Hamiltonian GKM Spaces and

Their Moment Graphs

Catalin Zara
University of Massachusetts
Boston, USA

Outline

- Hamiltonian GKM Spaces
- Moment Graphs
- Abstract GKM Graphs
- Abstract cohomology ring
- Open Questions

(Complex) Hamiltonian GKM Spaces

- $M^{2 d}$: compact, connected, Kaehler manifold of (real) dimension $2 d$
ω : Kaehler form
- $T=\left(S^{1}\right)^{n}$: compact torus, with Lie algebra
$\mathfrak{t}=\operatorname{Lie}(T) \simeq \mathbb{R}^{n}$
- $T \times M \rightarrow M$: holomorphic action, such that
$T \times(M, \omega) \rightarrow(M, \omega)$: Hamiltonian action
$\Phi: M \rightarrow \mathfrak{t}^{*} \simeq \mathbb{R}^{n}$, moment map
- The action is a GKM action if
- M^{T} is finite
- For every p in M^{T}, the isotropy representation

$$
T \times T_{p} M \rightarrow T_{p} M
$$

has mutually non-collinear (complex) weights.

- Examples:
T^{n} action on \mathbb{C}^{n} induces effective GKM action of T^{n-1} on

$$
\mathcal{F} l_{[n]}\left(\mathbb{C}^{n}\right), G r(k, n, \mathbb{C}), \mathbb{C} P^{n-1}
$$

Moment Graph

- $\Gamma=(V, E)$: regular, d-valent graph
$V \longleftrightarrow M^{T}$, fixed points
$E \longleftrightarrow$ nontrivial connected components of X^{K} for codimension one subtori $K \subset T$.
- $\alpha: E \rightarrow \mathfrak{t}^{*}$ axial function
$p \in M^{T},\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ weights of $T \times T_{p} M \rightarrow T_{p} M$
$K_{j}=\exp \left(\operatorname{ker}\left(\alpha_{j}\right)\right) \subset T$
X_{j} connected component of $M^{K_{j}}$ with $p \in X_{j}$
e_{j} edge of Γ corresponding to X_{j}

$$
\alpha\left(p, e_{j}\right)=\alpha_{j}
$$

- $\Gamma(M, T)=(\Gamma, \alpha):$ moment graph

1-skeleton of the moment polytope (+ internal edges)

- $H_{\alpha}^{*}(\Gamma) \subset \operatorname{Maps}\left(V, \mathbb{S}\left(\mathfrak{t}^{*}\right)\right), f \in H_{\alpha}^{*}(\Gamma)$ iff

$$
f(p) \equiv f(q) \quad \bmod \alpha_{p q} \text { in } \mathbb{S}\left(\mathfrak{t}^{*}\right)
$$

for every $e=(p, q) \in E$.
$H_{T}^{*}(p t, \mathbb{R})=\mathbb{S}\left(\mathfrak{t}^{*}\right)$, symmetric algebra of \mathfrak{t}^{*}

$$
H_{\alpha}^{k}(\Gamma)=H_{\alpha}\left(\ulcorner) \cap \operatorname{Maps}\left(V, \mathbb{S}^{k}\left(\mathfrak{t}^{*}\right)\right) \quad, \quad H_{\alpha}^{*}(\Gamma)=\bigoplus_{k \geqslant 0} H_{\alpha}^{k}(\Gamma)\right.
$$

$$
H_{\alpha}^{k}\left(\ulcorner) \simeq H_{T}^{2 k}(M, \mathbb{R})\right.
$$

The Complex Grassmannian $\operatorname{Gr}(k, n)$

- $T^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$,

$$
e^{i \xi} \cdot\left(z_{1}, . ., z_{n}\right)=\left(e^{i \xi_{1}} z_{1}, \ldots, e^{i \xi_{n}} z_{n}\right)
$$

induces an action on $\operatorname{Gr}(k, n)\left(k\right.$-planes in $\left.\mathbb{C}^{n}\right)$.
Diagonal S^{1} acts trivially

$$
T^{n}=S^{1} \times T^{n-1}
$$

\Longrightarrow effective action of T^{n-1}

$$
T^{n-1} \times G r(k, n) \rightarrow G r(k, n)
$$

- $\Gamma=J(n, k)$, the Johnson graph.
- Vertices: $S \subset\{1, . ., n\}$, with $\# S=k$.

