Equivariant compactifications of reductive groups

Dmitri A. Timashev

Moscow State University

Abstract. We study equivariant projective compactifications of reductive groups obtained by closing the image of a group in the space of operators of a projective representation. (This is a "non-commutative generalization" of projective toric varieties.) We describe the structure and the mutual position of their orbits under the action of the doubled group by left/right multiplications, the local structure in a neighborhood of a closed orbit, and obtain some conditions of normality and smoothness of a compactification. Our approach uses the theory of equivariant embeddings of spherical homogeneous spaces and of reductive algebraic semigroups.

1. Projective embeddings of reductive groups

Let G be a connected reductive complex algebraic group. **Examples.** $G = GL_n(\mathbb{C}), SL_n(\mathbb{C}), SO_n(\mathbb{C}), Sp_n(\mathbb{C}), (\mathbb{C}^{\times})^n$.

Let $G \circ \mathbb{P}(V)$ be a faithful projective representation. It comes from a faithful rational linear representation $\tilde{G} \circ V$, where $\tilde{G} \to G$ is a finite cover.

$$\widetilde{G} \hookrightarrow \operatorname{End} V \implies G \hookrightarrow \mathbb{P}(\operatorname{End} V)$$

Objective. Describe $X = \overline{G} \subseteq \mathbb{P}(\text{End } V)$.

Example 1. $G = T = (\mathbb{C}^{\times})^n$ an algebraic torus; $\lambda_1, \ldots, \lambda_m \in \mathbb{Z}^n$ the eigenweights of $T = \tilde{T} \bigcirc V \implies X$ is a projective toric variety corresponding to the polytope $\mathcal{P} = \operatorname{conv}\{\lambda_1, \ldots, \lambda_m\}$.

Problem 1. Describe $(G \times G)$ -orbits in X: dimensions, representatives, stabilizers, partial order by inclusion of closures.

Problem 2. Describe the local structure of X.

Problem 3. Normality of X.

Problem 4. Smoothness of X.

Relevant research.

 Affine embeddings of reductive groups = reductive algebraic semigroups (Putcha-Renner, Vinberg [Vi95], Rittatore [Ri98]).
 Regular group compactifications: cohomology (De Concini-Procesi [CP86], Strickland [St91]), cellular decomposition (Brion-Polo [BP00]).

3) Reductive varieties (Alexeev-Brion [AB04], [AB04']).

Notation.

 $T \subseteq G$ (resp. $\widetilde{T} \subseteq \widetilde{G}$) a maximal torus; $\Lambda \simeq \mathbb{Z}^n$ the weight lattice,

weights
$$\widetilde{T} \to \mathbb{C}^{\times}$$
, $\forall \lambda = (l_1, \dots, l_n) \in \Lambda$,
 $t \mapsto t^{\lambda} := t_1^{l_1} \cdots t_n^{l_n}$, $t = (t_1, \dots, t_n) \in \widetilde{T}$;
 $\Lambda(V) = \{ \text{eigenweights of } \widetilde{T} \circ V \};$
 $\mathcal{P} = \text{conv } \Lambda(V) \text{ the weight polytope};$
 $\Delta = \Delta_G \subset \Lambda \text{ the set of roots } (= \text{nonzero } T \text{-eigenweights of Lie } G),$
 $\Delta = \Delta^+ \sqcup \Delta^- \text{ (positive and negative roots)};$
 $W = N_G(T)/T \text{ the Weyl group};$
 $(\cdot, \cdot) \text{ a } W \text{-invariant inner product on } \Lambda;$
 $C = C_G = \{\lambda \in \Lambda \otimes_{\mathbb{Z}} \mathbb{Q} \mid (\lambda, \alpha) \ge 0, \forall \alpha \in \Delta^+ \} \text{ the positive Weyl chamber. It is a fundamental domain for $W \circ \Lambda \otimes_{\mathbb{Z}} \mathbb{Q}.$$

2. Orbits

For each face \mathcal{F} of \mathcal{P} (of any dimension, including \mathcal{P} itself) let: $V_{\mathcal{F}} \subseteq V$ be the span of \tilde{T} -eigenvectors with weights in \mathcal{F} ; $V'_{\mathcal{F}} \subseteq V$ be the \tilde{T} -stable complement of $V_{\mathcal{F}}$; $V = V_{\mathcal{F}} \oplus V'_{\mathcal{F}}$; $E_{\mathcal{F}} = \text{projector } V \to V_{\mathcal{F}}$.

