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Abstract. We study equivariant projective compactifications of

reductive groups obtained by closing the image of a group in

the space of operators of a projective representation. (This is a

“non-commutative generalization” of projective toric varieties.)

We describe the structure and the mutual position of their orbits

under the action of the doubled group by left/right multiplica-

tions, the local structure in a neighborhood of a closed orbit,

and obtain some conditions of normality and smoothness of a

compactification. Our approach uses the theory of equivariant

embeddings of spherical homogeneous spaces and of reductive

algebraic semigroups.
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1. Projective embeddings of reductive groups

Let G be a connected reductive complex algebraic group.

Examples. G = GLn(C), SLn(C), SOn(C), Spn(C), (C×)n.

Let G 	 P(V ) be a faithful projective representation. It comes

from a faithful rational linear representation G̃ 	 V , where G̃→ G

is a finite cover.

G̃ ↪→ EndV =⇒ G ↪→ P(EndV )

Objective. Describe X = G ⊆ P(EndV ).

Example 1. G = T = (C×)n an algebraic torus; λ1, . . . , λm ∈ Zn

the eigenweights of T = T̃ 	 V =⇒ X is a projective toric variety

corresponding to the polytope P = conv{λ1, . . . , λm}.
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Problem 1. Describe (G×G)-orbits in X: dimensions, represen-
tatives, stabilizers, partial order by inclusion of closures.

Problem 2. Describe the local structure of X.

Problem 3. Normality of X.

Problem 4. Smoothness of X.

Relevant research.

1) Affine embeddings of reductive groups = reductive algebraic
semigroups (Putcha–Renner, Vinberg [Vi95], Rittatore [Ri98]).
2) Regular group compactifications: cohomology (De Concini–
Procesi [CP86], Strickland [St91]), cellular decomposition (Brion–
Polo [BP00]).
3) Reductive varieties (Alexeev–Brion [AB04], [AB04’]).
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Notation.

T ⊆ G (resp. T̃ ⊆ G̃) a maximal torus; Λ ' Zn the weight lattice,

weights T̃ → C×, ∀λ = (l1, . . . , ln) ∈ Λ,

t 7→ tλ := t
l1
1 · · · t

ln
n , t = (t1, . . . , tn) ∈ T̃ ;

Λ(V ) = {eigenweights of T̃ 	 V };
P = convΛ(V ) the weight polytope;

∆ = ∆G ⊂ Λ the set of roots (= nonzero T -eigenweights of LieG),

∆ = ∆+ t∆− (positive and negative roots);

W = NG(T )/T the Weyl group;

(·, ·) a W -invariant inner product on Λ;

C = CG = {λ ∈ Λ ⊗Z Q | (λ, α) ≥ 0, ∀α ∈ ∆+} the positive Weyl

chamber. It is a fundamental domain for W 	 Λ⊗Z Q.
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2. Orbits

For each face F of P (of any dimension, including P itself) let:

VF ⊆ V be the span of T̃ -eigenvectors with weights in F;

V ′F ⊆ V be the T̃ -stable complement of VF ; V = VF ⊕ V ′F ;
EF = projector V → VF .

Theorem 1. There is a 1-1 correspondence:

(G×G)-orbits Y ⊆ X ←→ faces F ⊆ P, (intF) ∩ C 6= ∅.

Orbit representatives are: Y 3 y = 〈EF〉.
Stabilizers are computed.

Dimensions: dimY = dimF +
∣∣∣∆ \ 〈F〉⊥∣∣∣.

Partial order: Y1 ⊂ Y2 ⇐⇒ F1 ⊂ F2.
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Example 2. G = PGLn, V = Cn =⇒ X = P(Matn) = Pn2−1.
Here G̃ = SLn, T = {diagonal matrices},

Λ(V ) = {ε1, . . . , εn} = the standard basis of Zn,

∆ = {εi − εj | i 6= j}, ∆+ = {εi − εj | i < j},
C = {λ = (l1, . . . , ln) | l1 ≥ · · · ≥ ln}

We see that P = conv{ε1, . . . , εn} is a simplex, the faces of P
whose interior intersects C are

Fr = conv{ε1, . . . , εr}, r = 1, . . . , n,

the respective projectors are

EFr = diag(1, . . . ,1︸ ︷︷ ︸
r

,0, . . . ,0),

and the orbits are

Yr = P(matrices of rank r).
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Proof. Step 1. Let K ⊂ G be a maximal compact subgroup;
then G = KTK (Cartan decomposition) =⇒ X = KTK =⇒
T intersects all (G×G)-orbits in X.

Step 2. By toric geometry, there is a 1-1 correspondence:

T -orbits in T ←→ all faces F ⊆ P,

which respects partial order, 〈EF〉 being the orbit representatives.

Step 3. Compute the stabilizers of 〈EF〉 in G×G. In particular,
this yields the orbit dimensions.

Step 4. Given y = 〈EF〉 ∈ Y = GyG, the structure of (G × G)y

implies that Y diagT =
⋃

w1,w2∈W Tw1yw2? It follows that

Y1 = Y2 ⇐⇒ F1 = wF2 for some w ∈W.

There exists a unique F+ = wF such that (intF+)∩C 6= ∅.
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3. Local structure

Fix a closed orbit Y0 ⊂ X. What is the structure of X in a
neighborhood of Y0?

