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Introduction

The main focus of these lectures is of direct relevance to the two most important directions of development
of geometry and topology of the 20th century, the applications of the theory of Integrable systems and
applications of the ideas of quantum physics. The most visible result of the first direction is the solution of
the Schottky problem [1], based on the hypothesis of S.P. Novikov. The challenge of characterizing Jacobians
among other principally-polarized abelian varieties has been resolved in terms of non-linear equations: a θ-
functional expression satisfies the KP equation if and only if the corresponding Abelian variaty is the Jacobian
of an algebraic curve. Development of this activity was the proof of the Welters conjecture [2] on Jacobian
matrices in terms of triple secant of Kummer’s manifolds. The second major layer of results associated with
the applications of the quantum field theory in a challenge of constructing topological invariants. Jones-
Witten invariants or more broadly - quantum topological field theory generalizes the traditional invariants:
Alexander polynomial and Jones polynomial. The invariants in this case are constructed as correlation
functions for some quantum field theory [3]. The theory of the Donaldson invariants [4] and its development
by Seiberg and Witten is another important example of applications of the quantum physics in topology.

This work is devoted to constructing quantum analogues of algebraic-geometric methods applicable in
solving classical integrable systems. These methods are based on the spectral curve concept and the Abel
transform. In addition to applications in the topology, explicit description of solutions for quantum integrable
systems is directly linked to such problems as calculation the cohomology of the θ-divisor for Abelian varieties
[6], calculation of cohomology and characteristic classes of moduli spaces of stable holomorphic bundles [7]
and some generalizations [8].

In these lectures we propose a quantum analog of the spectral curve method for rational and elliptic
Gaudin model [9]. These cases correspond to the genus 0 and 1 base curve in the Hitchin classification. The
material is related to topological invariants of the quantum field theory type, as well as closely connected with
the geometric properties of moduli spaces partially in task of the description of the spectrum for quantum
systems. The results concern methodological approach based on the concept of the quantum spectral curve.
They crystallize in the explicit discrete group symmetry construction on the corresponding spectrum systems.
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Classic Integrable systems.

Interaction between the theory of Integrable systems and algebraic geometry appeared quite early. Pio-
neer work, linking these areas of mathematics, was due to k. Jacoby [12] where the problem of geodesics on
ellipsoid was solved in terms of the Abel transfrom for some algebraic curve. The extent of this observation
was conceived in the 1970s by S.P. Novikov school [10, 13]. Later the universal geometric description of the
phase space of a wide class of finite-dimensional Integrable systems in terms of the cotangent bundle to some
moduli space of holomorphic bundles on an algebraic curve was given in the work of N. Hitchin [14].

The algebraic point of view at Integrable systems evolved parallelly was based on principles of Hamiltonian
Dynamics and Poisson geometry. Significant progress in the classical theory of Integrable systems was related
with the invention of the inverse scattering problem in 60-ies of the last century [16]. It turned out that
the Lax representation is extremely effective description of dynamical systems [17]. This language relates
Hamiltonian flows with the related Lie algebra action. This point of view allows to introduce the notion
of the spectral curve and use methods of algebraic geometry to construct explicit solutions [18], to solve
dynamical systems in algebraic terms by the projection method [19] or by a little more general construction
of the Sato grassmanian and the corresponding τ -function [20].

Further, we use the term ”‘the spectral curve method”’ for the method of solving dynamical systems
having Lax representation in terms of Abel transform for the curve defined by the characteristic polynomial
of the Lax operator.

The first part of the work is dedicated to construction of a generalization for the Hitchin type systems
in case of the base curves with singularities and fixed points. The main example of the proposed here
quantization technic, the Gaudin model, is a particular case of the Hitchin system of the generalized nature.

Quantization.
Examples of quantum integrable models discussed here have an independent physical meaning as spin chain
quantum-mechanical systems describing one-dimensional magnets.

However, the main focus of these lectures is to study the structural role of Integrable systems including
the quantum level, where their role as Symmetries of more complex objects is also evident. In particular, spin
chains that describe very one-dimensional physical systems are associated with 2D problems of statistical
physics [9]. The main method of quantum systems called quantum inverse scattering method (QISM) was
established in the 70s of the 20th century by the school of L. D. Faddeev [21]. In many aspects this method
relies on the classical method of the inverse problem, in particular with regard to the Hamiltonian description.
Using QISM there were constructed several examples of quantum integrable systems: quantum nonlinear
Schroedinger equation, the Heisenberg magnet and the sine-Gordon model (this is equivalent to the massive
Tirring model). The asymptotic correlation functions for these model were found in [47]. Many of the results
regarding QISM was aware of earlier framework of the Bethe ansatz method discovered in 1931 [22].

QISM was much generalized by the theory of quantum groups imposed by Drinfeld [23]. The language
of Hopf algebras is exclusively convenient for working with algebraic structures of the theory of quantum
integrable systems specifically for the generalization of the ring of invariant polynomials on the group. One
can consider QISM as the quantum analog of the algebraic part of the integrable systems theory. At the
same time, the role of spectral curve and methods of algebraic geometry was out of the QISM paradigm. The
second part of the lectures concerns the quantum spectral curve method, whose central object is the quantum
characteristic polynomial for the quantum Lax operator. We propose a construction for the sln Hitchin-type
systems for the base curve of genus 0 and 1 with marked points. The elliptic spin Kalogero-Moser system is
a particular case of the considered family. The quantum characteristic polynomial is a generating function
for quantum Hamiltonians. The construction is based on the methods of the theory of quantum groups, in
particular the theory of Yangians and the Felder dynamic elliptic quantum algebra.

As noted above QISM has not provided substantial progress in solving quantum systems on the finite
scale level. Despite the fact that separated variables were found for some models the analogue of the Abel
transform as the transition from the divisor space to the Jacobian in the quantum case has not been found.
In part 3 a family of the geometric symmetries on the set of the quantum system solutions is constructed
significantly using the quantum characteristic polynomial of the model. The alternating formulation of the
Bethe system is used to construct this family, the formulation in terms of a family of special Fuchsian
systems with restricted monodromy representation. In turn, these differential operators are scalar analogue
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of the quantum characteristic polynomial. This permits to realize quantum symmetries in terms of very
known Schlesinger transformation in theory of isomonodromic deformations [24] and apply known solutions
of differential equations of the Painleve type to describe variations of the spectrum of quantum systems
changing the inhomogeneity parameters. In a sense to build a family of symmetries of the spectrum is an
analog of the Abel transform.

Quantum method of the spectral curve and other areas of modern mathematics.
Study of quantum characteristic polynomial for the Gaudin models has systematized and made much more
efficient methods of solving quantum integrable systems. The constructed discrete symmetries of the spec-
trum systems provide a generalized angle operators, meaning that you can build eigenvectors of the model
recurrently. The significance of the results in geometry and topology is the possibility to apply this tech-
nique to field theoretic models arising in topological quantum field theories and theories of fields used in
constructing the Donaldson and Seiberg-Witten invariants. In addition, the results in the problem of solving
quantum systems have direct application in the description of cohomologies of moduli spaces of holomorphic
bundles, analogues of the Laumon spaces, as well as affine Jacobians.

The method have got issue in numerous relations and application in other areas of modern mathematics
and mathematical physics. In the representation theory of Lie algebras the results are related to the effec-
tivization of the multiplicity formula. Applications of this type occur thanks to special limits of the Gaudin
commutative subalgebras which are interpreted as subalgebras of central elements in U(sln)⊗N [25]. Another
result of this technique is an explicit descriptions of the centre of the universal enveloping algebra of the
affine algebra on the critical level for sln. It is also worth noting the importance of quantum spectral curve
method in geometrical Lenglends program over C [26] in the booming field of Noncommutative Geometry,
mathematical physics and the condensed matter. Some of the applications are presented in section 4.

Thanks The author is very grateful to the staff of the Chair of higher geometry and topology of Mechanics
and Mathematics Faculty of Moscow State University for fruitful atmosphere and valuable observations
during the preparation of the lectures. The author is grateful to 170-th and 197-th laboratories of the
Institute for theoretical and experimental physics for stimulating conversations. The author expresses special
thanks to O. Babelon, V.M. Buhshtaber, A.P. Veselov, A. M. Levin, S.A. Loktev, M.A. Olshanetsky, I.E.
Panov, V.N. Rubtsov, A.V. Silantiev, A.V. Chervov, G.I. Sharygin. This work is partially supported by the
Foundation ”‘ Dynasty” ’, RFBR grant 09-01-00239 and the grant for support of scientific school 5413.2010.1.

1 The classic method of the spectral curve

1.1 Lax representation

This topic describes the classic method of the spectral curve for finite-dimensional Integrable systems. The
explanation begins with Lax representation [17], which have led to the formation of the inverse problem
method in the theory of Integrable systems. It turns out that the very wide class of Integrable systems is of
the Lax type

L̇(z) = [M(z), L(z)] (1.1)

where M(z), L(z) are matrix-valued functions of the formal variable z, those matrix elements are in turn
the functions on the phase space of a model. In other words, the phase space of a system may be embedded
into some space of matrix-valued functions where the dynamics is described by the Lax equation (1.1).

Locally, this property is fulfilled for all integrable systems due to the existence of local action-angle
variables ([28], 2 4 Example 1). Globally the Lax expression is known for: harmonic oscillator, integrable tops,
the Newman model, the problem of geodesics on ellipsoid, the open and periodic Toda chain, the Calogero-
Moser system for all types of root systems, the Gaudin model, nonlinear hierarchies: KdV, KP, Toda, as
well as their famous matrix generalizations. The Lax representation demonstrates that the Hamiltonian
vector field L̇ = {h, L} can be expressed in terms of the lie algebra structure on the space of matrices. This
property is at the heart of many of algebraic analytic techniques, in particular of the r-matrix approach and
the decomposition problem [29].
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The Lax representation means that the characteristic polynomial of the Lax operator is preserved by the
dynamics. The spectral curve is defined by the equation

det(L(z)− λ) = 0. (1.2)

It turns out that the solution of equations that allow the Lax representation simplifies using the so-called
linear problem

L(z)Ψ(z) = λΨ(z). (1.3)

The Lax equation is equivalent to the compatibility condition of following equations:

λΨ(z) = L(z)Ψ(z),
Ψ̇(z) = M(z)Ψ(z).

If now we interpret the auxiliary linear problem as a way of specifying a line bundle on a spectral curve,
the system can be solved by means of linear coordinates on the moduli space of line bundles on the spectral
curve identified with an associate Jacobian.

Further a Hitchin scheme and some of its generalization sets out pretending to the classification descrip-
tion in the theory of finite-dimensional Integrable systems. In this section we also determine the Gaudin
model and give details of the classical method of the spectral curve for the system and separated variables
technique.

1.2 The Hitchin description

Let Σ0 be an algebraic curve and M =Mr,d(Σ0) be the moduli space of holomorphic stable bundles over
Σ0 of rank r and the determinant bundle d [30]. Let us consider the canonical holomorphic simplectic form
on the cotangent bundle to the moduli space T ∗M

The deformation theory [31] allows to explicitly describe fibers of the cotangent bundle. A tangent vector
to the moduli space at E corresponding to the infinitesimal deformation in terms of the Cech cocycle can be
realized by an element of H1(End(E)), in turn the cotangent vector at E to the moduli space M through
the Serre duality is an element of the cohomology space Φ ∈ H0(End(E)⊗K); here K denotes the canonical
class of Σ0. In this description the following family of functions can be defined on T ∗M

hi : T ∗M→ H0(K⊗i); hi(E,Φ) =
1
i
trΦi. (1.4)

The direct sum of the collection of mappings hi

h : T ∗M−→ ⊕r
i=1H

0(K⊗i)

is called the Hitchin map [14] and defines a Lagrangian fibration of the phase space of the integrable system.

1.2.1 Spectral curve

The spectral curve method implies an explicit method of solution in terms of some geometric objects on a
certain algebraic curve. Consider the (nonlinear) bundle map

char(Φ) : K → K⊗r, (1.5)

defined by the expression

char(Φ)(µ) = det(Φ− µ ∗ Id) (1.6)

where µ defines a fiber point of K, and the expression Id - the tautological section of End(E). The spectral
curve is defined as the preimage of the zero section of K⊗r. The preimage defines an algebraic curve Σ in
the projectivization of the total space of K.
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1.2.2 Line bundle

Solution for the Hitchin type system can be constructed in terms of the following line bundle. Consider the
projection map π corresponding to the canonical bundles K

π : K → Σ0

and the inverse images map

π∗E
Φ−µ̃∗Id−→ π∗(E ⊗K),

where µ̃ is the tautological section π∗K. Let us also consider the quotient F , corresponding to the inclusion

0 −→ π∗E
Φ−µ∗Id−→ π∗(E ⊗K) −→ F −→ 0. (1.7)

The support of F coincides with the spectral curve Σ defined below by the reason that the solution of the
eigen problem exists only for eigen values of a linear operator. Let us restrict the exact sequence (1.7) to Σ

0 −→ L −→ π∗E|Σ
Φ−µ∗Id−→ π∗(E ⊗K)|Σ −→ F|Σ −→ 0.

It turns out that L specifies a line bundle on the spectral curve associated with eigenvectors of the Lax
operator.