$$
v_{S}=\bigoplus_{j \in S} \mathbb{C} \varepsilon_{j}
$$

- Edges: $S_{1} S_{2}$, if $\#\left(S_{1} \cap S_{2}\right)=k-1$.

$$
\left\{W \mid v_{S_{1}} \cap v_{S_{2}} \subset W \subset v_{S_{1}}+v_{S_{2}}\right\} \simeq \mathbb{C} P^{1}
$$

- Labels: If $S_{2}=S_{1} \backslash\{i\} \cup\{j\}$, then

$$
\alpha_{S_{1} S_{2}}=x_{j}-x_{i}
$$

Example: $J(4,2)$

(12)
$\tau \in H_{\alpha}^{1}(\Gamma)$

$$
\begin{aligned}
(12) \longrightarrow 0 & (13) \longrightarrow x_{2}-x_{3} \\
(23) \longrightarrow x_{1}-x_{3} & (24) \longrightarrow x_{1}-x_{4} \\
(14) \longrightarrow x_{2}-x_{4} & (34) \longrightarrow x_{1}+x_{2}-x_{3}-x_{4}
\end{aligned}
$$

Generates a parallel redrawing (deformation) that fixes the vertex (12).

Abstract GKM graphs

\mathfrak{t} : n -dimensional real vector space, \mathfrak{t}^{*} : dual space
Definition: An abstract GKM graph is a pair (Γ, α), consisting of a regular d-valent graph Γ and a labeling of oriented edges $\alpha: E \rightarrow \mathfrak{t}^{*}$, such that:

1. For every vertex p, the vectors

$$
\alpha_{e} ; e \in E_{p}=\{e: i(e)=p\}
$$

are pairwise linearly independent;
2. For every oriented edge $e \in E, \alpha_{\bar{e}}=-\alpha_{e}$
3. For every oriented edge $e=(p, q)$, there exists a bijection $\theta_{e}: E_{p} \rightarrow E_{q}$ such that, for every $e^{\prime} \in E_{p}$,

$$
\alpha_{\theta_{e}\left(e^{\prime}\right)}-\alpha_{e^{\prime}}=c_{e, e^{\prime}} \alpha_{e}
$$

for some $c_{e, e^{\prime}} \in \mathbb{R}$.

4. (Effectiveness condition): There exists a vertex p such that $\left\{\alpha_{e}: e \in E_{p}\right\}$ spans \mathfrak{t}^{*}.

Betti Numbers

Let $\xi \in \mathfrak{t}$, generic: $\alpha_{e}(\xi) \neq 0$, for all edges e.
Definition. The ξ-index of $p \in V$ is

$$
\operatorname{ind}_{\xi}(p)=\#\left\{e \in E_{p}: \alpha_{e}(\xi)<0\right\} .
$$

Definition. The $j^{\text {th }}$ Betti number of (Γ, α) is

$$
\beta_{j}(\Gamma)=\#\left\{p \in V: \operatorname{ind}_{\xi}(p)=j\right\} .
$$

Theorem. $\beta_{j}(\Gamma)$ doesn't depend on ξ.
"Poincaré duality": Change ξ to $-\xi \Longrightarrow \beta_{d-j}=\beta_{j}$
Theorem. If $(\Gamma, \alpha)=\Gamma(M, T)$, then

$$
\beta_{j}(\Gamma)=\beta_{2 j}(M) .
$$

Definition. Morse function compatible with ξ :
$\Phi: V \rightarrow \mathbb{R}$ such that if $e=(p, q) \in E$, then
$\Phi(q)-\Phi(p)$ and $\alpha_{p q}(\xi)$ have the same sign.
Morse order:
[If $e=(p, q)$, then $p \prec q$ if $\alpha_{p q}(\xi)>0$] + transitive closure.
For $p \in V$, define the flow-up

$$
F_{p}=\{q \in V \mid p \preccurlyeq q\}
$$

F_{p} is not necessarily a regular subgraph!

