms’, otherwise known as the formal group law in complex cobordism. Early applications concerned finite group actions on manifolds. An important result of Quillen followed shortly, asserting that the formal group law in complex cobordism coincides with the universal formal group law, introduced by Lazard in 1954. Subsequent developments included constructions of complex oriented cohomology theories, such as *Morava K-theories* and *elliptic cohomology* and applications to *Hirzebruch genera*, one of the most important classes of invariants of manifolds.

E.1. Elements of the theory of formal group laws

Let R be a commutative ring with unit.

A formal power series $F(u, v) \in R[[u, v]]$ is called a (commutative one-dimensional) *formal group law* over R if it satisfies the following conditions:

(a) $F(u, 0) = u$, $F(0, v) = v$;
(b) $F(F(u, v), w) = F(u, F(v, w))$;
(c) $F(u, v) = F(v, u)$.

The original example of a formal group law over a field k is provided by the expansion near the unit of the multiplication map $G \times G \to G$ in a one-dimensional algebraic group over k. This also explains the terminology.

A formal group law F over R is called *linearisable* if there exists a coordinate change $u \mapsto g_F(u) = u + \sum_{i \geq 1} g_i u^{i+1} \in R[[u]]$ such that

$$g_F(F(u, v)) = g_F(u) + g_F(v).$$

Note that every formal group law over R determines a formal group law over $R \otimes \mathbb{Q}$.

Theorem E.1.1. Every formal group law F is linearisable over $R \otimes \mathbb{Q}$.

Proof. Consider the series $\omega(u) = \frac{\partial F(u, v)}{\partial w} \Big|_{w=0}$. Applying $\frac{\partial}{\partial w} \Big|_{w=0}$ to both sides of the identity $F(F(u, v), w) = F(u, F(v, w))$ we obtain

$$\omega(F(u, v)) = \frac{\partial F(F(u, v), w)}{\partial v} \Big|_{w=0} = \frac{\partial F(u, F(v, w))}{\partial v} \frac{\partial F(v, w)}{\partial w} \Big|_{w=0} = \frac{\partial F(u, v)}{\partial v} \omega(v).$$

We therefore have $\frac{dv}{\omega(v)} = \frac{\partial F(u, v)}{\partial v}$. Set

$$g(u) = \int_0^u \frac{dv}{\omega(v)};$$

(E.2)
then \(dg(u) = dg(F(u, v))\). This implies that \(g(F(u, v)) = g(u) + C\). Since \(F(0, v) = v\) and \(g(0) = 0\), we get \(C = g(v)\). Thus, \(g(F(u, v)) = g(u) + g(v)\). □

A series \(g_F(u) = u + \sum_{i \geq 1} g_i u^{i+1}\) satisfying equation (E.1) is called a logarithm of the formal group law \(F\); Theorem E.1.1 shows that a formal group law over \(R \otimes \mathbb{Q}\) has a unique logarithm. Its functional inverse series \(f_F(t) \in R \otimes \mathbb{Q}[[t]]\) is called the exponential of the formal group law, so that we have \(F(u, v) = f_F(g_F(u) + g_F(v))\) over \(R \otimes \mathbb{Q}\). If \(R\) does not have torsion (i.e. \(R \to R \otimes \mathbb{Q}\) is monomorphism), the latter formula shows that a formal group law (as a series with coefficients in \(R\)) is fully determined by its logarithm (which is a series with coefficients in \(R \otimes \mathbb{Q}\)).

Remark. A Hurwitz series over \(R\) is a formal power series of the form

\[h(u) = u + \sum_{i \geq 1} h_i \frac{u^{i+1}}{(i+1)!}, \quad h_i \in R.\]

The functional inverse of Hurwitz series is a Hurwitz series. The exponential and the logarithm of a formal group law \(F \in R[[u, v]]\) are Hurwitz series (an exercise).

Example E.1.2. An example of a formal group law is given by the series

\[(E.3) \quad F(u, v) = (1 + u)(1 + v) - 1 = u + v + uv,\]

over \(Z\), called the multiplicative formal group law. Introducing a formal indeterminate \(\beta\) of degree \(-2\), we may consider a 1-parameter graded extension of the multiplicative formal group law, given by

\[F_\beta(u, v) = u + v - \beta uv\]

with coefficients in \(Z[\beta]\). Its exponential and logarithm are given by

\[f(x) = \frac{1 - e^{-\beta x}}{\beta}, \quad g(u) = -\frac{\ln(1 - \beta u)}{\beta} \in \mathbb{Q}[\beta].\]

Example E.1.3. There is a 2-parameter formal group law

\[(E.4) \quad F_{\sigma_1, \sigma_2}(u, v) = \frac{u + v + \sigma_1 uv}{1 - \sigma_2 uv}\]

with coefficients in \(Z[\sigma_1, \sigma_2]\), \(\deg \sigma_1 = -2\), \(\deg \sigma_2 = -4\). Its exponential and logarithm are given by

\[(E.5) \quad f(x) = \frac{e^{ax} - e^{bx}}{ae^{bx} - be^{ax}}, \quad g(u) = \frac{\ln(1 + au) - \ln(1 + bu)}{a - b}\]

where \(a + b = \sigma_1\), \(ab = \sigma_2\). Note that \(f(x)\) coincides with the generating series of \(H\)-polynomials for permutahedra, see Exercise 1.8.10. This link is further explored in [56]. The previous example is obtained by setting \(a = 0\), \(b = -\beta\).

Example E.1.4. Another classical example of a formal group law comes from the theory of elliptic functions. There is a unique meromorphic function \(f(x)\) with \(f(0) = 0\) and \(f'(0) = 1\) satisfying the differential equation

\[(E.6) \quad (f'(x))^2 = 1 - 2\delta f^2(x) + \varepsilon f^4(x)\]

with \(\delta, \varepsilon \in \mathbb{C}\). This function provides a uniformisation for the Jacobi model \(y^2 = 1 - 2\delta x^2 + \varepsilon x^4\) of an elliptic curve. When the discriminant

\[\Delta = \varepsilon(\delta^2 - \varepsilon)\]
is nonzero, the elliptic curve is nondegenerate, and \(f(x) \) is a doubly periodic function known as the Jacobi elliptic sine and denoted by \(\text{sn}(x) \). Its inverse is given by the elliptic integral

\[
g(u) = \int_0^u \frac{dt}{\sqrt{1 - 2t^2 + \varepsilon t^2}}.
\]

There is the following Euler's expression for the addition formula for \(\text{sn}(x) \):

\[
F_{\text{ell}}(u, v) = \text{sn}(x + y) = \frac{u\sqrt{1 - 2\varepsilon u^2 + \varepsilon v^2} + v\sqrt{1 - 2\varepsilon v^2 + \varepsilon u^2}}{1 - \varepsilon u^2 v^2},
\]

where \(u = \text{sn} x, v = \text{sn} y \). Formula (E.7) defines the elliptic formal group law, with exponential \(\text{sn}(x) \) and logarithm \(g(u) \) as above.

Viewing \(\delta, \varepsilon \) as formal parameters with \(\deg \delta = -4, \deg \varepsilon = -8 \), we obtain the universal elliptic formal group law over the ring \(\mathbb{Z}[\frac{1}{2}] [\delta, \varepsilon] \).

Degeneration \(\varepsilon = 0 \) gives the addition formula for \(f(x) = \frac{\sin \sqrt{2x}}{\sqrt{2x}} \), while degeneration \(\varepsilon = \delta^2 \) gives the addition formula for \(f(x) = \frac{\tanh \sqrt{2x}}{\sqrt{2x}} \). The latter coincides with the formal group law (E.4) for \(\sigma_1 = 0, \sigma_2 = -\delta \).

Now let \(F = \sum_{k,l} a_{kl} u^k v^l \) be a formal group law over a ring \(R \) and \(r: R \to R' \) a ring homomorphism. Denote by \(r(F) \) the formal series \(\sum_{k,l} r(a_{kl}) u^k v^l \in R'[[u,v]] \); then \(r(F) \) is a formal group law over \(R' \).

A formal group law \(\mathcal{F} \) over a ring \(A \) is universal if for any formal group law \(F \) over any ring \(R \) there exists a unique homomorphism \(r: A \to R \) such that \(F = r(\mathcal{F}) \).

Proposition E.1.5. A universal formal group law

\[
\mathcal{F}(u, v) = u + v + \sum_{k \geq 1, l \geq 1} a_{kl} u^k v^l
\]

exists, and its coefficient ring is the quotient

\[
A = \mathbb{Z}[a_{kl} : k \geq 1, l \geq 1]/\mathcal{I}, \quad \deg a_{kl} = -2(k + l - 1),
\]

of the graded polynomial ring by the graded ‘associativity ideal’ \(\mathcal{I} \), generated by the coefficients of the formal power series \(\mathcal{F}(\mathcal{F}(u, v), w) - \mathcal{F}(u, \mathcal{F}(v, w)) \).

Furthermore, \(\mathcal{F} \) is unique: if \(\mathcal{F}' \) is another universal formal group law over \(A' \), then there is an isomorphism \(r:\ A \to A' \) such that \(\mathcal{F}' = r(\mathcal{F}) \).

Proof. For any formal group law \(F \) over a ring \(R \) there exists a unique homomorphism \(\mathbb{Z}[a_{kl} : k \geq 1, l \geq 1] \to R \) sending each \(a_{kl} \) to the corresponding coefficient of the power series \(F \). By the associativity of \(F \), this homomorphism factors through a homomorphism \(A \to R \), as needed. The uniqueness follows directly from the definition of \(\mathcal{F} \).

Note that the definition of a formal group law does not assume any grading of the coefficient ring; however, the coefficient ring of the universal formal group law turns out to be naturally graded. By setting \(\deg u = \deg v = 2 \) we obtain that the whole expression \(\mathcal{F}(u, v) \) is homogeneous of degree 2.

Theorem E.1.6 (Lazard [229]). The coefficient ring \(A \) of the universal formal group law \(\mathcal{F} \) is isomorphic to the graded polynomial ring \(\mathbb{Z}[a_1, a_2, \ldots] \) on an infinite number of generators, \(\deg a_i = -2i \).
Example E.1.7. Consider formal group laws of the form
\[
F_A(u, v) = u C(v) + v C(u) - c_1 uv,
\]
where \(C(u) = 1 + \sum_{k \geq 1} c_k u^k\) with coefficients \(c_1, c_2, \ldots\) from a ring \(R\). For example, when \(c_k = 0\) for \(k > 1\) we get the formal group law of Example E.1.2. The universal example of (E.8), known as the *Abel formal group law*, has the coefficient ring \(R_A = \mathbb{Z}[c_1, c_2, \ldots]/\mathcal{I}\), where \(\mathcal{I}\) is the associativity ideal defined in the same way as in Proposition E.1.5. This formal group law was introduced in [60] and subsequently studied in [79] and [97]. The exponential of \(F_A\) is given by
\[
f(x) = \frac{e^{sx} - e^{tx}}{s - t}
\]
(an exercise). Note that \(f(x)\) coincides with the generating series of \(H\)-polynomials for simplices, see Exercise 1.8.10. The logarithm of \(F_A\) can be expressed via *Gould polynomials*, as was observed by Nadiradze (cf. [56]). The explicit expression of the coefficients \(c_k\) via \(s, t\) is given in [60]; in particular, \(c_1 = s + t, c_2 = -\frac{1}{2}\). It follows that the coefficient ring \(R_A\) of (E.8) satisfies \(R_A \otimes \mathbb{Q} = \mathbb{Q}[c_1, c_2] = \mathbb{Q}[s, t]\). On the other hand, the ring \(R_A\) itself has infinitely many multiplicative generators [60].

Exercises.

E.1.8. The functional inverse of Hurwitz series is a Hurwitz series. The exponential and the logarithm of a formal group law \(F \in R[[u, v]]\) are Hurwitz series.

E.1.9. The exponential of the formal group law (E.4) is given by (E.5).

E.1.10. The exponential of the Abel formal group law is given by (E.9).