Let us define the Abel transform as follows: let {a1, . . . , ag, b1, . . . , bg} be a basis in H1(Σ0,Z) with the
intersection indexes (ai, bj) = δij , {ωi} be the basis of holomorphic differentials in H0(K) normalized by the
condition

∮
ai
ωj = δij , and let Bij =

∮
bi
ωj be the matrix of b-periods. Then we define the lattice Λ in Cg

generated by the Zg and the lattice generated by the columns of the matrix B. Fixing a point P0 ∈ Σ one
can define the Abel transform by the formula

A : Σ→ JacΣ = Cg/Λ; A(P ) =


∫ P

P0
ω1

...∫ P

P0
ωg

 . (1.8)

This definition does not depend on the integrating path due to the factorization and generalizes to the map
from the space of divisor classes to the moduli space of line bundles.

Theorem 1.1 ([14]). The linear coordinates on the Jacobian Jac(Σ) applied to the image of the Abel
transform A(L) are the ”‘angle”’ variables for the Hitchin system.

1.3 The Hitchin system on singular curves

1.3.1 Generalizations

The Hitchin construction can be generalized to the case of singular curves and curves with fixed points [32],
[33]. This generalization permits to give explicit parametrization to the wide class of integrable systems
preserving the geometric analogy with the intrinsic ingredients of the original Hitchin system.

• Fixed points: It can be considered the moduli space of holomorphic bundles on an algebraic curve with
additional structures, namely with trivializations at fixed points. This moduli space can be obtained
as the quotient of the space of gluing functions by the trivialization change group with the condition
of preserving trivializations at fixed points. Let us denote this moduli space byMr,d(z1, . . . , zk). The
tangent vector to the space Mr,d(z1, . . . , zk) at the point E in an element of the space

TEMr,d(z1, . . . , zk) ' H1(End(E)⊗O(−
k∑

i=1

zi)).

The cotangent vector can be identified with the following element

Φ ∈ H0(End(E)⊗K ⊗O(
k∑

i=1

zi)).
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• Singular points: The moduli space of bundles can be considered on curves with singularities of the
types: double point, cusp or the so-called scheme double point. In this situation the consistent Hitchin
system formalism can be established. This results in constructing a large class of interesting integrable
systems. The description of the dualizing sheaf and the moduli space of bundles in this case turns out
to be more explicit then in the case of nonsingular curve of the same algebraic genus.

1.3.2 Scheme points

Let us describe in detail the Hitchin formalism on curves with double scheme points.

The singularities class Let us consider the curve Σproj obtaining by gluing 2 subscheme A(ε), B(ε) of CP 1

(i.e. a curve obtained by adding a point ∞ to the affine curve Σaff = Spec{f ∈ C[z] : f(A(ε)) = f(B(ε))},
where εN = 0 ). Calculating the algebraic genus (dimH1(O)) we obtain:

• Nilpotent elements: A(ε) = ε, B(ε) = 0, g = N − 1.

• Roots of unity: A(ε) = ε, B(ε) = αε, where αk = 1. g = N − 1− [(N − 1)/k].

• Different points:

A(ε) = a0 + a1ε+ ...+ aN−1ε
N−1, B(ε) = b0 + b1ε+ ...+ bN−1ε

N−1,

supposing a0 6= b0. g = N .

Holomorphic bundles The most convenient way to describes the moduli space of holomorphic bundles
for singular curves is an algebraic language, due to the duality between a bundle and the sheaf of its sections,
which is a sheaf of locally-free and thus projective modules over the structure sheaf of an algebraic curve.

The geometrical characterisation of a projective module in the affine chart without ∞ of the normalized
curve is made in terms of the submodule MΛ of rank r in the trivial module of vector-functions s(z) on C
satisfying the condition:

s(A(ε)) = Λ(ε)s(B(ε)),

where Λ(ε) =
∑

i=0,...,N−1 Λiε
i is a matrix-valued polynomial. The projectivity condition of this module MΛ

is expressed as follows:

• Nilpotent elements: A(ε) = ε, B(ε) = 0, condition: Λ0 = Id.

• Roots of unity: A(ε) = ε, B(ε) = αε, where αk = 1,
condition:

Λ(ε)Λ(αε)...Λ(αk−1ε) = Id.

• Different points:

A(ε) = a0 + a1ε+ ...+ aN−1ε
N−1, B(ε) = b0 + b1ε+ ...+ bN−1ε

N−1,

condition: Λ0 is invertible.

The open sell of the moduli space of holomorphic bundles for Σproj is the quotient space of the space of
Λ(ε) in general position satisfying the condition above with respect to the adjoint action of GLr.

Dualizing sheaf and global section In smooth situation the canonical class K is determined by the
line bundle of the highest order forms on complex analytical variety M . To reconstruct this object in the
singular case we axiomatize the Serre duality condition

Hn(F)×Hm−n(F∗ ⊗K)→ C

7



for a coherent sheaf F . In the present case the dualizing sheaf can be defined by its global sections. The
global sections of the dualizing sheaf on Σproj can be described in terms of meromorphic differentials on C
of the form

ωφ = Resε

(
φ(ε)dz
z −A(ε)

− φ(ε)dz
z −B(ε)

)
, (1.9)

for an element φ(ε) =
∑

i=0,...,N−1 φi
1

εi+1 . In this expression fractions should be understood as geometric
progression:

1
z −A(ε)

=
1

z − a0 − a1ε− a2ε2 − ...
=

1
(z − a0)(1− a1ε+a2ε2+...

z−a0
)

=
1

(z − a0)
(1 +

a1ε+ a2ε
2 + ...

z − a0
+ (

a1ε+ a2ε
2 + ...

z − a0
)2 + ...).

The symbol Resε means the coefficient at 1
ε . It turns out that for an arbitrary φ(ε) the expression above

gives a holomorphic differential on the singular curve Σproj , and in addition any differential is obtained in
this way. Let us describe the Serre pairing for the structure sheaf. Let us consider the covering consisting
of two opens U0 = Σaff and U∞ - an open disk centered at ∞. The intersection U0 ∩ U∞ can be identified
with the punctured disk U•∞ also centered at ∞. Let s ∈ OU•∞ - be a representative of H1(O). The pairing
is determined by the formula:

< ωφ, s >=
∮

δU0∩U∞

ωφs. (1.10)

It is easy to see that the pairing is correctly defined on classes of cohomology.

The endomorphisms of the module MΛ are described by polynomial matrix-valued functions Φ(z)
satisfying the condition

Φ(A(ε)) = Λ(ε)Φ(B(ε))Λ(ε)−1.

The action of Φ(z) on a section s(z) is given by the formula : s(z) 7→ Φ(z)s(z). The space H1(End(MΛ)) is
described as the quotient of the space of matrix-valued polynomial functions by two subspaces:

Endout = {χ(z) ∈Matn[z]|χ(z) = const}

and
Endin = {χ(z) ∈Matn[z]|χ(A(ε))) = Λ(ε)χ(B(ε))Λ(ε)−1}.

Elements of H1(End(MΛ)) are treated as tangential vectors to the moduli space of holomorphic bundles at
MΛ. The infinitesimal deformation corresponding to an element χ(z) is defined by the formula

δχ(z)Λ(ε) = χ(A(ε))Λ(ε)− Λ(ε)χ(B(ε)). (1.11)

Global section H0(End(MΛ)⊗K) are described by the expressions:

Φ(z) = Resε

(
Φ(ε)

z −A(ε)
dz − Λ(ε)−1Φ(ε)Λ(ε)

z −B(ε)
dz

)
, (1.12)

where
Resε(Λ(ε)Φ(ε)Λ(ε)−1 − Φ(ε)) = 0

and Φ(ε) =
∑

i Φi
1

εi+1 is a polynomial matrix-valued function. This expression also implies a decomposition
of the denominator in the geometric progression. It turns out that all global section of H0(End(MΛ) ⊗ K)
are of this form.
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Symplectic form on the cotangent bundle to the moduli space of holomorphic bundles can be described
in terms of Hamiltonian reduction with respect to the adjoint action of GLn of the symplectic form on the
space of pairs Λ(ε),Φ(ε), given by the expression:

ResεTrd(Λ(ε)−1Φ(ε)) ∧ dΛ(ε). (1.13)

Integrability The Hitchin system on Σproj in now defined as a system with phase space which is the
Hamiltonian quotient of the space of pairs Λ(ε),Φ(ε). The simplectic form is given by the formula 1.13. The
reduction is considered with respect to the adjoint action of the group GLn. The Lax operator is defined by
the formula 2.42. The Hamiltonians are defined by the coefficients of the function Tr(Φ(z)k) subject to some
basis of holomorphic k-differentials (i.e. sections of H0(Kk)). Let us remark that ∀z, w, k, l the following
commutativity condition is fulfilled: Tr(Φ(z)k) and Tr(Φ(w)l) commute on the nonreduced space.

The integrability proof realizes the r-matrix technique.

Example 1.1. Consider a rational curve with a double point z1 ↔ z2 (the ring of rational functions on a
curve is a subring of rational functions f on CP 1 satisfying the condition f(z1) = f(z2)) with one marked
point z3. The dualizing sheaf has the global section dz( 1

z−z1
− 1

z−z2
). Consider the moduli space M of holo-

morphic bundles E of rank n on Σnode with fixed trivialization at z3. There is the following isomorphism of
linear spaces

TEM = H1(End(E)⊗O(−p)).

Let us restrict ourself to the open sell of the moduli space of equivalence classes of matrices Λ with different
eigenvalues. The cotangent space is isomorphic to the space of holomorphic sections of End∗(E)⊗K⊗O(p).
This space can be realized by the space of rational matrix-valued functions on z of the following type

Φ(z) =
(

Φ1

z − z1
− Φ2

z − z2
+

Φ3

z − z3

)
dz,

with the following conditions on residues

Φ1Λ = ΛΦ2 Φ1 − Φ2 + Φ3 = 0.

The phase space of the system is parameterized by elements of U ∈ GL(n) giving a trivialization at z3, matrix
Λ describing the projective module over O(Σmode), residues of the Higgs field Φi. In these coordinates the
canonical simplectic form on T ∗M can be expressed as follows

ω = Tr(d(Λ−1Φ1) ∧ dΛ) + Tr(d(U−1Φ3) ∧ dU).

After Hamiltonian reduction with respect to the group GL(n) action (the right action on U and the adjoint
action on Φi, Λ) one obtains the space parameterized by the matrix elements (Φ3)ij = fij , i 6= j; eigenvalues
e2xi of the matrix Λ and the diagonal elements of the matrix (Φ1)ii = pi with the following Poisson structure

{xi, pj} = δij , {fij , fkl} = δjkfil − δilfkj .

The Hamiltonian of the trigonometric spin Calogero-Moser system related with the finite-zone solutions of
the matrix generalization for the KP equation [34] can be obtained as the coefficient of TrΦ2(z) at 1/(z−z1)2

H = TrΦ2
1 =

n∑
i=1

p2
i − 4

∑
i 6=j

fijfji

sinh2(xi − xj)
.

1.4 The Gaudin model

1.4.1 The Lax operator

The Gaudin model was proposed in [9] (section 13.2.2) as a limit of the XXX Heisenberg magnet. It
describes a one-dimensional chain of interacting particles with spin. The Gaudin model can be considered
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as a generalization of the Hitchin system for the rational curve Σ = CP 1 with N marked points z1, . . . , zN .
The Higgs field (the Lax operator) can be represented by a rational section Φ = L(z)dz where

L(z) =
∑

i=1...N

Φi

z − zi
. (1.14)

The residues of the Lax operator Φi are matrices n × n those matrix elements lie in gln ⊕ . . . ⊕ gln. (Φi)kl

coincides with the kl-th generator of the i-th copy of gln. The generators of the Lie algebra are interpreted
as functions on the dual space gl∗n. The symmetric algebra S(gln)⊗N ' C[gl∗n ⊕ . . . ⊕ gl∗n] is equipped with
the Poisson structure given by the Kirillov-Kostant bracket:

{(Φi)kl, (Φj)mn} = δij(δlm(Φi)kn − δnk(Φi)ml).

1.4.2 R-matrix bracket

R- matrix representations of Poisson structures turned out to be a key element of the theory of quantum
groups. In some sense the existence of an R-matrix structure is equivalent to integrability. It should be
noted that, in theory of quantum groups [35] the important concept is the so-called quasitriangular or braided
bialgebra. Let us introduce the notations:

• {ei} - the standard basis in Cn;

• {Eij} - the standard basis in End(Cn), (Eijek = δj
kei);

• e(s)ij - generators of the s-th copy gln ⊂ ⊕Ngln.

The Lax operator can be represented as

L(z) =
∑
ij

Eij ⊗
N∑

s=1

e
(s)
ij

z − zs
.

The Poisson structure can be described in terms of generating functions:

{L(z)⊗ L(u)} = [R12(z − u), L(z)⊗ 1 + 1⊗ L(u)] ∈ End(Cn)⊗2 ⊗ S(gln)⊗N ,

with the classical Yang R-martix

R(z) =
P12

z
, P12v1 ⊗ v2 = v2 ⊗ v1, P12 =

∑
ij

Eij ⊗ Eji.

1.4.3 The integrals

The integrals of motion can be retrieved as the characteristic polynomial coefficients

det(L(z)− λ) =
n∑

k=0

Ik(z)λn−k. (1.15)

It is often used the alternative basis of symmetric functions of eigenvalues of the Lax operators

Jk(z) = TrLk(z), k = 1, . . . , n.

