International conference on Toric topology
Osaka, 29.05-03.06. 2006.

Invariant complex structures on generalized symmetric spaces

Svjetlana Terzić
University of Montenegro
joint work with Dieter Kotschick (LMU - Munich)

1. General facts

M - closed, oriented manifold of even dimension;

Almost complex structure - field J of endomorphisms J_{p} on $T M$ such that $J_{p}^{2}=-I_{d}$ for any $p \in M$;
J is integrable - if there exists complex atlas on M producing $J_{p}, p \in M$;

We consider homogeneous spaces G / H - restrict ourselves to description of invariant almost complex structures J - meaning invariance under the action of G on G / H;
J can be identified with complex structure on $T_{e}(G / H)$ that commutes with isotropy representation for H;

2. Existence

Thm 1 (Borel-Hirzebruch)

If H is centralizer of some element $g \in G$ of odd order, than G / H admits an invariant almost complex structure. In particular, if H is centralizer of a torus in G than G / H admits an invariant almost complex structure.

Thm 2 (Wang)
G / H admits an invariant complex structure if and only if semisimple part for H coincide with semisimple part of centralizer of some toral subgroup in G.

We distinguish two classes of homogeneous complex spaces:

1. If $\mathrm{rk} H=\mathrm{rk} G$ - than H is centralizer of a toral subgroup in G;

In this case : $b_{2}(G / H) \neq 0$ and G / H is Kaehler.

Remark. This implies an existence of 7 symmetric spaces which are invariant almost complex, but not invariant complex:
$G_{2} / A_{2}=S^{6}, \quad F_{4} / A_{2} \times A_{2}, \quad E_{6} / A_{2} \times A_{2} \times A_{2}, \ldots$
2. rk $H<r k G$ - than semisimple part for H coincide with semisimple part of some stabilizer from the above case.

There is explicit list of all such semisimple " parts" for compact simple Lie groups - Wang (*).

Proof for 2. implies any such space is homeomorphic with some homogeneous complex space K / L_{c}, for $c \in \mathbb{Q}$, with rk $K=r k L_{c}$. By varying c one, in fact, gets infinitely many invariant complex structures on G / H (which are not Kaehler).

Therefore, we consider only the case rk $H=r k G$.

Thm 3 (Wolf-Gray)

Let H be subgroup of G with rk $H=r k U$. Then G / H admits an invariant complex structure if and only if H is a fixed point set for some finite group of odd order of inner automorphisms of G.

Roughly - only complex homogeneous spaces are generalized symmetric spaces - H is fixed point subgroup of some automorphism for G of finite order k.

Remark. There is explicit list-classification of all generalized symmetric spaces for compact simple Lie groups (Terzic). Comparing with Wang's list (*), a lot of them do not admit any invariant complex structure.
3. Root description of an invariant (almost) complex structures
$\mathfrak{g}, \mathfrak{h}$ - Lie algebra for G and H respectively;
\mathfrak{t} - Cartan algebra for \mathfrak{g} and $\mathfrak{h},\{\beta\}$ - roots for \mathfrak{g} related to \mathfrak{t}.
$\mathfrak{g}=\mathfrak{h} \oplus T_{e}(G / H)=\mathfrak{t} \oplus \sum \mathfrak{g}_{\beta}=\mathfrak{t} \oplus \sum \mathfrak{h}_{\beta_{i}} \oplus \sum \mathfrak{g}_{\beta_{j}}$,
where $\{\beta\}=\left\{\beta_{i}\right\} \cup\left\{\beta_{j}\right\}$ and $\left\{\beta_{i}\right\}$ are the roots for \mathfrak{h} related to \mathfrak{t}.
$\left\{\beta_{j}\right\}$ - are called complementary roots for G related to H;
$T_{e}(G / H)=\oplus \mathfrak{g}_{\beta_{j}}$
J induces complex structures on $\mathfrak{g}_{\beta_{j}}$ - because it commutes with isotropy representation;
$\beta_{j} \rightarrow \varepsilon_{j}= \pm 1$ depending if $(v, \operatorname{Adt}(v))$ and $(v, J(v))$ for $v \in \mathfrak{g}_{\beta_{j}}$ define the same orientation in $\mathfrak{g}_{\beta_{j}}$ or not;
$\varepsilon_{j} \beta_{j}$ - the roots of almost complex structure J;

4. On the number of invariant (almost) complex structures

Thm 4 (Borel-Hirzebruch)

Isotropy representation for G / H decomposes into t irreducible summands \Rightarrow G / H admits exactly 2^{t} invariant almost complex structures.

Thm 5 (Wolf-Gray)

Let $\beta_{1}, \ldots, \beta_{k}$ - be the set of complementary positive roots for G related to H. Let t - be the number of linear functionals we get as a restriction of the complementary roots to the center of H. The number of invariant almost complex structures on G / H is 2^{t}.