E.1.11. Consider formal group laws of the form
\[
F_E(u, v) = \frac{u^2 - v^2}{u B(v) - v B(u)},
\]
where \(B(u) = 1 + \sum_{k \geq 2} b_k u^k\) is a formal power series with coefficients \(b_2, b_3, \ldots\) from a ring \(R\). The universal formal group law of the form (E.10) has the coefficient ring \(R_E = \mathbb{Z}[b_2, b_3, \ldots]/\mathcal{I}\), where \(\mathcal{I}\) is the associativity ideal. Show that \(F_E\) over the ring \(R_E[\frac{1}{2}]\) becomes the elliptic formal group law (E.7); furthermore, \(R_E[\frac{1}{2}] = \mathbb{Z}[\frac{1}{2}][\delta, \varepsilon]\) where \(\delta = -b_2\) and \(\varepsilon = b_2^2 + 2b_4\). (Hint: show that the exponential of \(F_E\) satisfies the equation (E.6).)

E.2. Formal group law of geometric cobordisms

The applications of formal group laws in cobordism theory build upon the following fundamental construction.

Construction E.2.1 (Formal group law of geometric cobordisms [291]). Let \(X\) be a cell complex and \(u, v \in U^2(X)\) two geometric cobordisms (see Construction D.3.7) corresponding to elements \(x, y \in H^2(X)\) respectively. Denote by \(u +_H v\) the geometric cobordism corresponding to the cohomology class \(x + y\).

Proposition E.2.2. The following relation holds in \(U^2(X)\):
\[
(u +_H v) = F_U(u, v) = u + v + \sum_{k \geq 1, l \geq 1} \alpha_{kl} u^k v^l,
\]
where the coefficients \(\alpha_{kl} \in \Omega_U^{-2(k+l-1)}\) do not depend on \(X\). The series \(F_U(u, v)\) given by (E.11) is a formal group law over the complex cobordism ring \(\Omega_U\).
E.2. FORMAL GROUP LAW OF GEOMETRIC COBORDISMS

Proof. We first consider the universal example \(X = \mathbb{C}P^\infty \times \mathbb{C}P^\infty \). Then
\[
U^* (\mathbb{C}P^\infty \times \mathbb{C}P^\infty) = \Omega_U[[u, v]],
\]
where \(u, v \) are canonical geometric cobordisms given by the projections of \(\mathbb{C}P^\infty \times \mathbb{C}P^\infty \) onto its factors. We therefore have the following relation in \(U^2 (\mathbb{C}P^\infty \times \mathbb{C}P^\infty) \):
\[
[u +_H v] = \sum_{k,l \geq 0} \alpha_{kl} u^k v^l,
\]
where \(\alpha_{kl} \in \Omega_U^{2(k+l-1)} \).

Now let the geometric cobordisms \(u, v \in U^2 (X) \) be given by maps \(f_u, f_v : X \to \mathbb{C}P^\infty \) respectively. Then \(u = (f_u \times f_v)^* (u), \ v = (f_u \times f_v)^* (v) \) and \(u +_H v = (f_u \times f_v)^* (u +_H v) \), where \(f_u \times f_v : X \to \mathbb{C}P^\infty \times \mathbb{C}P^\infty \). Applying the \(\Omega_U \)-module map \((f_u \times f_v)^* \) to (E.12) we obtain the required formula (E.11). The identities (a) and (c) for \(F_U (u, v) \) are obvious, and the associativity (b) follows from the identity \((u +_H v) +_H w = F_U (F_U (u, v), w) \) and the associativity of \(+_H \). \(\square \)

Series (E.11) is called the **formal group law of geometric cobordisms**; nowadays it is also usually referred to as the **formal group law of complex cobordism**.

By definition, the geometric cobordism \(u \in U^2 (X) \) is the first Conner–Floyd Chern class \(c_1^U (\xi) \) of the complex line bundle \(\xi \) over \(X \) obtained by pulling back the conjugate tautological bundle along the map \(f_u : X \to \mathbb{C}P^\infty \) (it also coincides with the Euler class \(e(\xi) \) as defined in Section D.3). It follows that the formal group law of geometric cobordisms gives an expression of \(c_1^U (\xi \otimes \eta) \in U^2 (X) \) in terms of the classes \(u = c_1^U (\xi) \) and \(v = c_1^U (\eta) \) of the factors:
\[
c_1^U (\xi \otimes \eta) = F_U (u, v).
\]

The coefficients of the formal group law of geometric cobordisms and its logarithm may be described geometrically by the following results.

Theorem E.2.3 (Buchstaber [54, Theorem 4.8]).
\[
F_U (u, v) = \frac{\sum_{i,j \geq 0} [H_{ij}] u^i v^j}{(\sum_{r \geq 0} [\mathbb{C}P^r] u^r)(\sum_{s \geq 0} [\mathbb{C}P^s] v^s)},
\]
where \(H_{ij} (0 \leq i < j) \) are Milnor hypersurfaces (D.12) and \(H_{ji} = H_{ij} \).

Proof. Set \(X = \mathbb{C}P^i \times \mathbb{C}P^j \) in Proposition E.2.2. Consider the Poincaré–Atiyah duality map \(\varepsilon : U^2 (\mathbb{C}P^i \times \mathbb{C}P^j) \to U^2 (\mathbb{C}P^j \times \mathbb{C}P^j) \) (Construction D.3.4) and the map \(\varepsilon : U^2 (\mathbb{C}P^i \times \mathbb{C}P^j) \to U^2 (\mathbb{C}P^j \times \mathbb{C}P^j) \). Then the composition
\[
\varepsilon D : U^2 (\mathbb{C}P^i \times \mathbb{C}P^j) \to \Omega_U^{2(i+j)-2}
\]
takes geometric cobordisms to the bordism classes of the corresponding submanifolds. In particular, \(\varepsilon D (u +_H v) = [H_{ij}] \), \(\varepsilon D (u^k v^j) = [\mathbb{C}P^{i-k}][\mathbb{C}P^{j-l}] \). Applying \(\varepsilon D \) to (E.11) we obtain
\[
[H_{ij}] = \sum_{k,l} \alpha_{kl} [\mathbb{C}P^{i-k}][\mathbb{C}P^{j-l}].
\]

Therefore,
\[
\sum_{i,j} [H_{ij}] u^i v^j = \left(\sum_{k,l} \alpha_{kl} u^k v^l \right) \left(\sum_{i \geq k} [\mathbb{C}P^{i-k}] u^{i-k} \right) \left(\sum_{j \geq l} [\mathbb{C}P^{j-l}] v^{j-l} \right),
\]
which implies the required formula. \(\square \)
The coefficients of the formal group law of geometric cobordisms generate the complex cobordism ring Ω_U.

Proof. By Theorem D.6.5, Ω_U is generated by the cobordism classes $[H_{ij}]$, which can be integrally expressed via the coefficients of F_U using Theorem E.2.3. □

Theorem E.2.5 (Mishchenko [291, Appendix I]). The logarithm of the formal group law of geometric cobordisms is given by

$$g_U(u) = u + \sum_{k \geq 1} \left[\mathbb{C}P^k \right] \frac{u^{k+1}}{k+1} \in \Omega_U \otimes \mathbb{Q}[[u]].$$

Proof. By (E.2),

$$d g_U(u) = \frac{d u}{\partial F_U(u,v)} |_{v=0}.$$

Using the formula of Theorem E.2.3 and the identity $H_{i0} = \mathbb{C}P^{i-1}$, we calculate

$$\frac{d g_U(u)}{du} = 1 + \frac{1 + \sum_{i \geq 0} \left[\mathbb{C}P^i \right] u^i}{1 + \sum_{i \geq 0} (\left[\mathbb{C}P^i \right] - \left[\mathbb{C}P^{i-1} \right]) u^i}.$$

Now $[H_{11}] = \left[\mathbb{C}P^1 \right] \left[\mathbb{C}P^{i-1} \right]$ (see Exercise D.6.12). It follows that $\frac{d g_U(u)}{du} = 1 + \sum_{k \geq 0} \left[\mathbb{C}P^k \right] u^k$, which implies the required formula. □

Using these calculations the following most important property of the formal group law F_U can be easily established:

Theorem E.2.6 (Quillen [315]). The formal group law F_U of geometric cobordisms is universal.

Proof. Let \mathcal{F} be the universal formal group law over a ring A. Then there is a homomorphism $r: A \rightarrow \Omega_U$ which takes \mathcal{F} to F_U. The series \mathcal{F}, viewed as a formal group law over the ring $A \otimes \mathbb{Q}$, has the universality property for all formal group laws over \mathbb{Q}-algebras. By Theorem E.1.1, such a formal group law is determined by its logarithm, which is a series with leading term u. It follows that if we write the logarithm of F as $\sum b_k u^{k+1}$ then the ring $A \otimes \mathbb{Q}$ is the polynomial ring $\mathbb{Q}[b_1, b_2, \ldots]$. By Theorem E.2.5, $r(b_k) = \left[\mathbb{C}P^k \right] \in \Omega_U$. Since $\Omega_U \otimes \mathbb{Q} \cong \mathbb{Q}[\left[\mathbb{C}P^1 \right], \left[\mathbb{C}P^2 \right], \ldots]$, this implies that $r \otimes \mathbb{Q}$ is an isomorphism.

By Theorem E.1.6 the ring A does not have torsion, so r is a monomorphism. On the other hand, Theorem E.2.3 implies that the image $r(A)$ contains the bordism classes $[H_{ij}] \in \Omega_U$, $0 \leq i \leq j$. Since these classes generate the whole ring Ω_U (Theorem D.6.5), the map r is onto and thus an isomorphism. □

E.3. Hirzebruch genera (complex case)

Every homomorphism $\varphi: \Omega^U \rightarrow R$ from the complex bordism ring to a commutative ring R with unit can be regarded as a multiplicative characteristic of manifolds which is an invariant of bordism classes. Such a homomorphism is called a (complex) R-genus. (The term 'multiplicative genus' is also used, to emphasize that such a genus is a ring homomorphism.) The parallel theory of oriented genera is considered in the next section.

Assume that the ring R does not have additive torsion. Then every R-genus φ is fully determined by the corresponding homomorphism $\Omega^U \otimes \mathbb{Q} \rightarrow R \otimes \mathbb{Q}$.
which we shall also denote by φ. A construction due to Hirzebruch [187] describes homomorphisms $\varphi: \Omega^U \otimes \mathbb{Q} \to R \otimes \mathbb{Q}$ by means of universal R-valued characteristic classes of special type.

Construction E.3.1 (Hirzebruch genera). We consider the evaluation homomorphism $e: \Omega^U \to H_*(BU)$ for tangential characteristic numbers, see (D.10). Part (b) of Theorem D.5.2 says that e is a monomorphism, and Theorem D.4.8 says that $e \otimes \mathbb{Q}: \Omega^U \otimes \mathbb{Q} \to H_*(BU; \mathbb{Q})$ is an isomorphism. It follows that every homomorphism $\varphi: \Omega^U \otimes \mathbb{Q} \to R \otimes \mathbb{Q}$ can be interpreted as an element of

$$\text{Hom}_\mathbb{Q}(H_*(BU; \mathbb{Q}), R \otimes \mathbb{Q}) = H^*(BU; \mathbb{Q}) \otimes R,$$

or as a sequence of homogeneous polynomials $\{K_i(c_1, \ldots, c_i), i \geq 0\}$, $\deg K_i = 2i$. This sequence of polynomials cannot be chosen arbitrarily; the fact that φ is a ring homomorphism imposes certain conditions. These conditions may be described as follows: an identity

$$1 + c_1 + c_2 + \cdots = (1 + c'_1 + c'_2 + \cdots) \cdot (1 + c''_1 + c''_2 + \cdots)$$

implies the identity

$$\sum_{n \geq 0} K_n(c_1, \ldots, c_n) = \sum_{i \geq 0} K_i(c'_1, \ldots, c'_i) \cdot \sum_{j \geq 0} K_j(c''_1, \ldots, c''_j).$$

A sequence of homogeneous polynomials $\mathcal{K} = \{K_i(c_1, \ldots, c_i), i \geq 0\}$ with $K_0 = 1$ satisfying the identities (E.14) is called a multiplicative Hirzebruch sequence.

Proposition E.3.2. A multiplicative sequence \mathcal{K} is completely determined by the series

$$Q(x) = 1 + q_1 x + q_2 x^2 + \cdots \in R \otimes \mathbb{Q}[x],$$

where $x = c_1$, and $q_i = K_i(1, 0, \ldots, 0)$; moreover, every series $Q(x)$ as above determines a multiplicative sequence.