Traditional quadratic Hamiltonians can be obtained as follows

H2,k = Resz=zk
TrL2(z) =

∑
j 6=k

2TrΦkΦj

(zk − zj)
= 2

∑
j 6=k

∑
lm e

(k)
lm e

(j)
ml

zk − zj
.

They describe the magnet model that consists of a set of pair interaction particles. It is known that
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Proposition 1.2. The coefficients of the characteristic polynomial of L(z) commute with respect to the
Kirillov-Kostant bracket

{Ik(z), Im(u)} = 0.

Let us present here the baseline of the proof.
Proof
Let L1(z) = L(z)⊗ 1 and L2(u) = 1⊗ L(u).

{Jk(z), Jm(u)} = Tr12{Lk(z)⊗ Lm(u)}
= Tr12

∑
ij

Li
1(z)L

j
2(u){L(z)⊗ L(u)}Lk−i−1

1 (z)Lm−j−1
2 (u)

= Tr12
∑
ij

Li
1(z)L

j
2(u)R12(z − u)Lk−i

1 (z)Lm−j−1
2 (u) (1.16)

+ Tr12
∑
ij

Li
1(z)L

j
2(u)R12(z − u)Lk−i−1

1 (z)Lm−j
2 (u)

− Tr12
∑
ij

Li+1
1 (z)Lj

2(u)R12(z − u)Lk−i−1
1 (z)Lm−j−1

2 (u) (1.17)

− Tr12
∑
ij

Li
1(z)L

j+1
2 (u)R12(z − u)Lk−i−1

1 (z)Lm−j−1
2 (u).

In particular,

(1.16) + (1.17) = Tr12[
∑
ij

Li
1(z)L

j
2(u)R12(z − u)Lk−i−1

1 (z)Lm−j−1
2 (u), L1(z)].

The last expression is zero because it is trace of a commutator.

1.4.4 Algebraic-geometric description

This section describes the basic algebraic-geometrical components of the generalized Hitchin system for
curves with marked points. Namely it is constructed a pair {Σ,L} - the spectral curve and the line bundle
on it, which allows to solve the classical Gaudin model.

Spectral curve The spectral curve of the Gaudin system Σ̃ is described by the equation

det(L(z)− λ) = 0. (1.18)

To build a nonsingular compactification of that curve one should consider the total space of the bundle where
the Lax operator takes values

Φ(z) = L(z)dz ∈ H0(CP 1,End(On)⊗ Λ) (1.19)

where Λ = K(k) = O(k − 2). We define a compactification of Σ by the equation

det(Φ(z)− λ) = 0. (1.20)

This curve is a subvariety of the rational surface Sk−2, obtained by compactification of the total space of
the line bundle O(k − 2) over CP 1, or as a projectivisation P (O(k − 2)⊕O) over the rational curve. This
rational surface contains three types of divisors: E∞ - the infinite divisor, C - the fiber of the bundle and
E0 - the base curve with the following intersections

E0 · E0 = k − 2,
E0 · C = 1,
C · C = 0,
E∞ · C = 1.

11



To determine the genus of the curve Σ we use the adjunction formula. First let us calculate the canonical
class of Sk−2. It corresponds to the class of divisors

KSk−2 = −2E0 + (k − 4)C.

Let the class of Σ be equal to [Σ] = n1E0 + n2C. Σ is n-folded covering of CP 1. Hence [Σ] · C = n and
n1 = n. To calculate n2 it is sufficient to use the fact that Σ is a spectral curve of a holomorphic section of
End(On)⊗ Λ and hence does not intersect E∞. We obtain

[Σ] = nE0.

By the adjunction formula we have

2g − 2 = KSk−2 · [Σ] + [Σ] · [Σ]

= (−2E0 + (k − 4)C) · nE0 + n2E0 · E0

= −2(k − 2)n+ (k − 4)n+ (k − 2)n2.

This allows to calculate the genus of the spectral curve

g(Σ) =
(k − 2)n(n− 1)

2
− (n− 1). (1.21)

Line bundle Let us recall the sequence defining the line bundle on the spectral curve

0→ L → On
Σ → On

S((k − 2)C + E∞)|Σ → FΣ → 0, (1.22)

where L and FΣ are line bundles. We also obtain the following

χ(L) = χ(On
Σ)− χ(On

S((k − 2)C + E∞)|Σ) + χ(FΣ)

Let us denote the divisor (k − 2)C + E∞ ⊂ S as D. Then

χ(On
Σ) = n(1− g),

χ(On
S(D)|Σ) = nD · [Σ] + n(1− g)

= n2(k − 2) + n(1− g),
χ(FΣ) = χ(π∗On(k − 2)⊗OS(E∞))− χ(On

S)

= n
1
2
(D ·D −D · KS) = n(k − 1). (1.23)

Hence χ(L) = −n2(k − 2) + n(k − 1). Calculating the number of branching points ν = 2(g + n − 1) =
(k − 2)(n2 − n) we obtain

Lemma 1.3.

deg(L) = g + n− 1− ν.

The dimension of the commutative family On the affine chart without {zi} and∞ the spectral curve
is given by the equation

R(z, λ) = 0, R(z, λ) = (−1)nλn +
n−1∑
m=0

λmRm(z), (1.24)

where

Rm(z) =
k∑

i=1

n−m∑
l=1

R
(l)
m,i

(z − zi)l
.
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The number of free coefficients is equal
∑n−1

m=0 k(n −m) = k n(n+1)
2 . The central functions (the symmetric

polynomials of eigenvalues for corresponding orbits) are the highest coefficients of Rm(z) of the total number
kn− 1. The Lax operator has double zero at infinity

L(z) =
1
z2

∑
i

Φizi +O(
1
z3

).

It follows that Rm(z) has zero of order 2(n−m) at infinity. This observation, in turn, imposes additional

n−1∑
m=0

(2(n−m)− 1) = n2

conditions on the values of Hamiltonians. Thus, the dimension of the commutative family is

k
n(n+ 1)

2
− kn+ 1− n2 = k

n(n− 1)
2

− n2 + 1 = g.

1.5 Separated variables

For the wide class of integrable systems the separated variables are associated with the divisor of the line
bundle L on the spectral curve. Namely pairs of coordinates of the divisor points are separated. Typically,
the divisor is the divisor for the Baker function. A construction of separated variables for some class of
integrable systems is given in [36]. In the case of sl2-Gaudin model separated variables were known before
[37], and can be found even more explicitly.

1.5.1 sl2-Gaudin model

Let us remind that sl2-Gaudin model is obtained from the gl2 model (1.14) choosing orbits with tr = 0. The
Lax operator in this case is:

L =
(
A(z) B(z)
C(z) −A(z)

)
.

We will consider the characteristic polynomial as a function of parameters z, λ and values of the Hamiltonians:

det(L(z)− λ) = R(z, λ, h1, . . . , hd).

Let us define the variables yj as zeroes of C(z). For dual variables we take

wj = A(yj).

This set of variables defines the Darboux coordinates of the phase space:

{yi, wj} = δij .

Let us consider the generating function S(I, y) of the canonical transformation from the variables yj , wj to
the ”‘action-angle”’ variables Ij , φj

wj = ∂yj
S, φj = ∂Ij

S.

The point with coordinates (yj , wj) is a point of the spectral curve by definition. The fact that ”‘action”’
variables are functions of Hamiltonians allows to separate variables in the problem of finding the canonical
transformation S

S(I, y1, . . . , yd) =
∏

i

s(I, yi),

where each factor s(I, z) solves the equation

R(z, ∂zs, h1, . . . , hd) = 0.
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2 The quantization problem

The quantization problem has physical motivation, it is related to the quantum paradigm in modern physics.
In mathematical context this problem can be formulated by different manners: in [38] it was considered
the problem of deformation of an algebra of functions on a simplectic manifold satisfying the so-called
”‘correspondence principle”’. The particular case of the deformation quantization for the cotangent bundle
to a Lie group used in these lectures was considered in [39]. Further the methods of deformation quantization,
∗-product, the Moyal product and the geometric quantization was generalized to wider class of examples.
One of the structure results in this field was the formality theorem by M. Kontsevich [40] which demonstrates
the existence of the quantization. Another ensemble of important results in this domain are due to Fedosov
[41].

In this work it is proposed radically more strong quantization problem, demanding not only the deforma-
tion of an algebra of functions but of a pair: Poisson algebra + Poisson commutative subalgebra, representing
an integrable system. Let us call this task the algebraic part of integrable system quantization. Moreover
it is stated a problem of constructing quantum analogs of the essential geometric objects from the point of
view of algebraic-geometric methods in integrable systems. In general the problem is to find an associative
deformation of a Poisson algebra such that the Poisson-commutative subalgebra remains commutative, and
moreover the deformation of the spectral curve provides quantum separated variables. The last part of the
quantization problem is called ”‘algebraic-geometric”’ quantization.

2.1 The deformation quantization

2.1.1 Correspondence

The traditional scheme of deformation quantization supposes a construction of an associative algebra starting
with a Poisson algebra. A Poisson algebra is a commutative algebra Acl with multiplication denoted by ·,
furnished by an antisymmetric bilinear operation called the Poisson bracket {◦, ◦}, such that Acl is a Lie
algebra and both structures are compatible by the Leibniz rule:

{f, g · h} = {f, g} · h+ g · {f, h}.

A Poisson algebra is an infinitesimal version of an associative algebra. Due to the so-called Drinfeld ε-
construction it is not hard to note that the space Acl[ε]/ε2 with multiplication

f ∗ g = f · g + ε{f, g}

is an associative algebra. The quantization of the Poisson algebraAcl with the structure defined by operations
(·,{◦, ◦}) which is called the algebra of classical observables is an associative algebra A with multiplication
(∗), satisfying the following conditions:

A ' Acl[[h]] as linear spaces.

Moreover if identified the algebra of classical observables and the space of constants in A the following
structure compatibility is required:

a ∗ b = a · b+O(h),
a ∗ b− b ∗ a = h{a, b}+O(h2).

The map

lim : A −→ Acl : h 7→ 0

is called the classical limit.

Example 2.1. Let us consider the Poisson algebra S(gln), on the space of symmetric algebra of the Lie
algebra gln defined by the Kirillov-Kostant bracket. This has a canonical quantization, realizing the concept
of the deformation quantization: let Uh(gln) be the deformed universal enveloping algebra

Uh(gln) = T ∗(gln)[[h]]/{x⊗ y − y ⊗ x− h[x, y]}.

The classical limit is defined as the limit h→ 0 which is correctly defined on the family of algebras Uh(gln).
The existence of a limit follows from the common Poincare-Birkhof-Witt basis for this family.
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2.1.2 Quantization of an integrable system

An integrable system is a pair: a Poisson algebra Acl and a Poisson commutative subalgebra Hcl of the
dimension dim(Spec(Hcl)) = 1/2dim(Spec(Acl)). An algebraic problem of quantization is the following
correspondence

Hcl ⊂ Acl ⇔ H ⊂ A

satisfying the conditions

• A ' Acl[[h]] as linear spaces, the map lim : A → Acl is called the classical limit;

• H is commutative;

• lim : H = Hcl

Remark 2.1. In the case of quantization for the symmetric algebra of the Lie algebra gln the correspondence
can be simplified. Let us consider U(gln), which is a filtered algebra (the filtration is given by degree) {Fi}.
The projection map to the associated graded algebra induces a Poisson structure:

U(gln)→ Gr(U(gln)) = ⊕iFi/Fi−1 = S(gln). (2.1)

We will associate this map with the classical limit operation. On generators a ∈ Fi and b ∈ Fj the induced
commutative multiplication and the Poisson bracket are given by the following expressions:

a · b = a ∗ b mod Fi+j−1, {a, b} = a ∗ b− b ∗ a mod Fi+j−2.

2.1.3 The Gaudin model quantization problem

The classical part is defined by the following objects

Acl = S(gln)⊗N ' C[gl∗n ⊕ . . .⊕ gl∗n],
Hcl − the subalgebra generated by the Gaudin Hamiltonians(1.15).

The algebraic part of the quantization problem is reduced to constructing a pair with the quantum
observables algebra coinciding with the tensor power of the universal envelopping algebra:

A = U(gln)⊗N ,

such that the commutative subalgebraH is a deformation of the subalgebra generated by the classical Gaudin
Hamiltonians.

2.2 Quantum spectral curve

2.2.1 Noncommutative determinant

Let us consider a matrix B =
∑

ij Eij ⊗ Bij those elements are elements of some generally speaking not
commutative associative algebra Bij ∈ A. We will use the following definition for the noncommutative
determinant in this case

det(B) =
1
n!

∑
τ,σ∈Σn

(−1)τσBτ(1),σ(1) . . . Bτ(n),σ(n).

This definition is the same as the classical one for matrices with commuting elements. There is an equivalent
definition. Let us introduce the operator An of the antisymmetrization in (Cn)⊗n

Anv1 ⊗ . . .⊗ vn =
1
n!

∑
σ∈Sn

(−1)σvσ(1) ⊗ . . .⊗ vσ(n).
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The definition above is equivalent to the following

det(B) = Tr1...nAnB1 . . . Bn,

where Bk denotes an operator in End(Cn)⊗n ⊗A given by the inclusion

Bk =
∑
ij

1⊗ . . .⊗ Eij︸︷︷︸
k

⊗ . . .⊗ 1⊗Bij ,

the trace is taken on End(Cn)⊗n.

