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GIT construction of toric varieties

Apply Hom( —, C*) to an exact sequence

B A
0— Z4—7Zn—7"~% =0

to get exact sequence of tori:

0—7Tn—d_yTm_y7d_ .

A choice 3 € 7Z" gives rise to a toric variety
X:=C"[pT"

The residual torus T =T acts with finitely many
orbits.

X is projective over an affine base.



The moment polyhedron

Let vy, ..., vn € Z% be the rows of matrix B.
The polyhedron

PZ{%EIRd‘ <$,f0j> > —ﬁj,j: 1,...,n}
Is the image of the moment map
p: X — R%=Lie(T§)*.

The geometry of X can be read off from P.
Let [P] = poset of faces of P.
1t gives a bijection F'+— Op

|P| <— {T —orbitsof X }

e X is an orbifold <= P is simple
e X is complete <= P is bounded

¢ (=0 = Pisacone = X is affine



Equivariant cohomology
Assume P is simple, int(P) #£ 0 (so dim Xp=d).

— We take all cohomology with R coefficients.
There is a canonical identification

Ap:= H3(Of) =Sym(IR%/lin.span F).

Restricting to orbits gives an identification of elements
of H7(X) with tuples (ap)pcip, aF € Ap, so that if
F C F’, then ap+— ap: under the quotient Ap — Ap.

This in turn is identified with the “face ring" of the

dual simplicial complex: if Fi, ..., F} are the facets of
P, then

H3(X)=Rlex,...,ex] /1,
[=<67;1---€Z'T ‘ Fil ARER FZ'T:(Z».

Here e; comes from parallel translation of the facet F;:



Formality

All equivariant cohomology groups are modules over

A:= H3(pt) = Sym(RR?).

The map Hy(pt) — Hp(X) sends a € A to (ap),
where o = image of o under the quotient S — Ap.

For any graded A-module, M, put M :=M @4 R.

The toric variety X is equivariantly formal:

e Hp(X)is afree A-module

e H*(X)=Hp(X) canonically, as rings



h and g-polynomials

Let f; = #faces of P of codimension ¢
[Warning: this is the opposite of the usual convention]

Define:

d
h(P,t):Z hi(P)ti:Z fith(1—t)d—?

d
=0 1=0

7

Then hi(P) = dim]RH%(Xp).

If P is a bounded simple polytope, define

g(P,t)= Z gi(P)t', gi=hi—hi_y

(starting with gg=1).



The g-theorem

Theorem. [Stanley, McMullen, Billera-Lee]
There exists a simple polytope (bounded polyhedron)
with face numbers ( f;) if and only if

1. hy=hg_; for 0<1<d

2. 1=ho<h1 < < hygyo

3. (90, ---» gjas2)) is an "M-sequence”: equivalently,

there is a graded algebra H = ® H}, generated
by Hy, with g =dim Hy,

Necessity of these conditions follows (when P is
rational) from facts about the cohomology of Xp:

Poincaré duality = 1. (also has purely combinatorial
proof)

Hard Lefschetz = 2,3: if A€ H?(Xp) is ample, the
ring H*(Xp)/(\) has Betti numbers (gi).

Note: a simple polyhedron can be deformed to be
rational without changing its combinatorial type.

McMullen found a non-toric proof of Hard Lefschetz,
proving necessity without a deformation argument.



Intersection cohomology

If P is not simple, Xp has worse than orbifold singu-

larities, and the (equivariant) intersection cohomology
IH*(Xp), IH}(Xp) is a better invariant: satisfies

Poincaré duality (for Xp compact)
Hard Lefschetz

no ring structure, but it's module over H*(X),
H7(X) respectively

parity vanishing and purity, which implies

Formality: IH}(Xp) is a free A-module, and

[H*(Xp)=IH}(XPp)



Stanley's “toric’ g and h-polynomials, give the |H
generalizations of the formulas for simple polyhedra:
in particular hy(P) =dim IH?*(Xp).

If P is a bounded polytope, g(P, t) is obtained from
h(P,t) exactly as in the simple case, and

WP )= > teodimF (1 —pydimFo(p/p ),
Fel[P]

where P/F is the polytope which gives the
“transverse’ behavior of P at F.