Proof. Indeed, by considering the identity

$$1 + c_1 + \cdots + c_n = (1 + x_1) \cdots (1 + x_n)$$

we obtain from (E.14) that

$$Q(x_1) \cdots Q(x_n) = 1 + K_1(c_1) + K_2(c_1, c_2) + \cdots + K_n(c_1, \ldots, c_n) + K_{n+1}(c_1, \ldots, c_n, 0) + \cdots. \quad \Box$$

Along with $Q(x)$ it is convenient to consider the series $f(x) \in R \otimes \mathbb{Q}[x]$ with leading term x given by the identity

$$Q(x) = \frac{x}{f(x)}.$$

It follows that the nth term $K_n(c_1, \ldots, c_n)$ in the multiplicative Hirzebruch sequence corresponding to a genus $\varphi: \Omega^U \otimes \mathbb{Q} \to R \otimes \mathbb{Q}$ is the degree-$2n$ part of the series $\prod_{i=1}^n \frac{x_i}{f(x_i)} \in R \otimes \mathbb{Q}[c_1, \ldots, c_n]$. By some abuse of notation, we regard $\prod_{i=1}^n \frac{x_i}{f(x_i)}$ as a universal characteristic class of complex n-plane bundles. Then the value of φ on an $2n$-dimensional stably complex manifold M is given by

$$\varphi[M] = \left(\prod_{i=1}^n \frac{x_i}{f(x_i)}(TM) \right)(M),$$

(E.16)
where the Chern classes c_1, \ldots, c_n are expressed via the indeterminates x_1, \ldots, x_n by the relation (E.15), and the degree-2n part of $\prod_{i=1}^{n} \frac{r_i}{f(x_i)}$ is taken to obtain a characteristic class of TM. We shall also denote the characteristic class $\prod_{i=1}^{n} \frac{r_i}{f(x_i)}$ of a complex n-plane bundle ξ by $\varphi(\xi)$; so that $\varphi[M] = \varphi(TM)(M)$.

We refer to the homomorphism $\varphi: \Omega^U \to R \otimes \mathbb{Q}$ given by (E.16) as the Hirzebruch genus corresponding to the series $f(x) = x + \cdots \in R \otimes \mathbb{Q}[[x]]$.

Given a torsion-free ring R and a series $f(x) \in R \otimes \mathbb{Q}[[x]]$ one may ask whether the corresponding Hirzebruch genus $\varphi: \Omega^U \to R \otimes \mathbb{Q}$ actually takes values in R. This constitutes the integrality problem for φ. A solution to this problem can be obtained using the theory of formal group laws.

Every genus $\varphi: \Omega^U \to R$ gives rise to a formal group law $\varphi(F_U)$ over R, where F_U is the formal group of geometric cobordisms (Construction E.2.1).

Theorem E.3.3. For every genus $\varphi: \Omega^U \to R$, the exponential of the formal group law $\varphi(F_U)$ is the series $f(x) \in R \otimes \mathbb{Q}[[x]]$ corresponding to φ.

This can be proved either directly, by appealing to the construction of geometric cobordisms, or indirectly, by calculating the values of φ on projective spaces and comparing to the formula for the logarithm of the formal group law.

1st Proof. Let X be a stably complex d-manifold with $x, y \in H^2(X)$, and let $u, v \in U^2(X)$ be the corresponding geometric cobordisms (see Construction D.3.7) represented by codimension-2 submanifolds $M_x \subset X$ and $M_y \subset X$ respectively. Then $u^k v^l \in U^{2(k+l)}(X)$ is represented by a submanifold of codimension 2$(k+l)$, which we denote by M_{kl}. By (E.11), we have the following relation in $U^2(X)$:

$$[M_{x+y}] = \sum_{k,l \geq 0} \alpha_{kl}[M_{kl}]$$

where $M_{x+y} \subset X$ is the codimension-2 submanifold dual to $x + y \in H^2(X)$. We apply the composition εD of the Poincaré–Atiyah duality map $D: U^2(X) \to U_{d-2}(X)$ and the augmentation $U_{d-2}(X) \to \Omega^U_{d-2}$ to the identity above, and then apply the genus φ to the resulting identity in Ω^U_{d-2} to obtain

$$\varphi[M_{x+y}] = \sum \varphi(\alpha_{kl}) \varphi[M_{kl}].$$

Let $\iota: M_{x+y} \subset X$ be the embedding. Considering the decomposition

$$\iota^*(TX) = TM_{x+y} \oplus \nu(\iota)$$

and using the multiplicativity of the characteristic class φ we obtain

$$\iota^* \varphi(TX) = \varphi(TM_{x+y}) \cdot \iota^* \left(\frac{f(x+y)}{f(x+y)}\right).$$

Therefore,

$$\varphi[M_{x+y}] = \iota^* \left(\varphi(TX) \cdot \frac{f(x+y)}{f(x+y)}\right)(M_{x+y}) = (\varphi(TX) \cdot f(x+y))(X).$$

Similarly, by considering the embedding $M_{kl} \to X$ we obtain

$$\varphi[M_{kl}] = (\varphi(TX) \cdot f(x^k f(y)^l))(X).$$

Plugging the above two expressions into (E.17) we finally obtain

$$f(x + y) = \sum_{k,l \geq 0} \varphi(\alpha_{kl}) f(x^k) f(y)^l.$$

This implies, by definition, that f is the exponential of $\varphi(F_U)$. \qed
2.3. Proof. The isomorphism of complex bundles $T(\mathbb{C}P^k) \oplus \mathbb{C} = \bar{\eta} \oplus \cdots \oplus \bar{\eta}$ (k + 1 summands) allows us to calculate the value of a genus on $\mathbb{C}P^k$ explicitly. The argument below is due to Novikov [292]. Let $x = c_1(\eta) \in H^2(\mathbb{C}P^k)$ and let g be the series functionally inverse to f; then
\[
\varphi[\mathbb{C}P^k] = \left(\frac{x}{f(x)} \right)^{k+1} (\mathbb{C}P^k)
\]
= coefficient of x^k in $\left(\frac{x}{f(x)} \right)^{k+1} = \text{res}_0 \left(\frac{1}{f(x)} \right)^{k+1}
\]
= \[\frac{1}{2\pi i} \oint \left(\frac{1}{f(x)} \right)^{k+1} dx = \frac{1}{2\pi i} \oint \frac{1}{u^{k+1}} g'(u) du \]
= \[\text{res}_0 \left(\frac{g'(u)}{u^{k+1}} \right) = \text{coefficient of } u^k \text{ in } g'(u). \]
(Integrating over a closed path around zero makes sense only for convergent power series with coefficients in \mathbb{C}, however the result holds for all power series with coefficients in $R \otimes \mathbb{Q}$.) Therefore,
\[
(\text{E.18}) \quad g'(u) = \sum_{k \geq 0} \varphi[\mathbb{C}P^k] u^k.
\]
Theorem E.2.5 then implies that g is the logarithm of the formal group law $\varphi(F_U)$, and thus f is its exponential. \hfill \square

Now we can formulate the following criterion for the integrality of a genus:

Theorem E.3.4. Let R be a torsion-free ring and $f(x) \in R \otimes \mathbb{Q}[x]$. The corresponding genus $\varphi: \Omega^U \rightarrow R \otimes \mathbb{Q}$ takes values in R if and only if the coefficients of the formal group law $\varphi(F_U)(u,v) = f(f^{-1}(u) + f^{-1}(v))$ belong to R.

Proof. This follows from Theorem E.3.3 and Corollary E.2.4. \hfill \square

Example E.3.5. The universal genus maps a stably complex manifold M to its bordism class $[M] \in \Omega^U$ and therefore corresponds to the identity homomorphism $\varphi_U: \Omega^U \rightarrow \Omega^U$. The corresponding characteristic class with coefficients in $\Omega^U \otimes \mathbb{Q}$, the universal Hirzebruch genus, was studied in [54]; its corresponding series $f_U(x)$ is the exponential of the universal formal group law of geometric cobordisms.

Proposition E.3.6 ([54]). Let $Q_U(x) = \frac{x}{f_U(x)} = 1 + q_1 x + q_2 x^2 + \cdots \in \Omega^U \otimes \mathbb{Q}[x]$ be the Q-series corresponding to the universal genus. For any $[M] \in \Omega^U_{2n}$ we have
\[
[M] = \sum_{\omega: ||\omega||=n} s_\omega[M] q^\omega,
\]
where $s_\omega[M]$ is the tangential characteristic number (D.8) and $q^\omega = q_1^{i_1} \cdots q_n^{i_n} \in \Omega^U_{||\omega||} \otimes \mathbb{Q}$ for $\omega = (i_1, \ldots, i_n)$.

Proof. We recall the polynomials P_ω from (D.7). The universal characteristic class corresponding to the universal genus $\varphi_U[M] = [M]$ is given by
\[
\prod_{i=1}^n Q_U(x_i) = \sum_\omega P_\omega(x_1, \ldots, x_n) q^\omega.
\]
Evaluation of the characteristic class \(P_\omega(x_1, \ldots, x_n)(TM) \) at the fundamental class \(\langle M \rangle \) gives \(s_\omega[M] \), and the required formula follows. \(\square \)

For any element \(a \in \Omega^U \otimes \mathbb{Q} \) we can define characteristic numbers \(s_\omega(a) \in \mathbb{Q} \).

Corollary E.3.7. For any \(\tau = (i_1, \ldots, i_n) \) we have

\[
s_\tau(q^\omega) = \begin{cases}
1, & \text{if } \tau = \omega, \\
0, & \text{otherwise}.
\end{cases}
\]

Proof. Applying \(s_\tau \) to (E.19) we get

\[
s_\tau[M] = \sum_{\omega: \|\omega\| = n} s_\omega[M]s_\tau(q^\omega).
\]

By Corollary (D.4.9), there exists \(M_\psi \) with \(s_\omega[M_\psi] = 0 \) for \(\omega \neq \psi \) and \(s_\psi[M_\psi] \neq 0 \). Substituting this \(M_\psi \) above we get the required formula. \(\square \)

The ring \(\Omega^U(\mathbb{Z}) \) is defined as the subring of \(\Omega^U \otimes \mathbb{Q} \) consisting of rational bordism classes \(a \) on which all characteristic numbers \(s_\omega \) take integer values. The rational evaluation isomorphism \(e \otimes \mathbb{Q} : \Omega^U \otimes \mathbb{Q} \to H_*(BU; \mathbb{Q}) \) maps \(\Omega^U(\mathbb{Z}) \) isomorphically onto \(H_*(BU) \). The corollary above expresses the fact that the elements \(q^\omega \in H_*(BU) \) form the basis dual to \(s_\omega \in H^*(BU) \).

Corollary E.3.8. We have

\[
\Omega^U(\mathbb{Z}) \cong \mathbb{Z}[b_1, b_2, \ldots], \quad \deg b_i = 2i.
\]

An element \(d_n \in \Omega^U_{2n}(\mathbb{Z}) \) is a ring generator for \(\Omega^U(\mathbb{Z}) \) if and only if \(s_n(d_n) = \pm 1 \).

Examples of sets of ring generators for \(\Omega^U(\mathbb{Z}) \) are the coefficients \(q_1, q_2, \ldots \), of the \(Q \)-series of the universal genus, as well as the coefficients of its exponential \(f_U(x) \) and logarithm \(g_U(u) \). The latter is given explicitly by Theorem E.2.5.

Observe that any genus \(\varphi : \Omega^U \to R \) is determined by its values on any set of ring generators for \(\Omega^U(\mathbb{Z}) \).

Example E.3.9. We take \(R = \mathbb{Z} \) in these examples.

1. The top Chern genus is given by \(c[M] = c_n[M] \) for \([M] \in \Omega^U_{2n} \). The corresponding \(Q \)-series is \(1 + x \), so that \(c(q_1) = 1 \) and \(c(q_k) = 0 \) for \(k > 1 \).

 The corresponding \(f \)-series is \(f(x) = \frac{x}{1-x} \). Note that \(c[M] \) is the Euler characteristic of \(M \) if \([M] \) is the cobordism class of an almost complex manifold \(M \).

2. The \(L \)-genus \(L[M] \) corresponds to the series \(f(x) = \tanh(x) \) (the hyperbolic tangent). The \(L \)-genus coincides with the signature \(\text{sign}(M) \) of the manifold by the classical result of Hirzebruch [187]. This can be seen by observing that \(\text{sign}(\mathbb{C}P^{2k}) = 1 \) and \(\text{sign}(\mathbb{C}P^{2k+1}) = 0 \) and calculating the functional inverse series \(g(u) \) (the logarithm) using formula (E.18).