Indices:

(12)	(13)	(23)	(14)	(24)	(34)
0	1	2	2	3	4

Betti Numbers:

$$
\begin{aligned}
& \beta_{0}(\Gamma)=1 \\
& \beta_{1}(\Gamma)=2 \\
& \beta_{2}(\Gamma)=2 \\
& \beta_{3}(\Gamma)=1
\end{aligned}
$$

The Ring $H_{\alpha}^{*}(\Gamma)$

(Γ, α) abstract GKM graph
$H_{\alpha}^{*}(\Gamma) \subset \operatorname{Maps}\left(V, \mathbb{S}\left(\mathfrak{t}^{*}\right), f \in H_{\alpha}^{*}(\Gamma)\right.$ iff

$$
f(q) \equiv f(p) \quad \bmod \alpha_{e}
$$

for every $e=(p, q) \in E$.

An Estimate

$\Phi: V \rightarrow \mathbb{R}$, Morse function.
For $c \in \mathbb{R}$, let

$$
H_{c}(\Gamma)=\left\{f \in H_{\alpha}^{*}(\ulcorner) \mid f(q)=0 \text { if } \Phi(q)<c\}\right.
$$

Let $c<c^{\prime}$ such that $\Phi^{-1}\left(\left[c, c^{\prime}\right]\right)=\{p\}$ and $c<\Phi(p)<c^{\prime}$

Let

$$
H_{\alpha}^{*}(\Gamma) \rightarrow \mathbb{S}\left(\mathfrak{t}^{*}\right) \quad, \quad f \rightarrow f(p)
$$

$$
\operatorname{ind}(p)=j
$$

e_{1}, \ldots, e_{j} point down from p

$$
\alpha_{s}=\alpha\left(e_{s}\right) \in \mathfrak{t}^{*}, \text { for } s=1, \ldots, j
$$

Then

$$
0 \rightarrow H_{c^{\prime}}^{k}\left(\ulcorner) \rightarrow H_{c}^{k}(\Gamma) \xrightarrow{f \rightarrow f(p)} \alpha_{1} \cdots \alpha_{j} \mathbb{S}^{k-j}\left(\mathfrak{t}^{*}\right)\right.
$$

is exact, so

$$
\operatorname{dim}_{\mathbb{R}} H_{c}^{k}(\Gamma)-\operatorname{dim}_{\mathbb{R}} H_{c^{\prime}}^{k}(\Gamma) \leqslant \operatorname{dim}_{\mathbb{R}} \mathbb{S}^{k-i n d(p)}\left(\mathfrak{t}^{*}\right)
$$

Add all:

$$
\begin{aligned}
& \begin{aligned}
\operatorname{dim}_{\mathbb{R}} H_{\alpha}^{k}(\Gamma) & \leqslant \sum_{p \in V} \operatorname{dim}_{\mathbb{R}} \mathbb{S}^{k-i n d(p)}\left(\mathfrak{t}^{*}\right) \\
& =\sum_{j=0}^{d} \beta_{j}(\Gamma) \operatorname{dim}_{\mathbb{R}} \mathbb{S}^{k-j}\left(\mathfrak{t}^{*}\right)
\end{aligned} \\
& \operatorname{dim}_{\mathbb{R}} H_{\alpha}^{k}(\Gamma) \leqslant \sum_{j=0}^{d} \beta_{j}(\Gamma) \operatorname{dim}_{\mathbb{R}} \mathbb{S}^{k-j}\left(\mathfrak{t}^{*}\right)
\end{aligned}
$$

