The symplectic volume of spatial polygon spaces

Yasuhiko Kamiyama University of the Ryukyus

30 May 2006

Let S^{2} be the unit sphere in \mathbb{R}^{3}.

For $n \geq 3$, we define A_{n} by

$$
\begin{aligned}
A_{n}=\left\{P=\left(a_{1}, \ldots, a_{n}\right) \in\left(S^{2}\right)^{n}:\right. \\
\left.a_{1}+\cdots+a_{n}=0\right\} .
\end{aligned}
$$

- $A_{n} \curvearrowleft S O(3) \quad$ the diagonal action
- Set

$$
M_{n}=A_{n} / S O(3)
$$

Basic properties

- M_{n} is compact.
- When n is odd or $n=4, M_{n}$ is a complex manifold such that $\operatorname{dim}_{\mathbb{C}} M_{n}=n-3$.
- When n is even $\geq 6, M_{n}$ has singular points.
$P=\left(a_{1}, \ldots, a_{n}\right) \in M_{n}$ is a singular point \Leftrightarrow

$$
a_{2}= \pm a_{1}, a_{3}= \pm a_{1}, \ldots, a_{n}= \pm a_{1} .
$$

Such a singular point has a neighborhood

$$
C\left(S^{n-3} \underset{S^{1}}{\times} S^{n-3}\right)
$$

Example.

(1) $M_{3}=\{$ one point $\}$.
(2) $M_{4}=S^{2}$.
(3) M_{5}
$\cong \quad$ the surface obtained from $\mathbb{C} P^{2}$ biholomorphic by blowing up 4 points in general position

$$
\cong \mathbb{C} P^{2} \# 4 \overline{\mathbb{C}}^{2}
$$

The symplectic form

We define the canonical symplectic form $\omega_{n} \in \Omega^{2}\left(M_{n}\right)$ as follows. (Actually ω_{n} is a Kähler form.)

For $P=\left(a_{1}, \ldots, a_{n}\right) \in M_{n}, T_{P} M_{n}$ is given as follows:

$$
\begin{gathered}
T_{p} M_{n}=\left\{u=\left(u_{1}, \ldots, u_{n}\right) \in\left(\mathbb{R}^{3}\right)^{n}:\right. \\
\left(u_{i}, a_{i}\right)=0(1 \leq i \leq n) \quad \text { and } \\
\left.u_{1}+\cdots+u_{n}=0\right\} / \sim .
\end{gathered}
$$

For

$$
\left.\begin{array}{l}
u=\left(u_{1}, \ldots, u_{n}\right) \\
v=\left(v_{1}, \ldots, v_{n}\right)
\end{array}\right\} \in T_{p} M_{n}, \quad \text { set }
$$

$$
\omega_{n}(u, v)=\sum_{i=1}^{n} \operatorname{det}\left(u_{i}, v_{i}, a_{i}\right)
$$

We consider the following:

Question. What is the symplectic volume of M_{n} ?

Main theorem (Tezuka-K).

For $n \geq 3$, set

$$
v_{n}=\int_{M_{n}} \omega_{n}^{n-3}
$$

Then we have

$$
v_{n}=\sum_{j=0}^{\left[\frac{n}{2}\right]-1}(-1)^{j}\binom{n-1}{j}(n-2-2 j)^{n-3}
$$

Example.
$v_{3}=1, v_{4}=2, v_{5}=5, v_{6}=24$,
$v_{7}=154, v_{8}=1280 \quad$ and $\quad v_{9}=13005$.

The Duistermaat-Heckman theorem

Since the main theorem is proved using the Duistermaat-Heckman theorem, we recall this.

- (X, ω) a symplectic manifold with $\operatorname{dim}_{\mathbb{R}} X=2 k$.
- $T^{k}=\left(S^{1}\right)^{k} \curvearrowright(X, \omega) \quad$ preserving ω.
- $\mu: X \rightarrow \mathbb{R}^{k} \quad$ a moment map.
- $\operatorname{Vol}(\mu(X)) \quad$ the volume of $\mu(X)$.

Then

$$
\int_{X} \omega^{k}=k!\operatorname{Vol}(\mu(X))
$$

Proof of the main theorem

Unfortunately, we do not have an action $T^{n-3} \curvearrowright M_{n}$.

However, there is an open dense subspace $M_{n}^{\prime} \subset M_{n}$ such that $T^{n-3} \curvearrowright M_{n}^{\prime}$ as follows:
(1) Define a map $\mu_{n}: M_{n} \rightarrow \mathbb{R}^{n-3}$ by

$$
\mu_{n}(P)=\left(\left|a_{1}+a_{2}\right|,\left|a_{1}+a_{2}+a_{3}\right|, \ldots,\left|\sum_{i=1}^{n-2} a_{i}\right|\right)
$$

That is, the lengths of the diagonals connecting the vertices to the origin.

(2) Set

$$
M_{n}^{\prime}=\left\{P \in M_{n}:\right. \text { none of }
$$ these $n-3$ lengths vanishes $\}$.

- M_{n}^{\prime} is open and dense in M_{n}.
(3) Define $T^{n-3} \curvearrowright M_{n}^{\prime}$ as follows: The i-th circle acts by rotating the part of a polygon, formed by the first $i+1$ edges, around the i-th diagonal.

Our situation is as follows.