5. Deciding integrability using root theory

Canonical coordinates - coordinates for G and H on \mathfrak{t} in which the roots for G and H are in expressed in standard way.

- G / H - homogeneous complex and $\beta_{1}, \ldots, \beta_{k}$ roots defining this complex structure. Then there exists ordering on the canonical coordinates for G such that the above system is positive and closed.
- The opposite is also true. Let Θ be the system of positive roots for H and Ψ some closed system of roots for G such that $\Theta \cup \Psi$ forms the system of positive roots for G. Then there exists on G / H invariant complex structure such that Ψ is its root system.
- Let Ψ and Ψ^{\prime} be the root systems of invariant complex structures on G / H. If there is automorphism on \mathfrak{t} carrying ψ into Ψ^{\prime} and leaving the root system for H invariant than the corresponding complex structures are equivalent (under some diffeomorphism of G / H).

For explicit description (classification) of all invariant (almost) complex structures on G / H one needs relation between canonical coordinates for G and H.

For generalized symmetric spaces such relations are obtained earlier \rightarrow complete description of invariant complex structures.

Remark. M. Nishiyama (Osaka J. Math.) gave the explicit formulas for the number of equivalent invariant complex structures for all complex homogeneous spaces with G simple compact Lie group.

6. Chern classes through the root theory on homogeneous spaces

There are seven equivalent definition of Chern classes (Borel-Hirzebruch).
Definition using representation theory can be used as follows.
J - an invariant almost complex structure on G / H;
ι - isotropy representaion of H;
J gives rise to complex linear representation ι_{c} of H in $\mathbb{C}^{n}, \operatorname{dim} G / H=2 n$;
Thm $6 c(J)=\Pi\left(1+w_{i}\right)$, where w_{i} runs through the weights of the complex isotropy representation ι_{c}.
$\left\{\varepsilon_{i} \beta_{i}\right\}$ - the roots defining $J ;$
If rk $H=\operatorname{rk} G-\left\{\varepsilon_{i} \beta_{i}\right\}$ are the weights for ι_{c};
$c(J)=\Pi\left(1+\varepsilon_{i} \beta_{i}\right)-$ total Chern class for $G / H ;$
$c_{k}=\sum_{i_{1}<\ldots<i_{k}} \beta_{i_{1}} \cdots \beta_{i_{k}}$.

7. On non-invariance of Chern numbers

Hirzebruch (1954) - To what extent Chern numbers are topological invariant (for projective algebraic manifolds)?

Calabi (1958) - Chern classes of a complex 3-fold are not determined by the topology of the underlying manifold - his examples say nothing on Chern numbers - all have vanishing Chern numbers;

For almost complex structures hardly - even on the same manifold simply because there may be a lot of them;

First example Borel-Hirzebruch (1959): 10-dimensional homogeneous space with two invariant complex structures for which c_{1}^{5} are different;

Immediately true for:

- top Chern number - Euler number;
- some combination of Chern numbers which give Pontryagin numbers (orientation is fixed, dimension divisible by four)

$$
p_{k}(E)=c_{k}(E)^{2}-2 c_{k-1}(E) c_{k+1}(E)+\ldots \pm 2 c_{1}(E) c_{2 k-1}(E) \mp 2 c_{2 k}(E)
$$

under orientation preserving diffeomorphism.

8. Generalized Borel-Hirzebruch example

```
SU(n+1)/S(U(1)\timesU(1)\timesU(n-1))-3-symmetric space;
n=1-2-sphere,
n=2 - complex three-dimensional flag manifold;
n=3 - Borel-Hirzebruch example;
An/ t}\mp@subsup{}{}{2}\oplus\mp@subsup{A}{n-2}{-}\mathrm{ - corresponding 3-symmetric Lie algebra;
```

Thm 73 -symmetric homogeneous space $S U(n+1) / S(U(1) \times U(1) \times U(n-1))$ has up to automorphisms two integrable and one non integrable invariant almost complex structure.

Thm 8 Chern numbers (complex) for $S U(n+1) / S(U(1) \times U(1) \times U(n-1))$ are not topological invariants of underlying manifold (even not diffeomorphic invariant).

Cor 1 For $n=3$ the above complex structures have the following Chern numbers

1. $c_{1}^{5}=4500, \quad c_{1}^{3} c_{2}=2148, \quad c_{1}^{2} c_{3}=612$, $c_{1} c_{2}^{2}=1028, \quad c_{1} c_{4}=108, \quad c_{2} c_{3}=292, \quad c_{5}=12$
2. $c_{1}^{5}=4860, \quad c_{1}^{3} c_{2}=2268, \quad c_{1}^{2} c_{3}=612$, $c_{1} c_{2}^{2}=1068, \quad c_{1} c_{4}=108, \quad c_{2} c_{3}=128, \quad c_{5}=12$.