Proof of GKM

$$
\begin{gathered}
i_{T}: M^{T} \rightarrow M \quad \Rightarrow \quad i_{T}^{*}: H_{T}^{*}(M) \rightarrow H_{T}^{*}\left(M^{T}\right) \\
H_{T}^{*}\left(M^{T}\right) \simeq \operatorname{Maps}\left(M^{T}, \mathbb{S}\left(\mathfrak{t}^{*}\right)\right)
\end{gathered}
$$

If $K \subset T$ is a codimension one subtorus,

$$
\begin{aligned}
& \text { M } \\
& H_{T}^{*}(M) \\
& i_{T} \nearrow \quad \backslash i_{K} \quad \Longrightarrow \quad i_{T}^{*} \swarrow \quad \searrow i_{K}^{*} \\
& M^{T} \xrightarrow{i_{T, K}} M^{K} \quad H_{T}^{*}\left(M^{T}\right) \stackrel{i_{T, K}^{*}}{\leftrightarrows} H_{T}^{*}\left(M^{K}\right) \\
& i_{T}^{*} H_{T}^{*}(M) \subseteq \bigcap_{\substack{K \subset T \\
\operatorname{codim}=1}} i_{T, K}^{*} H_{T}^{*}\left(M^{K}\right) \\
& H_{T}^{*}(M) \quad \hookrightarrow \quad H_{\alpha}^{*}(\Gamma) \\
& H_{T}^{*}(M) \simeq H^{*}(M) \otimes \mathbb{S}\left(\mathfrak{t}^{*}\right) \quad \text { as } \mathbb{S}\left(\mathfrak{t}^{*}\right)-\text { modules } \\
& \operatorname{dim}_{\mathbb{R}} H_{T}^{2 k}(M)=\sum_{j=0}^{k} \beta_{2 j}(M) \operatorname{dim}_{\mathbb{R}} \mathbb{S}^{k-j}\left(\mathfrak{t}^{*}\right) \\
& \operatorname{dim}_{\mathbb{R}} H_{\alpha}^{k}(\Gamma) \leqslant \sum_{j=0}^{k} \beta_{j}\left(\ulcorner) \operatorname{dim}_{\mathbb{R}} \mathbb{S}^{k-j}\left(\mathfrak{t}^{*}\right)\right.
\end{aligned}
$$

Conclusion:

$$
H_{T}^{*}(M) \simeq H_{\alpha}^{*}(\Gamma)
$$

Generators for $H_{\alpha}^{*}(\Gamma)$

Definition. Let $p \in V$. A map $\tau_{p}: V \rightarrow \mathbb{S}\left(\mathfrak{t}^{*}\right)$ is a special class at p if

- $\tau_{p} \in H_{\alpha}^{*}(\Gamma)$ is homogeneous of degree $\operatorname{ind}(p)$.
- τ_{p} is supported on F_{p}.
- τ_{p} is normalized by

$$
\tau_{p}(p)=\prod_{\alpha_{p, e}(\xi)<0}\left(-\alpha_{p, e}\right)
$$

Theorem. For $p \in V$, there exists a special class at p. Step 1:

$$
H_{c}^{k}(\Gamma) \rightarrow\left[\alpha_{1} \cdots \alpha_{i n d(p)}\right] \mathbb{S}^{k-i n d(p)}\left(\mathfrak{t}^{*}\right) \quad, \quad f \rightarrow f(p)
$$

is surjective \Longrightarrow first and last condition
Step 2: clean outside the flow-up \Longrightarrow second condition.

Remark: τ_{p} may not be unique, but a canonical choice can be made using local indices.

