Equivariant compactifications of reductive groups

Dmitri A. Timashev
Moscow State University

Abstract. We study equivariant projective compactifications of reductive groups obtained by closing the image of a group in the space of operators of a projective representation. (This is a "non-commutative generalization" of projective toric varieties.) We describe the structure and the mutual position of their orbits under the action of the doubled group by left/right multiplications, the local structure in a neighborhood of a closed orbit, and obtain some conditions of normality and smoothness of a compactification. Our approach uses the theory of equivariant embeddings of spherical homogeneous spaces and of reductive algebraic semigroups.

1. Projective embeddings of reductive groups

Let G be a connected reductive complex algebraic group. Examples. $G=G L_{n}(\mathbb{C}), S L_{n}(\mathbb{C}), S O_{n}(\mathbb{C}), S p_{n}(\mathbb{C}),\left(\mathbb{C}^{\times}\right)^{n}$.

Let $G \circlearrowleft \mathbb{P}(V)$ be a faithful projective representation. It comes from a faithful rational linear representation $\widetilde{G} \circlearrowleft V$, where $\widetilde{G} \rightarrow G$ is a finite cover.

$$
\widetilde{G} \hookrightarrow \text { End } V \Longrightarrow G \hookrightarrow \mathbb{P}(\text { End } V)
$$

Objective. Describe $X=\bar{G} \subseteq \mathbb{P}($ End $V)$.
Example 1. $G=T=\left(\mathbb{C}^{\times}\right)^{n}$ an algebraic torus; $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{Z}^{n}$ the eigenweights of $T=\widetilde{T} \circlearrowleft V \Longrightarrow X$ is a projective toric variety corresponding to the polytope $\mathcal{P}=\operatorname{conv}\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$.

Problem 1. Describe $(G \times G)$-orbits in X : dimensions, representatives, stabilizers, partial order by inclusion of closures.

Problem 2. Describe the local structure of X.
Problem 3. Normality of X.
Problem 4. Smoothness of X.
Relevant research.

1) Affine embeddings of reductive groups $=$ reductive algebraic semigroups (Putcha-Renner, Vinberg [Vi95], Rittatore [Ri98]).
2) Regular group compactifications: cohomology (De ConciniProcesi [CP86], Strickland [St91]), cellular decomposition (BrionPolo [BPOO]).
3) Reductive varieties (Alexeev-Brion [AB04], [AB04']).

Notation.

$T \subseteq G(\operatorname{resp} . \widetilde{T} \subseteq \widetilde{G})$ a maximal torus; $\wedge \simeq \mathbb{Z}^{n}$ the weight lattice, weights $\quad \widetilde{T} \rightarrow \mathbb{C}^{\times}$,

$$
\forall \lambda=\left(l_{1}, \ldots, l_{n}\right) \in \wedge
$$

$$
t \mapsto t^{\lambda}:=t_{1}^{l_{1}} \cdots t_{n}^{l_{n}}, \quad t=\left(t_{1}, \ldots, t_{n}\right) \in \widetilde{T}
$$

$\Lambda(V)=\{$ eigenweights of $\widetilde{T} \circlearrowleft V\}$;
$\mathcal{P}=$ conv $\wedge(V)$ the weight polytope;
$\Delta=\Delta_{G} \subset \wedge$ the set of roots (= nonzero T-eigenweights of Lie G),
$\Delta=\Delta^{+} \sqcup \Delta^{-}$(positive and negative roots);
$W=N_{G}(T) / T$ the Weyl group;
(\cdot, \cdot) a W-invariant inner product on \wedge;
$C=C_{G}=\left\{\lambda \in \wedge \otimes_{\mathbb{Z}} \mathbb{Q} \mid(\lambda, \alpha) \geq 0, \forall \alpha \in \Delta^{+}\right\}$the positive Weyl
chamber. It is a fundamental domain for $W \circlearrowleft \wedge \otimes_{\mathbb{Z}} \mathbb{Q}$.

2. Orbits

For each face \mathcal{F} of \mathcal{P} (of any dimension, including \mathcal{P} itself) let: $V_{\mathcal{F}} \subseteq V$ be the span of \widetilde{T}-eigenvectors with weights in \mathcal{F};
$V_{\mathcal{F}}^{\prime} \subseteq V$ be the \widetilde{T}-stable complement of $V_{\mathcal{F}} ; V=V_{\mathcal{F}} \oplus V_{\mathcal{F}}^{\prime}$;
$E_{\mathcal{F}}=$ projector $V \rightarrow V_{\mathcal{F}}$.