2.2.2 Quantum spectral curve

Let us call a quantum Lax operator for the Gaudin system the following expression:

L(z) =
∑
ij

Eij ⊗
N∑

s=1

e
(s)
ij

z − zs
.

L(z) is a rational function on a variable z with values in End(Cn) ⊗ U(gln)⊗N . Let us define a quantum
characteristic polynomial of the quantum Lax operator by the formula

det(L(z)− ∂z) =
n∑

k=0

QIk(z)∂n−k
z . (2.2)

The following theorem says that this generalization of the classic characteristic polynomial (1.15) allows to
construct quantum Hamiltonians.

Theorem 2.1 ([42]). The coefficients QIk(z) commute

[QIk(z), QIm(u)] = 0

and quantize the classical Gaudin Hamiltonians in the following sense

lim(QIk) = Ik.

The proof of this fact uses significant results of the theory of quantum groups such as the construction
of the Yangian, the Bethe subalgebras and generally fits into the concept of quantum inverse scattering
method. The following sections introduce the necessary definitions and provides an outline of the proof of
the theorem of quantization of the Gaudin model.

2.2.3 Yangian

This Hopf algebra was constructed in [23] and plays an important role in the problem of description of
rational solutions of the Yang-Baxter equation. Y (gln) first and foremost is an associative algebra generated
by the elements t(k)

ij (in this section i = 1, . . . , n; j = 1, . . . , n; k = 1, . . . ,∞). Let us introduce the generating
function

T (u, h) ∈ Y (gln)⊗ End(Cn)[[u−1, h]],

which takes the form

T (u, h) =
∑
i,j

Eij ⊗ tij(u, h), tij(u, h) = δij +
∑

k

t
(k)
ij hku−k,

where Eij are the matrix unities in End(Cn). The relations can be written with the help of the Yang R-matrix

R(u) = 1− h

u

∑
i,j

Eij ⊗ Eji
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and take the form

R(z − u, h)T1(z, h)T2(u, h) = T2(u, h)T1(z, h)R(z − u, h). (2.3)

Both parts are regarded as elements of

End(Cn)⊗2 ⊗ Y (gln)[[z−1, z, u−1, u, h]],

the rational function 1
z−u in the R-matrix formula has an expansion

1
z − u

=
∞∑

l=0

ul

zl+1
.

We use the following notations

T1(z, h) =
∑
i,j

Eij ⊗ 1⊗ tij(z, h), T2(u, h) =
∑
i,j

1⊗ Eij ⊗ tij(u, h).

The Yangian is a Hopf algebra those comultiplication is given in terms of the generating function by the
following formula

(id⊗∆)T (z, h) = T 1(z, h)T 2(z, h),

where we use the notations

T 1(z, h) =
∑
i,j

Eij ⊗ tij(z, h)⊗ 1, T 2(z, h) =
∑
i,j

Eij ⊗ 1⊗ tij(z, h).

The evaluation representation Let us remind the construction of the so-called evaluation homomor-
phism ρ : Y (gln)→ U(gln). To do this we consider a rational function on u, h with values in End(Cn)⊗U(gln)
given by the formula

Tev(u, h) = 1 +
h

u

∑
i,j

Eij ⊗ eij
def
= : 1 +

hΦ
u
, (2.4)

where eij are the generators of gln. Tev(u, h) satisfy RTT relations (2.3), hence the map {t(1)ij 7→ eij ; t
(k)
ij 7→ 0

with k > 1} determines an algebra homomorphism.
Let us consider the tensor product U(gln)⊗N [[h, h−1]] and the generating function (2.4) for the evaluation

representation to the l-th component of the product T l
ev(u− zl, h). It turns out that for an arbitrary set of

complex numbers (z1, . . . , zN ), the expression

Tα(u, h) = T 1
ev(u− z1, h)T 2

ev(u− z2, h) . . . T k
ev(u− zN , h), (2.5)

which is a rational function on u and h with values in End(Cn) ⊗ U(gln)⊗N , determines a homomorphism
ρα : Y (gln)→ U(gln)⊗N [[h, h−1]]. More precisely, the following lemma is true.

Lemma 2.2. The map, defined on the Yangian generators t(k)
ij as the ij-th matrix element of the expansion

coefficient of Tα(u, h)h−k at u−k in u =∞ gives an algebra homomorphism

ρα : Y (gln)→ U(gln)⊗N [[h, h−1]].

This lemma follows from the properties of the comultiplication homomorphism and the evaluation homo-
morphism.
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2.2.4 The Bethe subalgebra

This subalgebra is closely related with Quantum inverse scattering Method (QISM) [21, 44, 45], namely its
generators are quantum integrals of the Heisenberg XXX model [44, 43]. Here we use the description from
[46] (section 2.14): let us consider an n × n-matrix C and T (u, h) - a generating function for the Yangian
generators Y (gln). Let us also use the notation An for the antisymmetrization operator in (Cn)⊗n and the
following elements of End(Cn)⊗n ⊗ Y (gln)[[u, u−1, h]]

Tm(u, h) =
∑
ij

1⊗ . . .⊗ 1⊗
m

Eij ⊗1⊗ . . .⊗ 1⊗ tij(u, h).

It turns out [46] (section 2.14), that the expressions of the form

τk(u, h) = TrAnT1(u, h)T2(u− h, h) . . . Tk(u− h(k − 1), h)Ck+1 . . . Cn (2.6)

for k = 1, . . . n, which are called the Bethe generators, constitute a commutative family in Y (gln)[[u, u−1, h]]
in the following sense:

[τi(u, h), τj(v, h)] = 0.

In addition, this family is maximal if the matrix C has simple spectrum. The trace in the formula 2.6 is
meant over matrix components End(Cn)⊗n

, the series expansion of Tm(u−h(m−1), h) is realized at u =∞,
for example

1
u− h

=
∞∑

m=0

hm

um+1
,

Next we will consider an identity matrix C and images of the Bethe generators with the evaluation
homomorphism. For simplicity, we refer to the same letters

τk(u, h) = TrAnT
α
1 (u, h)Tα

2 (u− h, h) . . . Tα
k (u− h(k − 1), h) k = 1, . . . n. (2.7)

2.2.5 The commutativity proof

The presence of the comultiplication structure in the theory of quantum groups allows to use the so-called
”‘fusion”’ method to construct non-trivial integrable systems. Literally, the method is as follows: let us
consider the image T (z) by the evaluation homomorphism in composition with enough comultiplication
operations ρz1 ⊗ . . .⊗ ρzN

∆N−1

Tℵ(z) = T 1
z1

(z) . . . TN
zN

(z) ∈ End(Cn)⊗ U(gln)⊗N .

The image of the Bethe subalgebra raises to some commutative subalgebra which can be described by the
generating function:

Q(z, h) = TrAn(e−h∂zTℵ1 (z, h)− 1) . . . (e−h∂zTℵn (z, h)− 1)

=
n∑

j=0

τj(z − h, h)(−1)n−jCj
ne
−jh∂z

= det(e−h∂zTℵ(z, h)− 1). (2.8)

The expression (2.8) can be represented as a series of ∂z. From the commutativity of the Bethe generators it
follows that the coefficients of this series which are rational functions on u with values in U(gln)⊗N [[h]] also
commute at different values of the parameter u. Hence the lowest coefficients on h also commute. These are
exactly the coefficients of the characteristic polynomial of the Gaudin model. It turns out that the highest
coefficient of the expression (2.8) on h has the form

det(e−h∂zTℵ(z, h)− 1) = hndet(L(z)− ∂z) +O(hn+1)

in virtue of the expansion:

e−h∂zTℵ(z)− 1 = h(L(z)− ∂z) +O(h2).
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Remark 2.2. It should be noted that the independence of the quantum Hamiltonians directly follows from the
independence of their classic limits, since the algebraic relations on the constructed operators in U(gln)⊗N

induces a nontrivial relation on their symbols. The maximality follows from the maximality on the classical
level.

2.3 Traditional solution methods

The traditional methods of solving quantum integrable system on finite scale are reduced to the Bethe
ansatz method or the method of separated variables which in turn allow to express the condition on the
quantum model spectrum in terms of the solutions of some system of algebraic equations or the monodromy
properties of some Fuchsian system. Those methods do not suppose any way of solving the substituting
problems. However there is quite rich material in solving quantum integrable systems in various limits.

Further we explain two basic methods in the case of the simplest Gaudin model.

2.3.1 Bethe ansatz

Let us consider the quantum sl2 Gaudin model. The Lax operator in this case takes the form

L =
(
A(z) B(z)
C(z) −A(z)

)
=
∑

i

Φi

z − zi
,

where

Φi =
(
hi/2 ei

fi −hi/2

)
.

The quantum characteristic polynomial is a differential operator of the second order with values in the
algebra of quantum observables:

det(L(z)− ∂z) = ∂2
z −

1
2

∑
i

c
(2)
i

(z − zi)2
−
∑

i

Hi

z − zi
.

The Gaudin Hamiltonians are the residues

Hi =
∑
i 6=j

hihj/2 + eifj + ejfi

zi − zj
.

The coefficients at the poles of second order are also elements of the commutative subalgebra but of trivial
nature - they are central in the quantum algebra.

The Bethe ansatz method was firstly proposed for the Heisenberg model but fits well for a wide class of
systems. The Bethe ansatz method for the Gaudin model was realized in [9]. Let us observe the construction.
We consider the sl2 Gaudin model in fixed representation Vλ = Vλ1 ⊗ . . . ⊗ VλN

where Vλi
are the finite

dimensional irreducible representations of highest weights λi.

Lemma 2.3. The vector

Ω =
M∏

j=1

C(µj)|vac >

is the common eigenvector for the ensemble of Gaudin Hamiltonanians if the set of parameters µj (called
the Bethe roots) satisfies the system of Bethe equations

−1
2

∑
i

λi

µj − zi
+
∑
k 6=j

1
µj − µk

= 0, j = 1, . . . ,M. (2.9)

The eigenvalues of Hi on the vector Ω are expressed as follows

HΩ
i = −λi

∑
j

1
zi − µj

− 1
2

∑
j 6=i

λj

zi − zj

 .
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Proof
In this case the quantum characteristic polynomial takes the form:

det(L(z)− ∂z) = ∂2
z −A2(z)− C(z)B(z) +A′(z) = ∂2

z −H(z).

The following commutation relations on the matrix elements of the Lax operator are also true:

[A(z), B(z)] = −B′(z), [A(z), C(u)] =
1

z − u
(C(z)− C(u)),

[A(z), C(z)] = C ′(z), [B(z), C(u)] =
2

u− z
(A(z)−A(u)).

Using this relation and the condition:

H(z)|vac >=

(
1
4
(
∑

i

λi

z − zi
)2 − 1

2

∑
i

λi

(z − zi)2

)
|vac >= h0(z)|vac >

we obtain:

H(z)Ω =

h0(z) + 2
M∑

j=1

1
µj − z

A(z) +
∑
j 6=k

1
(µj − z)(µk − z)

Ω

+ 2C(z)
M∑

j=1

1
z − µj

∏
l 6=j

C(µl)

∑
k 6=j

1
µk − µj

+A(µj)

 .

Let us remark that the Bethe equations can be rephrased in the form:∑
k 6=j

1
µk − µj

+A(µj) = 0.

This proves the lemma.

2.3.2 Quantum separated variables

Let us consider the quantum sl2 Gaudin model as in the previous section. An irreducible representation of
this type can be realized as the quotient of the Verma module C[ti]/tλi+1

i , such that the generators of sl2
act as differential operators:

h(s) = −2ts
∂

∂ts
+ λs, e

(s) = −ts
∂2

∂t2s
+ λs

∂

∂ts
, f (s) = ts.

Let us explore the problem in the tensor product of the Verma modules which is realized in this case on the
space of polynomials on N variables C[t1, . . . , tN ]. Let us introduce the set of variables yj , defined by the
formula:

C(z) = C0

∏
j(z − yj)∏
i(z − zi)

.

They are elements of some algebraic extension of the ring C[t1, . . . , tN ]. Let us denote by the same symbols
functions and operators of multiplication by those functions.

Let Ω be a common eigenvector for the Gaudin Hamiltonians in C[t1, . . . , tN ]

H(z)Ω = h(z)Ω. (2.10)

Considering both parts of 2.10 as rational functions on z and substituting z = yj from the left we obtain:

H(yj) = A2(yj)−A′(yj)

=
1
4

∑
i,k

1
(yj − zi)(yj − zk)

hihk +
1
2

∑
k

1
(yj − zk)2

hk. (2.11)
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Using the definition of the separated variables let us express the partial derivatives:

∂yj =
∑

k

∂tk
∂yj

∂tk
=
∑

k

tk
yj − zk

∂tk
. (2.12)

Substituting 2.12 in 2.11 we obtain:(
−∂yj +

1
2

∑
k

λk

yj − zk

)2

Ω = h(yj)Ω.

Hence the common eigenfunction for the Gaudin Hamiltonians factorizes, its dependence on yj is separated:

Ω =
∏
j

ω(yj).

Each of the factors ω(z) is related to the solution for the Sturm-Liouville equation

(∂2
z − h(z))ω̃(z) = 0

as follows:

ω̃(z) =
∏

i

(z − zi)−λi/2ω(z).

2.3.3 The monodromy of Fuchsian systems

The results of traditional separation of variables in quantum integrable systems discussed above demonstrate
that the spectrum description is closely related with the families of Fuchsian equations obeying special
monodromy properties. These properties are quite natural in the Heisenberg approach explained in [47], and
correspond to existence of globally defined wave-functions.

