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ABSTRACT. We derive an Ehrhart function for symbols
from the Euler-MacLaurin formula with remainder.

The material in today’s lecture consists of 18-th century math-
ematics. In fact, outside of some basic facts in the theory of an-
alytic functions of one complex variable, facts which were well
understood by the first half of the 19-th century, everything I
have to say would be comprehensible to an 18-th century math-
ematician. Nevertheless, we were very surprised by the result
when we discovered it a few weeks ago.
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1. INTRODUCTION.

Let A € R™ be a convex polytope whose vertices are in Z"
and such that the origin 0 is in the interior of A. Consider the
expanded polytope N - A,

Ehrhart’s theorem |Ehr| asserts that

#((N-A)NZ"), N eZy

is a polynomial in N. More generally, suppose that f is a poly-
nomial, and let

(1) p(N,f):= Y f(0).

(EN-ANZ™
Then Ehrhart’s theorem asserts that p(N, f) is a polynomial in
N.
[Ehr]  Ehrhart, E., S’ur les polyéedres rationnels homothétiques a n dimen-

sions. C. R. Acad. Sci. Paris 254 (1962) 616-618.



Ehrhart from Euler-
MaclLaurin.

In the case that A is a simple polytope (meaning that n edges
emanate from each vertex) Ehrhart’s theorem is a consequence of
the Euler-MacLaurin formula, [Kh, KP, CS1, CS2, Gu, BV, DR|
and one can be more explicit about the nature of the polynomial
; .“\I.T
p (*' :f )

Here are some examples of simple and non-simple polytopes:



Simple and non-simple

polytopes.
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FIGURE 1. Three dimensional polytopes
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Regular polytopes.

Let us explain how this works in the more restrictive case
where A is not only simple but is regular, meaning that the local
cone at each vertex can be transformed by an integral unimodular
affine transformation into a neighborhood of the origin in the
standard orthant RY . Whereas the simple polyopes are “generic”
in a suitable sense, the regular polytopes are quite special. For
example every convex polygon in the plane is simple, but only
special ones are regular. The original Euler-MacLauin formula in
higher dimensions was given by Khovanskii and Pukhlikov for the
case of regular polytopes and their formulation has the advantage
that it is easy to state as we shall see.



Regular and non-
regular polytopes.

FIGURE 2. A regular polygon and a non-regular polygon

Of course, this use of the word “regular” has nothing to do
with the term denoting Platonic solids. There are other names
in the literature for the property we are describing, such as
*smooth”, “Delzant” ,“tosionfree”, “unimodular” etc.. It is un-
fortunate that the nomenclature for polytopes with this property
has not yet been standardized.



The Khovanskii-
Pukhlikov formula, |.

For the case of regular polytopes the formula of Khovanskii-
Pukhlikov [KP]| reads as follows: The polytope A can be de-
scribed by a set of inequalities

Lo Uy a; = 0, ] = 1, ce eI

where m is the number of facets of A, where the w; are primitive
lattice vectors, and where the a; are positive integers. Then for
any positive number ¢, the expanded polytope t - A is described
by the inequalities

r-u; +ta; >0, 1=1,...,m.



The Khovanskii-

Pukhlikov formula, 2,
moving the facets.

Let A¢p, h=(h1,...,hy) be the polytope defined by
(2) r-u; +ta; +h; >0, 1=1,...,m.

Then the function

(3) pth.f):= | f(x)ds

At h

is a polynomial in ¢ and A.



The Khovanskii-
Pukhlikov formula,3,
the Todd operator.

The formula of Khovanskii-Pukhlikov (applied to N - A) ex-
presses p(N, f) in terms of a differential operator applied to

p(t, h, f): Explicitly, consider the infinite order constant coef-
ficient differential operator

(4) Todd (M) Zb (dh)

where )~ bsz® is the Taylor series expansion at the origin of the
Todd function

Todd(z 1;[1 —



The Khovanskii-
Pukhlikov formula.

The Khovanskii-Pukhlikov formula says that

p(N, £) = Todd (=) 5(N, h, f)
oh h—0

Note that since p is a polynomial in ~ the right hand side really
involves only a finite order differential operator.

For purposes below it will be convenient to write the Khovanskii
Pukhlikov formula in the form

(5) p(N, f) — B(N,0, f) (ded (3) _ Id) B(N. b, f)

Oh h—o
For simple polytopes there 1s a more general formula due to
CS2, Gu, BV]. Our goal in this talk is to describe an analogue

of (5) and its generalizations when the polynomial f is replaced
bv a “svimbol” .




Symbols.

We recall a definition from the theory of partial differential
equations. A smooth function f € C*(R") is called a symbol
of order NN if for every n-tuple of non-negative integers a :=
(a1,...,ay), there exists a constant C, such that

9o .00 f(2)] < Ca(1+ |2)N-la

where |a| = ). a;. In particular, a polynomial of degree N is a
symbol of order N. Note that if f 1s a symbol of order N on R"
then its derivatives of order a are in L if N < |a| — n.