Theorem 1. There is a 1-1 correspondence:

$$
(G \times G) \text {-orbits } Y \subseteq X \quad \longleftrightarrow \quad \text { faces } \mathcal{F} \subseteq \mathcal{P},(\text { int } \mathcal{F}) \cap C \neq \emptyset
$$

Orbit representatives are: $Y \ni y=\left\langle E_{\mathcal{F}}\right\rangle$.
Stabilizers are computed.
Dimensions: $\operatorname{dim} Y=\operatorname{dim} \mathcal{F}+\left|\Delta \backslash\langle\mathcal{F}\rangle^{\perp}\right|$.
Partial order: $Y_{1} \subset \overline{Y_{2}} \Longleftrightarrow \mathcal{F}_{1} \subset \mathcal{F}_{2}$.

Example 2. $G=P G L_{n}, V=\mathbb{C}^{n} \Longrightarrow X=\mathbb{P}\left(\mathrm{Mat}_{n}\right)=\mathbb{P}^{n^{2}-1}$. Here $\widetilde{G}=S L_{n}, T=\{$ diagonal matrices $\}$,

$$
\begin{gathered}
\wedge(V)=\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}=\text { the standard basis of } \mathbb{Z}^{n}, \\
\Delta=\left\{\varepsilon_{i}-\varepsilon_{j} \mid i \neq j\right\}, \quad \Delta^{+}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid i<j\right\}, \\
C=\left\{\lambda=\left(l_{1}, \ldots, l_{n}\right) \mid l_{1} \geq \cdots \geq l_{n}\right\}
\end{gathered}
$$

We see that $\mathcal{P}=\operatorname{conv}\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ is a simplex, the faces of \mathcal{P} whose interior intersects C are

$$
\mathcal{F}_{r}=\operatorname{conv}\left\{\varepsilon_{1}, \ldots, \varepsilon_{r}\right\}, \quad r=1, \ldots, n,
$$

the respective projectors are

$$
E_{\mathcal{F}_{r}}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{r}, 0, \ldots, 0),
$$

and the orbits are

$$
Y_{r}=\mathbb{P}(\text { matrices of rank } r) .
$$

Proof. Step 1. Let $K \subset G$ be a maximal compact subgroup; then $G=K T K$ (Cartan decomposition) $\Longrightarrow X=K \bar{T} K \Longrightarrow$ \bar{T} intersects all $(G \times G)$-orbits in X.

Step 2. By toric geometry, there is a 1-1 correspondence:

$$
T \text {-orbits in } \bar{T} \quad \longleftrightarrow \quad \text { all faces } \mathcal{F} \subseteq \mathcal{P},
$$

which respects partial order, $\left\langle E_{\mathcal{F}}\right\rangle$ being the orbit representatives.
Step 3. Compute the stabilizers of $\left\langle E_{\mathcal{F}}\right\rangle$ in $G \times G$. In particular, this yields the orbit dimensions.

Step 4. Given $y=\left\langle E_{\mathcal{F}}\right\rangle \in Y=G y G$, the structure of $(G \times G)_{y}$ implies that $Y^{\text {diag } T}=\cup_{w_{1}, w_{2} \in W} T w_{1} y w_{2}$? It follows that

$$
Y_{1}=Y_{2} \Longleftrightarrow \mathcal{F}_{1}=w \mathcal{F}_{2} \quad \text { for some } w \in W .
$$

There exists a unique $\mathcal{F}^{+}=w \mathcal{F}$ such that (int $\left.\mathcal{F}^{+}\right) \cap C \neq \emptyset$.

3. Local structure

Fix a closed orbit $Y_{0} \subset X$. What is the structure of X in a neighborhood of Y_{0} ?
W.I.o.g. V is assumed to be a multiplicity-free G-module. By Theorem 1, $Y_{0}=G y_{0} G, y_{0}=\left\langle E_{\lambda_{0}}\right\rangle, \lambda_{0} \in \mathcal{P}$ a vertex, $E_{\lambda_{0}}$ is the projector $V=\mathbb{C} v_{\lambda_{0}} \oplus V_{\lambda_{0}}^{\prime} \rightarrow \mathbb{C} v_{\lambda_{0}}$, where $v_{\lambda_{0}}$ is the (unique) eigenvector of weight λ_{0} (a highest weight vector).