If there are exactly codim F' facets of P containing F,
then P/F is a simplex, and g(P/F,t)=1, so when P
Is simple this agrees with the old formula.



If P is a cone over a bounded polytope @, then

hi(P) = gr(Q) =dim IH?*(Xp).

10



Combinatorial IH for toric varieties

(Bressler-Lunts,Barthel-Brasselet-Fieseler-Kaup,Karu)

Let [P| = lattice of faces of P, topologized by
{F}={E€|[P]|ECFY}.
The “structure sheaf” on [P] is U+ A(U), where
AU) ={(ar)rev|ag—ap 1 ECF}

A minimal extension sheaf on [P] is a sheaf L of
A-modules satisfying:

1. Every stalk L is a free Ap-module

2. L is flabby: sections on an open set U extend
to all of [P]

3. The “generic’ stalk Lpis Ap=A.

4. L is minimal with respect to 1-3.
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If P is simple, then £=A.
If P is rational, then L(|P]) =IH7(Xp) canonically.
More generally L(U)=IH}(Xy),

where XU: UFEU OF.

For P a bounded polytope, not necessarily rational,
Karu showed that Hard Lefschetz still holds for
L([P]). This implies that its graded rank is the toric
h-polynomial of P, even though no toric variety
exists!

Karu's proof also implies that L is rigid (has only
scalar automorphisms).
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More generally, build a minimal extension sheaf £
supported on F, starting with (L) = Ap. Direct
sums of shifts of these sheaves are called “pure”; they
are exactly the sheaves which are flabby and pointwise
free, with no minimality restriction.

Using complexes of pure sheaves we can model
T-equivariant (mixed) sheaves on X [B—,Lunts]:
there is an equivalence of categories

D’(A — mod) = K°(Pure(A — mod)),

and there is a functor D?(A —mod) — D5(X) to the
topological equivariant derived category, which acts
like a forgetful functor from (complexes of) graded
modules to (complexes of) ungraded modules.
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Restriction and Kalai's monotonicity

Restricting an IH sheaf to a fixed point set of an
attracting action of C* yields a sum of IH sheaves.
The corresponding fact for combinatorial IH is:

Theorem. The restriction of the minimal extension
sheaf L to the closure of a face I is pure.

Applying this to a cone over a polytope P gives:

> Y a(F)gi(P/F).

1+ 7=k

This was originally conjectured by Kalai, and first
proved when P is rational by [B—,MacPherson '99],
using restriction of IH sheaves on toric varieties.

Corollary. [Kalai] If g,(P)=0, then g, 1(P)=0.

Question: do the toric g-numbers form an
M-sequence?
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For fixed point sets of C*-actions which are neither
attracting or repelling, there is a “hyperbolic” localiza-
tion with mixed supports which preserves purity
[B—,'03]. The corresponding combinatorial result is:

Theorem. Let H be a hyperplane intersecting the
bounded polytope P. Then

> gi(P)= ) gi(F)gj(P/F)

i>0 i,5>0
FeS

Where S=maximal elements in {F'| FC H }.

Again this can be proved without rationality
hypotheses, using minimal extension sheaves.
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The Koszul resolution

Non-pure sheaves can be studied by resolving them by

pure sheaves. Let M be the “extension by zero” of
Ap:
Ap, U={P}

M(U) :{ 0 otherwise.

Theorem. M has a unique minimal resolution

0+ M—=FOu Flo.. 5 Fi 30

with the F* pure. It has only scalar automorphisms.
The multiplicity of LY in F* is gi((P/F)V), where

2k = codim F — i, and (P/F)V is the dual polytope
to P/F.

The multiplicity statement follows from applying an
identity of Stanley:

> (FL)EmEg(F ) g((P/F)Y, 1) =0,

F

to the stalk Euler characteristics of the complex F*.
Truncating the complex leads to inequalities involving

partial sums of terms from Stanley's identity; it is not
known if any of them are new.
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Koszul Duality

Toric Koszul duality [B—,Lunts '04] relates perverse
sheaves on affine toric varieties defined by dual cones.
It can be used to lift the statement about the multi-
plicities of simple sheaves in F* to give canonical iso-
morphisms of vector spaces.

