Almost homogeneous toric varieties

Ivan Arzhantsev
Moscow State University

based on a joint work with Jürgen Hausen
"On embeddings of homogeneous spaces with small boundary"

1. Automorphisms of toric varieties

M.Demazure (1970) - smooth complete toric varieties (roots of the fan);
D. Cox (1995) - simplicial complete toric varieties (graded automorphisms of the homogeneous coordinate ring);
D.Bühler (1996) - complete toric varieties (a generalization of Cox's results);
W.Bruns - J. Gubeladze (1999) - projective toric varieties in any characteristic (graded automorphisms of semigroup rings, polytopal linear groups).

Let G be a connected simply connected semisimple algebraic group over \mathbb{C}, e.g., $G=S L(n), S p(2 n), S p i n(n), \ldots$.

Problem 1. Describe all toric varieties X such that $G \rightarrow A u t(X)$ and $G: X$ with an open orbit $G x$ (1-condition).
Problem 2. \quad Solve Problem 1 under the assumption
$\operatorname{codim}_{X}(X \backslash G x) \geqslant 2 \quad$ (2-condition).

Examples. $S L(n+1): \mathbb{P}^{n}, \quad S L(n+1): \mathbb{P}^{n} \times \mathbb{P}^{n} \quad(n>1)$.

2. Cox's construction

For a given toric variety X with $C l(X) \cong \mathbb{Z}^{r}$ there exist an open $U \subset V=\mathbb{C}^{N}$ and $T \subset \mathbb{S}=\left(\mathbb{C}^{\times}\right)^{N}: V$ such that \exists a good quotient $\pi: U \rightarrow U / / T \cong X$ and $(\mathbb{S} / T): X$
[A good quotient of a T-invariant open subset $U \subset V$ is an affine T-invariant morphism $\pi: U \rightarrow Z$ such that the pullback map $\pi^{*}: \mathcal{O}_{Z} \rightarrow \pi_{*}\left(\mathcal{O}_{U}\right)^{T}$ to the sheaf of invariants is an isomorphism]

Moreover, \exists an open $W \subset U$ with $\operatorname{codim}_{V}(V \backslash W) \geqslant 2$ and $\pi^{-1}(\pi(w))$ is a T-orbit for any $w \in W$ (in particular, one may assume that $\left.\pi^{-1}\left(X^{\text {reg }}\right) \subset W\right)$
$W=U$ (i.e., π is a geometric quotient) iff X is simplicial
(V, T, U) is the Cox realization of X
Lemma. If V is a T-module, $U \subset V$ admits $\pi: U \rightarrow U / / T$, and $\exists W \subset U$: $\operatorname{codim}_{V}(V \backslash W) \geqslant 2, \quad \pi^{-1}(\pi(w))$ is a T-orbit for any $w \in W$, then (V, T, U) is the Cox realization of $X:=U / / T$.

Claim 1) $G: X \Rightarrow(G \times T): V$;
2) 1-condition $\Leftrightarrow(G \times T)$: V with an open orbit (and linearly, [H.KraftV.Popov'85]); in this case V is a prehomogeneous vector space;
3) 2-condition $\Leftrightarrow G: V$ with an open orbit.

Example. $S L(n+1): \mathbb{P}^{n} \times \mathbb{P}^{n} \Rightarrow\left(S L(n+1) \times\left(\mathbb{C}^{\times}\right)^{2}\right): \mathbb{C}^{n+1} \times \mathbb{C}^{n+1}$ with an open orbit; $S L(n+1): \mathbb{C}^{n+1} \times \mathbb{C}^{n+1}$ with an open orbit $\Leftrightarrow n>1$.

Idea: Given a prehomogeneous G-module $V=V_{1} \oplus \cdots \oplus V_{r}$, let $\mathbb{T}=\left(\mathbb{C}^{\times}\right)^{r}: V,\left(t_{1}, \ldots, t_{r}\right) *\left(v_{1}, \ldots, v_{r}\right)=\left(t_{1} v_{1}, \ldots, t_{r} v_{r}\right)$, and $T \subset \mathbb{T}$ be a subtorus. We shall obtain all X as $U / / T$ for a $(G \times T)$-invariant open $U \subset V$, and give a combinatorial description of such U.