Polyhomogeneous
symbols.

For simplicity, we will restrict ourselves in this paper to poly-
homogeneous symbols, meaning symbols f € C*°(R"™) which
admit asymptotic expansions of the form:

(6) flx)~ Y fu(x)

for ||z|| >> 0 where the f, € C*°(R"{0}) are homogeneous sym-
bols of degree £. The sum is over a discrete sequence of numbers
tending to —oc.



The order of a symbol.

(6) f@)~ Y fo(z)

for ||z| >> 0 where the f, € C>(R\{0}) are homogeneous sym-
bols of degree . The sum is over a discrete sequence of numbers
tending to —oc.

“Asymptotic” means that for any 7

fx) =Y fo(x)| = o(||z|)
t=;

as ||z]| — oc. The number r occurring in (6) is called the order
of the asymptotic series and the collection of functions satisfying
(6) will be called symbols of order » and denoted by S”.



The Ehrhart formula.

9
(5) (N, f) = B(N,0, f) = (Todd (- ) —1d) (N, h, f)
N h=0

We will show that if f has this property then the function
p(N, f) given by (1) is a polyhomogeneous symbol in N and its
asymptotic expansion in powers of /N is given by a formula similar
to (5) with two key differences:

(1) For symbols, an infinite number of differentiations occur
on the right hand side of (5), i.e. the whole Todd oper-
ator must be applied. So (5) must be understood as an
asymptotic series, not as an equality.

(2) The formula (5) has to be corrected by adding a constant
term C' to the right hand side, a constant which is zero
for the case of a polynomial.



More precisely, we will prove:

Theorem 1.1. Let A be a reqular polytope whose vertices lie in
Z" with O in the interior of A. Let f € S" and N € Z and let

p(N.f):== > f(0).

¢EN-ANZ"
Let p(t, h, f) be defined by (3) so that

p(N,0, f) = f(zx)dx,
N-A
Then p(N, f)—p(N,0, f) is a symbol in N and has the asymptotic
erpansion

p(N, f) — 5(N,0, f) ~ (Tadd (E) . Id) BN b )|+

Oh P

where C' 1s a constant.



The constant C .

The constant C'is of interest in its own right. It can be thought
of as a “regularized” version of the difference

= ™

Of course there is no reason why either the sum or the integral
in (7) should converge. But we can “regularize” both as follows:
Define the function () by

(2)% =1+ ||z|]>.
For s € C let



(@)% 1= 1+ |l
For s € C let

We will show that
(8) C(s):=> f(t,s)— [ f(x,s)de,
R?‘L

bEcm

which is holomorphic for Re s << 0, has an analytic continuation
to the entire complex plane and that the missing constant C' on
the right hand side of (5) is exactly C'(0). In particular, the
constant C'is independent of the particular polytope in question.



Independence of
regularization.

Our result i1s somewhat insensitive to the mode of regulariza-
tion. In fact, it can be generalized as follows: Define a “gauged
symbol” |Gugau| to be a function f(x,s) € C*>°(R™ x C) which
depends holomorphically on s and for fixed s is a symbol of order
Re s+ r. For example the function f(z)(x)® introduced above is
such a gauged symbol. We will prove that if f(x,s) is a gauged
symbol with

then the function given by (8) with this more general definition
of f(z,s) again extends holomorphically from Re s << 0 to the
entire plane and C' = C'(0).



The above results will be proved for the more general case
of simple integral polytopes in §2. The proof is largely based
on the Euler-MacLaurin formula with remainder as proved in
[ KSW] and motivated by an argument of Hardy on “Ramanujan
regularization”, [Hardy|. Ramanujan’s key idea was to use the
classical Euler-MacLaurin formula in one variable to regularize
(7) by providing “counter terms” in passing to infinity in the
difference between sum and integral in one dimension.



The polar
decomposition
theorem.










The construction in general.

fix a vector & € R™ such that
(10) ;i p-E#F0 ¥V pandzq.
We then define

T

“P —ay, i oy, <0
no 1
(_-l- "

12)  (cup o= oS

i1 Yip S

and

(13) Cop = Stp+ > ik .t > 0},

\ i—1




Polar decomposition.

Then, as in the the figure of the triangle, the polytope t - A
“is 7 an alternating sum sum of the cones C, ;. There is a slight
problem with overcounting the points on the boundary of the
cones. As far as the integral is concerned this makes no difference
as these sets have measure zero. But if we are summing over

lattice points, there will be lattice points on the boundary.
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Here are two (of many) ways to handle this problem in our
triangle example: We could assign weight one to points in the
interior of the triangle or cones, weight % to points on the relative
interior of the edges of the triangle or cones, and weight % to the
vertices. Then the alternating sum with this weighting matches
up correctly.



