Euler characteristic.

$$
\begin{gathered}
\chi(K)=f_{0}(K)-f_{1}(K)+f_{2}(K)-\ldots \\
\chi\left(K^{2}\right)=\sum_{v \in K^{2}}\left(1-\frac{d_{v}}{6}\right)
\end{gathered}
$$

where d_{v} is the number of edges entering v.

Stiefel-Whitney classes.

$$
W_{n}(K)=\sum_{\sigma^{n} \in K^{\prime}} \sigma^{n}(\bmod 2)
$$

Theorem (Whitney, 1940, Halperin, Toledo, 1972) $\left[W_{n}(K)\right]$ is the Poincaré dual of $w_{m-n}(K)$, where $m=\operatorname{dim} K$.

Rational Pontrjagin classes.

Rokhlin, Swartz, Thom, 1957-1958:
Rational Pontrjagin classes are well defined for combinatorial manifolds.

Problem. Given a combinatorial manifold K construct explicitly a rational simplicial cycle $Z(K)$ representing the Poincaré dual of $p_{k}(K)$.

Formulae.

- Gabrielov, Gelfand, Losik, 1975, MacPherson, 1977.
A formula for the first Pontrjagin class of any Brouwer manifold.
- Cheeger, 1983. Formulae for all Pontrjagin classes.
- Include calculation of the spectrum of the Laplace operator.
- Give only real cycles.
- Gelfand, MacPherson, 1992. Formulae for all Pontrjagin classes of a triangulated manifold with given smoothing or combinatorial differential (CD) structure.
- Do not solve the above problem.

Local formulae.

$$
\operatorname{link} \sigma=\{\tau \in K \mid \sigma \cup \tau \in K, \sigma \cap \tau=\emptyset\}
$$

$$
f_{\sharp}\left(K^{m}\right)=\sum_{\sigma^{m-n} \in K^{m}} f(\operatorname{link} \sigma) \sigma \text {. }
$$

f is a skew-symmetric rational-valued function on the set of isomorphism classes of oriented ($n-1$)-dimensional PL spheres. f does not depend on K.

Problem. Describe all functions f such that $f_{\sharp}(K)$ is a cycle for every K.
f is a local formula for $P \in \mathbb{Q}\left[p_{1}, p_{2}, \ldots\right]$ if $\left[f_{\sharp}(K)\right]$ is the Poincaré dual of $P\left(p_{1}(K), p_{2}(K), \ldots\right)$ for every K.

Bistellar moves.

Theorem (Pachner, 1989). Two combinatorial manifolds are PL homeomorphic iff the first can be transformed into the second by a finite sequence of bistellar moves.

Local formulae for the first Pontrjagin class.

f : oriented 3-dim. PL-sphere L rational number $f(L)$

$L=L_{1} \xrightarrow{\beta_{1}} \underset{\text { bistellar moves }}{L_{2}} \xrightarrow{\beta_{2}} \underset{\longrightarrow}{\beta_{q}} \partial \Delta^{4}$
$L_{j} \xrightarrow{\beta_{j}} L_{j+1}, \quad v$ is a vertex of L_{j} $\operatorname{link}_{L_{j}} v \xrightarrow{\beta_{j, v}} \operatorname{link}{ }_{L_{j+1}} v$

Graph Γ_{2}.

Vertices: isomorphism classes of oriented 2-dimensional PL spheres.
Edges: bistellar moves.

$$
\begin{aligned}
& \gamma=\sum_{j=1}^{q} \sum_{v \in L_{j}} \beta_{j, v} \in C_{1}\left(\Gamma_{2} ; \mathbb{Z}\right) \\
& f(L)=\widehat{c}(\gamma), \quad \widehat{c} \in C^{1}\left(\Gamma_{2} ; \mathbb{Q}\right) .
\end{aligned}
$$

Theorem (G., 2004) There is a
cohomology class $c \in H^{1}\left(\Gamma_{2} ; \mathbb{Q}\right)$ such that local formulae for the first Pontrjagin class are in one-to-one correspondence with cocycles $\widehat{c} \in C^{1}\left(\Gamma_{2} ; \mathbb{Q}\right)$ representing c. The correspondence is given by the formula

$$
f(L)=\widehat{c}(\gamma)
$$

Cohomology class c.