3. Quotients of torus actions

T is a torus, $\equiv(T)$ - the character lattice, $\equiv(T)_{\mathbb{Q}}=\equiv(T) \otimes_{\mathbb{Z}} \mathbb{Q}$
$T: V=\oplus_{i=1}^{r} V_{\chi_{i}}$, where $\chi_{1}, \ldots, \chi_{r} \in \equiv(T)$, and
$V_{\chi}=\{v \in V \mid t * v=\chi(t) v\}$
open T-invariant $U \subset V$ is a good T-set if it admits a good quotient $\pi: U \rightarrow U / / T$
$W \subset U$ is saturated if $\exists Y \subset U / / T$ such that $W=\pi^{-1}(Y)$
$U \subset V$ is maximal if it is a good T-set maximal with respect to open saturated inclusions
$\Omega(V)=\left\{\operatorname{Cone}\left(\chi_{i_{1}}, \ldots, \chi_{i_{p}}\right) \subset \equiv(T)_{\mathbb{Q}} \mid\left\{i_{1}, \ldots, i_{p}\right\} \subseteq\{1, \ldots, r\}\right\}$
a collection of cones $\psi \subset \Omega(V)$ is connected if $\forall \tau_{1}, \tau_{2} \in \psi: \tau_{1}^{0} \cap \tau_{2}^{0} \neq \emptyset$
Ψ is maximal if it is connected and is not a proper subcollection of a connected collection
$v=v_{\chi_{i_{1}}}+\cdots+v_{\chi_{i_{p}}} \in V, v_{\chi_{j}} \neq 0 \Rightarrow \omega(v)=\operatorname{Cone}\left(\chi_{i_{1}}, \ldots, \chi_{i_{p}}\right)$
$\Psi \Rightarrow U(\Psi)=\left\{v \in V \mid \exists \omega_{0} \in \Psi: \omega_{0} \preceq \omega(v)\right\} \subset V$
$U \subset V \Rightarrow \Psi(U)=\{\omega(v) \mid v \in U, T v$ is closed in $U\}$
Theorem \{ maximal $U \subseteq V\} \Leftrightarrow\{$ maximal $\Psi \subset \Omega(V)\}$
[A. Białynicki-Birula - J. Święcicka (1998)]

Which maximal Ψ defines quasiprojective $U(\Psi) / / T$?
$\xi \in \equiv(T) \Rightarrow \tau=\tau(\xi)=\bigcap_{\xi \in \omega(v)} \omega(v) \Rightarrow \Psi(\tau)=\left\{\omega \in \Omega(V) \mid \tau^{0} \subset \omega^{0}\right\}$
the cones $\tau(\xi)$ form a fan (GIT-fan) with support $\operatorname{Cone}\left(\chi_{1}, \ldots, \chi_{r}\right)$
Claim. $U(\Psi) / / T$ is quasiprojective iff $\Psi=\Psi(\tau)$ for some $\tau=\tau(\xi)$
$U(\Psi(\tau)) / / T$ is projective $\Leftrightarrow \operatorname{Cone}\left(\chi_{1}, \ldots, \chi_{r}\right)$ is strictly convex and all χ_{i} are non-zero
Ψ is interior if $\operatorname{Cone}\left(\chi_{1}, \ldots, \chi_{r}\right) \in \Psi \Leftrightarrow$ generic fibers of π are T-orbits $U(\Psi(\xi)) / / T$ is affine $\Leftarrow \operatorname{Cone}\left(\chi_{1}, \ldots, \chi_{r}\right)=\equiv(T)_{\mathbb{Q}}$ and $\xi=0$
a toric variety X is 2-complete if $X \subset X^{\prime}$ with $\operatorname{codim}_{X^{\prime}}\left(X^{\prime} \backslash X\right) \geqslant 2$ implies $X=X^{\prime}$. Examples: complete, affine
X is 2-complete iff the fan of X cannot be enlarged without adding new rays
for an interior maximal collection Ψ the variety $U(\Psi) / / T$ is 2-complete and for a 2-complete variety X the subset U in the Cox realization is maximal in V

4. A description of 2-complete toric G-varieties

Ingradients:

- prehomogeneous $(G \times \mathbb{T})$-module $V=V_{1} \oplus \cdots \oplus V_{r}$, $\operatorname{dim} V_{i} \geqslant 2$;
- a subtorus $T \subset \mathbb{T} \Leftrightarrow$ a primitive sublattice $S_{T} \subset \mathbb{Z}^{r}=\equiv(\mathbb{T})$;
- the standard basis e_{1}, \ldots, e_{r} of \mathbb{Z}^{r} and the projection $\phi: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{r} / S_{T} \cong \equiv(T)$;
- $\Omega=\left\{\operatorname{Cone}\left(\phi\left(e_{i_{1}}\right), \ldots, \phi\left(e_{i_{p}}\right)\right) \mid\left\{i_{1}, \ldots, i_{p}\right\} \subseteq\{1, \ldots, r\}\right\} ;$
- an interior maximal collection $\Psi \subset \Omega$
V is G-prehomogeneous $\Leftrightarrow X=U(\Psi) / / T$ satisfies 2-condition
V is $(G \times T)$-prehomogeneous $\Leftrightarrow X=U(\Psi) / / T$ satisfies 1 -condition