In the considered sl2 Gaudin model it was obtained that if Ω is a common Bethe eigenvector with values
HΩ

i then the equation (
∂2 − 1

4

∑
i

λi(λi + 2)
(z − zi)2

−
∑

i

HΩ
i

z − zi

)
Ψ(z) = 0 (2.13)

has a solution of the form

Ψ(z) =
∏

i

(z − zi)−λi/2
∏
j

(z − µj),

where the set of parameters µj satisfy the system of Bethe equations.
This observation was generalized in [48]. Let us consider the quantum characteristic polynomial:

det(L(z)− ∂z) = ∂2
z −

∑
i

C
(2)
i

(z − zi)2
−
∑

i

Hi

z − zi
.

Let H be the algebra generated by the coefficients of the quantum characteristic polynomial. A character χ
of the algebra H is called admissible if it takes values χ(C(2)

i ) = 1
4 (λi + 2)λi on central elements.

Theorem 2.4 ([48]). There is a one-to-one correspondence between the set of ”‘admissible”’ characters χ
for those the differential equation

χ(det(L(z)− ∂z))Ψ(z) = 0

has monodromy ±1, and the set of common eigenvectors of the Gaudin model in the representation Vλ.

In contrast with the traditional Bethe ansatz and separation of variables methods this spectrum charac-
terization can be generalized to the sln case.
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2.4 Elliptic case

It turns out that the elements of the algebraic-geometric part of the quantization problem can the con-
structed also in the case of the Elliptic Gaudin model: the quantum spectral curve and the quantum
separated variables. Let us remark that the elliptic Gaudin model can be obtained in generalized Hitchin
system framework. This corresponds to the moduli space of holomorphic semistable bundles with the trivial
determinant bundle over an elliptic curve with a set of marked points. A modified algebraic structure is
applicable for this problem, namely the dynamical gln RLL equation corresponding to the ”‘elliptic quantum
group”’ Eτ,~(gln), defined in [50].

The commutativity in this case is meant modulo the Cartan subalgebra. To obtain an integrable system
one should restrict the constructed family to the zero weight subspace with respect to the diagonal action
of the Lie algebra.

2.4.1 The notations

Let us define the so-called odd Riemann θ-functions on an elliptic curve. Let τ ∈ C, Im τ > 0 be the parameter
of elliptic curve C/Γ, where Γ = Z+τZ - is the periods lattice. The odd θ-function θ(u) = −θ(−u) is defined
by the relations

θ(u+ 1) = −θ(u), θ(u+ τ) = −e−2πiu−πiτθ(u), θ′(0) = 1. (2.14)

Let us also introduce some matrix notations. Let

T =
∑

j

tj · a1,j ⊗ . . .⊗ aN,j

be a tensor over an algebra R, where tj ∈ R and ai,j are elements of the space End Cn. Then the notation
T (k1,...,kN ) corresponds to the following element of R⊗ (EndCn)⊗M for numbers M > N :

T (k1,...,kN ) =
∑

j

tj · 1⊗ . . .⊗ a1,j ⊗ . . .⊗ aN,j ⊗ . . .⊗ 1.

Here each element ai,j is placed in the ki-th tensor component, the numbers ki are pairwise different and
the following condition fulfills 1 6 ki 6 M .

We need also the notation: let F (λ) = F (λ1, . . . , λn) be a function on n parameters λk, taking values in
an algebra R: i.e. F : Cn → R. In this case we define special shifts

F (λ+ P ) = F (λ1 + P1, . . . , λn + Pn)

=
∞∑

i1,...,in=0

1
i1! · · · in!

∂i1+...+inF (λ1, . . . , λn)
∂λi1

1 · · · ∂λ
in
n

P i1
1 · · ·P in

n (2.15)

for some set P = (P1, . . . , Pn), Pk ∈ R. We do not discuss here the convergency questions, in our context
all such expressions will be well defined.

2.4.2 Felder algebra

Let us introduce the notion of the elliptic L-operator, corresponding to the Felder R-matrix.
We use the notations {ei}, {Eij} from the section 1.4.2. Let h be a commutative algebra of dimension

n. In [50] it was constructed an element of End Cn ⊗ End Cn, meromorphly depending on the parameter u
and n dynamical parameters λ1, . . . , λn:

R(u;λ) = R(u;λ1, . . . , λn) =
θ(u+ ~)
θ(u)

n∑
i=1

Eii ⊗ Eii+

+
∑
i 6=j

(θ(λij + ~)
θ(λij)

Eii ⊗ Ejj +
θ(u− λij)θ(~)
θ(u)θ(−λij)

Eij ⊗ Eji

)
, (2.16)
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where λij = λi − λj . This element is called the dynamical Felder R-matrix. This satisfy the dynamical
Yang-Baxter equation

R(12)(u1 − u2;λ)R(13)(u1 − u3;λ+ ~E(2))R(23)(u2 − u3;λ) =
= R(23)(u2 − u3;λ+ ~E(1))R(13)(u1 − u3;λ)R(12)(u1 − u2;λ+ ~E(3)),

and the additional conditions

R(21)(−u;λ)R(12)(u;λ) =
θ(u+ ~)θ(u− ~)

θ(u)2
,

(E(1)
ii + E

(2)
ii )R(u;λ) = R(u;λ)(E(1)

ii + E
(2)
ii ),

(D̂(1)
λ + D̂

(2)
λ )R(u;λ) = R(u;λ)(D̂(1)

λ + D̂
(2)
λ ),

where

D̂λ =
n∑

k=1

Ekk
∂

∂λk
, D̂

(i)
λ =

n∑
k=1

E
(i)
kk

∂

∂λk
.

We should mention that the expression λ in formulas above denotes a vector λ1, . . . , λn, and the expression
λ+ ~E(s) implies a shift of the type 2.15 with the parameters values Pi = ~E(s)

ii .
Let R be a C[[~]]-algebra, L(u;λ) an invertible n×n matrix over R depending on the spectral parameter

u and n dynamical parameters λ1, . . . , λn. Let h1, . . . , hn be a set of pairwise commuting elements of R.
L(u;λ) is called an elliptic dynamical L-operator corresponding to the set of Cartan elements hk if L(u;λ)
satisfies the dynamical RLL relation

R(12)(u− v;λ)L(1)(u;λ+ ~E(2))L(2)(v;λ)
= L(2)(v;λ+ ~E(1))L(1)(u;λ)R(12)(u− v;λ+ ~h), (2.17)

and a condition of the form

(Eii + hi)L(u;λ) = L(u;λ)(Eii + hi).

Let us introduce an equivalent but more symmetric form of RLL relations. For an L-operator we define an
expression:

LD(u) = e−~D̂λL(u;λ). (2.18)

The equation (2.17) can be rewritten in new notations as follows:

R(12)(u− v;λ)L(1)
D (u)L(2)

D (v) = L
(2)
D (v)L(1)

D (u)R(12)(u− v;λ+ ~h). (2.19)

The next lemma plays the role analogous to the fusion method in the rational case, namely this describes a
method of elliptic L-operators construction.

Lemma 2.5. If L1(u;λ) ∈ End(Cn) ⊗ R1 and L2(u;λ) ∈ End(Cn) ⊗ R2 are two elliptic dynamical L-
operators with respect to two sets of Cartan elements: h1 = (h1

1, . . . , h
1
n) and h2 = (h2

1, . . . , h
2
n), then the

product L2(u;λ)L1(u;λ + ~h2) ∈ End(Cn) ⊗R1 ⊗R2 is also an elliptic dynamical L-operator with respect
to the set h = h1 + h2 = (h1

1 + h2
1, . . . , h

1
n + h2

n). Hence, if L1(u;λ), . . . , Lm(u;λ) are elliptic dynamical
L-operators with the sets of Cartan elements h1, . . . , hm, then the matrix

←−∏
m>j>1

Lj

(
u;λ+ ~

m∑
l=j+1

hl
)

(2.20)

is also an elliptic dynamical L-operator with the following set of Cartan elements h =
m∑

i=1

hi.

Remark 2.3. The arrow in the product notation above denotes the order of multipliers with growing indexes:
for example, the expression

←−∏
3>i>1Ai means A3A2A1.
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The main example of elliptic dynamical L-operator is given by the Felder R-matrix: L(u) = R(u− v;λ).
In this case the second space End(Cn) takes the role of the algebra R. Here v is a complex number and
the Cartan elements coincide with the diagonal matrices hk = E

(2)
kk . Lemma 2.5 allows to generalize this

example: let v1, . . . , vm be a set of complex numbers, then the matrix

R(0)(u; {vj};λ) =
←−∏

m>j>1

R(0j)
(
u− vj ;λ+ ~

m∑
l=j+1

E(l)
)

(2.21)

is a dynamical elliptic L-operator with the Cartan elements hk =
m∑

l=1

E
(l)
kk .

A more general class of dynamical elliptic L-operators is related with the so-called small elliptic quantum
group eτ,~(gln) constructed in [51]. This represents a C[[~]]((λ1, . . . , λn))-algebra generated by t̃ij and hk

with relations

t̃ijhk = (hk − δik + δjk)t̃ij ,
tijλk − (λk − ~δik)tij = 0,

tijtik − tiktij = 0, (2.22)

tiktjk −
θ(λ{1}ij + ~)

θ(λ{1}ij − ~)
tjktik = 0, i 6= j,

θ(λ{2}jl + ~)

θ(λ{2}jl )
tijtkl −

θ(λ{1}ik + ~)

θ(λ{1}ik )
tkltij −

θ(λ{1}ik + λ
{2}
jl )θ(~)

θ(λ{1}ik )θ(λ{2}jl )
tiltkj = 0,

with i 6= k, j 6= l, where tij = δij + ~t̃ij , λ{1}ij = λi − λj , λ
{2}
ij = λi − λj − ~hi + ~hj , it is also supposed that

h1, . . . , hk, λ1, . . . , λk commute. One constructs a generating function for these generators T (−u)

Tij(−u) = θ(−u+ λij − ~hi)tji. (2.23)

Representing this matrix in the form

T (−u) = θ(−u)e−~
∑n

k=0(hk+Ekk)∂λkL0(u;λ)e~
∑n

k=0 hk∂λk (2.24)

we obtain a dynamical elliptic L-operator L0(u;λ) for the algebra T = eτ,~(gln)[[∂λ]] with the Cartan
elements h = (h1, . . . , hn), where C[[∂λ]] = C[[∂λ1 , . . . , ∂λn ]]. The elements ∂λk

= ∂
∂λk

commute with hi and
do not commute with t̃ij .

2.4.3 Commutative algebra

Let us consider a dynamical elliptic L-operator L(u;λ) with a set of Cartan elements hk. This function takes
values in the algebra End Cn ⊗R.

Let us introduce the operators

L[m,N ]({ui};λ) = e−~D̂
(m+1)
λ L(m+1)(um+1;λ) · · · e−~D̂

(N)
λ L(N)(uN ;λ), (2.25)

where m < N . Let us consider a particular case with the parameters values ui = u+ ~(i− 1),

L[a,b](u;λ) = L[a,b]({ui = u+ ~(i− a− 1)};λ)

for a < b. Let An = C((λ1, . . . , λn)) be the completed function space. The operators D̂λ act on the space
An⊗Cn, in turn the operators L[a,b](u;λ) act from An⊗(Cn)⊗(b−a) to the space An⊗(Cn)⊗(b−a)⊗R: fixing
u we obtain L[a,b](u;λ) ∈ End(Cn)⊗(b−a) ⊗ An, where An = An[e±~∂λ ] ⊗ R. Let us consider a subalgebra
h ⊂ R ⊂ An generated by the elements hk and its normalizer An:

Nn = NAn
(h) = {x ∈ An | hx ⊂ Anh}. (2.26)

Let us remark that Anh is a two-sided ideal in Nn. In [49] the following statement is proved
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Theorem 2.6. Let us define An-valued functions

tm(u) = tr
(
A[0,m]L[0,m](u;λ)

)
, (2.27)

where we suppose the trace operation over m spaces Cn. These expressions commute with the Cartan elements
hk:

hktm(u) = tm(u)hk. (2.28)

Hence they are elements of the subalgebra Nn. Moreover these generators commute modulo the ideal Anh ⊂
Nn:

tm(u)ts(v) = ts(v)tm(u) mod Anh. (2.29)

2.4.4 Characteristic polynomial

As in the rational case the generators tm(u) can be organized into a generating function called the quantum
characteristic polynomial. This generating function is constructed as a ”‘determinant”’ of the corresponding
L-operator.

Proposition 2.7. Let us consider the matrix M = e−~D̂λL(u;λ)e~ ∂
∂u . Then the determinant of 1 −M

generate the family tm(u) in the following sense:

P (u, e~∂u) = det(1− e−~D̂λL(u;λ)e~ ∂
∂u ) =

n∑
m=0

(−1)mtm(u)em~ ∂
∂u , (2.30)

where t0(u) = 1. This property induces the commutativity of the quantum characteristic polynomial with
elements hk, and the pairwise commutativity modulo Anh of the generating functions:

[P (u, e~∂u), hk] = 0, [P (u, e~∂u), P (v, e~∂v )] = 0 mod Anh. (2.31)

2.4.5 The limit and the Gaudin model

Let us consider degenerated elliptic dynamical RLL relations at ~ → 0. This limit describes the elliptic
quantum Gaudin model. To do this we use a shift of the L-operator. The limit of the generating function
for the generic family gives the generating function for the Hamiltonians of the elliptic Gaudin model. The
result obtained generalizes the works [52],[53].