3. The Todd genus \(\text{td}[M] \) corresponds to the series \(f(x) = 1 - e^{-x} \). The associated formal group law is given by \(F(u, v) = u + v - uv \), compare Example E.1.2.

 By Theorem E.3.4, the Todd genus is integral on any complex bordism class.

 The logarithm is given by \(-\ln(1 - u) = \sum_{k \geq 1} \frac{u^k}{k} \). Comparing this with the formula from Theorem E.2.5 we get \(\text{td}[\mathbb{C}P^k] = 1 \) for any \(k \). The \(Q \)-series is

\[
Q(x) = \frac{x}{1-e^{-x}} = \sum_{k \geq 0} (-1)^k \frac{B_k}{k!} x^k,
\]

where \(B_k \) is the \(k \)th Bernoulli number. We therefore have \(\text{td}(q_k) = (-1)^k \frac{B_k}{k!} \).
4. Another important example from the original work of Hirzebruch is given by the χ_y-genus. It corresponds to the series

$$f(x) = \frac{1 - e^{-x(1+y)}}{1 + ye^{-x(1+y)}},$$

where y is a parameter. Setting $y = -1$, $y = 0$ and $y = 1$ we get $c_n[M]$, the Todd genus $td[M]$ and the L-genus $L[M] = \text{sign}(M)$ respectively.

If M is a complex manifold then the value $\chi_y[M]$ can be calculated in terms of the Euler characteristics of Dolbeault complexes on M, see [187].

When working with graded rings, it is convenient to consider the 2-parameter homogeneous genus corresponding to

$$f(x) = \frac{e^{ax} - e^{bx}}{ae^{bx} - be^{ax}}, \quad \deg a = \deg b = 2.$$

It is called the $\chi_{a,b}$-genus. The corresponding formal group law is given by (E.4). One gets the original χ_y-genus by setting $a = y$, $b = -1$.

A multiplicative generalised cohomology theory $X \mapsto h^*(X)$ is said to be complex oriented if it has a choice of Euler class (i.e. an orientation) for every complex vector bundle. Such a choice is determined by a choice of an element $c_1^h \in \tilde{h}^2(\mathbb{C}P^\infty)$ which restricts to 1 under the composite map

$$\tilde{h}^2(\mathbb{C}P^\infty) \to \tilde{h}^2(\mathbb{C}P^1) \cong h^0(pt).$$

This element c_1^h is called the universal first Chern class in the theory h^*. For a complex line bundle ξ over X classified by a map $f: X \to BU(1)$, the first Chern class is defined by

$$c_1^h(\xi) = f^*(c_1^h) \in \tilde{h}^2(X).$$

The Chern classes c_i, $i = 1, \ldots, n$, are defined for every complex n-plane bundle using the standard technique [102], with the Euler class being the top Chern class.

Examples of complex oriented theories include ordinary cohomology, complex K-theory and complex cobordism.

Given two complex line bundles ξ and η over X, the expression of $c_1^h(\xi \otimes \eta) \in \tilde{h}^2(X)$ in terms of the Chern classes $u = c_1^h(\xi)$ and $v = c_1^h(\eta)$ is a formal group law $F_h(u, v)$ over the ring $h^*(pt)$, as in the case of complex cobordism (see (E.13)). The formal group law Ω_U is classified by a ring map $\Omega_U = U^*(pt) \to h^*(pt)$ (a genus), which extends to a transformation of cohomology theories $U^*(X) \to h^*(X)$.

We therefore obtain that a complex oriented cohomology theory h^* defines a formal group law F_h and the corresponding genus $\Omega_U \to h^*(pt)$.

On the other hand, given a ring homomorphism $\varphi: \Omega_U \to R$ (a genus), one may try to define a (complex oriented) cohomology theory by setting $h^*_\varphi(X) = U^*(X) \otimes_{\Omega_U} R$, with the Ω_U-module structure on R given by φ. The functor $X \mapsto h^*_\varphi(X)$ is homotopy invariant and has the excision property. However, tensoring with R may fail to preserve exact sequences. A classical result, due to Landweber, gives a criterion for $h^*_\varphi(X)$ to be a cohomology theory. It uses the notion of a regular sequence (see Definition A.3.1). To state this result, consider the formal group in cobordism F_U, and for any integer n define the n-th power in F_U as the power series

$$(n)(u) = nu + \cdots$$
given by \(|n|(u) = F_U([n - 1](u), u)\) and \(|0|(u) = 0.\) For each prime \(p,\)
write
\[
[p](u) = pu + \cdots + t_1 u^p + \cdots + t_n u^{p^n} + \cdots,
\]
where \(t_i \in \Omega_U^{-2(p^n - 1)}.

Theorem E.3.10 (Landweber Exact Functor Theorem \([226]\)). *In order that \(U_*(X) \otimes_{\Omega_U} R\) be a homology theory, it suffices that for each prime \(p,\) the sequence \(p, t_1, \ldots, t_n, \ldots\) of elements in \(\Omega_U\) be \(R\)-regular. That is, it is required that the multiplication by \(p\) on \(R,\) and by \(t_n\) on \(R/(pR + \cdots + t_{n-1}R)\) for \(n \geq 1,\) be injective.

Remark. Theorem E.3.10 is stated for homology rather than cohomology. Under the same condition, \(U^*(X) \otimes_{\Omega_U} R\) would be a cohomology theory on the category of finite cell complexes. To remove this restriction, one can consider the cohomology theory defined by the same representing spectrum as the homology theory \(U_*(X) \otimes_{\Omega_U} R.\) Keeping this in mind, we shall switch between homology and cohomology theories without further notice.

If the condition of Theorem E.3.10 is satisfied for the homomorphism \(\Omega_U \rightarrow h_*(pt)\) coming from a complex oriented homology theory \(h_*\), the theory \(h_*\) is called *Landweber exact*. In this case, the uniqueness theorem for homology theories implies that the canonical transformation
\[
U_*(X) \otimes_{\Omega_U} h_*(pt) \rightarrow h_*(X)
\]
is an equivalence of homology theories.

We give examples of application of Theorem E.3.10, following \([226]\).

Example E.3.11.
1. The *Thom homomorphism* \(U^* \rightarrow H^*\) from complex cobordism to ordinary cohomology gives rise to the *augmentation genus* \(\varepsilon: \Omega_U \rightarrow \mathbb{Z}\) sending each element of nonzero degree in \(\Omega_U\) to zero. It corresponds to the series \(f(x) = x.\) However, the ordinary cohomology theory \(H^*\) is not Landweber exact, because \(\varepsilon(t_1) = 0\) and hence the multiplication by \(t_1\) is zero on \(\mathbb{Z}/p\mathbb{Z}.\) Indeed, it is known that the identity \(U_*(X) \otimes_{\Omega_U} \mathbb{Z} = H_*(X)\) does not hold in general.

On the other hand, the rational cohomology theory \(H^*(X; \mathbb{Q})\) is Landweber exact; we have \(U_*(X) \otimes_{\Omega_U} \mathbb{Q} = H_*(X; \mathbb{Q}),\) where \(\mathbb{Q}\) is an \(\Omega_U\)-module via the composition \(\Omega_U \rightarrow \mathbb{Z} \rightarrow \mathbb{Q}.\) The reason is that \(\mathbb{Q}/p\mathbb{Q} = 0.\)

2. The Todd genus \(\text{td}: \Omega_U \rightarrow \mathbb{Z}\) defines a \(\Omega_U\)-module structure on \(\mathbb{Z},\) which we denote by \(\mathbb{Z}_{\text{td}}\) for emphasis. The \(p\)-th power in the corresponding formal group law is given by
\[
[p]_{\text{td}}(u) = 1 - (1 - u)^p = pu + \cdots + u^p,
\]
so \(t_1\) acts identically on \(\mathbb{Z}_{\text{td}}/p\mathbb{Z}_{\text{td}}.\) Hence, Theorem E.3.10 applies, and we get a cohomology theory \(U^*(X) \otimes_{\Omega_U} \mathbb{Z}_{\text{td}}.\)

On the other hand, there is a natural transformation
\[
\mu_c: U^*(X) \rightarrow K^*(X)
\]
from complex cobordism to complex \(K\)-theory (graded \(\mod 2),\) due to Conner and Floyd \([102]\). Since \(\mu_c: \Omega_U \rightarrow K^*(pt)\) is the same as the Todd genus, \((E.20)\) defines another transformation
\[
\bar{\mu}_c: U^*(X) \otimes_{\Omega_U} \mathbb{Z}_{\text{td}} \rightarrow K^*(X)
\]
which is an equivalence by the uniqueness theorem for cohomology theories. We therefore obtain the celebrated result of Conner and Floyd [102] which states that complex cobordism determines complex K-theory.

We can also obtain \mathbb{Z}-graded K-theory (which remembers the dimension of complex line bundles) by a similar procedure. Then we have $K^*(pt) = \mathbb{Z}[\beta, \beta^{-1}]$ where $\beta = 1 - \eta$ as the Bott element in $\tilde{K}^0(\mathbb{C}P^1) = K^{-2}(pt)$, deg $\beta = -2$. We view $\mathbb{Z}[\beta, \beta^{-1}]$ as a graded Ω_U-module via the homomorphism $[M^{2n}] \to \text{td} [M^{2n}] \beta^n$. The corresponding formal group law is the one described in Example E.1.2, so its p-th power is given by

$$[p]_\beta(u) = pu + \cdots + \beta^{p-1}u^p.$$

Theorem E.3.10 applies because the multiplication by β^{p-1} is an isomorphism $\mathbb{Z}_p[\beta, \beta^{-1}] \to \mathbb{Z}_p[\beta, \beta^{-1}]$, and $\mathbb{Z}_p[\beta, \beta^{-1}]/(\beta^{p-1}) = 0$. We therefore obtain an equivalence of cohomology theories

$$U^*(X) \otimes_{\Omega_U} \mathbb{Z}[\beta, \beta^{-1}] \cong K^*(X).$$

The conclusion is that both \mathbb{Z}_2- and \mathbb{Z}-graded versions of complex K-theory are Landweber exact.

Exercises.

E.3.12. The value of the $\chi_{a,b}$-genus on complex projective space is given by

$$\chi_{a,b}[\mathbb{C}P^n] = (-1)^n(a^n + a^{n-1}b + \cdots + ab^{n-1} + b^n).$$

E.3.13. The connective version of complex K-theory has $K^*(pt) = \mathbb{Z}[\beta]$. Is it Landweber exact?

E.4. Hirzebruch genera (oriented case)

A parallel theory of genera exists for oriented manifolds. These genera are homomorphisms $\Omega^{SO} \to R$ from the oriented bordism ring, and the Hirzebruch construction expresses genera over torsion-free rings via Pontryagin characteristic classes (which replace the Chern classes).

Once again we assume that the ring R does not have additive torsion. Then every oriented R-genus φ is determined by the corresponding homomorphism $\Omega^{SO} \otimes \mathbb{Q} \to R \otimes \mathbb{Q}$, which we also denote by φ. Such genera are in one-to-one correspondence with odd power series $f(x) = x + \cdots \in R \otimes \mathbb{Q}[[x]]$. This correspondence is established by the same formula (E.16) giving the value of φ on an oriented manifold M. This time each $\frac{x_i}{f(x)}$ is an even series and the formal variables x_1, \ldots, x_n are related to the Pontryagin classes of TM via the identity

$$1 + p_1 + \cdots + p_n = (1 + x_1^2) \cdots (1 + x_n^2).$$

The Pontryagin classes of a real bundle ξ are defined by $p_k(\xi) = (-1)^k c_{2k}(\xi_C)$.

An oriented genus $\varphi: \Omega^{SO} \to R$ defines a complex genus given by the composition $\Omega^U \to \Omega^{SO} \xrightarrow{\varphi} R$ with the homomorphism $\Omega^U \to \Omega^{SO}$ forgetting the stably complex structure. Since $\Omega^U \to \Omega^{SO}$ is onto modulo torsion, and R is assumed to be torsion-free, one loses no information by passing from an oriented genus to a complex one. On the other hand, a complex genus $\varphi: \Omega^U \to R$ factors through an oriented genus $\Omega^{SO} \to R$ whenever its defining series $f(x)$ is odd.
EXAMPLE E.4.1.
1. The signature (the L-genus, see Example E.3.9) corresponds to the odd power series $f(x) = \tanh(x)$, so it is an oriented genus.