Using unweighted
sums.

Or if we insist on weight one, then we may have to “shift” the
integer summation over the cones.
A general theory of weightings is presented in [AW].

[AW]  J. Agapito and J Weitsman The weighted Fuler-MacLaurin formula
for a simple integral polytope. Asian Journal of Mathematics,9 2005
199-212



The Euler-MaclLaurin
formula with remainder.

2.1. The Euler-MacLaurin formula for symbols. We want
to apply the Euler-MacLaurin formula with remainder, [KSW]|.
In [KSW]| one dealt with a weighted sum where points in the
interior of the polytope are given weight 1, points on the relative
interior of a facet are given weight w(z) := %, and, more gener-
ally, points in the relative interior of a face of codimension k are
given weights w(x) := 51;; The weighted sum p L (N, f) is then
defined as

py(N. )= 3 w(Of(0).

(e(N-A)NZ"

Pi
2

Theorem 3 of |[KSW]| gives an Euler-MacLaurin formula with
remainder for weighted sums of symbols.
IKSW] Y. Karshon, S. Sternberg, and J. Weitsman, Euler-MacLaurin with

remainder for a simple integral polytope Duke Mathematical Jour-
nal 130 2005, 401- 434



More generally, [AW] consider the Euler-MacLaurin formula
with remainder for more general weightings including the un-
weighted sum we considered in §1. We refer to equations (28)
and (29) in |[AW| for the definition of a general weighting, w, and
we will denote the corresponding weighted sum here by »., (N, f).
They stated their formula with remainder for smooth functions
of compact support, but the passage from the case of smooth
functions of compact support to that of symbols is exactly the

same as in [KSW]|.



T'here is a certain infinite order differential operator M (de-
pending on the weighting) in the variables hq,.... h,, with con-
stant term 1 whose truncation of order £ is given by the sum
in equation (89) of [KSW]| (for weight %) and the sum in equa-
tion (56) in [AW] (for general weights) such that for any symbol
feS and k>n—+r
(14)

pw(N, [)=p(N. 0, f) = ((M“"‘]) (i) —L:l) p(N.h, f)|  +RF(f,N)

h=0

oh

where M¥! denotes the truncation of M at order k and

|y |[=nk

(15)  RE(AN) =) (—1)7 / N7 ¢R DO | da

e (:3'-?',.-"'-" |"‘,r'|:-!f-



A very rough outline of
the proof.

(14)
0

pu(N.f)—H(N.0, f) = ((M““‘]) (—) - Id) FN.h, )| +RE(£N)

Oh h=0

The idea of the proof of (14) is to use the polar decomposi-
tion to reduce the Euler-MacLaurin formula for polytopes to a
corresponding formula for cone. To prove the formula for cones
one transforms the cone to the standard orthant R” and then
use derive a formula for R% by reducing it to some “twisted”
Fuler-MacLaurin formuls in one dimension. The actual details
are somewhat complicated.



The limiting form of
the remainder.

(14)
0

oV ) ~N.0.1) = (M) (57) ~14) BV R f)| - +RAEN)

h=0

where M*! denotes the truncation of M at order k and

|y |=nk

1) RN =X [ | X dDtr)de

P ‘:Fr-""'r |"‘-r-|=L_‘

We want to investigate the behavior of this remainder as N —
~c. Once again, let us examine the picture of what is happing to
our decomposition of the triangle. Remember that the origin is
in the interior of the triangle.



The upper vertex is moving upward and leftward. So the
corresponding cone fills up all of the plane. The term in (15)
corresponding to it will tend to an integral over all of space.

The bottom left vertex is moving down and to the left. So
the cone corresponding to it will move off to infinity, so the term
in (15) corresponding to it will tend to 0. Similarly, the cone
on the bottom right moves off to infinity so the term in (15)
corresponding to it will tend to 0.

So the remainder term will end to a certain integral over the
whole plane.



Here is the argument in general:
Since the {kg form a basis of B™ we can write

k-

T
_ ot
(]_ﬁ) P = az,pai’p:
i=1
where at least one a; , # 0 since we are assuming that the origin
lies in the interior of the polytope. We may assume by relabeling
that

a1 .p > az.p > 2 Up,p-

If ay , > 0 then the cone (', ; is contained in the half space

A

Tr = E :Bmf-ﬁp, r1 = aqptp

T o

and so the p-th summand in (15) tends to zero as N — oc.



On the other hand, if a1 = --- =a, = 0 and a; < 0 for 7 > ¢
then as N — oc the p-th summand in (15) tends to

|[v|=nk
(17) (—1)P /w > ¢ DVf | da
P |l |=k

where W, is the set of all points of the form
= Z miﬂfﬁp + Z 'yj&;ﬂhp
154 1>q
where
0<x; <oc and —oo <y; <.