Associated parabolic subgroups: $P^{+}=G_{\left\langle v_{\lambda_{0}}\right\rangle}, P^{-} \subseteq G$.
Levi decomposition: $P^{ \pm}=P_{\mathrm{u}}^{ \pm} \rtimes L, L=P^{+} \cap P^{-} \supseteq T$.
Theorem 2. $\dot{X}=\left\{x=\langle A\rangle \in X \mid A v_{\lambda_{0}} \notin V_{\lambda_{0}}^{\prime}\right\}$ is a $\left(P^{-} \times P^{+}\right)$stable neighborhood of y_{0} in X.

$$
\dot{X} \simeq P_{u}^{-} \times Z \times P_{u}^{+}, \quad \text { where } Z=\bar{L} \subseteq \operatorname{End}\left(V_{\lambda_{0}}^{\prime} \otimes\left(-\lambda_{0}\right)\right)
$$

Proof is based on the local structure of $P^{-} \circlearrowleft V$ in a neighborhood of $v_{\lambda_{0}}$ (Brion, Luna, Vust).
Remark. Z is a reductive algebraic semigroup with 0 (corresponding to y_{0}), called the slice semigroup.
Regular case: $\lambda_{0} \in \operatorname{int} C \Longrightarrow L=T \Longrightarrow Z$ affine toric variety.

Example 3. In the notation of Example 2,

$$
\begin{aligned}
& Y_{0}=\mathbb{P}(\text { matrices of rank } 1), \quad \lambda_{0}=\varepsilon_{1}, \quad v_{\lambda_{0}}=e_{1}, \\
& \begin{array}{c}
P_{\mathrm{u}}^{+}=\begin{array}{|c|c|}
\hline 1 & * \\
\hline 0 & W \\
\vdots & \boldsymbol{E} \\
0 & , \quad P_{\mathrm{u}}^{-}=\begin{array}{|c|c|}
\hline 1 & 0 \cdots 0 \\
* & \boldsymbol{H} \\
\hline
\end{array} \\
V_{\lambda_{0}}^{\prime}=\left\langle e_{2}, \ldots, e_{n}\right\rangle, \quad L=\begin{array}{|c|c|}
\hline * & 0 \cdots 0 \\
\hline 0 & * \\
\vdots & * \\
0 & \\
\hline
\end{array} & \simeq G L_{n-1}, \\
M a t_{n-1} .
\end{array}
\end{array}
\end{aligned}
$$

4. Normality

Does X have normal singularities? It suffices to consider singularities in a neighborhood of a closed orbit Y_{0}. By Theorem 2 it suffices to study the singularity of Z at 0 .
L is reductive $\Longrightarrow L$-modules are completely reducible. Simple L-modules $V=V_{L}(\lambda) \longleftrightarrow$ highest weights $\lambda \in \wedge \cap C_{L}$,

$$
\lambda+\alpha \notin \wedge(V), \forall \alpha \in \Delta_{L}^{+} .
$$

$V_{L}(\lambda) \otimes V_{L}(\mu) \simeq V_{L}(\lambda+\mu) \oplus \cdots \oplus V_{L}\left(\lambda+\mu-\alpha_{1}-\cdots-\alpha_{k}\right) \oplus \cdots$ $\left(\alpha_{i} \in \Delta_{L}^{+}\right)$.

Definition. Weights $\mu_{1}, \ldots, \mu_{k} L$-generate a semigroup $\Sigma \subset \wedge$ if

$$
\Sigma=\left\{\mu \mid V_{L}(\mu) \hookrightarrow V_{L}\left(\mu_{i_{1}}\right) \otimes \cdots \otimes V_{L}\left(\mu_{i_{N}}\right)\right\} .
$$

Observation: "generate" (in a usual sense) \Longrightarrow "L-generate"; \Longleftarrow fails in general.

Theorem 3. Let $\lambda_{0}, \lambda_{1} \ldots, \lambda_{m}$ be the highest weights of the simple G-submodules in V and $\alpha_{1}, \ldots, \alpha_{r}$ be the simple roots in $\Delta_{G}^{+} \backslash \Delta_{L}^{+}$. Put $\Sigma=\left(\right.$ director cone of $\mathcal{P} \cap C$ at $\left.\lambda_{0}\right) \cap \wedge$. Consider the following conditions:
(1) X is normal along Y_{0};
(2) \bar{T} is normal at y_{0};
(3) Σ is L-generated by $\lambda_{i}-\lambda_{0},-\alpha_{j}$.
(4) Σ is generated by $\lambda-\lambda_{0}, \forall \lambda \in \wedge(V)$.

Then $(1) \Longleftrightarrow(3) \Longrightarrow(2) \Longleftrightarrow$ (4).
Remark. (3) $\Longleftrightarrow \lambda_{i}-\lambda_{0},-\alpha_{j} L$-generate a saturated semigroup.