Theorem 1. There is a 1-1 correspondence:

 $(G \times G)$ -orbits $Y \subseteq X \quad \longleftrightarrow \quad faces \ \mathcal{F} \subseteq \mathcal{P}, \ (\operatorname{int} \mathcal{F}) \cap C \neq \emptyset.$ Orbit representatives are: $Y \ni y = \langle E_{\mathcal{F}} \rangle.$ Stabilizers are computed. Dimensions: $\dim Y = \dim \mathcal{F} + |\Delta \setminus \langle \mathcal{F} \rangle^{\perp}|.$ Partial order: $Y_1 \subset \overline{Y_2} \iff \mathcal{F}_1 \subset \mathcal{F}_2.$ **Example 2.** $G = PGL_n$, $V = \mathbb{C}^n \implies X = \mathbb{P}(Mat_n) = \mathbb{P}^{n^2-1}$. Here $\tilde{G} = SL_n$, $T = \{\text{diagonal matrices}\},$

$$\Lambda(V) = \{\varepsilon_1, \dots, \varepsilon_n\} = \text{the standard basis of } \mathbb{Z}^n, \\ \Delta = \{\varepsilon_i - \varepsilon_j \mid i \neq j\}, \quad \Delta^+ = \{\varepsilon_i - \varepsilon_j \mid i < j\}, \\ C = \{\lambda = (l_1, \dots, l_n) \mid l_1 \geq \dots \geq l_n\}$$

We see that $\mathcal{P} = \operatorname{conv} \{ \varepsilon_1, \dots, \varepsilon_n \}$ is a simplex, the faces of \mathcal{P} whose interior intersects C are

$$\mathcal{F}_r = \operatorname{conv}\{\varepsilon_1, \ldots, \varepsilon_r\}, \qquad r = 1, \ldots, n,$$

the respective projectors are

$$E_{\mathcal{F}_r} = \operatorname{diag}(\underbrace{1,\ldots,1}_r, 0,\ldots,0),$$

and the orbits are

$$Y_r = \mathbb{P}(\text{matrices of rank } r).$$

Proof. Step 1. Let $K \subset G$ be a maximal compact subgroup; then G = KTK (Cartan decomposition) $\implies X = K\overline{T}K \implies \overline{T}$ intersects all $(G \times G)$ -orbits in X.

Step 2. By toric geometry, there is a 1-1 correspondence:

T-orbits in $\overline{T} \quad \longleftrightarrow \quad \text{all faces } \mathcal{F} \subseteq \mathcal{P},$

which respects partial order, $\langle E_{\mathcal{F}} \rangle$ being the orbit representatives.

Step 3. Compute the stabilizers of $\langle E_{\mathcal{F}} \rangle$ in $G \times G$. In particular, this yields the orbit dimensions.

Step 4. Given $y = \langle E_F \rangle \in Y = GyG$, the structure of $(G \times G)_y$ implies that $Y^{\text{diag }T} = \bigcup_{w_1, w_2 \in W} Tw_1 yw_2$? It follows that

 $Y_1 = Y_2 \iff \mathcal{F}_1 = w\mathcal{F}_2$ for some $w \in W$. There exists a unique $\mathcal{F}^+ = w\mathcal{F}$ such that $(\operatorname{int} \mathcal{F}^+) \cap C \neq \emptyset$.