- $\left(M_{n}^{\prime}, \omega_{n}\right) \quad$ a symplectic manifold.
- $T^{n-3} \curvearrowright M_{n}^{\prime} \quad$ preserving ω_{n}.
- There is a map

$$
\mu_{n} \mid M_{n}^{\prime}: M_{n}^{\prime} \rightarrow \mathbb{R}^{n-3}
$$

Theorem (Kapovich-Millson).

$\mu \mid M_{n}^{\prime}$ is a moment map for the action
$T^{n-3} \curvearrowright\left(M_{n}^{\prime}, \omega_{n}\right)$.

We can apply the Duistermaat-Heckman theorem and we have

$$
\int_{M_{n}^{\prime}} \omega_{n}^{n-3}=(n-3)!\operatorname{Vol}\left(\mu_{n}\left(M_{n}^{\prime}\right)\right) .
$$

We set

$$
\Delta_{n}=\mu_{n}\left(M_{n}\right)
$$

Since M_{n}^{\prime} is open and dense in M_{n}, we have

$$
v_{n}=(n-3)!\operatorname{Vol}\left(\Delta_{n}\right)
$$

Note that $\Delta_{n} \subset \mathbb{R}^{n-3}$ is a convex polytope which is defined by triangle inequalities. Hence we can calculate the righthand side by multiple integral.

Example. Consider the case $n=5$.

$x=\left|a_{1}+a_{2}\right|, y=\left|a_{1}+a_{2}+a_{3}\right|$ and
$\mu_{5}(P)=(x, y)$.
By triangle inequalities, we have

$$
0 \leq x, y \leq 2
$$

and

$$
\left\{\begin{array}{l}
1 \leq x+y \\
x \leq 1+y \\
y \leq 1+x
\end{array}\right.
$$

$$
\begin{aligned}
\operatorname{Vol}\left(\Delta_{5}\right) & =4-3 \cdot\left(\frac{1}{2}\right) \\
& =\frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
v_{5} & =2!\operatorname{Vol}\left(\Delta_{5}\right) \\
& =5
\end{aligned}
$$

Another proof of the main theorem

Hereafter n is odd and all cohomology groups are with \mathbb{R}-coefficients.

We can calculate $v_{n}=\int_{M_{n}} \omega_{n}^{n-3}$ from the cohomology ring $H^{*}\left(M_{n}\right)$.

Let

$$
z_{1}, \ldots, z_{n}
$$

be the generators of $H^{2}\left(M_{n}\right)$.

- They are essentially the generators of $H^{2}(\underbrace{S^{2} \times \cdots \times S^{2}}_{n})$.
- The cohomology classes z_{1}, \ldots, z_{n} generate the cohomology ring $H^{*}\left(M_{n}\right)$. (Similarly to toric varieties, the cohomology ring $H^{*}\left(M_{n}\right)$ is generated by 2-dimensional classes.)

Theorem (Hausmann-Knutson).

$$
\left[\omega_{n}\right]=z_{1}+\cdots+z_{n} \in H^{2}\left(M_{n}\right)
$$

Theorem (Tezuka-K).
For all $i_{1}, \ldots, i_{n} \geq 0$ with
$i_{1}+\cdots+i_{n}=n-3$, the intersection pairings

$$
\int_{M_{n}} z_{1}^{i_{1}} \ldots z_{n}^{i_{n}}
$$

are determined.
In particular, we can calculate

$$
v_{n}=\int_{M_{n}}\left(z_{1}+\cdots+z_{n}\right)^{n-3}
$$

Example. Consider the case $n=5$.

$$
\int_{M_{5}} z_{i} z_{j}= \begin{cases}1 & i \neq j \\ -3 & i=j\end{cases}
$$

Hence

$$
\begin{aligned}
\boldsymbol{v}_{5} & =-3 \cdot 5+1 \cdot 20 \\
& =5
\end{aligned}
$$

Cobordism

Since we can calculate all the Chern numbers of M_{n}, it is possible to describe M_{n} in the complex cobordism group $\Omega_{2 n-6}^{U}$.

For example,
(i) In $\Omega_{4}^{U}, M_{5}=4\left(\mathbb{C} P^{1}\right)^{2}-3 \mathbb{C} P^{2}$.
(ii) In Ω_{8}^{U},

$$
\begin{aligned}
M_{7}= & -9\left(\mathbb{C} P^{1}\right)^{4}+33\left(\mathbb{C} P^{1}\right)^{2} \times \mathbb{C} P^{2} \\
& -33 \mathbb{C} P^{1} \times \mathbb{C} P^{3}+10 \mathbb{C} P^{4} .
\end{aligned}
$$

(iii) In Ω_{12}^{U},

$$
\begin{aligned}
M_{9}= & 3123\left(\mathbb{C} P^{1}\right)^{6}-10196\left(\mathbb{C} P^{1}\right)^{4} \times \mathbb{C} P^{2} \\
& +0 \cdot\left(\mathbb{C} P^{2}\right)^{3}+0 \cdot \mathbb{C} P^{2} \times \mathbb{C} P^{4} \\
& +(\text { omit } 6 \text { terms })-35 \mathbb{C} P^{6} .
\end{aligned}
$$

Remark. Let $n=2 m+1$.
Then in $\Omega_{2 n-6}^{S O}$, we have

$$
M_{n}=(-1)^{m+1}\binom{2 m-1}{m} \mathbb{C} P^{n-3}
$$