On the other hand, the Euler characteristic is not an oriented genus (as it is not an oriented cobordism invariant), although it coincides with the complex genus c_n for almost complex manifolds. The series $\frac{1}{1+x}$ corresponding to c_n is not odd.

2. The oriented genus corresponding to the elliptic sine $f(x) = \text{sn}(x)$ (see Example E.1.4) is called the elliptic genus. Its value on a manifold M is a function in two complex variables δ, ε. The degeneration of $\text{sn}(x)$ corresponding to $\delta = \varepsilon = 1$ is the hyperbolic tangent $\tanh(x)$, so the corresponding genus is the signature. The degeneration corresponding to $\varepsilon = 1$ is $\frac{\sinh(x)}{x}$ where $\alpha = \sqrt{2}$. The corresponding oriented genus is known as the A-genus.

By viewing δ, ε as formal variables of degrees $\text{deg} \delta = -4$, $\text{deg} \varepsilon = -8$, one obtains the universal elliptic genus

(E.21) \[\varphi_{\text{ell}} : \Omega^{SO} \to \mathbb{Z}[\frac{1}{2}] [\delta, \varepsilon] \]

which corresponding formal group law is given by (E.7).

The elliptic genus was introduced by Ochanine [294]. It provided a remarkable connection between algebraic topology and the theory of elliptic functions and modular forms, and has been studied intensively by topologists (see [227], [188]).

3. Consider the standard Weierstrass model $y^2 = 4x^3 - g_2 x - g_3$ of an elliptic curve. The Weierstrass \wp-function is a unique doubly periodic meromorphic function $\wp(x)$ with a pole of second order at zero such that the function $\wp(x) - \frac{1}{x}$ is regular near $x = 0$ and vanishes at $x = 0$. It satisfies the differential equation

\[(\wp'(x))^2 = 4\wp^3(x) - g_2 \wp(x) - g_3.\]

The first terms in the expansion of $\wp(x)$ near $x = 0$ are as follows:

\[\wp(x) = \frac{1}{x^2} + \frac{1}{20}g_2 x^2 + \frac{1}{28}g_3 x^4 + \cdots\]

The Weierstrass σ-function is defined as a unique entire function on \mathbb{C} such that

\[\wp(x) = -\frac{d^2 \ln \sigma(x)}{dx^2}, \quad \sigma(-x) = -\sigma(x), \quad \sigma'(0) = 1.\]

The expansion of $\sigma(x)$ at $x = 0$ is an odd power series whose coefficients are homogeneous polynomials in g_2, g_3 with $\text{deg} g_2 = -8$, $\text{deg} g_3 = -12$:

(E.22) \[\sigma(x) = x - \frac{1}{2}g_2 x^5 - 6g_3 x^7 + \frac{9}{4}g_2^2 x^9 - 18g_2g_3 x^{11} + \cdots. \]

Furthermore, $\sigma(x)$ is a Hurwitz series over $\mathbb{Z}[\frac{1}{2}, 2g_3]$.

The Witten genus $\varphi_W : \Omega^{SO} \to \mathbb{Q}[g_2, g_3]$ is defined as the oriented Hirzebruch genus corresponding to the odd series $\sigma(x)$. Its origins lie in the work of Witten [365] on string theory. We refer to [227], [188] and [118] for an account of remarkable topological and modular properties of the Witten genus.

The Landweber Exact Functor Theorem (Theorem E.3.10) applies to complex genera. Nevertheless, the following observation can be used to convert oriented genera into complex ones. The forgetful transformation of cobordism theories $U^*(X) \to SO^*(X)$ induces an equivalence of cohomology theories

(E.23) \[U^*(X) \otimes_{U} SO^*(X)[\frac{1}{2}] \cong SO^*(X)[\frac{1}{2}] \]
We give two examples of cohomology theories arising from oriented genera below, following \cite{Krichever:1987} and \cite{Krichever:1989}.

Example E.4.2.

1. The \(\mathcal{L}\)-genus (the signature) defines a \(\Omega_{\mathcal{U}}\)- and \(\Omega_{SO}\)-module structure on \(\mathbb{Z}[\frac{1}{2}]\) via the composite map

\[
\Omega_{\mathcal{U}} \rightarrow \Omega_{SO} \xrightarrow{L} \mathbb{Z} \rightarrow \mathbb{Z}[\frac{1}{2}].
\]

Theorem E.3.10 applies (an exercise), giving a cohomology theory \(\mathcal{U}^*(X) \otimes_{\Omega_{\mathcal{U}}} \mathbb{Z}[\frac{1}{2}]\). By (E.23), it is equivalent to the cohomology theory \(SO^*(X) \otimes_{\Omega_{SO}} \mathbb{Z}[\frac{1}{2}]\).

On the other hand, there is a natural transformation

\[
\mu_x : SO^*(X) \rightarrow KO^*(X)[\frac{1}{2}]
\]

from oriented cobordism to real \(K\)-theory, due to Sullivan (cf. \cite{Krichever:1987}). Its becomes the signature when \(X = pt\), so we obtain an equivalence of cohomology theories

\[
SO^*(X) \otimes_{\Omega_{SO}} \mathbb{Z}[\frac{1}{2}] \xrightarrow{\sim} KO^*(X)[\frac{1}{2}]
\]

as in Example E.3.11.2. This proves the result of Sullivan that oriented cobordism determines \(KO\)-theory for finite complexes in the world of odd primes.

2. Denote \(M = \mathbb{Z}[\frac{1}{2}][\delta, \varepsilon]\). Each of the following three localisations of the universal elliptic genus (E.21)

\[
\Omega_{\mathcal{U}} \rightarrow M[\delta^{-1}], \quad \Omega_{\mathcal{U}} \rightarrow M[\varepsilon^{-1}], \quad \Omega_{\mathcal{U}} \rightarrow M[(\delta^2 - \varepsilon)^{-1}]
\]

satisfy the condition of Theorem E.3.10 (see \cite{Sullivan:1977} or \cite{Krichever:1989}), and therefore define respectively three cohomology theories

\[
M^*(X)[\delta^{-1}] = U^*(X) \otimes_{\Omega_{\mathcal{U}}} M[\delta^{-1}] = SO^*(X) \otimes_{\Omega_{SO}} M[\delta^{-1}],
\]

\[
M^*(X)[\varepsilon^{-1}] = U^*(X) \otimes_{\Omega_{\mathcal{U}}} M[\varepsilon^{-1}] = SO^*(X) \otimes_{\Omega_{SO}} M[\varepsilon^{-1}],
\]

\[
M^*(X)[(\delta^2 - \varepsilon)^{-1}] = U^*(X) \otimes_{\Omega_{\mathcal{U}}} M[(\delta^2 - \varepsilon)^{-1}] = SO^*(X) \otimes_{\Omega_{SO}} M[(\delta^2 - \varepsilon)^{-1}],
\]

called **elliptic cohomology**.

Exercises.

E.4.3. Let \(F_W\) be the formal group law corresponding to the Witten genus (with exponential \(f(x) = \sigma(x)\)). Show that

\[
F_W(u, v)F_W(u, -v) = u^2C(v) - v^2C(u)
\]

for some even power series \(C(u) = 1 + \sum_{k \geq 1} c_k u^{2k}\).

E.4.4. The universal formal group law of the form (E.25) has exponential \(f(x) = \sigma(x)e^{\gamma x^2}\), where \(\gamma\) is another free parameter.

E.4.5. The Landweber Exact Functor Theorem applies to the genus (E.24).

E.5. Krichever genus

In \cite{Krichever:1987} Krichever introduced a genus depending on 4 parameters and proved its important rigidity property on \(SU\)-manifolds. The classical genera as well as Ochanine’s elliptic genus appear as particular cases of the Krichever genus. We define this genus and describe the corresponding formal group law here, whereas implications for the rigidity phenomena are discussed in Section 9.7 of the main part of the book.
Let \(\Gamma \) be an elliptic curve given in the Weierstrass form \(y^2 = 4x^3 - g_2x - g_3 \) with periods \(2\omega_1, 2\omega_2 \). In his study of integrable nonlinear equations Krichever \[222\], considered the elliptic *Baker-Akhiezer function*

(E.26) \[
\Phi(x, z) = \frac{\sigma(z - x)}{\sigma(z)} e^{\zeta(z)x},
\]

where \(\sigma(z) \) is the Weierstrass sigma-function, and \(\zeta(z) = (\ln \sigma(z))' \).

\(\Phi(x, z) \) is doubly periodic as a function in \(z \) and has an exponential singularity at \(z = 0 \). On the other hand, as a function in \(x \), it is holomorphic everywhere except the lattice points \(2n_1\omega_1 + 2n_2\omega_2 \), where it has simple poles, and \(\Phi(x, z) \) has residue 1 at \(x = 0 \). Its translation properties with respect to \(x \) follow from the corresponding properties of the \(\sigma \)-function and are given by

\[
\Phi(x + 2\omega_l, z) = e^{2\zeta(z)\omega_l - 2\zeta(\omega_l)z} \Phi(x, z), \quad l = 1, 2, 3, \quad \omega_3 = \omega_1 + \omega_2.
\]

Furthermore, the Baker-Akhiezer function satisfies the *Lame equation*

\[
\left(\frac{\partial}{\partial x^2} - 2\varphi(x) \right) \Phi(x, z) = \varphi(z) \Phi(x, z).
\]

These properties imply the following functional equations for \(\Phi(x, z) \) \[223\]:

(E.27) \[
\Phi(x + y)(\varphi(y) - \varphi(x)) = \Phi'(x)\Phi(y) - \Phi'(y)\Phi(x),
\]

(E.28) \[
\Phi(x, z)\Phi(-x, z) = -\Phi(x, z)\Phi(x, -z) = \varphi(z) - \varphi(x).
\]

The *Krichever genus* is the Hirzebruch genus corresponding to the series

\[
f(x) = \frac{e^{\alpha x}}{\Phi(x, z)}.
\]

It depends on four parameters \(z, \alpha, \omega_1, \omega_2 \).

As a particular case one obtains Ochanine’s elliptic genus (see Example E.4.1.2):

Proposition E.5.1. The Krichever genus with parameters \(\alpha = 0 \) and \(z = \omega_i \) is the elliptic genus corresponding to \(\delta = \frac{1}{2} \sum_{i \neq j} (\varphi(\omega_i) - \varphi(\omega_j)) \) and \(\varepsilon = \prod_{i \neq j} (\varphi(\omega_i) - \varphi(\omega_j)) \), for any \(l = 1, 2, 3 \).

Proof. This is a standard calculation with elliptic functions. Using the fact that \(\Phi(x, z) \) is doubly periodic in \(z \) and equation (E.28), we obtain

\[
\Phi(x, \omega_1)^2 = \Phi(x, \omega_1)\Phi(x, -\omega_1) = \varphi(x) - \varphi(\omega_1).
\]

Let \(l = 1 \) for simplicity, and set \(e_i = \varphi(\omega_i), \ i = 1, 2, 3 \). Denote

\[
f(x) = \frac{1}{\Phi(x, \omega_1)};
\]

we need to show that \(f(x) = \text{sn}(x) \) with the given \(\delta, \varepsilon \). Differentiating the identity

\[
f^2(x) = \frac{1}{\varphi(x) - e_1};
\]

we obtain

\[
2f'(x)f(x) = -\frac{\varphi'(x)}{(\varphi(x) - e_1)^2}.
\]

Using the equation \((\varphi'(x))^2 = 4(\varphi(x) - e_1)(\varphi(x) - e_2)(\varphi(x) - e_3) \) we calculate

\[
f(x)^2(f'(x))^2 = \frac{(\varphi(x) - e_1)(\varphi(x) - e_2)(\varphi(x) - e_3)}{(\varphi(x) - e_1)^4},
\]
which implies that

\[
(f'(x))^2 = \frac{(\nu(x) - e_2)(\nu(x) - e_3)}{(\nu(x) - e_1)^2} = f^4(x)\left(\frac{1}{f^4(x)} + e_1 - e_2\right)\left(\frac{1}{f^4(x)} + e_1 - e_3\right)
\]

\[
= 1 - 2\delta f^2(x) + \varepsilon f^4(x),
\]

where \(2\delta = (e_2 - e_1) + (e_3 - e_1)\) and \(\varepsilon = (e_2 - e_1)(e_3 - e_1)\), as needed. \(\square\)

Other classical genera (the signature, the Todd genus, the \(\chi_{a,b}\)-genus and the \(A\)-genus) are also obtained as various degenerations of the Krichever genus [224].

