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Let S2 be the unit sphere in R3.


For n ≥ 3, we define An by


An = {P = (a1, . . . , an) ∈ (S2)n :


a1 + · · · + an = 0}.


O


a1


a2
a3


an−1


an


• An x SO(3) the diagonal action


• Set


Mn = An/SO(3)


2







Basic properties


• Mn is compact.


• When n is odd or n = 4, Mn is a com-


plex manifold such that dimCMn = n − 3.


• When n is even ≥ 6, Mn has singular


points.


P = (a1, . . . , an) ∈ Mn is a singular


point ⇔
a2 = ±a1, a3 = ±a1, . . . , an = ±a1.


a3


a2


O
a1


Such a singular point has a neighborhood


C(Sn−3 ×
S1


Sn−3).
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Example.


(1) M3 = {one point}.


(2) M4 = S2.


(3) M5


∼=
biholomorphic


the surface obtained from CP 2


by blowing up 4 points


in general position


∼=
diffeo.


CP 2 # 4CP
2
.
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The symplectic form


We define the canonical symplectic form


ωn ∈ Ω2(Mn) as follows.


(Actually ωn is a Kähler form.)


For P = (a1, . . . , an) ∈ Mn, TP Mn is given


as follows:


TpMn = {u = (u1, . . . , un) ∈ (R3)n :


(ui, ai) = 0 (1 ≤ i ≤ n) and


u1 + · · · + un = 0}/ ∼ .


For


u = (u1, . . . , un)


v = (v1, . . . , vn)




 ∈ TpMn, set


ωn(u, v) =
n∑


i=1


det(ui, vi, ai)
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We consider the following:


Question. What is the symplectic vol-


ume of Mn?


Main theorem (Tezuka-K).


For n ≥ 3, set


vn =


∫


Mn


ωn−3
n .


Then we have


vn =


[n2 ]−1∑


j=0


(−1)j
(


n − 1


j


)
(n − 2 − 2j)n−3.


Example.


v3 = 1, v4 = 2, v5 = 5, v6 = 24,


v7 = 154, v8 = 1280 and v9 = 13005.
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The Duistermaat-Heckman theorem


Since the main theorem is proved using


the Duistermaat-Heckman theorem, we


recall this.


• (X, ω) a symplectic manifold with


dimRX = 2k.


• T k = (S1)k y (X, ω) preserving ω.


• µ : X → Rk a moment map.


• Vol(µ(X)) the volume of µ(X).


Then
∫


X
ωk = k! Vol(µ(X))
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Proof of the main theorem


Unfortunately, we do not have an action
T n−3 y Mn.


However, there is an open dense sub-
space M ′


n ⊂ Mn such that T n−3 y M ′
n


as follows:


(1) Define a map µn : Mn → Rn−3 by


µn(P ) = (|a1+a2|, |a1+a2+a3|, . . . , |
n−2∑


i=1


ai|).


That is, the lengths of the diagonals con-
necting the vertices to the origin.


O


a1


a2
a3


an−1


an


|a1 + a2|
|a1 + a2 + a3|


| ∑n−2
i=1 ai|
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(2) Set


M ′
n = {P ∈ Mn: none of


these n − 3 lengths vanishes}.


• M ′
n is open and dense in Mn.


(3) Define T n−3 y M ′
n as follows: The


i-th circle acts by rotating the part of a


polygon, formed by the first i + 1 edges,


around the i-th diagonal.


O


a1


a2
a3


an−1


an
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Our situation is as follows.


• (M ′
n, ωn) a symplectic manifold.


• T n−3 y M ′
n preserving ωn.


• There is a map


µn|M ′
n : M ′


n → Rn−3.


Theorem (Kapovich-Millson).


µ|M ′
n is a moment map for the action


T n−3 y (M ′
n, ωn).
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We can apply the Duistermaat-Heckman


theorem and we have∫


M ′
n


ωn−3
n = (n − 3)! Vol(µn(M ′


n)).


We set


∆n = µn(Mn).


Since M ′
n is open and dense in Mn, we


have


vn = (n − 3)! Vol(∆n)


Note that ∆n ⊂ Rn−3 is a convex poly-


tope which is defined by triangle inequal-


ities. Hence we can calculate the right-


hand side by multiple integral.
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Example. Consider the case n = 5.


O


a1 x


y


a2


a4


a5


a3


x = |a1 + a2|, y = |a1 + a2 + a3| and


µ5(P ) = (x, y).


By triangle inequalities, we have


0 ≤ x, y ≤ 2


and





1 ≤ x + y


x ≤ 1 + y


y ≤ 1 + x
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O
1 2


2


1


y


x


∆5


Vol(∆5) = 4 − 3 ·
(


1


2


)


=
5


2
Hence


v5 = 2! Vol(∆5)


= 5.
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Another proof of the main theorem


Hereafter n is odd and all cohomology


groups are with R-coefficients.


We can calculate vn =


∫


Mn


ωn−3
n from the


cohomology ring H∗(Mn).


Let


z1, . . . , zn


be the generators of H2(Mn).


• They are essentially the generators of


H2(S2 × · · · × S2︸ ︷︷ ︸
n


).


• The cohomology classes z1, . . . , zn gen-


erate the cohomology ring H∗(Mn).


(Similarly to toric varieties, the coho-


mology ring H∗(Mn) is generated by


2-dimensional classes.)
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Theorem (Hausmann-Knutson).


[ωn] = z1 + · · · + zn ∈ H2(Mn).


Theorem (Tezuka-K).


For all i1, . . . , in ≥ 0 with
i1 + · · · + in = n − 3, the intersection pair-
ings ∫


Mn


z
i1
1 . . . zin


n


are determined.


In particular, we can calculate


vn =


∫


Mn


(z1 + · · · + zn)n−3


Example. Consider the case n = 5.


∫


M5


zizj =


{
1 i 6= j


−3 i = j.


Hence


v5 = −3 · 5 + 1 · 20


= 5.
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Cobordism


Since we can calculate all the Chern num-
bers of Mn, it is possible to describe Mn
in the complex cobordism group ΩU


2n−6.


For example,


(i) In ΩU
4 , M5 = 4 (CP 1)2 − 3CP 2.


(ii) In ΩU
8 ,


M7 = − 9 (CP 1)4 + 33 (CP 1)2 × CP 2


− 33CP 1 × CP 3 + 10CP 4.


(iii) In ΩU
12,


M9 = 3123 (CP 1)6 − 10196 (CP 1)4 × CP 2


+ 0 · (CP 2)3 + 0 · CP 2 × CP 4


+ (omit 6 terms) − 35CP 6.


Remark. Let n = 2m + 1.


Then in ΩSO
2n−6, we have


Mn = (−1)m+1
(
2m − 1


m


)
CP n−3.
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