In particular, if P and PV are dual rational convex
cones of dimension d =2k + 1, then there is a dual

pairing
IH?**(Xp)® IH**(Xpv) = R,

which is canonical after fixing an orientation of P.

17



Hypertoric varieties

With the same exact sequence of tori:
0T ¢ 5Tr 5T 50

we get an action of 77"~% on T*C" = C" x (C")*

and a corresponding Hyperkahler quotient

Y =T*C")JpT" ¢,

of dimension 2d, depending on (5 € Z".

Its topology is governed by the arrangement H of
hyperplanes H; = {x € R¢| (z,v;) = —f;}.

e Y is an orbifold < H is a simple arrangement
Y is smooth < H is simple and unimodular

e The toric varieties { Xp | P is a chamber of H }
are d-dimensional subvarieties of Y.

e Y has a stratification indexed by [H], the
poset of flats of the arrangement .
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Define a sheaf of rings on [H] exactly as for poly-
hedra: for F' € [H], put

Ap=Sym(R%/lin.span F),
and define

AU)={(ar)rev|ap—ar it ECF}.

If H is simple, then H3(Yy) = A([H]), which is the
face ring of the dual simplicial complex (the “indepen-
dence complex” of the corresponding matroid).

Formality holds, so we get a presentation for coho-

mology: H*(Yy) = A([H]), originally due to Konno
and Hausel-Sturmfels.

Thus the Betti numbers of Y3 for H simple are the
h-numbers of the independence complex.

19



Equivariant IH of hypertoric varieties

(work in progress with N. Proudfoot)
Take a nonsimple arrangement H.

Define a minimal extension sheaf in exactly the same
way as before: L is a sheaf of .A-modules on [H] satis-

fying:
1. Every stalk L is a free Ap-module

2. L is flabby: sections on an open set U extend
to all of [P]

3. The “generic’ stalk Lp is Ap=A.

4. L is minimal with respect to 1-3.

Theorem. The sheaf L exists, and is unique up to a
unique isomorphism. The global sections are canoni-

cally identified with IH}(Y%).
In fact, the sheaf £ makes sense, and has the

expected Betti numbers, even if the arrangement L is

not rational.
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A ring structure

The IH Betti numbers of Y4, are the h-numbers of the
broken circuit complex, a subcomplex of the indepen-
dence complex [Proudfoot-Webster '04]. It depends
on a choice of ordering of the vectors v;, but its h-
numbers do not.

Proudfoot and Speyer described a ring Ry, not
involving choices, which degenerates to the face ring
of the broken circuit complex for any choice of
ordering.

Theorem. There is a canonical identification
Ry = L([H]),
and thus a canonical ring structure on TH7(Yy).
The proof goes by showing that there are natural ring

homomorphisms making F'— Ry, into a minimal
extension sheaf.

When H is unimodular, we have conditions which

uniquely characterizing this ring structure in terms of
the geometry of Y.
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Gale duality and IH

Let H be a central arrangement of n hyperplanes in

R¢, defined over Q.

The Gale dual arrangement H" is the arrangment of
n hyperplanes in R"~¢ defined by taking the dual of
the defining exact sequence:

B A
0— Zd——7n_s7n—d_.,

~

Let A be an arrangement with the same defining

matrices as H, but with 8 chosen so that H is simple.
There is a natural map Yy — Y, which is a semi-

small (orbifold) resolution of singularities.
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Theorem. There is a canonical dual pairing
H?*YYy) @ IH**(Yyv, Y ) = R,

where YT = {x € Yyv | limy_o p(t)z = 0}, for any
cocharacter p: C*— TV with (Yyv)P'®) = (Yv)T.

Remarks:
IH®*(Y3v, Y ™) is halfway between closed and compact
supports. It is nonzero only in degree 2d.

All these terms can be defined purely in terms of the
arrangement, and the theorem remains true even for
non-rational arrangements.

The Betti numbers of Y; and the IH Betti numbers
of Y2, can both be obtained by specializations of the
Tutte polynomial T (x, y). The fact that the spaces
in the theorem have the same dimension follows from
the identity Tyv(x,y) =Tx(y, ).
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