3. Local structure

Fix a closed orbit $Y_0 \subset X$. What is the structure of X in a neighborhood of Y_0 ?

W.I.o.g. V is assumed to be a multiplicity-free G-module. By Theorem 1, $Y_0 = Gy_0G$, $y_0 = \langle E_{\lambda_0} \rangle$, $\lambda_0 \in \mathcal{P}$ a vertex, E_{λ_0} is the projector $V = \mathbb{C}v_{\lambda_0} \oplus V'_{\lambda_0} \to \mathbb{C}v_{\lambda_0}$, where v_{λ_0} is the (unique) eigenvector of weight λ_0 (a highest weight vector).

Associated parabolic subgroups: $P^+ = G_{\langle v_{\lambda_0} \rangle}, P^- \subseteq G$. Levi decomposition: $P^{\pm} = P_{u}^{\pm} \rtimes L, L = P^+ \cap P^- \supseteq T$.

Theorem 2. $\mathring{X} = \{x = \langle A \rangle \in X \mid Av_{\lambda_0} \notin V'_{\lambda_0}\}$ is a $(P^- \times P^+)$ -stable neighborhood of y_0 in X.

$$\mathring{X} \simeq P_u^- \times Z \times P_u^+, \quad \text{where } Z = \overline{L} \subseteq \operatorname{End}(V_{\lambda_0}' \otimes (-\lambda_0)).$$

Proof is based on the local structure of $P^- \odot V$ in a neighborhood of v_{λ_0} (Brion, Luna, Vust).

Remark. Z is a reductive algebraic semigroup with 0 (corresponding to y_0), called the slice semigroup.

Regular case: $\lambda_0 \in \operatorname{int} C \implies L = T \implies Z$ affine toric variety.

Example 3. In the notation of Example 2,

4. Normality

Does X have normal singularities? It suffices to consider singularities in a neighborhood of a closed orbit Y_0 . By Theorem 2 it suffices to study the singularity of Z at 0.

L is reductive $\implies L$ -modules are completely reducible. Simple *L*-modules $V = V_L(\lambda) \iff$ highest weights $\lambda \in \Lambda \cap C_L$, $\lambda + \alpha \notin \Lambda(V), \ \forall \alpha \in \Delta_L^+.$ $V_L(\lambda) \otimes V_L(\mu) \simeq V_L(\lambda + \mu) \oplus \cdots \oplus V_L(\lambda + \mu - \alpha_1 - \cdots - \alpha_k) \oplus \cdots$ $(\alpha_i \in \Delta_L^+).$

Definition. Weights μ_1, \ldots, μ_k *L*-generate a semigroup $\Sigma \subset \Lambda$ if

$$\Sigma = \{\mu \mid V_L(\mu) \hookrightarrow V_L(\mu_{i_1}) \otimes \cdots \otimes V_L(\mu_{i_N})\}.$$

Observation: "generate" (in a usual sense) \implies "*L*-generate"; \Leftarrow fails in general. **Theorem 3.** Let $\lambda_0, \lambda_1, ..., \lambda_m$ be the highest weights of the simple *G*-submodules in *V* and $\alpha_1, ..., \alpha_r$ be the simple roots in $\Delta_G^+ \setminus \Delta_L^+$. Put $\Sigma = ($ director cone of $\mathcal{P} \cap C$ at $\lambda_0) \cap \Lambda$. Consider the following conditions:

(1) X is normal along Y_0 ;

(2) \overline{T} is normal at y_0 ;

(3) Σ is L-generated by $\lambda_i - \lambda_0, -\alpha_j$.

(4) Σ is generated by $\lambda - \lambda_0$, $\forall \lambda \in \Lambda(V)$.

Then (1) \iff (3) \implies (2) \iff (4).