W.l.o.g. V is assumed to be a multiplicity-free G-module. By
Theorem 1, Y0 = Gy0G, y0 = 〈Eλ0

〉, λ0 ∈ P a vertex, Eλ0
is

the projector V = Cvλ0
⊕ V ′λ0

→ Cvλ0
, where vλ0

is the (unique)
eigenvector of weight λ0 (a highest weight vector).

Associated parabolic subgroups: P+ = G〈vλ0
〉, P− ⊆ G.

Levi decomposition: P± = P±u o L, L = P+ ∩ P− ⊇ T .

Theorem 2. X̊ = {x = 〈A〉 ∈ X | Avλ0
/∈ V ′λ0

} is a (P− × P+)-
stable neighborhood of y0 in X.

X̊ ' P−u × Z × P+
u , where Z = L ⊆ End(V ′λ0

⊗ (−λ0)).
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Proof is based on the local structure of P− 	 V in a neighborhood

of vλ0
(Brion, Luna, Vust).

Remark. Z is a reductive algebraic semigroup with 0 (corre-

sponding to y0), called the slice semigroup.

Regular case: λ0 ∈ intC =⇒ L = T =⇒ Z affine toric variety.

Example 3. In the notation of Example 2,

Y0 = P(matrices of rank 1), λ0 = ε1, vλ0
= e1,

P+
u =

1 ∗
0... E0

, P−u =

1 0 · · · 0

∗ E , L =

∗ 0· · ·0
0... ∗
0

' GLn−1,

V ′λ0
= 〈e2, . . . , en〉, Z = Matn−1 .
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4. Normality

Does X have normal singularities? It suffices to consider singu-
larities in a neighborhood of a closed orbit Y0. By Theorem 2 it
suffices to study the singularity of Z at 0.

L is reductive =⇒ L-modules are completely reducible.

Simple L-modules V = VL(λ)←→ highest weights λ ∈ Λ ∩ CL,

λ + α /∈ Λ(V ), ∀α ∈∆+
L .

VL(λ)⊗ VL(µ) ' VL(λ + µ)⊕ · · · ⊕ VL(λ + µ− α1 − · · · − αk)⊕ · · ·
(αi ∈∆+

L ).

Definition. Weights µ1, . . . , µk L-generate a semigroup Σ ⊂ Λ if

Σ = {µ | VL(µ) ↪→ VL(µi1)⊗ · · · ⊗ VL(µiN)}.
Observation: “generate” (in a usual sense) =⇒ “L-generate”;
⇐= fails in general.
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Theorem 3. Let λ0, λ1 . . . , λm be the highest weights of the

simple G-submodules in V and α1, . . . , αr be the simple roots in

∆+
G \∆

+
L . Put Σ = (director cone of P ∩ C at λ0)∩Λ. Consider

the following conditions:

(1) X is normal along Y0;

(2) T is normal at y0;

(3) Σ is L-generated by λi − λ0,−αj.

(4) Σ is generated by λ− λ0, ∀λ ∈ Λ(V ).

Then (1) ⇐⇒ (3) =⇒ (2) ⇐⇒ (4).

Remark. (3) ⇐⇒ λi − λ0, −αj L-generate a saturated semi-

group.

11



Example 4. G = Sp4, V = S3C4⊕S2
0(

∧2
0 C4), the highest weights

{λ0 = 3ω1, λ1 = 2ω2} (ωi denote the fundamental weights, αi the

simple roots). Here L ' SL2 × C×, ∆L = {±α2}.
λ1 − λ0,−α1 L-generate {bold dots} (Clebsch–Gordan formula).

=⇒ X non-normal along Y0; becomes normal if we add λ2 = 2ω1.
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5. Smoothness

Theorem 4. X is smooth along Y0 ⇐⇒ (1)&(2)&(3):
(1) L = GLn1 × · · · ×GLnp.
(2) L 	 V ⊗ (−λ0) is polynomial.
(3) [L 	 V ⊗ (−λ0)]←↩ [GLni 	 Cni], ∀i.
Remark. (1), (2), (3) are reformulated in terms of Λ(V ).

Idea of the proof. X is smooth ⇐⇒ Z is smooth ⇐⇒ Z '
Matn1× · · · ×Matnp.

Example 5. G = SO2m+1, V = VG(ωi) (ωi are the fundamental
weights).
a) i < m: V =

∧i C2m+1, L ' GLi × SO2m+1−2i =⇒ X singular.
b) i = m: V = spinor module '

∧•Cm ⊗ ωm over L ' GLm =⇒
X smooth.
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6. “Small” compactifications

Let G be a simple Lie group. We take a closer look at X =

G ⊆ P(EndV ) for “small” V = VG(ωi) (ωi are the fundamental

weights) or V = LieG (adjoint representation).

Results: 1) (G×G)-orbits, their dimensions, Hasse diagrams of

partial order.

2) Non-normal: (SO2m+1, ωi), i < m; (Sp2m, ωm); (G2, ω2); (F4, ωi),

i = 3,4.

3) Smooth: (SLn, ωi), i = 1, n−1; (SLn,Ad), n ≤ 3; (SO2m+1, ωm);

(Sp4, ω1); (Sp4,Ad); (G2, ω1).
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