Let L(u;λ) be a dynamical elliptic L-operator of the form

L(u;λ) = 1 + ~Λ(u;λ) + o(~), (2.32)

those matrix elements are elements of the algebra R0 = R/~R. The matrix Λ(u;λ) is called a classical
dynamical elliptic L-operator. This satisfy the rLL-relations

[Λ(1)(u;λ)− D̂(1)
λ ,Λ(2)(v;λ)− D̂(2)

λ ]−
n∑

k=1

hk
∂

∂λ
r(u− v;λ) =

= [Λ(1)(u;λ) + Λ(2)(v;λ), r(u− v;λ)] (2.33)

with the classical dynamical elliptic r-matrix

r(u;λ) =
θ′(u)
θ(u)

n∑
i=1

Eii ⊗ Eii

+
∑
i 6=j

(θ′(λij)
θ(λij)

Eii ⊗ Ejj +
θ(u− λij)
θ(u)θ(−λij)

Eij ⊗ Eji

)
. (2.34)

The matrix (2.34) is related with the Felder R-matrix (2.16) by the formula

R(u;λ) = 1 + ~r(u;λ) + o(~). (2.35)
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Theorem 2.8. Let An = R0⊗An[∂λ] Nn = NAn
(h) = {x ∈ An | hx ⊂ Anh}, where An = C((λ1, . . . , λn)).

Let us define a set of Nn-valued functions sm(u) by the formula

Q(u, ∂u) = det
( ∂
∂u
− D̂λ + Λ(u;λ)

)
=

n∑
m=0

sm(u)
( ∂
∂u

)n−m

, (2.36)

where s0(u) = 1. They commute with the Cartan elements hk:

hksm(u) = sm(u)hk (2.37)

and moreover pairwise commute modulo Anh:

sm(u)sl(v) = sl(v)sm(u) mod Anh. (2.38)

The values of the functions s1(u), s2(u), . . . , sn(u) generate a commutative subalgebra in Nn on the
level hk = 0. This means that the images of these elements with respect to the canonical homomorphism
Nn → Nn/Anh pairwise commute.

The quantum elliptic Gaudin model is defined with the help of the Lax operator

Λij(u;λ) = eji(u;λ), Λii(u;λ) = eii(u;λ) +
∑
k 6=i

θ′(λik)
θ(λik)

hk, (2.39)

those coefficients are expressed by the formulas:

eii(u) =
θ′(u− z)
θ(u− z)

eii =
∑
m>0

(−1)m

m!

(θ′(u)
θ(u)

)(m)

eiiz
m, (2.40)

eij(u;λ) =
θ(u− z + λij)
θ(u− z)θ(λij)

eij =
∑
m>0

(−1)m

m!

( θ(u+ λij)
θ(u)θ(λij)

)(m)

eijz
m. (2.41)

An analog of the evaluation representation is the homomorphism to the small elliptic quantum group defined
by the generating function (2.24). Let us consider an expansion on the parameter ~ of the dynamical L-
operator corresponding to the tensor power of the small elliptic group. It turns out that the coefficient at ~
of this expansion coincides with the elliptic Gaudin model L-operator.

2.4.6 The explicit form of the sl2 elliptic Gaudin model

The L-operator of the elliptic sl2 Gaudin model considered in [52, 53, 54] has the form

Λ(u;λ) =
(
h(u)/2 fλ(u)
eλ(u) −h(u)/2

)
, (2.42)

where λ = λ12 = λ1 − λ2 and the currents are expressed by the formulas

h(u) = e11(u)− e22(u) =
N∑

s=1

θ′(u− vs)
θ(u− vs)

(e(s)11 − e
(s)
22 ),

eλ(u) = e12(u;λ) =
N∑

s=1

θ(u− vs + λ)
θ(u− vs)θ(λ)

e
(s)
12 ,

fλ(u) = e21(u;λ) =
N∑

s=1

θ(u− vs − λ)
θ(u− vs)θ(−λ)

e
(s)
21 .

The fact that the L-operator depends only on the difference λ = λ1 − λ2 allows to restrict the generating
function of the commutative subalgebra Q(u, ∂u) to the space A = {a ∈ A2 | (∂λ1 + ∂λ1)a = 0} ⊂ A2

coinciding with C((λ12)). Let A = R0 ⊗ A[∂λ] then the values of sm(u) are elements of N = NA(h) = {x ∈
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A | hx ∈ Ah}. In virtue of the representation ρ : h1 + h2 → 0 the operator D̂λ has the form H∂λ, where
H = E11 − E22.

Let us find the quantum characteristic polynomial in this case:

Q(u, ∂u) = det
( ∂
∂u
− D̂λ + Λ̃(u;λ)− θ′(λ)

θ(λ)
h

2

)
=

= det

(
∂

∂u − ∂λ + h+(u)/2− θ′(λ)
θ(λ) h/2 f+

λ (u)

e+λ (u) ∂
∂u + ∂λ − h+(u)/2− θ′(λ)

θ(λ) h/2

)

=
( ∂
∂u

)2

− θ′(λ)
θ(λ)

h
∂

∂u
− Sλ(u), (2.43)

where h = h1 − h2. Sλ(u) is an N -valued function

Sλ(u) =
(
∂λ − h(u)/2

)2 + ∂uh(u)/2 + eλ(u)fλ(u) mod Ah.

The commutativity condition can be formulated in terms of this generating function as follows:

[Sλ(u), Sλ(v)] = 0 mod Ah.

Using the commutation relations

[e+λ (u), f+
λ (u)] = − ∂

∂u
h+(u) +

(θ′(λ)
θ(λ)

)′
h

one can simplify this generating function:

Sλ(u) =
(
∂λ − h(u)/2

)2 +
(
eλ(u)fλ(u) + fλ(u)eλ(u)

)
/2 mod Ah. (2.44)

3 Solution for quantum integrable systems

As was mentioned above the traditional methods of solving quantum integrable systems on the finite scale
in some cases allow to solve the Hamiltonian diagonalization problem in terms of solutions of a system of
algebraic equations (the Bethe system). However, the system of equations itself, in cases where it can be
deduced, turns out to be quite complicated and hypothetically prevents algebraic solutions. In this sec-
tion we use an equivalent formulation for quantum eigenproblem in terms of Fuchsian systems with special
monodromy representation. In turn the construction of relevant Fuchsian systems uses the quantum char-
acteristic polynomial of a model. This observation also emphasizes the quantum characteristic polynomial
among others generating function for the commutative subalgebra.

3.1 Monodromic formulation

3.1.1 A scalar and a matrix Fuchsian equations

Consider a Fuchsian system defined by a connection in trivial bundle of rank 2 on the disk with punctures:

A(z) =
(
a11(z) a12(z)
a21(z) a22(z)

)
=

k∑
i=1

Ai

z − zi
(3.1)

with residues satisfying the conditions:

Tr(Ai) = 0; Det(Ai) = −d2
i ;

∑
i

Ai =
(
κ 0
0 −κ

)
. (3.2)

The Fuchsian system is written by the equation

(∂z −A(z))Ψ(z) = 0. (3.3)
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The components of this system may be represented as follows

ψ′1 = a11ψ1 + a12ψ2,

ψ′2 = a21ψ1 + a22ψ2.

The first vector component satisfies the second order equation

ψ′′1 = (a′12/a12)ψ′1 + uψ1,

where

u = a′11 + a2
11 − a11(a′12/a12) + a12a21.

With the following variable change: Φ = ψ1/χ, where χ =
√
a12, we obtain the equation

Φ′′ + UΦ = 0,

those potential is defined by the formula

U = χ′′/χ− (a′12/a12)χ′/χ− u. (3.4)

Introducing the expression for χ to U we obtain:

U =
1
2

(
a′12
a12

)′
− 1

4

(
a′12
a12

)2

+ a11
a′12
a12
− a′11 − a2

11 − a12a21. (3.5)

Let us suppose that a12(z) has no multiple poles

a12(z) = c

∏k−2
j=1 (z − wj)∏k
i=1(z − zi)

.

We should note that the number of zeros agrees with the normalization (3.2). The expression for the
logarithmic derivative can be simplified:

a′12
a12

=
k−2∑
j=1

1
z − wj

−
k∑

i=1

1
z − zi

. (3.6)

The potensial U taked the form

U =
k−2∑
j=1

−3/4
(z − wj)2

+
k∑

i=1

1/4 + detAi

(z − zi)2
+

k−2∑
j=1

Hwj

z − wj
+

k∑
i=1

Hzi

z − zi
, (3.7)

in which

Hwj = a11(wj) +
1
2

∑
i 6=j

1
wj − wi

−
∑

i

1
wj − zi

 ;

Hzi
=

(
1
2

+ ai
11

)∑
j

1
zi − wj

−
∑
j 6=i

Tr(AiAj) + ai
11 + aj

11 + 1/2
zi − zj

.

Let us remark that the coefficients at (z − zi)−2 take values

1/4 + detAi = (1/2− di)(1/2 + di). (3.8)

In what follows we identify these factors with the values of the quadratic Casimir elements of the Lie algebras
sl2 in the representations of highest weights λi (λi = 2di − 1 in our case).

28



3.1.2 Dual equation

As was shown in previous calculations, the matrix form connection leads to the Sturm-Liouville operator
with additional poles at points wj . A consideration of the second vector component of a solution of the
matrix equation Ψ2 leads to another scalar differential operator with poles at points zi and additional points
w̃j , determined by the formula

a21(z) = c̃

∏k−2
j=1 (z − w̃j)∏k
i=1(z − zi)

.

Let us call the corresponding Sturm-Liouville operator

∂2
z − Ũ

the dual sl2-oper. In this case, the potential is expressed by the formula

Ũ =
k−2∑
j=1

−3/4
(z − w̃j)2

+
k∑

i=1

1/4 + detAi

(z − zi)2
+

k−2∑
j=1

Hw̃j

z − w̃j
+

k∑
i=1

H̃zi

z − zi
. (3.9)

3.1.3 Backup

In this section we construct an inverse map, namely for a Sturm-Liouville operator that has trivial mon-
odromy we construct a rank 2 connection of the form (3.3) with the monodromy representation in the
subgroup Z/2Z ⊂ GL(2) of scalar matrices ±1.

Let us consider an ansatz for the solution of the matrix linear equation (3.3)

(∂z −A(z))Ψ = 0

of the type

ψl =
k∏

i=1

(z − zi)−siφl(z), l = 1, 2; (3.10)

which satisfy

φ1 =
M∏

j=1

(z − γj),

φ2/φ1 =
M∑

j=1

αj

z − γj
. (3.11)

Let us rewrite the system (3.3) taking into account the new parameterization (3.11)

∂zψ1/ψ1 = a11 + a12φ2/φ1, (3.12)
(∂zψ1/ψ1)(φ2/φ1) + ∂z(φ2/φ1) = a21 + a22φ2/φ1. (3.13)

Let us represent these equations more precisely:

−
∑

i

si

z − zi
+
∑

j

1
z − γj

=
∑

i

ai
11

z − zi
+
∑

i

ai
12

z − zi

∑
j

αj

z − γj
, (3.14)−∑

i

si

z − zi
+
∑

j

1
z − γj

∑
j

αj

z − γj
−
∑

j

αj

(z − γj)2
=

∑
i

ai
21

z − zi
−
∑

i

ai
11

z − zi

∑
j

αj

z − γj
. (3.15)
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The comparison of residues of both part of (3.14), (3.15) at points z = zi gives:

−si = ai
11 + ai

12

∑
j

αj

zi − γj
, (3.16)

−
∑

j

αj

zi − γj
si = ai

21 − ai
11

∑
j

αj

zi − γj
. (3.17)

These equations coupled with the condition of zero trace ai
11+ai

22 = 0 lead to a condition that si must be one
of the eigenvalues of Ai, in particular, can be adopted as si = di. Let us consider the behavior at the poles
z = γj . Let us note that the second order poles of the equation (3.15) at these points cancel. Calculating
residues of both sides of the equations (3.14) and (3.15) we obtain

1 = αj

∑
i

ai
12

γj − zi
, (3.18)

αj

−∑
i

si

γj − zi
+
∑
i 6=j

1
γj − γi

+
∑
i 6=j

αi

γj − γi
= −αj

∑
i

ai
11

γj − zi
. (3.19)

Let us recall that one of the normalization condition controls the diagonal form of the residue at ∞
k∑

i=1

ai
12 = 0, (3.20)

k∑
i=1

ai
21 = 0. (3.21)

We also note that the choice of Sturm-Liouville operator poles captures zeros of the rational function a12(z),
which is determined up to a constant:

a12(z) = c

∏k−2
j=1 (z − wj)∏k
i=1(z − zi)

.

Then the condition (3.20) will be satisfied automatically. The coefficients ai
12 are expressed by the formula

ai
12 = c

∏
j(zi − wj)∏

j 6=i(zi − zj)
. (3.22)

The coefficients ai
11 are expressed by the following formula in virtue of (3.16)

ai
11 = −si − c

∏
j=1(zi − wj)∏
j 6=i(zi − zj)

∑
l

αl

zi − γl
. (3.23)

Let us substitute the expressions for ai
12 and ai

11 to the equations (3.18), (3.19). Then expressing αj from
the first and substituting to the second we obtain:

−
∑

k

2sk

γj − zk
+
∑
k 6=j

1
γj − γk

+
∑
k,m

∏
l(zk − wl)

∏
s 6=k(γm − zs)∏

l 6=k(zk − zl)
∏

s(γm − ws)(γj − zk)

+
∏

i(γj − wi)∏
i(γj − zi)

∑
k 6=j

∏
i(γk − zi)∏

i(γk − wi)(γj − γk)
= 0.