Remark. (3) $\iff \lambda_i - \lambda_0, -\alpha_j$ *L*-generate a saturated semigroup. **Example 4.** $G = Sp_4$, $V = S^3 \mathbb{C}^4 \oplus S_0^2(\Lambda_0^2 \mathbb{C}^4)$, the highest weights $\{\lambda_0 = 3\omega_1, \lambda_1 = 2\omega_2\}$ (ω_i denote the fundamental weights, α_i the simple roots). Here $L \simeq SL_2 \times \mathbb{C}^{\times}$, $\Delta_L = \{\pm \alpha_2\}$.

 $\lambda_1 - \lambda_0, -\alpha_1$ *L*-generate {bold dots} (Clebsch–Gordan formula). $\implies X$ non-normal along Y_0 ; becomes normal if we add $\lambda_2 = 2\omega_1$.

12

5. Smoothness

Theorem 4. X is smooth along $Y_0 \iff (1)\&(2)\&(3)$: (1) $L = GL_{n_1} \times \cdots \times GL_{n_p}$. (2) $L \bigcirc V \otimes (-\lambda_0)$ is polynomial. (3) $[L \oslash V \otimes (-\lambda_0)] \leftrightarrow [GL_{n_i} \oslash \mathbb{C}^{n_i}], \forall i$. **Remark.** (1), (2), (3) are reformulated in terms of $\Lambda(V)$.

Idea of the proof. X is smooth $\iff Z$ is smooth $\iff Z \simeq$ $Mat_{n_1} \times \cdots \times Mat_{n_p}$.

Example 5. $G = SO_{2m+1}$, $V = V_G(\omega_i)$ (ω_i are the fundamental weights). a) i < m: $V = \bigwedge^i \mathbb{C}^{2m+1}$, $L \simeq GL_i \times SO_{2m+1-2i} \implies X$ singular. b) i = m: V = spinor module $\simeq \bigwedge^{\bullet} \mathbb{C}^m \otimes \omega_m$ over $L \simeq GL_m \implies X$ smooth.

6. "Small" compactifications

Let G be a simple Lie group. We take a closer look at $X = \overline{G} \subseteq \mathbb{P}(\text{End } V)$ for "small" $V = V_G(\omega_i)$ (ω_i are the fundamental weights) or V = Lie G (adjoint representation).

Results: 1) $(G \times G)$ -orbits, their dimensions, Hasse diagrams of partial order.

2) Non-normal: (SO_{2m+1}, ω_i) , i < m; (Sp_{2m}, ω_m) ; (G_2, ω_2) ; (F_4, ω_i) , i = 3, 4.

3) Smooth: (SL_n, ω_i) , i = 1, n-1; (SL_n, Ad) , $n \leq 3$; (SO_{2m+1}, ω_m) ; (Sp_4, ω_1) ; (Sp_4, Ad) ; (G_2, ω_1) .

References

- [AB04] V. Alexeev, M. Brion, *Stable reductive varieties I: Affine varieties*, Invent. Math. **157** (2004), no. 2, 227–274.
- [AB04'] V. Alexeev, M. Brion, *Stable reductive varieties II: Projective case*, Adv. Math. **184** (2004), no. 2, 380–408.
- [BP00] M. Brion, P. Polo, *Large Schubert varieties*, Representation Theory **4** (2000), 97–126.
- [CP86] C. de Concini, C. Procesi, *Cohomology of compactifications of algebraic groups*, Duke Math. J. **53** (1986), 585–594.

- [Ri98] A. Rittatore, *Algebraic monoids and group embeddings*, Transformation Groups **3** (1998), 375–396.
- [St91] E. S. Strickland, *Computing the equivariant cohomol*ogy of group compactifications, Math. Ann. **291** (1991), no. 2, 275–280.
- [Ti03] D. A. Timashev, Equivariant compactifications of reductive groups, Sbornik: Math. 194 (2003), no. 4, 589–616.
- [Vi95] E. B. Vinberg, On reductive algebraic semigroups, Lie Groups and Lie Algebras: E. B. Dynkin Seminar (S. Gindikin, E. Vinberg, eds.), AMS Transl. (2) 169 (1995), 145– 182.