Topology on Graphs

Zhi Lü

Institute of Mathematics, Fudan University, Shanghai.

Osaka, 2006

§1. Objective

• Graphs $\implies \cdots \implies$ Geometric Objects

• Two basic problems

- - - Under what condition, is a geometric object a closed manifold?

-- Can any closed manifold be geometrically realizable by the above way?

§2. Background

• GKM theory—by Goresky, Kottwitz and MacPherson in 1998 (see [Invent. Math. **131**, 25-83]).

A GKM manifold is a T^k -manifold M^{2n} with

- $\begin{cases} \bullet |M^T| < +\infty \\ \bullet M \text{ having a } T^k \text{-invariant almost complex structure} \\ \bullet \text{ for } p \in M^T, \text{ the weights of the isotropy representation} \\ \text{ of } T^k \text{ on } T_p M \text{ being pairwise linearly independent.} \end{cases}$

$\S3.$ Coloring graphs and faces

Let $G = (\mathbb{Z}_2)^k$.

Given a *G*-manifold *M* with $|M^G| < \infty \rightarrow \text{regular graph } \Gamma_M$ with properties as follows:

 \exists a natural map

$$\alpha: E_{\Gamma_M} \longrightarrow \operatorname{Hom}(G, \mathbb{Z}_2)$$
$$e \longmapsto \rho$$

such that

A) for each $p \in V_{\Gamma_M}$, $\alpha(E_p)$ spans $\operatorname{Hom}(G, \mathbb{Z}_2)$

B) for each $e = pq \in E_{\Gamma_M}$ and $\sigma \in \alpha(E_p)$, the number of times which σ and $\sigma + \alpha(e)$ occur in $\alpha(E_p)$ is the same as that in $\alpha(E_q)$.

— Abstract definition

Let $G = (\mathbb{Z}_2)^k$.

We shall work on $H^*(BG; \mathbb{Z}_2) = \mathbb{Z}_2[a_1, ..., a_k]$ (:: $H^1(BG; \mathbb{Z}_2) \cong$ Hom (G, \mathbb{Z}_2)).

 $\Gamma^n\!\!:$ a connected regular graph of valency n with $n\geq k$ and no loops.

If there is a map $\alpha : E_{\Gamma} \longrightarrow H^1(B(\mathbb{Z}_2)^k; \mathbb{Z}_2) - \{0\}$ s. t.

(1) for each vertex $p \in V_{\Gamma}$, the image $\alpha(E_p)$ spans $H^1(B(\mathbb{Z}_2)^k; \mathbb{Z}_2)$, and

(2) for each edge
$$e = pq \in E_{\Gamma}$$
,
$$\prod_{x \in E_p - E_e} \alpha(x) \equiv \prod_{y \in E_q - E_e} \alpha(y) \mod \alpha(e),$$

then the pair (Γ, α) is called **a coloring graph of type** (k, n).

Home Page
Title Page
Contents
•• ••
Page 5 of 22
Go Back
Full Screen
Close
Quit

- Examples

 (Γ, α_1) is a coloring graph $a_2 \quad \alpha_1 : E_{\Gamma} \longrightarrow H^1(B(\mathbb{Z}_2)^3; \mathbb{Z}_2)$

where
$$H^*(B(\mathbb{Z}_2)^3; \mathbb{Z}_2) = \mathbb{Z}_2[a_1, a_2, a_3].$$

—Faces

 (Γ, α) : a coloring graph of type (k, n). Γ^{ℓ} : a connected ℓ -valent subgraph of Γ where $0 \leq \ell \leq n$.

If $(\Gamma^{\ell}, \alpha | \Gamma^{\ell})$ satisfies

a) for any two vertices p_1, p_2 of Γ^{ℓ} , $\alpha((E|\Gamma^{\ell})_{p_1})$ and $\alpha((E|\Gamma^{\ell})_{p_2})$ span the **same subspace** of $H^1(BG; \mathbb{Z}_2)$;

b) for each edge $e = pq \in E|\Gamma^{\ell}$,

 $\prod_{x \in (E|\Gamma^{\ell})_p - (E|\Gamma^{\ell})_e} \alpha(x) \equiv \prod_{y \in (E|\Gamma^{\ell})_q - (E|\Gamma^{\ell})_e} \alpha(y) \mod \alpha(e)$ then $(\Gamma^{\ell}, \alpha | \Gamma^{\ell})$ is **an** ℓ -face of (Γ, α) .

Home Page
Title Page
Contents
•••
Page 7 of 22
Go Back
Full Screen
Close
Quit

Example

Quit

Home Page

Title Page

Contents

Page 8 of 22

Go Back

Full Screen

Close

••

Assumption—**Case:** valency n of $\Gamma = \operatorname{rank} k$ of $G = (\mathbb{Z}_2)^k$ (Γ, α): a coloring graph of type (n, n) with Γ connected. $\mathcal{F}_{(\Gamma, \alpha)}$: the set of all faces of (Γ, α) .

— An application for the n-connectedness of a graph.

Theorem (Whitney) A graph Γ with at least n + 1 vertices is n-connected if and only if every subgraph of Γ , obtained by omitting from Γ any n - 1 or fewer vertices and the edges incident to them, is connected.

Theorem (Z. Lü and M. Masuda). Suppose that (Γ, α) is a coloring graph of type (n, n) with Γ connected. If the intersection of any two faces of dimension ≤ 2 in $\mathcal{F}_{(\Gamma,\alpha)}$ is either connected or empty, then Γ is n-connected.