The group $H_{1}\left(\Gamma_{2} ; \mathbb{Z}\right)$.
Generators: 6 infinite series.
Let us give the values of c on these generators.

$$
\begin{gathered}
\rho(p, q)=\frac{q-p}{(p+q+2)(p+q+3)(p+q+4)} \\
\lambda(p)=\frac{1}{(p+2)(p+3)}
\end{gathered}
$$

p triangles

q triangles

$$
\rho(0, q)-\rho(0, p)
$$

q triangles r triangles

p triangles k triangles

$$
\lambda(p)-\lambda(q)-\lambda(r)+\lambda(k)
$$

triangles ${ }^{\wedge} \quad \lambda(p)+\lambda(q)+\lambda(r)$

$$
+\lambda(k)+\lambda(l)-\frac{1}{12}
$$

The cochain complex $\mathcal{T}^{*}(\mathbb{Q})$.

$\mathcal{T}^{n}(\mathbb{Q})$ is the vector space of all skew-symmetric rational-valued functions on the set of isomorphism classes of oriented ($n-1$)-dimensional PL spheres.

$$
\begin{gathered}
\delta: \mathcal{T}^{n}(\mathbb{Q}) \rightarrow \mathcal{T}^{n+1}(\mathbb{Q}) ; \\
(\delta f)(L)=\sum_{v \in L} f(\operatorname{link} v) ; \quad \delta^{2}=0 .
\end{gathered}
$$

$f_{\sharp}(K)$ is a cycle for every $K \Leftrightarrow f$ is a cocycle.
$f_{\sharp}(K)$ is a boundary for every $K \Leftrightarrow f$ is a coboundary.

Existence and uniqueness.

- $H^{*}\left(\mathcal{T}^{*}(\mathbb{Q})\right) \cong \mathbb{Q}\left[p_{1}, p_{2}, \ldots\right], \operatorname{deg} p_{i}=4 i$.
- Each cocycle of $\mathcal{T}^{*}(\mathbb{Q})$ is a local formula for some polynomial in rational Pontrjagin classes.
- A local formula for a polynomial in rational Pontrjagin classes exists and is unique up to a coboundary.
(The existence strengthens a result of Levitt and Rourke, 1978.)
- We describe explicitly the cohomology class $\phi \in H^{4}\left(\mathcal{T}^{*}(\mathbb{Q})\right)$ such that $\alpha(\phi)=p_{1}$.
- We describe explicitly the cohomology classes $\psi_{i} \in H^{4 i}\left(\mathcal{T}^{*}(\mathbb{Q})\right)$ such that $\alpha\left(\psi_{i}\right)=L_{i}\left(p_{1}, \ldots, p_{i}\right)$.

Denominators.

For $f \in \mathcal{T}^{n}(\mathbb{Q})$, by $\operatorname{den}_{l}(f)$ we denote the least common multiple of the denominators of the values $f(L)$, where L runs over all ($n-1$)-dimensional oriented PL spheres with not more than l vertices.

- $\forall \psi \in H^{*}\left(\mathcal{T}^{*}(\mathbb{Q})\right)$ there exist a cocycle f representing ψ and an integer constant C such that $\operatorname{den}_{l}(f)$ is a divisor of $C(l+1)$! for any l.
- Suppose f is a local formula for the first Pontrjagin class. Then $\operatorname{den}_{l}(f)$ is divisible by the least common multiple of the numbers $1,2, \ldots, l-3$ for any even $l \geq 10$.
- $H^{4}\left(\mathcal{T}^{*}(G)\right)=0$ for any subgroup $G \nsubseteq \mathbb{Q}$. Recall that $H^{4}\left(\mathcal{T}^{*}(\mathbb{Q})\right)=\mathbb{Q}$.

