## Topology on Graphs

Zhi Lü

Institute of Mathematics, Fudan University, Shanghai.

Osaka, 2006

## §1. Objective

- Graphs $\Longrightarrow \cdots \Longrightarrow$ Geometric Objects
- Two basic problems
-     -         - Under what condition, is a geometric object a closed manifold?
-     -         - Can any closed manifold be geometrically realiz-
able by the above way?


## §2. Background

- GKM theory - by Goresky, Kottwitz and MacPherson in 1998 (see
[Invent. Math. 131, 25-83]).


A unique regular $\Gamma_{M}$ of valency $n$
GKM graphs
A GKM manifold is a $T^{k}$-manifold $M^{2 n}$ with
$\left(\bullet\left|M^{T}\right|<+\infty\right.$

- $M$ having a $T^{k}$-invariant almost complex structure
- for $p \in M^{T}$, the weights of the isotropy representation
of $T^{k}$ on $T_{p} M$ being pairwise linearly independent.


## §3. Coloring graphs and faces

Let $G=\left(\mathbb{Z}_{2}\right)^{k}$.
Given a $G$-manifold $M$ with $\left|M^{G}\right|<\infty \rightsquigarrow$ regular graph $\Gamma_{M}$ with properties as follows:
$\exists$ a natural map

$$
\begin{aligned}
\alpha: E_{\Gamma_{M}} & \longrightarrow \operatorname{Hom}\left(G, \mathbb{Z}_{2}\right) \\
e & \longmapsto \rho
\end{aligned}
$$

such that
A) for each $p \in V_{\Gamma_{M}}, \alpha\left(E_{p}\right)$ spans $\operatorname{Hom}\left(G, \mathbb{Z}_{2}\right)$
B) for each $e=p q \in E_{\Gamma_{M}}$ and $\sigma \in \alpha\left(E_{p}\right)$, the number of times which $\sigma$ and $\sigma+\alpha(e)$ occur in $\alpha\left(E_{p}\right)$ is the same as that in $\alpha\left(E_{q}\right)$.

## - Abstract definition

Let $G=\left(\mathbb{Z}_{2}\right)^{k}$.
We shall work on $H^{*}\left(B G ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[a_{1}, \ldots, a_{k}\right]\left(\because H^{1}\left(B G ; \mathbb{Z}_{2}\right) \cong\right.$ $\left.\operatorname{Hom}\left(G, \mathbb{Z}_{2}\right)\right)$.
$\Gamma^{n}$ : a connected regular graph of valency $n$ with $n \geq k$ and no loops.
If there is a map $\alpha: E_{\Gamma} \longrightarrow H^{1}\left(B\left(\mathbb{Z}_{2}\right)^{k} ; \mathbb{Z}_{2}\right)-\{0\} \mathrm{s} . \mathrm{t}$.
(1) for each vertex $p \in V_{\Gamma}$, the image $\alpha\left(E_{p}\right)$ spans $H^{1}\left(B\left(\mathbb{Z}_{2}\right)^{k} ; \mathbb{Z}_{2}\right)$, and
(2) for each edge $e=p q \in E_{\Gamma}$,

$$
\prod_{x \in E_{p}-E_{e}} \alpha(x) \equiv \prod_{y \in E_{q}-E_{e}} \alpha(y) \quad \bmod \alpha(e),
$$

then the pair $(\Gamma, \alpha)$ is called a coloring graph of type $(k, n)$.

## - Examples




## -Faces

$(\Gamma, \alpha)$ : a coloring graph of type $(k, n)$.
$\Gamma^{\ell}$ : a connected $\ell$-valent subgraph of $\Gamma$ where $0 \leq \ell \leq n$.