Morse Interpolation

- Construct $\tau_{p} \Leftrightarrow$ Construct $\tau_{p}(q)$ for all $q \succcurlyeq p$

Interpolation problem

- Result:

$$
\tau_{p}(q)=\sum_{\gamma} E_{\gamma}(x, \xi)
$$

where

- γ : ascending chain from p to q.
- E_{γ} : rational expression in $x_{1}, x_{2}, . ., x_{n}, \xi_{1}, . ., \xi_{n}$.
- Limit trick:

$$
\begin{gathered}
\tilde{E}_{\gamma}(x)=\lim _{\xi_{1} \rightarrow 0}\left(\lim _{\xi_{2} \rightarrow 0}\left(\ldots\left(\lim _{\xi_{n} \rightarrow 0} E_{\gamma}(x, \xi)\right) \ldots\right)\right) \\
\tau_{p}(q)=\sum_{\gamma} \tilde{E}_{\gamma}(x)
\end{gathered}
$$

where

- γ : "relevant" ascending chain from p to q.
- \tilde{E}_{γ} : rational expression in $x_{1}, x_{2}, . ., x_{n}$.

Open Questions

- Realization: Which abstract GKM graphs are the GKM graphs of Hamiltonian GKM spaces? What additional conditions determine uniqueness?
- Multiplicative Structure: The multiplicative structure of $H_{T}^{*}(M)$ can be determined from the GKM graph. Combinatorial formulas for products of generators?
- Parallel Redrawings: For many GKM graphs, the dimension of the space of parallel redrawings is

$$
\beta_{1}+n \beta_{0} .
$$

The formula is true not just for graphs coming from Hamiltonian GKM spaces, but for a larger class of abstract GKM graphs. How large?

- Extension: Let (Γ, α) be an abstract GKM graph, with axial function $\alpha: E \rightarrow \mathfrak{t}^{*}$. An extension of α is a map $\alpha^{\prime}: E \rightarrow \mathfrak{k}^{*}$ such that $\alpha=\pi \circ \alpha^{\prime}$, where $\pi: \mathfrak{k}^{*} \rightarrow \mathfrak{t}^{*}$ is a projection. Does there exist an extension of α to an effective axial function α^{\prime} ?

Necessary Conditions

- Integrality conditions:
$\alpha: E \rightarrow \mathbb{Z}^{n}$ (modulo a linear isomorphism $\mathfrak{t}^{*} \rightarrow \mathbb{R}^{n}$)
$c_{e, e^{\prime}} \in \mathbb{Z}$
- Embedded as the one-skeleton of a convex polytope + internal edges
Complexity: $k=d-n \geqslant 0$

Results

- $k=0$: Complete classification of symplectic toric manifolds by their moment polytopes (no internal edges) - Delzant polytopes
- $k=1$: Local/global classification of complexity one spaces
- $k>1$: ??

Methods

- Glue.
- Cut.
- Deform.
- Extend.

Deformations

Parallel redrawing:

Cross-section:

More parallel redrawing $\Longrightarrow 2$ types of collapsing Front/back triangular face

Extensions:

$(\Gamma, \alpha):$ abstract one skeleton, $\alpha: E \rightarrow \mathfrak{t}^{*}$
$\mathfrak{k} \subset \mathfrak{t}$ subspace $\Longrightarrow \mathfrak{t}^{*} \rightarrow \mathfrak{k}^{*} \Longrightarrow$
$\left(\Gamma, \alpha^{\prime}\right)$: abstract one skeleton, $\alpha^{\prime}: E \rightarrow(\mathfrak{k})^{*}$
Question: Given $\left(\Gamma, \alpha^{\prime}\right)$, with $\alpha^{\prime}: E \rightarrow \mathfrak{k}^{*}$, does there exist an effective extension $\alpha: E \rightarrow \mathfrak{t}^{*}$ for $\mathfrak{k}^{*} \varsubsetneqq \mathfrak{t}^{*}$?

Effect: Complexity decreases by $\operatorname{dim}_{\mathbb{R}} \mathfrak{t}^{*}-\operatorname{dim}_{\mathbb{R}} \mathfrak{k}^{*}$.