Interior maximal collections \Leftrightarrow Bunches of cones in the divisor class group (F. Berchtold - J. Hausen'2004)
\Rightarrow Fans (via a linear Gale transformation)

5. Examples

1) $V=V_{1} \Rightarrow$ a) $T=\mathbb{T}=\mathbb{C}^{\times}, \phi\left(e_{1}\right)=e_{1}, \psi=\left\{\mathbb{Q}_{+}\right\}$,

$$
U(\Psi)=V \backslash\{0\}, X=\mathbb{P}(V) ;
$$

b) $T=\{e\}, \phi\left(e_{1}\right)=0, \Psi=\{0\}, U(\Psi)=X=V$
2) $V=V_{1} \oplus V_{2} \Rightarrow$ a) $T=\mathbb{T}=\left(\mathbb{C}^{\times}\right)^{2}, X=\mathbb{P}\left(V_{1}\right) \times \mathbb{P}\left(V_{2}\right)$;
b) $T=\{e\}, X=V$;
c) $\operatorname{dim} T=1$, here we consider only some particular cases:
(1) $S_{T}=\langle(1,-1)\rangle, t\left(v_{1}, v_{2}\right)=\left(t v_{1}, t v_{2}\right) \Rightarrow \phi\left(e_{1}\right)=\phi\left(e_{2}\right)=1, \Psi=$ $\left\{\mathbb{Q}_{+}\right\}, U(\Psi)=V \backslash\{0\}, X=\mathbb{P}(V)$;
(2) $S_{T}=\langle(0,1)\rangle t\left(v_{1}, v_{2}\right)=\left(t v_{1}, v_{2}\right) \Rightarrow \phi\left(e_{1}\right)=1, \phi\left(e_{2}\right)=0, \Psi=$ $\left\{\mathbb{Q}_{+}\right\}, U(\Psi)=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \neq 0\right\}, X=\mathbb{P}\left(V_{1}\right) \times V_{2}$;
(3) $S_{T}=(1,1) t\left(v_{1}, v_{2}\right)=\left(t v_{1}, t^{-1} v_{2}\right) \Rightarrow \phi\left(e_{1}\right)=1, \phi\left(e_{2}\right)=-1 \Rightarrow$
(3.1) $\Psi=\{0, \mathbb{Q}\}, U(\Psi)=V, X=V / / T$ and may be realized as the cone $C=\left\{v_{1} \otimes v_{2}\right\}$ of decomposible tensors in $V_{1} \otimes V_{2}$;
(3.2) $\Psi=\left\{\mathbb{Q}_{+}, \mathbb{Q}\right\}, U(\Psi)=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \neq 0\right\}, X$ is a "small blow-up" of C at the vertex with the exceptional fiber $\mathbb{P}\left(V_{1}\right)$

6. Prehomogeneous vector spaces

1) G is simple and V is G-prehomogeneous- E.B. Vinberg (1960)

- $G=S L(m), \quad V=\left(\mathbb{C}^{m}\right)^{r}, r<m, \quad V^{*}$;
- $G=S L(2 m+1), \quad V=\bigwedge^{2} \mathbb{C}^{2 m+1}, \quad V^{*} ;$
- $G=S L(2 m+1), \quad V=\bigwedge^{2} \mathbb{C}^{2 m+1} \oplus \bigwedge^{2} \mathbb{C}^{2 m+1}, \quad V^{*} ;$
- $G=S L(2 m+1), \quad V=\bigwedge^{2} \mathbb{C}^{2 m+1} \oplus\left(\mathbb{C}^{2 m+1}\right)^{*}, \quad V^{*} ;$
- $G=S p(2 m), \quad V=\mathbb{C}^{2 m}$;
- $G=\operatorname{Spin}(10), \quad V=\mathbb{C}^{16}$

2) V is irreducible and $(G \times \mathbb{T})$-prehomogeneous - M. Sato, T. Kimura (1977)
3) G contains $\leqslant 3$ simple factors and V is $(G \times \mathbb{T})$-prehomogeneous -T . Kimura, K. Ueda, T. Yoshigaki $(1983, \ldots)$