If $\left(\Gamma^{\ell}, \alpha \mid \Gamma^{\ell}\right)$ satisfies
a) for any two vertices $p_{1}, p_{2}$ of $\Gamma^{\ell}, \alpha\left(\left(E \mid \Gamma^{\ell}\right)_{p_{1}}\right)$ and $\alpha\left(\left(E \mid \Gamma^{\ell}\right)_{p_{2}}\right)$ span the same subspace of $H^{1}\left(B G ; \mathbb{Z}_{2}\right)$;
b) for each edge $e=p q \in E \mid \Gamma^{\ell}$,

$$
\prod_{x \in\left(E \mid \Gamma^{\ell}\right)_{p}-\left(E \mid \Gamma^{\ell}\right)_{e}} \alpha(x) \equiv \prod_{y \in\left(E \mid \Gamma^{\ell}\right)_{q}-\left(E \mid \Gamma^{\ell}\right)_{e}} \alpha(y) \bmod \alpha(e)
$$

$$
\text { then }\left(\Gamma^{\ell}, \alpha \mid \Gamma^{\ell}\right) \text { is an } \ell \text {-face of }(\Gamma, \alpha) \text {. }
$$

## Example


is a 2-face
a coloring graph $(\Gamma, \alpha)$


Assumption-Case: valency $n$ of $\Gamma=$ rank $k$ of $G=\left(\mathbb{Z}_{2}\right)^{k}$
$(\Gamma, \alpha)$ : a coloring graph of type $(n, n)$ with $\Gamma$ connected.
$\mathcal{F}_{(\Gamma, \alpha)}$ : the set of all faces of $(\Gamma, \alpha)$.

- An application for the $n$-connectedness of a graph.

Theorem (Whitney) A graph $\Gamma$ with at least $n+1$ vertices is n-connected if and only if every subgraph of $\Gamma$, obtained by omitting from $\Gamma$ any $n-1$ or fewer vertices and the edges incident to them, is connected.

Theorem (Z. Lü and M. Masuda). Suppose that $(\Gamma, \alpha)$ is a coloring graph of type $(n, n)$ with $\Gamma$ connected. If the intersection of any two faces of dimension $\leq 2$ in $\mathcal{F}_{(\Gamma, \alpha)}$ is either connected or empty, then $\Gamma$ is $n$-connected.

## Example



Contents
$44>$
$4 \square$

Page 10 of 22

Go Back
$a_{1}$

$a_{1}+a_{3} a_{2}+a_{3}$
$a_{2}+a_{3}$

## §4. Geometric realization

$(\Gamma, \alpha)$ :a coloring graph of type $(n, n) \Longrightarrow \mathcal{F}_{(\Gamma, \alpha)} \Longrightarrow\left|\mathcal{F}_{(\Gamma, \alpha)}\right|$

## Example 1.



The geometric realization $\left|\mathcal{F}_{(\Gamma, \alpha)}\right|=S^{2}$

## Example 2.


$(\Gamma, \alpha)$ :a coloring graph of type $(3,3)$.

The geometric realization $\left|\mathcal{F}_{(\Gamma, \alpha)}\right|=\mathbb{R} P^{2}$


Generally,
Fact. $\mathcal{F}_{(\Gamma, \alpha)}$ forms a simplicial poset of rank $n$ with respect to reversed inclusion with $(\Gamma, \alpha)$ as smallest element.

$$
\frac{\Downarrow}{\left|\mathcal{F}_{(\Gamma, \alpha)}\right| \text { is a pseudo manifold. }}
$$

poset means partially ordered set
A poset $\mathcal{P}$ is simplicial if it contains a smallest element $\hat{0}$ and for each $a \in \mathcal{P}$ the segment $[\hat{0}, a]$ is a boolean algebra (i.e., the face poset of a simplex with empty set as the smallest element).
$\mathcal{P}$ : a simplicial poset
$\Downarrow$
a simplicial cell complex $\mathbb{K}_{\mathcal{P}}$ in the following way:
for each $a \neq \hat{0}$ in $\mathcal{P}$, one obtains a geometrical simplex such that its face poset is $[\hat{0}, a]$, and then one glues all obtained geometrical simplices together according to the ordered relation in $\mathcal{P}$, so that one can get a cell complex as desired.
By $|\mathcal{P}|$ one denotes the underlying space of this cell complex, and one calls $|\mathcal{P}|$ the geometric realization of $\mathcal{P}$.