An equivalent form can be obtained if one divides both sides by
∏

i(γj−zi)∏
i(γj−wi)

−
∑

k

2sk

γj − zk
+
∑
k 6=j

1
γj − γk

+
∑
k,m

∏
l(zk − wl)

∏
s 6=k(γm − zs)∏

l 6=k(zk − zl)
∏

s(γm − ws)(γj − zk)

+
∑
k 6=j

∏
i(γk − zi)∏

i(γk − wi)(γj − γk)

∏
m(γj − wm)∏
m(γj − zm)

= 0.
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Let us consider the left-hand side of equality as a rational function F (γj) and calculate its primitive fractions
decomposition at poles zk, wk, γk and ∞. It turns out that this decomposition will look like:

F (γj) = −
∑

k

2sk − 1
γj − zk

−
∑

k

1
γj − wk

+ 2
∑
i 6=j

1
γj − γi

. (3.24)

Thus, the equality is equivalent to an equation of the Bethe system. Let us demonstrate, for example, the
residue calculating at the point γj = wi

Resγj=wi
F (γj) =

∑
k

∏
l(zk − wl)

∏
s 6=k(wi − zs)∏

l 6=k(zk − zl)
∏

s 6=i(wi − ws)(wi − zk)

=
∏

s(wi − zs)∏
s 6=i(wi − ws)

∑
k

∏
l(zk − wl)∏

l 6=k(zk − zl)(wi − zk)2
. (3.25)

Let us write down the expesion on the right side of the equality

(Resz=wiΦ(z))−1
∑

k

Resz=zk
Φ(z),

where

Φ(z) =
∏

l(z − wl)∏
l(z − zl)(z − wi)2

,

and therefore is −1.
The sufficiency condition was proved in [55].

Theorem 3.1. If the set of numbers γi where i = 1, . . . ,M satisfies the system of Bethe equations (2.9) with
the parameters: the set of poles z1, . . . , zk and w1, . . . , wk−2 and the set of highest weights 2s1−1, . . . , 2sk−1
and 1, . . . , 1 correspondingly, then the vector

Ψ =
k∏

i=1

(z − zi)−si

(
φ1(z)
φ2(z)

)
, (3.26)

where

φ1 =
M∏

j=1

(z − γj),

φ2/φ1 =
M∑

j=1

αj

z − γj
, (3.27)

and the coefficients αj are given by the expressions

αj =
∏

i(γj − zi)∏
i(γj − wi)

, (3.28)

solves the matrix linear problem (3.3), where the connection coefficients are given by

ai
12 =

∏
j(zi − wj)∏

j 6=i(zi − zj)
, (3.29)

and the coefficients ai
11 and ai

21 are determined form (3.16), (3.17). The conditions of normalization (3.2)
are fulfilled.
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Proof. Actually, we should prove just that normalization condition (3.21) does not depend on the choice
of the parameter c, in particular, it may be taken 1. Indeed, on the basis of (3.16), (3.17) we obtain:

ai
21 = −

2si

∑
j

αj

zi − γj
+

∏
j(zi − wj)∏

j 6=i(zi − zj)

∑
j

αj

zi − γj

2
 . (3.30)

We need to prove that

∑
i

2si

∑
j

αj

zi − γj
+
∑

i

∏
j(zi − wj)∏

j 6=i(zi − zj)

∑
j

αj

zi − γj

2

= 0. (3.31)

The first summand of (3.31) then using the Bethe equations can be converted to the following:∑
i

2si

∑
j

αj

zi − γj
=
∑

j

αj

∑
i

2si

zi − γj

=
∑

j

αj

−∑
i

1
γj − zi

+
∑

i

1
γj − wi

− 2
∑
i 6=j

1
γj − γi

 . (3.32)

Now we will simplify the second summand (3.31) changing the order

∑
m6=l

αmαl

∑
i

∏
j(zi − wj)∏

j 6=i(zi − zj)(zi − γm)(zi − γl)

+
∑
m

(αm)2
∑

i

∏
j(zi − wj)∏

j 6=i(zi − zj)(zi − γm)2
. (3.33)

Considering the second summand (3.33) let us note that

∑
i

∏
j(zi − wj)∏

j 6=i(zi − zj)(zi − γm)2
= −∂γm

Φ1(γm), (3.34)

where

Φ1(γm) =
∑

i

∏
j(zi − wj)∏

j 6=i(zi − zj)(zi − γm)
=

∏
j(γm − wj)∏
j(γm − zj)

. (3.35)

Therefore, the expression (3.34) becomes:

−
∏

j(γm − wj)∏
j(γm − zj)

(∑
s

1
γm − ws

−
∑

s

1
γm − zs

)
, (3.36)

which is reduced with the relevant part of (3.32). Let us consider the first summand (3.33), this also can be
simplified:

∑
i

∏
j(zi − wj)∏

j 6=i(zi − zj)(zi − γm)(zi − γl)

=

∏
j(γl − wj)∏

j(γl − zj)(γm − γl)
−

∏
j(γm − wj)∏

j(γm − zj)(γm − γl)
. (3.37)

Substituting the expression in (3.33) we finish the proof �
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3.2 Schlesinger transformations

There is a discrete group of transformations that preserve the connection form (3.3) and, moreover, do
not change the class of monodromy representation. However, these changes shift characteristic exponents
at fixed points by half-integer values. Such transformations are called Schlesinger, Hecke or Backlund
transformations depending on the context. They have simple geometric interpretation explained in the
beginning of this section.

3.2.1 Action on bundles

Let us consider a curve C, a holomorphic bundle F on it, the corresponding sheaf of sections F , the additional
set of data x ∈ C and a point of the dual space to the fiber l ∈ F ∗x . Then the lower Hecke transform T(x,l)E
is defined by the subsheaf F ′ = {s ∈ F : (s(x), l) = 0}, which in turn corresponds to a certain holomorphic
bundle on the curve C.

The equivalent definition can be defined in terms of gluing functions. Let us consider the action on
holomorphic bundles on CP 1. In virtue of the Birkhoff-Grothendieck theorem [56] any holomorphic bundle
on CP 1 of rank n is isomorphic to the sum of line bundles O(k1)⊕ . . .⊕O(kn) for a specific set of integers
(k1, . . . , kn) called the type of a bundle and determined up to the symmetric group action. Let us consider
the open covering of CP 1 consisting in: U∞ - a disk around ∞ which does not contain z = zi, i = 1, . . . , N
and the domain U0 = CP 1\{∞}. We consider holomorphic rank 2 bundles and parameterize them by gluing
function G(z) which is a holomorphically invertible function on U0 ∩ U∞ with values in GL(2). Let us say
that a pair S∞(z) ∈ O(2)(U∞) and S0(z) ∈ O(2)(U0) defines a global section if S0(z) = G(z)S∞(z).

We describe the transformation on bundles in terms of actions on corresponding gluing functions defined
as a multiplication on the left by an element

Gs(z) = Gs

(
z − zs 0

0 1

)
G−1

s (3.38)

for some constant matrix Gs and some point zs ∈ U0

Remark 3.1. The action on the space of gluing functions can be reduced to the action on the isomorphism
classes of holomorphic bundles if one chooses Gs appropriately, if changing a trivialization in U0 by T (z) we
change also the matrix Gs as follows T (zs)Gs. This is obviously referring to the invariant definition above.

We will investigate the composition of these changes applied at two points.

Lemma 3.2. A composition of two transformations specified by an expression Gi(z)G−1
j (z), for a generic

choice of matrices Gi, Gj preserves the trivial bundle.

Proof It is sufficient to find a decomposition for G(z) = Gi(z)G−1
j (z) with G(z) = Gij(z)G∞(z), where

Gij(z), G∞(z) are invertible respectively at U0, U∞. The thought-consideration for this evidence is the
cohomological dimension count in families at a generic point. Indeed, for a particular choice G−1

i Gj = 1 we
get a trivial bundle which is semistable and hence minimizes the dimension of H0(End(V )) for V of degree
0. In this context, the trivial bundle is generic in the family of bundles for different G.

Despite the general argument here we propose a proof in spirit of the decomposition lemma in [56]. Let
us introduce the notations

Gi =
(

1 xi

yi 1

)
. (3.39)

We can decompose the product

G(z) = Gi

(
z 0
0 1

)
G−1

i Gj

(
(z − 1)−1 0

0 1

)
G−1

j (3.40)

into the alternative product

G(z) = Gij(z)G∞(z),
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where Gij(z), G∞(z) are holomorphically invertible functions on U0, U∞ respectively. The traditional
calculations allows to find a decomposition in the form

G∞(z) =

(
z(1−xjyi)(1−xjyj)−xj(yi−2yj−xjyiyj)
(1−2xjyi+xjyj)(1−xjyi)(1−xjyj)(z−1) − xj

(1−xjyi)(1−xjyj)(z−1)
yi−2yj+xjyiyj

(1−xjyi)(1−2xjyi+xjyj)
1

1−xjyi

)
.

3.2.2 The action on connections

The action of Hecke transformations on classes of holomorphic bundles can be extended to the space of pairs:
(bundle, connection) when certain conditions are satisfied. Let us describe in detail the induced action. A
connection is a sheave map satisfying Leibniz rule with respect to the action of the structure sheaf:

∆ : F → F ⊗ Ω1.

Hecke transformations can be defined on the space of connections preserving the space Annl = {v ∈ Fx :<
l, v >= 0}

∆x : Annl → Annl ⊗ Ω1
x.

In our case we consider the composition of pairs of Hecke transformations localized at zi, zj , preserving
the trivial rank 2 bundle.

As is mentioned above, the action can be defined by using the gluing functions language. Let us consider
the trivial bundle specified by the gluing function 1. Hecke transformation change the bundle structure,
the global section is defined by the pair S0, S∞, such that S0 = GS∞, where G = GijG∞. One can define
the action on connections as follows: let ∂z − A is a connection in the trivial bundle, determined by this
expression on both opens, the transformed object is the pair of connection forms:

∂z −A over U∞,

G(∂z −A)G−1 over U0.

After the basis change in U∞ of the type S̃∞ = G∞S∞ we obtain the connection of the form

∂z −A → G∞(∂z −A)G−1
∞ . (3.41)

The trivialization change in U0 of the kind S̃0 = G−1
ij S0 gives the following

G(∂z −A)G−1 → G−1
ij G(∂z −A)G−1Gij = G∞(∂z −A)G−1

∞ . (3.42)

Therefore, the transformed connection is of the same type as the initial one. The analytic properties at ∞
are preserved in virtue of the fact that G∞ is holomorphically invertible in U∞.

Using the results of the previous sections we calculate explicitly the Hecke action. To preserve the
normalization condition A(z) at ∞ it is necessary to consider transformations of the kind

G̃(z) = G−1
∞ (∞)G∞(z)

=
1

z − 1

(
z −

(
x1(y0−2y1+x1y0y1)
(1−x1y0)(1−x1y1)

x1(1−2x1y0+x1y1)
(1−x1y0)(1−x1y1)

y0−2y1+x1y0y1
(1−x1y0)(1−x1y1)

1−2x1y0+x1y1
(1−x1y0)(1−x1y1)

))
. (3.43)

Then one just needs to apply the gauge transformation G̃(z) to the connection

A 7→ G̃(z)AG̃−1(z) + ∂zG̃(z)G̃−1(z).

The complete family of Hecke transformations in the case of 3 points associated with the analysis of the
Painleve VI equation was described in [57].
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Remark 3.2. The choice of the highest weights 1 in moving poles wi is not obligatory, but in some ways,
the most general. One can consider a potential of the form

U =
m∑

j=1

−1/4(ηj + 2)ηj

(z − wj)2
+

k∑
i=1

1/4 + detAi

(z − zi)2
+

k−2∑
j=1

Hwj

z − wj
+

k∑
i=1

Hzi

z − zi
(3.44)

with the higher values of weights. It can be implemented if one requires that a12(z) have zeroes wj with
multiplicities ηj satisfying the condition

∑m
j=1 ηj = k − 2.

The local analysis at poles shows that the eigenvalues of residues Ai transform due to the 4 following
rules depending on the choice of the low and upper Hecke transformations subspaces:

(. . . , λi, . . . , λj , . . .) 7−→ (. . . , λi + 1, . . . , λj − 1, . . .),
(. . . , λi, . . . , λj , . . .) 7−→ (. . . , λi + 1, . . . , λj + 1, . . .),
(. . . , λi, . . . , λj , . . .) 7−→ (. . . , λi − 1, . . . , λj − 1, . . .),
(. . . , λi, . . . , λj , . . .) 7−→ (. . . , λi − 1, . . . , λj + 1, . . .).

The result obtained allows to treat recurrent relations on the space of solutions for the Bethe equation sys-
tem. The most interesting in the program of explicit solving of quantum systems is the set of transformations
lowering the highest weight values in both points. The consecutive application of these transformations could
reduce the highest weight to zero, which corresponds to the trivial representation of the quantum algebra
and hence the trivial quantum problem.

