Dmitri A. Timashev

Torus actions of complexity one

Let $T=\left(\mathbb{C}^{\times}\right)^{r}$ be a complex algebraic torus acting on an algebraic variety X. The complexity $c(T, X)$ is the codimension of generic T-orbits in X. Toric varieties are exactly those of complexity 0 . We give a combinatorial description of torus actions of complexity 1 in the language of convex geometry in the same spirit as for toric varieties.

We restrict our consideration to normal T-varieties. This restriction, common in toric geometry, is not very essential since every T-variety admits a T-equivariant normalization. Without loss of generality we may assume that the action $T \circlearrowleft X$ is faithful, i.e., generic T-orbits have trivial stabilizers.

By Sumihiro's theorem $X=\bigcup X_{i}$ is covered by finitely many affine open T-stable subvarieties. Hence a description of X amounts to 2 problems: (1) Describe the affine T-varieties X_{i};, (2) Indicate how to patch them together.

To solve the 1 -st problem, we may assume that X itself is affine. It is determined by its coordinate algebra $\mathbb{C}[X]$. The latter is a finitely generated integrally closed T-algebra, whence $\mathbb{C}[X]=\bigcap_{v=v_{D}} \mathcal{O}_{v}$ over all T-stable prime divisors $D \subset X$ (T-divisors in short), where v_{D} denotes the valuation of the field of rational functions $\mathbb{C}(X)$ corresponding to D.

Now we describe T-invariant discrete valuations of $\mathbb{C}(X)$ taking values in \mathbb{Q} (T-valuations in short). It is easy to see that they are completely determined by the restriction to the multiplicative group of T-eigenfunctions $\mathbb{C}(X)^{(T)}$, and $\mathbb{C}(X)^{(T)} \simeq\left(\mathbb{C}(X)^{T}\right)^{\times} \times \Lambda$, where $\mathbb{C}(X)^{T}$ is the field of T-invariant functions and Λ is the weight lattice of T. Since $c(T, X)=1$, we have $\mathbb{C}(X)^{T} \simeq \mathbb{C}(C)$ for some smooth projective curve C. Restricting a valuation to $\mathbb{C}(X)^{T}$ and Λ, in turn, we deduce:

Proposition. The T-valuations are in a 1-1 correspondence with the triples $(z, h, \gamma), z \in C$, $h \in \mathbb{Q}_{+}, \gamma \in \mathcal{Z}:=\operatorname{Hom}(\Lambda, \mathbb{Q})$, modulo the equivalence relation $\left(z_{1}, 0, \gamma\right) \equiv\left(z_{2}, 0, \gamma\right), \forall z_{1}, z_{2} \in \mathbb{C}$. Hence the set of T-valuations is $\mathcal{V}=\bigcup_{z \in C} \mathcal{V}_{z}$, where the half-spaces $\mathcal{V}_{z}=\mathbb{Q}_{+} \times \mathcal{Z}$ are patched together along \mathcal{Z}.
Definition. A hypercone in \mathcal{V} is a union $\mathcal{C}=\bigcup \mathcal{C}_{z}$ of rational polyhedral cones $\mathcal{C}_{z} \subset \mathcal{V}_{z}$ such that: (1) $\mathcal{C}_{z} \cap \mathcal{Z}=: \mathcal{K}$ does not depend on $z \in C$; (2) $\mathcal{C}_{z}=\mathbb{Q}_{+} \times \mathcal{K}$ for all but finitely many z;
(3) Let \mathcal{P}_{z} be the projections of $\mathcal{C}_{z} \cap(\{1\} \times \mathcal{Z})$ to \mathcal{Z}; then $\mathcal{P}=\sum_{z \in C} \mathcal{P}_{z}:=\left\{\sum \gamma_{z} \mid\right.$ $\gamma_{z} \in \mathcal{P}_{z}, \gamma_{z}=0$ for all but finitely many $\left.z\right\} \subset \mathcal{K} \backslash\{0\}$. (\mathcal{P} may be empty!)
(4) For any face $\mathcal{K}_{0} \subset \mathcal{K}, \mathcal{K}_{0} \cap \mathcal{P} \neq 0$, and $\forall \lambda \in \Lambda,\left\langle\lambda, \mathcal{K}_{0}\right\rangle=0,\langle\lambda, \mathcal{K}\rangle \geq 0$, put $\ell_{z}=\min \left\langle\lambda, \mathcal{P}_{z}\right\rangle$; then a multiple of $\sum_{z} \ell_{z} \cdot z$ is a principal divisor on C.
Note: Condition (4) holds automatically if $C=\mathbb{P}^{1}$, i.e., if X is rational, because $\sum \ell_{z}=0$
Theorem 1. The normal affine T-varieties of complexity 1 are in a 1-1 correspondence with the hypercones. The T-divisors on X correspond to the edges of the \mathcal{C}_{z} 's not intersecting \mathcal{P}.

Next we address the 2-nd problem. By a hyperface $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ we mean a hypercone \mathcal{C}^{\prime} such that \mathcal{C}_{z}^{\prime} is a face of $\mathcal{C}_{z}, \forall z \in C$.
Theorem 2. Affine T-varieties X_{i} can be patched together giving a (possibly non-affine) T-variety X of complexity 1 iff the respective hypercones \mathcal{C}_{i} intersect exactly in their common hyperfaces.
Conclusion: Normal T-varieties of complexity 1 are in a $1-1$ correspondence with finite collections of hypercones intersecting in their common hyperfaces, called hyperfans.

In terms of a hyperfan, there are a description of all orbits, a criterion for smoothness, etc.

References

[1] D. A. Timashev, Classification of G-varieties of complexity 1, Izv. Math. 61 (1997), no. 2, 363-397.
[2] D. A. Timashev, Homogeneous spaces and equivariant embeddings, arXiv:math.AG/0602228, to appear in Encyclopædia of Math. Sciences.