Home Page Title Page Contents Page 9 of 22 Go Back Full Screen Close

Quit

Example

Home Page Title Page Contents **▲** $\blacktriangleright \flat$ Page 10 of 22 Go Back Full Screen Close

Quit

§4. Geometric realization

 (Γ, α) :a coloring graph of type $(n, n) \Longrightarrow \mathcal{F}_{(\Gamma, \alpha)} \Longrightarrow |\mathcal{F}_{(\Gamma, \alpha)}|$

Example 1.

The geometric realization $|\mathcal{F}_{(\Gamma,\alpha)}| = S^2$

Quit

Generally,

Fact. $\mathcal{F}_{(\Gamma,\alpha)}$ forms a simplicial poset of rank n with respect to reversed inclusion with (Γ, α) as smallest element.

 $|\mathcal{F}_{(\Gamma,\alpha)}|$ is a pseudo manifold.

poset means partially ordered set

A poset \mathcal{P} is simplicial if it contains a smallest element $\hat{0}$ and for each $a \in \mathcal{P}$ the segment $[\hat{0}, a]$ is a boolean algebra (i.e., the face poset of a simplex with empty set as the smallest element).

Home Page Title Page Contents Page 13 of 22 Go Back Full Screen Close Quit

 \mathcal{P} : a simplicial poset

a simplicial cell complex $\mathbb{K}_{\mathcal{P}}$ in the following way:

 \downarrow

for each $a \neq \hat{0}$ in \mathcal{P} , one obtains a geometrical simplex such that its face poset is $[\hat{0}, a]$, and then one glues all obtained geometrical simplices together according to the ordered relation in \mathcal{P} , so that one can get a cell complex as desired.

By $|\mathcal{P}|$ one denotes the underlying space of this cell complex, and one calls $|\mathcal{P}|$ the geometric realization of \mathcal{P} .

Home Page Title Page Contents Page 14 of 22 Go Back Full Screen Close Quit

Basic problems:

(I). Under what condition, is the geometric realization $|\mathcal{F}_{(\Gamma,\alpha)}|$ a closed topological manifold?

(II). For any closed topological manifold M^n , is there a coloring graph (Γ, α) of type (n + 1, n + 1) such that $M^n \approx |\mathcal{F}_{(\Gamma,\alpha)}|$?

Basic problem (I)

 (Γ, α) : a coloring graph of type (n, n) with Γ connected.

The case n = 1: $|\mathcal{F}_{(\Gamma,\alpha)}| \approx S^0$

The case n = 2: it is easy to see that for any coloring graph (Γ, α) of type (2, 2), the geometric realization $|\mathcal{F}_{(\Gamma,\alpha)}|$ is always a circle.

The case n = 3:

Fact. $|\mathcal{F}_{(\Gamma,\alpha)}|$ is a closed surface S.

Home Page Title Page Contents Page 16 of 22 Go Back Full Screen Close Quit

Generally, if n > 3, the geometric realization $|\mathcal{F}_{(\Gamma,\alpha)}|$ is not a closed topological manifold. For example, see the following coloring graph (Γ, α) of type (4, 4).

 $\chi(|\mathcal{F}_{(\Gamma,\alpha)}|) = 5 - 12 + 16 - 8 = 1 \neq 0$ so $|\mathcal{F}_{(\Gamma,\alpha)}|$ is not a closed topological 3-manifold.

Home Page Title Page Contents Page 17 of 22 Go Back Full Screen Close Quit

The case n = 4.

Write $v = |V_{\Gamma}|$ and $e = |E_{\Gamma}|$ so 2v = e. f: the number of all 2-faces in $\mathcal{F}_{(\Gamma,\alpha)}$ f_3 : the number of all 3-faces in $\mathcal{F}_{(\Gamma,\alpha)}$

Theorem. Let n = 4. $|\mathcal{F}_{(\Gamma,\alpha)}|$ is a closed connected topological 3-manifold $\iff f = f_3 + v$.

Problem: for n > 4, to give a sufficient (and necessary) condition that $|\mathcal{F}_{(\Gamma,\alpha)}|$ is a closed connected topological manifold.

Home Page
Title Page
Contents
•••
 ▲
Page 18 of 22
Go Back
Full Screen
Class
Close
Quit

Basic problem (II) $M^n:n$ -dim closed connected topological manifold 1-dim case: $M^1 \approx S^1$.

 S^1 is realizable by **any** coloring graph of type (2, 2).

2-dim case:

Prop. Any closed surface can be realized by some coloring graph of type (3, 3).

3-dim case:

Conjecture: Any closed 3-manifold M^3 is geometrically realizable by a coloring graph (Γ, α) of type (4, 4), i.e., $M^3 \approx |\mathcal{F}_{(\Gamma, \alpha)}|.$

4-dim case: It is well known that there exist closed topological 4-manifolds that **don't admit** any triangulation.

 \exists closed topological 4-manifolds that **cannot** be realized by any coloring graph of type (5, 5).

 \downarrow

Proposition. Let M^n be a closed manifold. If M^n admits a simplicial cell decomposition with at least n + 2 vertices, then M^n can be geometrically realizable by a coloring graph.

Restatement

Proposition. Suppose that Γ is a 3-valent graph and is at least 2-connected. Then Γ is planar if and only if Γ admits a coloring α of type (3,3) such that $|\mathcal{F}_{(\Gamma,\alpha)}| \approx S^2$.

Home Page
Title Page
Contents
•••
Page 22 of 22
Go Back
Full Screen
Close
Quit