Dmitri A. Timashev

Torus actions of complexity one

Let $T = (\mathbb{C}^{\times})^r$ be a complex algebraic torus acting on an algebraic variety X. The *complexity* c(T, X) is the codimension of generic T-orbits in X. Toric varieties are exactly those of complexity 0. We give a combinatorial description of torus actions of complexity 1 in the language of convex geometry in the same spirit as for toric varieties.

We restrict our consideration to *normal* T-varieties. This restriction, common in toric geometry, is not very essential since every T-variety admits a T-equivariant normalization. Without loss of generality we may assume that the action $T \circ X$ is faithful, i.e., generic T-orbits have trivial stabilizers.

By Sumihiro's theorem $X = \bigcup X_i$ is covered by finitely many affine open *T*-stable subvarieties. Hence a description of *X* amounts to **2 problems**: (1) Describe the affine *T*-varieties X_i ; (2) Indicate how to patch them together.

To solve the 1-st problem, we may assume that X itself is affine. It is determined by its coordinate algebra $\mathbb{C}[X]$. The latter is a finitely generated integrally closed T-algebra, whence $\mathbb{C}[X] = \bigcap_{v=v_D} \mathcal{O}_v$ over all T-stable prime divisors $D \subset X$ (T-divisors in short), where v_D denotes the valuation of the field of rational functions $\mathbb{C}(X)$ corresponding to D.

Now we describe *T*-invariant discrete valuations of $\mathbb{C}(X)$ taking values in \mathbb{Q} (*T*-valuations in short). It is easy to see that they are completely determined by the restriction to the multiplicative group of *T*-eigenfunctions $\mathbb{C}(X)^{(T)}$, and $\mathbb{C}(X)^{(T)} \simeq (\mathbb{C}(X)^T)^{\times} \times \Lambda$, where $\mathbb{C}(X)^T$ is the field of *T*-invariant functions and Λ is the weight lattice of *T*. Since c(T, X) = 1, we have $\mathbb{C}(X)^T \simeq \mathbb{C}(C)$ for some smooth projective curve *C*. Restricting a valuation to $\mathbb{C}(X)^T$ and Λ , in turn, we deduce:

Proposition. The *T*-valuations are in a 1–1 correspondence with the triples (z, h, γ) , $z \in C$, $h \in \mathbb{Q}_+$, $\gamma \in \mathcal{Z} := \operatorname{Hom}(\Lambda, \mathbb{Q})$, modulo the equivalence relation $(z_1, 0, \gamma) \equiv (z_2, 0, \gamma)$, $\forall z_1, z_2 \in \mathbb{C}$. Hence the set of *T*-valuations is $\mathcal{V} = \bigcup_{z \in C} \mathcal{V}_z$, where the half-spaces $\mathcal{V}_z = \mathbb{Q}_+ \times \mathcal{Z}$ are patched together along \mathcal{Z} .

Definition. A hypercone in \mathcal{V} is a union $\mathcal{C} = \bigcup \mathcal{C}_z$ of rational polyhedral cones $\mathcal{C}_z \subset \mathcal{V}_z$ such that: (1) $\mathcal{C}_z \cap \mathcal{Z} =: \mathcal{K}$ does not depend on $z \in C$; (2) $\mathcal{C}_z = \mathbb{Q}_+ \times \mathcal{K}$ for all but finitely many z;

- (3) Let \mathcal{P}_z be the projections of $\mathcal{C}_z \cap (\{1\} \times \mathcal{Z})$ to \mathcal{Z} ; then $\mathcal{P} = \sum_{z \in C} \mathcal{P}_z := \{\sum \gamma_z \mid \gamma_z \in \mathcal{P}_z, \gamma_z = 0 \text{ for all but finitely many } z\} \subset \mathcal{K} \setminus \{0\}.$ (\mathcal{P} may be empty!)
- (4) For any face $\mathcal{K}_0 \subset \mathcal{K}, \mathcal{K}_0 \cap \mathcal{P} \neq 0$, and $\forall \lambda \in \Lambda, \langle \lambda, \mathcal{K}_0 \rangle = 0, \langle \lambda, \mathcal{K} \rangle \geq 0$, put $\ell_z = \min(\lambda, \mathcal{P}_z)$; then a multiple of $\sum_z \ell_z \cdot z$ is a principal divisor on C.

Note: Condition (4) holds automatically if $C = \mathbb{P}^1$, i.e., if X is rational, because $\sum \ell_z = 0$

Theorem 1. The normal affine T-varieties of complexity 1 are in a 1–1 correspondence with the hypercones. The T-divisors on X correspond to the edges of the C_z 's not intersecting \mathcal{P} .

Next we address the 2-nd problem. By a hyperface $\mathcal{C}' \subseteq \mathcal{C}$ we mean a hypercone \mathcal{C}' such that \mathcal{C}'_z is a face of \mathcal{C}_z , $\forall z \in C$.

Theorem 2. Affine T-varieties X_i can be patched together giving a (possibly non-affine) T-variety X of complexity 1 iff the respective hypercones C_i intersect exactly in their common hyperfaces.

Conclusion: Normal T-varieties of complexity 1 are in a 1–1 correspondence with finite collections of hypercones intersecting in their common hyperfaces, called *hyperfans*.

In terms of a hyperfan, there are a description of all orbits, a criterion for smoothness, etc.

References

- D. A. Timashev, Classification of G-varieties of complexity 1, Izv. Math. 61 (1997), no. 2, 363–397.
- [2] D. A. Timashev, *Homogeneous spaces and equivariant embeddings*, arXiv:math.AG/0602228, to appear in Encyclopædia of Math. Sciences.