Recall that a Hurwitz series over \(R\) is a formal power series of the form \(h(x) = x + \sum_{i \geq 1} h_i \frac{x^{i+1}}{(i+1)!}\) with \(h_i \in R\).

Proposition E.5.2. The function \(f(x) = \frac{e^{ax}}{\Phi(x,z)}\) is a Hurwitz series over the ring \(\mathbb{Z}[b_1, b_2, b_3, b_4]\), where \(b_1 = a\), \(b_2 = \nu(z)\), \(b_3 = \nu'(z)\), \(b_4 = \frac{2}{\nu}\).

Proof. In this proof, we extend the definition of a Hurwitz series to include series of the form \(h(x) = \sum_{i \geq 1} h_i \frac{x^{i+1}}{(i+1)!}\) (not necessarily starting from \(x\)), where \(h_{-1}\) is a unit of \(R\). Then a product of Hurwitz series is a Hurwitz series, and the exponential of a Hurwitz series with \(h_{-1} = 0\) is a Hurwitz series. We have

\[
f(x) = e^{ax}\sigma(x)\frac{\sigma(z)}{\sigma(z-x)}e^{-\zeta(z)x}.
\]

The function \(e^{ax}\) is a Hurwitz series over \(\mathbb{Z}[a]\). The sigma-function \(\sigma(x)\) is a Hurwitz series over \(\mathbb{Z}\left[\frac{a}{2}, 2g_3\right]\), so it is also a Hurwitz series over \(\mathbb{Z}[b_2, b_3, b_4]\), because of the equation \((\nu'(z))^2 = 4\nu^3(z) - g_2\nu(z) - g_3\). Let the function \(b(x)\) be defined by

\[
e^{b(x)} = \frac{\sigma(z)}{\sigma(z-x)}e^{-\zeta(z)x}.
\]

We have

\[
b(x) = \ln \sigma(z) - \ln \sigma(z-x) - \zeta(z)x
\]

\[
= \sum_{i \geq 2} (-1)^i \left(-\frac{d^i \ln \sigma(z)}{dz^i}\right) \frac{x^i}{i!} = \sum_{k \geq 1} (-1)^{k-1} \nu^{(k-1)}(z) \frac{x^{k+1}}{(k+1)!}.
\]

Now, differentiating the equation \((\nu'(z))^2 = 4\nu^3(z) - g_2\nu(z) - g_3\) we obtain \(\nu''(z) = 6\nu^2(z) - \frac{g_2}{2}\), which implies that each higher derivative \(\nu^{(k-1)}(z), k \geq 1\), can be expressed as a polynomial with integer coefficients in \(\nu(z), \nu'(z), \frac{g_2}{2}\). It follows that \(b(x)\) is a Hurwitz series over \(\mathbb{Z}[b_2, b_3, b_4]\). Hence, so is \(e^{b(x)}\). \(\square\)

Remark. The argument above can be used to write the first terms in the expansion of \(f(x) = \frac{e^{ax}}{\Phi(x,z)}\):

\[
\text{E.29) } f(x) = x + 2\alpha \frac{a^2}{2!} + 3(\alpha^2 + \nu(z)) \frac{a^3}{3!} + 4(\alpha^3 - \nu'(z) + 3\alpha\nu(z)) \frac{a^4}{4!}
\]

\[
+ (5\alpha^4 + 30\alpha^2 \nu(z) + 45\nu^2(z) - 20\alpha\nu'(z) - 3g_2) \frac{a^5}{5!} + \cdots.
\]

The formal group law corresponding to the Krichever genus is described by the following result of Buchstaber:
Proposition E.5.3 ([55]). The addition law for the function \(f(x) = \frac{e^{\alpha x}}{\Phi(x,z)} \) is
\[
f(x + y) = \frac{f(x)^2 b(y) - f(y)^2 b(x)}{f(x)f''(y) - f(y)f''(x)},
\]
where \(b(x) = -\frac{f''(x)}{f(x)} \).

Proof. If \(f(x) \) satisfies the equation above, then \(\tilde{f}(x) = f(x)e^{\alpha x} \) also satisfies the same equation. We can therefore assume that \(f(x) = \frac{1}{\Phi(x,z)} \).

By (E.27),
\[
\frac{1}{\Phi(x + y)} = \frac{\Phi(y) - \Phi(x)}{\Phi'(x)\Phi(y) - \Phi(y)\Phi(x)}.
\]
By (E.28), \(\Phi(y) - \Phi(x) = (\Phi(z) - \Phi(x)) - (\Phi(z) - \Phi(y)) = \Phi(x)\Phi(-x) - \Phi(y)\Phi(-y) \). Substituting this expression together with \(\Phi(x) = \frac{1}{f(x)} \) and \(\Phi'(x) = -\frac{f''(x)}{f(x)} \) into the equation above, we obtain
\[
f(x + y) = \frac{\frac{\Phi(y) - \Phi(x)}{\Phi'(x)} - \frac{\Phi(y) - \Phi(x)}{\Phi'(y)} + \frac{\Phi(y) - \Phi(x)}{f(x)} - \frac{\Phi(y) - \Phi(x)}{f(y)}}{\frac{\Phi'(x)}{f(x)} - \frac{\Phi'(y)}{f(y)}},
\]
which is equivalent to the required formula.

Another result of Buchstaber describes the formal group law corresponding to the Krizhever genus as a universal formal group law of special form:

Theorem E.5.4 ([55]). Consider formal group laws of the form
\[
F(u, v) = \frac{u^2 A(v) - v^2 A(u)}{u B(v) - v B(u)}
\]
over a torsion-free ring \(R \), where \(A(u), B(u) \in R[[u]] \) with \(A(0) = B(0) = 1 \). Then the exponential of \(F \) is given by the series \(f(x) = \frac{e^{\alpha x}}{\Phi(x,z)} \). The parameter \(\alpha \) and the parameters \(\psi(z), \psi'(z), \eta_2 \) of the Baker–Akheizer function \(\Phi(x,z) \) can be expressed via the coefficients of the series \(A(u), B(u) \) using the expansion (E.29).

Proof of Theorem E.5.4. The exponential \(f(x) = x + \sum_{i \geq 1} f_i x^{i+1} \) of the formal group law (E.30) satisfies the functional equation
\[
f(x + y) = \frac{f(x)^2 \xi(y) - f(y)^2 \xi(x)}{f(x)\eta(y) - f(y)\eta(x)},
\]
where \(\xi(x) = A(f(x)) \) and \(\eta(x) = B(f(x)) \). If \(f(x) \) satisfies (E.31), then the series \(f(x)e^{\alpha x} \) satisfies (E.31) with \(\xi(x) = \xi(x)e^{2\alpha x} \) and \(\eta(x) = \eta(x)e^{\alpha x} \). We can therefore assume that \(f_1 = 0 \); then we need to show that \(f(x) = \frac{1}{\Phi(x,z)} \).

The coefficient of \(x^2 \) in \(\xi(x) \) and the coefficient of \(x \) in \(\eta(x) \) do not show up in (E.31), so we can set \(\xi'''(0) = \eta'(0) = 0 \).

Rewriting (E.31) as
\[
f(x + y) = f(x + y, f(x)) = f(x)^2 \xi(y) - f(y)^2 \xi(x)
\]
and calculating the coefficients of \(y, y^2 \) and \(y^3 \), we get
\[
f(x)(\xi(x) - f'(x) + \xi'(0)f(x)) = 0,
\]
\[
\xi(x) = f'(x)\eta(x) + \frac{1}{2} f(x)f''(x) + \frac{1}{2} \eta''(0)f(x)^2 = 0,
\]
\[
f(x)f'''(x) - 3\eta(x)f''(x) - 6f_2\eta(x)f(x) + 3\eta''(0)f(x)f'(x) + (\eta'''(0) - \xi'''(0))f(x)^2 = 0.
\]
The first equation gives \(\eta(x) = f'(x) - \xi'(0)f(x) \). By the assumption, \(\eta'(0) = f''(0) = 0 \), hence, \(\xi'(0) = 0 \). Therefore, the equations above can be written as

\[
\eta(x) = f'(x), \\
\xi(x) = f'(x)^2 - \frac{1}{2}f(x)f''(x) - 3f_2f(x)^2, \\
f(x)f'''(x) - 3f'(x)f''(x) + 12f_2f(x)f'(x) + 12f_3f(x)^2 = 0.
\]

We set \(h(x) = \frac{f'(x)}{f(x)} \); then \(f''(x) = h'(x) + h(x)^2 \), \(f'''(x) = h''(x) + 3h(x)h'(x) + h(x)^3 \).

Then the third equation above takes the form

\[
(E.32) \quad h''(x) = 2h(x)^3 - 12f_2h(x) - 12f_3.
\]

Writing the expansion of \(h(x) \) up to \(x^2 \),

\[
h(x) = \frac{x}{2} + 2f_2x + 3f_3x^2 + \cdots,
\]

we observe that (E.32) has a unique formal solution of this form (i.e. the coefficients \(f_i, i > 3 \), are determined uniquely from \(f_2 \) and \(f_3 \)). Now we claim that this unique solution is given by

\[
h(x) = \zeta(x) + \zeta(x - z) - \zeta(z), \quad f_2 = \frac{\sigma_2(x)}{2}, \quad f_3 = -\frac{\sigma_3(x)}{6}.
\]

Indeed, using the well-known identities

\[
\zeta(x + y) - \zeta(x) - \zeta(y) = \frac{y}{\wp(x) - \wp(y)}, \quad \zeta(x + y) - \zeta(x) - \zeta(y))^2 = \wp(x + y) + \wp(x) + \wp(y)
\]

for the Weierstrass functions (see e.g. [366, §20.41, §20.53]), we obtain

\[
(E.33) \quad h(x) = \frac{1}{2}\frac{\wp'(z) + \wp'(x)}{\wp(z) - \wp(x)} = \frac{1}{2}\frac{\wp'(z) + \wp'(z - x)}{\wp(z) - \wp(z - x)},
\]

\[
h^2(x) = \wp(x) + \wp(z - x) + \wp(z),
\]

\[
h''(x) = -\wp'(x) - \wp'(z - x).
\]

Substituting these expressions together with the values of \(f_2, f_3 \) into (E.32) we get

\[-\wp'(x) - \wp'(z - x) = \frac{\wp'(z) + \wp'(x)}{\wp(z) - \wp(x)} \left(\wp(x) + \wp(z - x) - 2\wp(z) \right) + 2\wp'(z),
\]

which is equivalent to the second identity in the first line of (E.33).

It remains to rewrite \(h(x) \) in terms of the \(\sigma \)-function:

\[
\frac{4}{d} \ln f(x) = h(x) = \frac{4}{d} \ln \sigma(x) - \frac{4}{d} \ln \sigma(z - x) - \frac{4}{d} \ln (\zeta(z)x) = \frac{4}{d} \ln \frac{\sigma(x)}{\sigma(z - x)} e^{-\zeta(z)x}.
\]

It follows that \(f(x) = c\frac{\sigma(x)}{\sigma(z - x)} e^{-\zeta(z)x} \), and \(f'(0) = 1 \) implies that \(c = \sigma(z) \). \(\square \)

Example E.5.5.

1. Setting \(A(u) = C(u)^2 - c_1uC(u) \) and \(B(u) = C(u) \) in (E.30) for a series \(C(u) = 1 + \sum_{k \geq 1} c_ku^k \), we obtain \(F_A(u, v) = uC(v) + vC(u) - c_1uv \), which is the Abel formal group law of Example E.1.7.

2. Setting \(A(u) = 1 + (a + b)u \) and \(B(u) = 1 + abu^2 \) in (E.30), we obtain \(F_{a,b}(u, v) = \frac{\wp(u + abu^2)}{1 - abu^2} \), which is the formal group law for the \(\chi_{a,b} \)-genus, see Example E.1.3.

3. Setting \(A(u) = 1 \) in (E.30), we obtain the elliptic formal group law (E.7), where \(B(u) = \sqrt{1 - 2du^2 + \varepsilon u^4} \); compare Exercise E.1.11.
Remark. The coefficient of u^2 in $A(u)$ and the coefficient of u in $B(u)$ do not appear in (E.30), and therefore can be chosen arbitrarily. The associativity relations for $F(u, v)$ force the other coefficients of $A(u)$ and $B(u)$ to be expressible via the four first coefficients of the exponential $f(x) = x + \sum_{i \geq 1} f_i x^{i+1}$.