(14)

pu(N.f)—H(N.0, f) = ((m[ﬂ) (ﬂ) - Id) BN b f)

k
Oh +R(f,N)

h=0

It follows from (14) that the sum of these limiting values, i.e.

(18) >

D W

v |=nk

> o DVf | da
|| =k

is independent of k for k sufficiently large. We shall interpret
this limiting value €' using regularization in the next section. If
f 1s a polynomial, so that we choose k to be greater than the
degree of f, we see from (18) that C' = 0, as it must be from the
classical Ehrhart theorem.



2.2. Regularization. Suppose that we replace f by a gauged
symbol f(x,s) with f(x,0) € S”. Then the remainder term (15)
applied to f, = f(-,s) is well defined if Re s < —r — n + k.
Moreover, if ay , > 0 the p-th summand on the right of (15) is of
order O(NRes+t™+n=F) and if ay, < 0 the p-th summand of (15)
differs from the integral

(19) Cor [ s | s

by a term of order O(NRes++7=k) Thus the gauged version of
(14) is

pu-‘(ﬁﬂ"r: fs)_ﬁ(ﬁ'r: Ur fs) —

;
[+ _ ) — ) 5(N, h
(MM -1d (ah)p(,hhﬁ)

Res < —n—r+Ek

_|_(:_~rk (S) —I—O(;NTRE 5—|—*.r'—|—n—k:}
h=0




Letting &k — oo we conclude that on this half-plane we have

(21)
e,
puN. F)-N0.2) ~ (M (57 ) 1) BN 2| )
' h=0
where
(22) Cl(s) — Cik(s) = O(NRe 5+""+”_k).

Since the C.(s) are holomorphic of the half-plane Res < —n —
r + k, it follows that C'(s) is holomorphic on the whole plane.

Moreover, in the asymptotic series on the right of (21) all the
terms are of order at most Res+r+n. Hence for Res < —r—n
these terms tend to zero and we get

C(s) = lim (p(N,f,)—p(N,0, 1))

N—oo

= >y~ [ S

ez



C(s) = lim (p(N,f.) —p(N,0, 1))

N—noc

= ) flts)— | flzs)de,

fein

and both the sum and the integral converge absolutely. So if we
set s = 0 we obtain

(23)
0

puN. £ = N0, ~ (M () ~1) sV )| - €
' h=0

where f(x) = f(z,0) and C' = C(0). So we can think of C' as a

“regularization” of (7). To summarize: We have proved




Theorem 2.1. Let A be a simple polytope whose vertices lie in
2" with O in the interior of A. Let f € S™ and N € Z and let

pw(N,f) = > w()f(0).

LEN-ANZ"
Let p(t, h, f) be defined by (3) so that

p(N,0, f) = f(z)dz,
N-A
Then p(N, f)—p(N,0, f) is a symbol in N and has the asymptotic
erpansion

0

pu(N, f) — BN, 0, ) ~ (M (—) _ Id) BN, b, f)

C
oh *

h=0

where C' 1s a constant.



Furthermore, if f(x,s) is a gauged symbol with f(x,0) = f(x)
then C' = C(0) where C(s) is the entire function given by (21)
and (22). For Res < —r —n

C(s)= Y f(t,s)— | f(@,s)de

=
Hence C'(s) and in particular C' = C(0) is independent of the
polytope.



Relation to Euler’s
gamma.

Suppose we look at the one dimensional case where our initial
polytope is the interval [—1., 1|. Consider a function f such that
| .
flx)=— for |z| =1
E
and we modify the function so that it is smooth and equals zero
in some neighborhood of the origin. Then

while



So basically, we are considering the limit of

Z——/ —dzx

which approaches a constant v (known as Euler’s constant). Eu-
ler proved this by applying the Euler-MacLaurin formula and in
fact gave an ingenious method for computing v to many decimal
places. See |Kn| for example for an exposition of this computa-
tion.

[Kn] K. KNOPP, “Chapter 14: Euler’s summation formula and asymptotic expansions™ in
Theory and Application of Infinite Series, translated from the 2nd German ed.,
Blackie, London, 1928, 518 —-3555. 406, 409



Relation of C(s) to the
zeta function.

Suppose we consider the function

/ —dr—i—/ f(z C()—zil

which is initially defined for Rez > 1. As is well known,

1
C(2) = ——

is holomorphic on the entire complex plane, and in fact Euler
used the Euler-MacLaurin formula to extend ((z) — ;:il to (real)
values of z < 1.

So if we set s = —2z (and so are considering the function z°
instead of z7%) our C'(s) is the analogue of ((z) — 11. This, of
course, leads to many interesting questions.