## Basic problems:

(I). Under what condition, is the geometric realization
(II). For any closed topological manifold $M^{n}$, is there a coloring graph $(\Gamma, \alpha)$ of type $(n+1, n+1)$ such that $M^{n} \approx\left|\mathcal{F}_{(\Gamma, \alpha)}\right|$ ?

Basic problem (I)
$(\Gamma, \alpha)$ : a coloring graph of type $(n, n)$ with $\Gamma$ connected.

The case $n=1:\left|\mathcal{F}_{(\Gamma, \alpha)}\right| \approx S^{0}$
The case $n=2$ : it is easy to see that for any coloring graph $(\Gamma, \alpha)$ of type $(2,2)$, the geometric realization $\left|\mathcal{F}_{(\Gamma, \alpha)}\right|$ is always a circle.
The case $n=3$ :
Fact. $\left|\mathcal{F}_{(\Gamma, \alpha)}\right|$ is a closed surface $S$.

Generally, if $n>3$, the geometric realization $\left|\mathcal{F}_{(\Gamma, \alpha)}\right|$ is not a closed topological manifold. For example, see the following coloring graph ( $\Gamma, \alpha$ ) of type $(4,4)$.


$$
\chi\left(\left|\mathcal{F}_{(\Gamma, \alpha)}\right|\right)=5-12+16-8=1 \neq 0
$$

so $\left|\mathcal{F}_{(\Gamma, \alpha)}\right|$ is not a closed topological 3-manifold.

The case $n=4$.
Write $v=\left|V_{\Gamma}\right|$ and $e=\left|E_{\Gamma}\right|$ so $2 v=e$.
$f$ : the number of all 2-faces in $\mathcal{F}_{(\Gamma, \alpha)}$
$f_{3}$ : the number of all 3 -faces in $\mathcal{F}_{(\Gamma, \alpha)}$
Theorem. Let $n=4$. $\left|\mathcal{F}_{(\Gamma, \alpha)}\right|$ is a closed connected topological 3-manifold $\Longleftrightarrow f=f_{3}+v$.

Problem: for $n>4$, to give a sufficient (and necessary) condition that $\left|\mathcal{F}_{(\Gamma, \alpha)}\right|$ is a closed connected topological manifold.

## Basic problem (II)

$M^{n}$ :n-dim closed connected topological manifold
1-dim case: $M^{1} \approx S^{1}$.
$S^{1}$ is realizable by any coloring graph of type (2,2).

Prop. Any closed surface can be realized by some coloring graph of type (3,3).

## 2-dim case:

3-dim case:

## Conjecture: Any closed 3-manifold $M^{3}$ is

 geometrically realizable by a coloring graph ( $\Gamma, \alpha$ ) of type (4, 4), i.e.,$$
M^{3} \approx\left|\mathcal{F}_{(\Gamma, \alpha)}\right| .
$$

4-dim case: It is well known that there exist closed topological 4-manifolds that don't admit any triangulation.

## $\Downarrow$

$\exists$ closed topological 4-manifolds that cannot be realized by any coloring graph of type $(5,5)$.

Proposition. Let $M^{n}$ be a closed manifold. If $M^{n}$ admits a simplicial cell decomposition with at least $n+2$ vertices, then $M^{n}$ can be geometrically realizable by a coloring graph.

## Restatement

Proposition. Suppose that $\Gamma$ is a 3-valent graph and is at least 2-connected. Then $\Gamma$ is planar if and only if $\Gamma$ admits a coloring $\alpha$ of type $(3,3)$ such that $\left|\mathcal{F}_{(\Gamma, \alpha)}\right| \approx S^{2}$.

Contents