We define the universal Krichever genus
\[
\varphi_K : \Omega \rightarrow R_K
\]
as the homomorphism classifying the formal group law of the form (E.30), where the coefficients of the series $A(u)$ and $B(u)$ are viewed as formal variables. The ring R_K is therefore can be identified with the integral polynomial ring on these variables modulo the associativity relations. Theorem E.5.4 implies that φ_K, viewed as a Hirzebruch genus, corresponds to the series $f(x) = \frac{x^\alpha}{\varphi(x, z)}$, where $\alpha, \varphi(z), \varphi'(z), g_2$ are formal variables. Furthermore,
\[
R_K \otimes Q \cong Q[b_1, b_2, b_3, b_4], \quad b_1 = \alpha, \quad b_2 = \varphi(z), \quad b_3 = \varphi'(z), \quad b_4 = \frac{g_2}{2},\n\]
where $\deg \alpha = -2$, $\deg \varphi(z) = -4$, $\deg \varphi'(z) = -6$ and $\deg g_2 = -8$.

Proposition E.5.6. The universal Krichever genus $\varphi_K : \Omega \rightarrow R_K$ induces an isomorphism of graded abelian groups in dimensions < 10.

Proof. By definition, φ_K is epimorphic in all dimensions. Using the expansion (E.29) we observe that $\varphi_K \otimes Q : \Omega \otimes Q \rightarrow Q[b_1, b_2, b_3, b_4]$ is monomorphic in dimensions < 10, so φ_K is also monomorphic because Ω^U is torsion-free.

The formal group law of Theorem E.5.4 has been studied in [62] and [19].

Exercises.

E.5.7. In the notation of Theorem E.5.4, the series $B(u)$ and the logarithm $g(u)$ of the formal group law F are related by the identity $B(u) = \frac{1}{g'(u)}$. Give an expression of $A(u)$ in terms of $g'(u)$ and $g''(u)$.

E.5.8. Calculate the values of the Krichever genus φ_K on $\mathbb{C}P^i$ for $1 \leq i \leq 4$ via the parameters $\alpha, \varphi(z), \varphi'(z), g_2$.

E.5.9. In terms of the universal parameters $\alpha, \varphi(z), \varphi'(z), g_2$ of the Krichever genus, the elliptic genus is specified by $\alpha = \varphi'(z) = 0$.

E.5.10. Deduce the following form of the addition law for $f(x) = \frac{1}{\varphi(x, z)}$:
\[
f(x + y) = f(x) f'(y) + f(y) f'(x) - \frac{1}{2} f(x) f(y) \frac{f(x) f''(y) - f(y) f''(x)}{f(x) f'(y) - f(y) f'(x)}.
\]
(Hint: plug the values of $\eta(x), \xi(x)$ from the proof of Theorem E.5.4 into (E.31).)

E.5.11. Show that the $\chi_{a,b}$-genus is a particular case of the Krichever genus, and express the corresponding parameters $\alpha, \varphi(z), \varphi'(z), g_2$ via a, b. Observe that the curve $y^2 = 4x^3 - g_2 x - g_3$ is degenerate in this case. (Hint: use Example E.5.5.2.)
Bibliography

BIBLIOGRAPHY

Index

Action (of group), 436
 almost free, 171, 436
 effective, 436
 free, 436
 proper, 203, 204, 224, 229
 semisimple, 301, 436
 transitive, 436
Acyclic (space), 272, 427
Adjoint functor, 445, 447
Affine equivalence, 8
A-genus, 401, 492
Alexander duality, 75, 122
Algebra, 403
 bigraded, 404
 connected, 403
 exterior, 404
 finitely generated, 403
 graded, 403
 graded-commutative, 403
 free, 404
 polynomial, 403
 multigraded, 404
 with straightening law (ASL), 124
Almost complex structure, 440
 associated with omniorientation, 255
 integrable, 440
 G-invariant, 389
 T-invariant, 255, 262, 442
Ample divisor, 195
Annihilator (of module), 416
Arrangement (of subspaces), 103
 coordinate, 165
Aspherical (space), 243, 245
Associated vector, 42
 vector of, 60
 generalised, 33
Associated polyhedron (of intersection of quadrics), 212
Atiyah–Hirzebruch formula, 381
Augmentation, 426
Augmentation genus, 490
Axial function, 275, 312
n-independent, 312
2-independent, 312
Baker–Akhiezer function, 491
Bar construction, 454
Barnette sphere, 79, 80, 192, 290
Barycentre (of simplex), 72
Barycentric subdivision
 of polytope, 73
 of simplicial complex, 72
 of simplicial poset, 91, 130
Base (of Schlegel diagram), 78
Based map, 421
Based space, 421
Basepoint, 421
Basis (of free module), 404
Bernoulli number, 488
Betti numbers (algebraic), 105, 128, 182
Betti numbers (topological), 428
 bigraded, 151
Bidegree, 401
Bistellar equivalence, 87
Bistellar move, 86
Blow-down, 318
Blow-up
 of T-graph, 318
 of T-manifold, 283
Boolean lattice, 89
Bordism, 459
 complex, 463
 oriented, 463
 unoriented, 459
Borel construction, 437
Borel spectral sequence, 236
Bott manifold, 296
 generalised, 308
Bott–Taubes polytope, 45
Bott tower, 296
 generalised, 308
 real, 309
 topologically trivial, 296
Boundary, 405
Bounded flag, 292
Bounded flag manifold, 292, 297, 369
Bouquet (of spaces), 146, 421
Brückner sphere, 83
Buchsbaum complex, 120