Example 4. $G=S p_{4}, V=S^{3} \mathbb{C}^{4} \oplus S_{0}^{2}\left(\wedge_{0}^{2} \mathbb{C}^{4}\right)$, the highest weights $\left\{\lambda_{0}=3 \omega_{1}, \lambda_{1}=2 \omega_{2}\right\}$ (ω_{i} denote the fundamental weights, α_{i} the simple roots). Here $L \simeq S L_{2} \times \mathbb{C}^{\times}, \Delta_{L}=\left\{ \pm \alpha_{2}\right\}$. $\lambda_{1}-\lambda_{0},-\alpha_{1} L$-generate \{bold dots\} (Clebsch-Gordan formula). $\Longrightarrow X$ non-normal along Y_{0}; becomes normal if we add $\lambda_{2}=2 \omega_{1}$.

5. Smoothness

Theorem 4. X is smooth along $Y_{0} \Longleftrightarrow(1) \&(2) \&(3)$:
(1) $L=G L_{n_{1}} \times \cdots \times G L_{n_{p}}$.
(2) $L \circlearrowleft V \otimes\left(-\lambda_{0}\right)$ is polynomial.
(3) $\left[L \circlearrowleft V \otimes\left(-\lambda_{0}\right)\right] \hookleftarrow\left[G L_{n_{i}} \circlearrowleft \mathbb{C}^{n_{i}}\right], \forall i$.

Remark. (1), (2), (3) are reformulated in terms of $\Lambda(V)$.
Idea of the proof. X is smooth $\Longleftrightarrow Z$ is smooth $\Longleftrightarrow Z \simeq$
Mat $_{n_{1}} \times \cdots \times$ Mat $_{n_{p}}$.
Example 5. $G=S O_{2 m+1}, V=V_{G}\left(\omega_{i}\right)$ (ω_{i} are the fundamental weights).
a) $i<m: V=\wedge^{i} \mathbb{C}^{2 m+1}, L \simeq G L_{i} \times S O_{2 m+1-2 i} \Longrightarrow X$ singular.
b) $i=m: V=$ spinor module $\simeq \wedge^{\bullet} \mathbb{C}^{m} \otimes \omega_{m}$ over $L \simeq G L_{m} \Longrightarrow$ X smooth.

6. "Small" compactifications

Let G be a simple Lie group. We take a closer look at $X=$ $\bar{G} \subseteq \mathbb{P}\left(\right.$ End V) for "small" $V=V_{G}\left(\omega_{i}\right)$ (ω_{i} are the fundamental weights) or $V=$ Lie G (adjoint representation).

Results: 1) ($G \times G$)-orbits, their dimensions, Hasse diagrams of partial order.
2) Non-normal: $\left(S O_{2 m+1}, \omega_{i}\right), i<m ;\left(S p_{2 m}, \omega_{m}\right) ;\left(G_{2}, \omega_{2}\right) ;\left(F_{4}, \omega_{i}\right)$, $i=3,4$.
3) Smooth: $\left(S L_{n}, \omega_{i}\right), i=1, n-1$; ($\left.S L_{n}, \mathrm{Ad}\right), n \leq 3$; $\left(S O_{2 m+1}, \omega_{m}\right)$; $\left(S p_{4}, \omega_{1}\right) ;\left(S p_{4}, \mathrm{Ad}\right) ;\left(G_{2}, \omega_{1}\right)$.

References
[AB04] V. Alexeev, M. Brion, Stable reductive varieties I: Affine varieties, Invent. Math. 157 (2004), no. 2, 227-274.
[AB04'] V. Alexeev, M. Brion, Stable reductive varieties II: Projective case, Adv. Math. 184 (2004), no. 2, 380-408.
[BP00] M. Brion, P. Polo, Large Schubert varieties, Representation Theory 4 (2000), 97-126.
[CP86] C. de Concini, C. Procesi, Cohomology of compactifications of algebraic groups, Duke Math. J. 53 (1986), 585-594.
[Ri98] A. Rittatore, Algebraic monoids and group embeddings, Transformation Groups 3 (1998), 375-396.
[St91] E. S. Strickland, Computing the equivariant cohomology of group compactifications, Math. Ann. 291 (1991), no. 2, 275-280.
[Ti03] D. A. Timashev, Equivariant compactifications of reductive groups, Sbornik: Math. 194 (2003), no. 4, 589-616.
[Vi95] E. B. Vinberg, On reductive algebraic semigroups, Lie Groups and Lie Algebras: E. B. Dynkin Seminar (S. Gindikin, E. Vinberg, eds.), AMS Transl. (2) 169 (1995), 145182.