515
Buchstaber invariant, 173
Building set, 37
graphical, 42
Calabi–Eckmann manifold, 238
Catalan number, 42
Categorical quotient, 196
CAT(0) inequality, 82
Cell complex, 422
Cellular approximation, 422
Cellular chain, 429
Cellular map, 422
Chain complex, 405, 448, 451
augmented, 426, 427
Chain homotopy, 406
Characteristic function, 252
directed, 255
Characteristic matrix, 255
refined, 256
Characteristic number, 470
Characteristic pair, 253
combinatorial, 255
equivalence of, 254, 255
Characteristic submanifold, 252, 269, 287
Charney–Davis Conjecture, 46, 82
Chern class, 469, 485
in complex cobordism, 470, 483
in equivariant cohomology, 439
in generalized cohomology theory, 489
of stably complex manifold, 470
Chern–Dold character, 372
Chern number, 470, 485
Chow ring, 193
CHP (covering homotopy property), 423
Classifying functor (algebraic), 454
Classifying space, 437
Clique, 73, 352
Cobar construction, 343, 454
Cobordism, 461, 462
complex, 464
equivariant
geometric, 365, 367
homotopic, 365, 366
unoriented, 463
Coboundary, 405
Cochain complex, 405, 448, 451
Cochain homotopy, 405
Cocycle, 405
Cofibrant (object, replacement, approximation), 446
Cofibration, 424
in model category, 446
Cofibre, 424
Coformality, 350, 419, 454
Cohen–Macaulay
algebra, 416
module, 416
simplicial complex, 114
simplicial poset, 129
Cohomological rigidity, 309
Cohomology
 cellular, 430
 of cochain complex, 405
 simplicial, 426
 reduced, 426
 singular, 428
Cohomology product, 430
Cohomology product length, 164
Colimit, 181, 189, 322, 445
Combinatorial equivalence
 of polyhedral complexes, 78
 of polytopes, 8
Combinatorial neighbourhood, 71
Complex orientable map, 464
Complete intersection algebra, 119
Cone
 over simplicial complex, 69
 over space, 425
Cone [convex polyhedral], 64
dual, 64
rational, 64
regular, 64
simplicial, 64
strongly convex, 64
Connected sum
 of manifolds, 352, 467
 equivariant, 359
 of simple polytopes, 12, 23
 of simplicial complexes, 70
 of stably complex manifolds, 468
Connection (on graph), 312
Contractible (space), 421
Contraction (of building set), 38
Coordinate subspace, 165
Coproduct, 445
Core (of simplicial complex), 71
Cross-polytope, 10
Cube, 8
 standard, 8
topological, 91
Cubical complex
 abstract, 91
 polyhedral, 92
topological, 91
Cubical subdivision, 96
Cup product, 430
CW complex, 422
Cycle, 405
Cyclohedron, 45
Davis–Januszkiewicz space, 149, 324
Deformation retraction, 166
Degree [grading], 403
 external, 407
 internal, 407
total, 407
Dehn–Sommerville relations
 for polytopes, 21, 25
 for simplicial complexes, 121
 for simplicial posets, 135
 for triangulated manifolds, 136
Depth (of module), 414
Derived functor, 447
Diagonal approximation, 153
Diagonal map, 430
Diagram (functor), 445
Diagram category, 445
Differential graded algebra (dg-algebra, dga), 406, 417, 448, 451
 formal, 419
 homologically connected, 417
 minimal, 418
 simply connected, 418
Differential graded coalgebra, 448, 451
Differential graded Lie algebra, 448, 453
Dimension
 of module, 436
 of polytope, 7
 of simplicial complex, 67
 of simplicial poset, 89
Discriminant (of elliptic curve), 481
Dolbeault cohomology, 233
Dolbeault complex, 233, 489
Double (simplicial), 174
Edge, 8
Eilenberg–Mac Lane space, 422
Eilenberg–Moore spectral sequence, 435
Elliptic cohomology, 493
Elliptic curve
 Jacobi model, 481
 Weierstrass model, 492
Elliptic formal group law, 481
 universal, 481
Elliptic genus, 372, 400, 492, 494
 universal, 492
Elliptic sine, 401, 481, 494
Equivariant bundle, 438
Equivariant characteristic class, 438
Equivariant cohomology, 439
 of T-graph, 313
Equivariant map, 436
Euler class
 in complex cobordism, 467, 483
 in equivariant cobordism, 368
 in equivariant cohomology, 269, 439
 in generalised cohomology theory, 489
Euler formula, 21
Euler characteristic, 262, 385, 426, 427, 488
Eulerian poset, 135
Exact sequence, 405
 of fibration, 423
 of pull, 428
Excision, 428
Exponential (of formal group law), 480
Ext (functor), 412
Face
 of cubical complex, 91
 of cone, 64
 of manifold with corners, 249, 271
 of manifold with faces, 249
 of polytope, 7
 of simplicial complex, 67
 of simplicial poset, 90
 of T-graph, 313
Face category (of simplicial complex), 90, 222, 445
Face coalgebra, 343
Face poset, 8
Face ring (Stanley–Reisner ring)
 of manifold with corners, 273
 of simple polytope, 100
 of simplicial complex, 100
 exterior, 150
 of simplicial poset, 123
Facet, 8, 249, 313
Face truncation, 11
Fan, 64, 80
 complete, 64
 normal, 65
 rational, 64
 regular, 64
 simplicial, 64
Fat wedge, 146
Fibrant (object, replacement, approximation), 446
Fibration, 423
 in model category, 446
 locally trivial, 421
Fibre bundle, 421
 associated (with G-space), 437
Fixed point, 436
Fixed point data, 376
Flag complex (simplicial), 73, 347
Flag manifold, 390, 471
Flagtope (flag polytope), 46, 74
Folding map, 90
Formal group law, 479
 Abel, 492
 elliptic, 481
 linearisable, 479
 of geometric cobordisms, 483
 universal, 481
Formality
 in model category, 449
 integral, 324
 of dg-algebra, 419
 of space 177, 323, 327, 433
F-polynomial (of polytope), 20
Frölicher spectral sequence, 236
Full subcomplex (of simplicial complex), 71
Fundamental group, 421
Fundamental homology class, 164
f-vector (face vector)
of cubical complex, 92
of polytope, 20
of simplicial complex, 68
of simplicial poset, 125
Gal Conjecture, 47, 82
Gale diagram, 17, 216, 244
combinatorial, 19, 215
Gale duality, 16, 212, 218, 220, 235
Gale transform, 16
Ganea's Theorem, 151
g-conjecture, 81, 121
Generalised (co)homology theory, 460, complex oriented, 489
multiplicative, 463
Generalised Lower Bound Conjecture (GLBC), 28, 196
Generating series
of face polynomials, 59
of polytopes, 57
Genus, 372, 484
equivariant, 373
fibre multiplicative, 374
oriented, 491
rigid, 374
universal, 487
Geometric cobordism, 467
Geometric quotient, 197
Geometric realisation
of cubical complex, 92
of simplicial complex, 67
of simplicial set, 448
Ghost vertex, 67
GKM-graph, 311
GKM-manifold, 311
Golod (ring, simplicial complex), 180, 352
Gorenstein, Gorenstein*
simplicial complex, 120, 162
simplicial poset, 333
Goresky–MacPherson formula, 169
Graded Lie algebra, 453
Graph
chordal, 353
of polytope, 15
simple, 15, 42
Graph-association, 42
Graph product, 348
Grassmannian, 196, 390
g-theorem, 29, 195
g-vector
of polytope, 20
of simplicial complex, 68
Gysin homomorphism
in equivariant cohomology, 269, 440
in cobordism, 368, 466
Gysin–Thom isomorphism, 377, 469
Half-smash product (left, right), 330
Hamiltonian action, 203, 301
Hamiltonian-minimal submanifold, 239
Hamiltonian vector field, 239
Hard Lefschetz Theorem, 30, 195
Hauptvermutung, 84
Heisenberg group, 434
HEP (homotopy extension property), 424
Hermitian quadric, 205, 210
Hilton–Milnor Theorem, 146
Hirzebruch genus, 372, 486
equivariant, 373
fibre multiplicative, 374
oriented, 491
rigid, 372, 374, 393
universal, 487
Hirzebruch surface, 190
H-minimal submanifold, 239
Hodge algebra, 124
Hodge number, 233
Homological dimension (of module), 407
Homology
cellular, 429
d of chain complex, 405
simplicial, 426
reduced, 426
singular, 427
of pair, 428
reduced, 427
Homology polytope, 272
Homology sphere, 84
Homotopy, 421
Homotopy category (of model category), 447
Homotopy cofibre, 425
Homotopy colimit, 322, 456
Homotopy equivalence, 421
Homotopy fibre, 424
Homotopy group, 421
Homotopy Lie algebra, 350, 431, 449
Homotopy limit, 322, 456
Homotopy quotient, 437
Homotopy type, 421
Hopf Conjecture, 82
Hopf equation, 58
Hopf line bundle, 437
Hopf manifold, 230
H-polynomial (of polytope), 20
loop (homogeneous system of parameters), 416
 in face rings, 113, 125
Hurewicz homomorphism, 431, 473
 in complex cobordism, 472
Hurwitz series, 480, 495
h-vector
of polytope, 20
of simplicial complex, 68
of simplicial poset, 125
Hyperplane cut, 11
Intersection homology, 30, 195
Intersection of quadrics, 205, 210
non-degenerate (transverse), 210
Intersection poset (of arrangement), 109
Isotropy representation, 389, 438
Join (least common upper bound), 90, 122
Join (operation)
of simplicial complexes, 69
of simplicial posets, 181
of spaces, 330
Klein bottle, 242
Koszul algebra, 411
Koszul complex, 411
Koszul resolution, 408
Krichner genus, 397, 494
universal, 397, 498
K-theory, 490
Lagrangian immersion, 239
Lagrangian submanifold, 239
Landweber Exact Functor Theorem, 490
Latching functor, 450
Lattice, 188, 218
Lefschetz pair, 142
Left lifting property, 424
Leibniz identity, 406
L-genus (signature), 488
Limit (of diagram), 445
Link (in simplicial complex), 70, 130
Link (of intersection of quadrics), 215
Linkage, 138
Localisation formula, 376
Locally standard (torus action), 248, 265
Logarithm (of formal group law), 480
Loop functor (algebraic), 454
Loop space, 330, 423
Lower Bound Theorem (LBT), 28
Isop (linear system of parameters), 436
in face rings, 113, 125
integral, 114
LVM-manifold, 221, 231
Manifold with corners, 141, 249
face-acyclic, 272
nice, 249
Manifold with faces, 219
Mapping cone, 425
Mapping cylinder, 425
Massey product, 177, 419
indecomposable, 180
indeterminacy of, 420
trivial (vanishing), 420
Matching functor, 450
Mayer–Vietoris sequence, 428
Maximal action (of torus), 231
Meet (greatest common lower bound), 90,
122
Milnor hypersurface, 356, 475
Minimal basis (of graded module), 408
Minimal model
of dg-algebra, 418, 449
of space, 433
Minimal submanifold, 239
Minkowski sum, 33
Missing face, 73, 100, 340, 317
Model (of dg-algebra), 418
Model category, 446
Module, 403
finitely generated, 403
free, 404
graded, 403
projective, 404
Moment-angle complex, 139, 181
real, 142, 157
Moment-angle manifold, 142, 205
polytopal, 142, 214
non-formal, 178
Moment map, 203, 217
proper, 204, 218
Monoid, 144
Monomial ideal, 100
Moore loops, 339
Morava K-theory, 479
Multi-fan, 247, 388
Multidegree, 404
Multigrading, 108, 156, 182
M-vector, 29
Nerve complex, 68, 199
Nested set, 39
Nestohedron, 39
Nilpotent space, 432
Non-PL sphere, 81, 84
Normal complex structure, 441
Octahedron, 10
Ommorientation, 255, 269, 287, 317
Opposite category, 445
Orbifold, 191
Orbit (of group action), 436
Orbit space, 436
Order complex (of poset), 73
Overcategory, 446
Partition, 471
Path space, 423
Pair (of spaces), 421
Perfect elimination order, 353
Permutohedron, 36
Pfaffian group, 203
PL map, 69
homeomorphism, 69
PL manifold, 84
PL sphere, 77
Poincaré algebra, 120
Poincaré–Atiyah duality, 463, 466
Poincaré duality, 429
Poincaré duality space, 162
Poincaré series 349, 407
of face ring, 102
Poincaré sphere, 84
Pointed map, 421
Pointed space, 421
Polar set, 9
Polyhedral complex, 78
Polyhedral product, 143, 181, 321
Polyhedral smash product, 334
Polyhedron (convex), 7
Delzant, 218
Polyhedron (simplicial complex), 67
Polytopal sphere, 80
Polytope
combinatorial, 8
convex, 7
cyclic, 13
Delzant, 65, 192, 207
dual, 10
generic, 9
lattice, 191
neighbourly, 13, 23
nonrational, 193
polar, 9
regular, 10
self-dual, 10
simple, 9, 54
simplicial, 9, 54
stacked, 28
triangle-free, 51
Polytope algebra, 30
Pontryagin algebra, 339
Pontryagin class, 491
Pontryagin number, 470
Pontryagin product, 431
Pontryagin–Thom map, 440, 460
Poset (partially ordered set), 8
Poset category, 445
Positive orthant, 9, 15, 130
Presentation (of a polytope by inequalities), 8
generic, 9
irredundant, 8
rational, 218
Primitive (lattice vector), 64
Principal bundle, 436
Principal minor (of matrix), 299
Product
of building sets, 55
of polytopes, 11
Product (categorical), 445
Products (in cobordism), 465
Projective dimension (of module), 407
Projectivisation (of vector bundle), 469
Pseudomanifold, 160, 315
orientable, 161
Pullback, 445
Pushout, 445
Quadratic algebra, 100, 347
Quasi-isomorphism, 406, 418, 448
Quasitoric manifold, 252, 326, 384
almost complex structure on, 262
canonical smooth structure on, 257
equivalence of, 254, 255
Quillen pair (of functors), 417
Quotient space, 436
Rank (of free module), 404
Rank function, 89
Rational equivalence, 432
Rational homotopy type, 432
Ray’s basis, 370
Redundant inequality, 8
Reedy category, 450, 456
Regular sequence, 413
Regular subdivision, 129
Regular value (of moment map), 204, 218
Reinsner Theorem, 115
Resolution (of module)
free, 407
minimal, 408
projective, 407
Restriction (of a building set), 31
Restriction map
algebraic, 102, 113, 124, 274
in equivariant cohomology, 267
Right-angled Artin group, 349
Right-angled Coexter group, 349
Right lifting property, 424
Rigidity equation, 393
Ring of polytopes, 52
Root (of representation), 389
complementary, 389
of almost complex structure, 389
Samelson product, 340, 431, 449
higher, 340
Schlegel diagram, 78
Seger embedding, 475
Sierpinski fibration, 233
Sign (of fixed point), 250, 384, 442
Signature, 385, 488
Simplex, 8, 90
abstract, 67
regular, 8
standard, 8
Simplicial cell complex, 90
Simplicial chain, 425
Simplicial cochain, 426
INDEX

Simplicial complex
abstract, 67
Alexander dual, 74
gometric, 67
Golod, 352
neighbourly, 149
pure, 67
shifted, 180, 333
Simplicial manifold, 84
Simplicial map, 68
isomorphism, 68
nondegenerate, 68
Simplicial object (in category), 445
Simplicial poset, 89
dual (of manifold with corners), 273
Simplicial set, 445
Simplicial sphere, 77
Simplicial subdivision, 69
Simplicial wedge, 174
Singular chain, 427
of pair, 428
Singular cochain, 428
Skeleton (of cell complex), 422
See Theorem, 438
Small category, 445
Small cover, 242, 291, 309
Smash product, 330, 421
Special unitary (SU-) manifold, 397
Stabiliser (of group action), 436
Stably complex structure, 258, 441
T-invariant, 442
Stanley–Reisner ideal, 100
Star, 70, 130, 226
Starshaped sphere, 80, 229
Stasheff polytope, 33
Stationary subgroup, 436
Stéhínot Problem, 83
Stéhínot Theorem, 79, 80
Stellahedron, 45
Stellar subdivision
of simplicial complex, 86
of simplicial poset, 130
Stiefel–Whitney class, 470
in equivariant cohomology, 439
Stiefel–Whitney number, 470
Straightening relation, 124
Subcomplex of simplicial complex, 67
Sullivan algebra (of piecewise polynomial
differential forms), 432
Supporting hyperplane, 7
Suspension
of module, 404
of simplicial complex, 69
of space, 425
Suspension isomorphism, 429
Symplectic manifold, 203
Symplectic reduction, 204, 217, 245
Symplectic quotient, 204, 217
Syzygy, 407
Tangent bundle along the fibres, 258, 438
Tangential representation, 438
Tautological line bundle, 437
over projectivisation, 469
Tensor product (of modules), 404
T-graph (torus graph), 312
Thom class, 275, 313, 440
Thom isomorphism, 473
Thom space, 400
T-manifold, 247
Todd genus (td), 386, 488
Topological fan, 288
complete, 288
Topological monoid, 448
Topological toric manifold, 286
Tor (functor), 409
Tor-algebra, 105
Toral rank, 171
Toric manifold, 193, 245, 290
Hamiltonian, 207, 220
over cube, 296
projective, 193
Toric space, 3, 138
Toric variety, 30, 187
affine, 188
projective, 191
real, 242, 291
Torus
algebraic, 187
standard, 138
Torus manifold, 265
Triangulated manifold, 84
Triangulated sphere, 27, 77
flag, 82
Triangulation, 63, 69
neighbourly, 83, 149
Tropical geometry, 291
Truncated cube, 48
Truncated simplex, 46
Truncation, 11
Type (of S^1-action), 397
Undercategory, 446
Underlying simplicial complex (of fan), 69
Unipotent (upper triangular matrix), 299
Universal G-space (universal bundle), 437
Universal toric genus, 365, 368
Upper Bound Theorem (UBT), 26
Vector bundle, 437
Vertex
of polytope, 8
of simplicial complex, 67
of simplicial poset, 89
Vertex truncation (vt), 11
Volume polynomial, 30
Weak equivalence
 of dg-algebras, 418
 in model category, 446
Wedge (of spaces), 146, 421
 of spheres, 180, 329, 353
Weierstrass \wp-function, 395, 492
Weierstrass σ-function, 492, 494
Weight (of torus representation), 258, 384, 442
Weight graph, 310
Weight lattice (of torus), 218, 442
Weyl group, 388
Whitehead product, 430
 higher, 340
Witten genus, 492
Yoneda algebra, 454
Zigzag (of maps), 418
Zonotope, 37
γ-polynomial, 24
γ-vector
 of polytope, 24
 of triangulated sphere, 82
$\chi_{a,b}$-genus, 381, 489
χ_y-genus, 381, 489
2r-truncated cube, 48
24-cell, 10
5-lemma, 406