3.3 Elliptic case

The elliptic sl2 Gaudin model is provided by a similar technique of quantum model solution including the
quantum spectral curve, quantum separated variables and Hecke symmetries on the spectrum.

3.3.1 Separated variables

Let us recall the traditional method of separation of variables for this system [53], [59]. As in the rational
case we consider the sl2 Gaudin model with fixed representation V = V1 ⊗ . . .⊗ Vk of the quantum algebra
U(sl2)⊗k, where Vi is the finite dimensional irreducible representation of the highest weight Λi. Vi can be
realized as the quotient of the Verma module C[ti]/tΛi+1

i , such that the generators of sl2 act by differential
operators:

h(s) = −2ts
∂

∂ts
+ Λs, e(s) = −ts

∂2

∂t2s
+ Λs

∂

∂ts
, f (s) = ts.

Let us start with the study of quantum problem on the tensor product of Verma modules W = C[t1, . . . , tk].
We introduce the variables C, {yj} defined by:

k∑
s=1

θ(u− us − λ)
θ(u− us)θ(−λ)

ts = C
k∏

s=1

θ(u− ys)
θ(u− us)

.

Let us now represent the elliptic Gaudin model eigenvector as a function of introduced variables:

Sλ(u)Ω(C, y1, . . . , yk) = sλ(u)Ω(C, y1, . . . , yk). (3.45)

In this formula sλ(u) is a scalar functions on u of the form

sλ(u) =
∑

ci℘(u− ui) +
∑

di
θ′(u− ui)
θ(u− ui)

; ci = Λ2
i /4 + Λi/2. (3.46)

Introducing further u = yj by the left in formula (3.45) we obtain:

( ∂

∂yj
− 1

2

k∑
s=1

θ′(yj − us)
θ(yj − us)

Λs

)2

Ω(C, y1, . . . , yk) = sλ(yj)Ω(C, y1, . . . , yk).
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This equation induces a factorization of an eigenvector:

Ω(C, y1, . . . , yk) = Ca
∏
j

ω(yj),

moreover it may be argued that the expression w(u) =
∏k

s=1 θ(u − us)−Λs/2ω(u) associated with the com-
ponent of the eigenvector satisfies the equation:(

∂2
u − sλ(u)

)
w(u) = 0 (3.47)

Therefore, each equation 3.47 of the form 3.46, having solution sλ(u) with half-integer exponents at
{u1, . . . , uk} and meromorphic outsides these points corresponds to an eigenvector for the elliptic Gaudin
Hamiltonians in representation V, obtained projecting the vector Ω.

Hypothesis 3.3. There is a one-to-one mapping between this kind of differential operators and the eigen-
vectors of the model in the representation V.

Through the following sections we will consider only such eigenvectors for the Gaudin model that corre-
spond to elliptic Sturm-Liouville operators with the described analytic properties.

3.3.2 Bethe ansatz

The traditional Bethe ansatz method in the elliptic case [59] can be obtained considering the following
particular solution with simple zeroes

ψ(u) =
∏

i

θ−Λi/2(u− ui)
∏
j

θ(u− γj) (3.48)

for the elliptic Sturm-Liouville equation(
∂2

u −
∑

i

ci℘(u− ui)−
∑

i

di
θ′(u− ui)
θ(u− ui)

)
ψ(u) = 0. (3.49)

This condition is equivalent to the following system of equations:

ci = Λ2
i /4 + Λi/2,

di = Λi

∑
j

θ′(ui − γj)
θ(ui − γj)

−
∑
j 6=i

Λjθ
′(ui − uj)

2θ(ui − uj)

 ,

0 =
∑

i

Λi/2
θ′(γj − ui)
θ(γj − ui)

−
∑
i 6=j

θ′(γj − γi)
θ(γj − γi)

, (3.50)

the latter is called the elliptic Bethe system.

3.3.3 Matrix form of the Bethe equations

In this section we find a matrix Fuchsian system equivalent to the elliptic Sturm-Liouville equation (3.49),

(∂u −A(u))Ψ(u) = 0, (3.51)

where

Ψ(u) =
(
ψ1(u)
ψ2(u)

)
,

A(u) =
(
a11(u) a12(u)
a21(u) a22(u)

)
=

( ∑
ai
11

θ′(u−zi)
θ(u−zi)

∑
ai
12

θ(u−zi−λ)
θ(u−zi)θ(−λ)∑

ai
21

θ(u−zi+λ)
θ(u−zi)θ(λ)

∑
ai
11

θ′(u−zi)
θ(u−zi)

.

)
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The equivalence relation of the matrix and scalar systems is the following: the function w = ψ1/
√
a12 solves

the equation w′′ − Uw = 0, of the same form as 3.47, with the potential whose highest term is given by the
formula:

U(u) = −
∑

(1/4 + det(Ai))℘(u− zi) +
∑

3/4℘(u− wi) + ...

Here the points wj are defined by the condition

a12(u) = c

∏
θ(u− wi)∏
θ(u− zi)

.

In turn Ai are defined as residues of A(u) at zi.

Remark 3.3. Note that the sets of poles of the Sturm-Liouville operator and of the matrix problem do not
match, the first one is compiled from two subsets

{u1, . . . , u2l} = {z1, . . . , zl, w1, . . . , wl}.

It turns out that method of solution construction for the matrix problem from a solution for the Sturm-
Liouville equation is also explicit. Let us consider a scalar problem that corresponds to the set of marked
points {z1, . . . , zl, w1, . . . , wl}, the set of highest weights 2s1 − 1, . . . , 2sk − 1, 1, . . . , 1} and the set of Bethe
roots {γ1, . . . , γρ}. Then the 2-vector function Ψ with components:

ψ1 =
k∏

i=1

θ(u− ui)si

ρ∏
j=1

θ(u− γj)

ψ2 =
ρ∑

j=1

αjθ(u− γj + λ)
θ(u− γj)

ψ1, (3.52)

those coefficients αj are given by the formula

αj =
∏

i θ(γj − wi)∏
i θ(γj − ui)

,

satisfy the matrix equation 3.51.
An explicit calculation shows that the equation (3.51) for Ψ given by the expression (3.52) is equivalent

to the following system of equations:

det

(
ai
11 − si ai

12

ai
21 ai

22 − si

)
= 0,

−
∑

k

(2sk − 1)
θ′(γj − uk)
θ(γj − uk)

−
∑

k

θ′(γj − wk)
θ(γj − wk)

+ 2
∑
i 6=j

θ′(γj − γi)
θ(γj − γi)

= 0,∏
i θ(γj − wi)∏
i θ(γj − ui)

= αj .

The system of equations means that exponents are eigenvalues of the residues of the connection and the set
of γj satisfy the elliptic Bethe system (3.50) corresponding to the set of marked points

{u1, . . . , uk, w1, . . . , wk}

and the set of highest weights {2s1 − 1, . . . , 2sk − 1, 1, . . . , 1}.
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3.3.4 Hecke transformations

Let us describe in more details how the Hecke transformations are calculated over an elliptic curve. The
most suitable way of parameterization of holomorphic bundles for an elliptic curve Σ implies the lift of a
bundle to the universal covering C ([58] (2,6)). The monodromy group Z2 acts by homomorphisms on the
sheaf of sections π∗E corresponding to the bundle E. In case of the degree 0 line bundle the only way to
define the multiplier set up to equivalence is the set of quasiperiodic factors of the expression:

f(z) =
θ(z − λ)
θ(z)

for λ ∈ Σ. Let us denote the corresponding line bundle by Oλ. The Hecke transform at a point w supposes
considering the subsheaf of Oλ taking values 0 at w. This sheaf is isomorphic to the sheaf of sections of some
line bundle of degree 1

s(z) 7→ s(z)
θ(z − w)

.

This map is an isomorphism due to the property that θ(z) has a unique zero at z = 0. The Hecke transfor-
mations on connections on the rank 2 bundle Oλ/2⊕O−λ/2 construct connections on a bundle Oµ/2⊕O−µ/2

as follows. Let the residues of the connection have the decomposition:

Ai =

(
a
(i)
11 a

(i)
12

a
(i)
21 −a(i)

11

)
= Gi

(
di 0
0 −di

)
G−1

i

where Gi are constant matrices. Then the connection is transformed by the gauge transformation with the
group element

Gij(z) = G̃i

(
1 0
0 θ(z − zi)

)
G̃−1

i Gj

(
θ−1(z − zj) 0

0 1

)
G−1

j ,

where

G̃i = Gj

(
θ−1(zi − zj) 0

0 1

)
G−1

j Gi.

As well as in the rational case we consider a pair of Hecke transformations at various points ui, uj with
different signs Tij = T−1

(ui,li)
T(uj ,lj) acting on rank 2 bundles with trivial determinant. Depending on the

choice of subspaces of upper and lower transformations we get the following action of Tij on a variety of
highest weights of the Gaudin model

(. . . , λi, . . . , λj , . . .) 7−→ (. . . , λi + 1, . . . , λj − 1, . . .),
(. . . , λi, . . . , λj , . . .) 7−→ (. . . , λi + 1, . . . , λj + 1, . . .),
(. . . , λi, . . . , λj , . . .) 7−→ (. . . , λi − 1, . . . , λj − 1, . . .),
(. . . , λi, . . . , λj , . . .) 7−→ (. . . , λi − 1, . . . , λj + 1, . . .).

As in the rational case it is of particular interest the family of transformations that lower the weights of all
representations hence simplifying the diagonalization problem.

4 Applications

This section is devoted to two main applications of the quantum spectral curve method. The first application
is related with the geometric Langlands correspondence and mainly consists in an effective description of the
center Ucrit(ĝln) which in turn plays a key role in the Beilinson-Drinfeld quantization of the Hitchin system.
Let us note that this problem is closely related to the representation theory of affine Lie algebras.
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4.1 Geometric Langlands correspondence

4.1.1 The center of U(ĝln) on the critical level

We introduce the following notation Ucrit(ĝln) for the local completion U(ĝln)/{C−crit}, where C is a central
element and crit = −h∨ = −n is the critical level inverse to the dual Coxeter number of the Lie algebra sln.

It was proved in [61] that Ucrit(ĝln) has a center isomorphic to the polynomial ring of the Cartan algebra as a
linear space. Despite the geometric description of the center there was absent an explicit construction for the
generators of this commutative algebra. For this purpose we use the Adler-Costant-Symes scheme [60]. This
approach has an important place in the theory of integrable systems: can be exploited to construct a wide
family of commutative algebras, allows to make relation of integrable systems with decomposition problems
and provide an algebraic interpretation for the Lax representation, r-matrix structures. The AKS scheme
can be generalized to the quantum level and takes important role in description, solution and classification
of quantum integrable models. The most simple case is that of finite dimensional Lie algebra allowing a
decomposition g = g+ ⊕ g− into the sum of two Lie subalgebras. To each choice of normal ordering one can
attach an isomorphism of linear spaces

φ : U(g)→ U(g+)⊗ U(g−).

Let us introduce a notation gop
− for the inverse Lie algebra structure to the space g− defining by the formula

−{◦, ◦}. Let us denote the Lie algebra g+ ⊕ gop
− by the symbol gr. The corresponding enveloping algebras

can be identified as linear spaces with the help of the Poincare-Birkhoff-Witt basis:

U(gop
− ) ' U(g−).

Lemma 4.1. The center of z(U(g)) is mapped to a commutative subalgebra in U(g+)⊗ U(gop
− ) by φ.

Proof Let is denote the commutator in U(g+)⊗U(gop
− ) as follows [∗, ∗]R. Let c1, c2 be two central elements

in U(g) represented as follows

ci =
∑

j

x
(i)
j y

(i)
j x

(i)
j ∈ U(g+), y(i)

j ∈ U(g−).

The result of calculating the modified commutator is as follows

[φ(c1), φ(c2)]R = [
∑

j

x
(1)
j y

(1)
j ,
∑

k

x
(2)
k y

(2)
k ]R

=
∑
j,k

[x(1)
j , x

(2)
k ]Ry

(1)
j y

(2)
k + x

(1)
j x

(2)
k [y(1)

j , y
(2)
k ]R.

In virtue of the definition above we have

[x(1)
j , x

(2)
k ]R = [x(1)

j , x
(2)
k ] [y(1)

j , y
(2)
k ]R = −[y(1)

j , y
(2)
k ]

[φ(c1), φ(c2)]R =
∑

k

[c1, x
(2)
k ]y(2)

k −
∑

j

x
(1)
j [y(1)

j , c2]

The last expression is zero due to the centrality of elements c1, c2 �

Remark 4.1. In what follows we will be interested in applying this scheme for Ucrit(ĝln). To use the result
of the AKS lemma in the infinite dimensional case one should choose an appropriate completion of an algebra.
In our case we use the completion corresponding to the bigrading deg(gtk) = (k, 0), deg(gt−k) = (0, k) for
k ≥ 0. One needs to prove that the considering central elements belong to this completion U ·crit(ĝln). This
is a matter of fact due to the classical limit argument. In what follows we omit the completion in notation
Ucrit(ĝln), U(gr) and the tensor products for the sake of the simplicity.
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One considers also the linear space map

ς : U(g)→ U(g+)⊕ U(g)g−

defining by the direct sum decomposition for the Lie algebra. Let us denote by ϕ the projector to the first
subspace U(g+).

Lemma 4.2. The image of z(U(g)) with respect to ϕ is a commutative subalgebra of U(g+).
Proof Let c1, c2 ∈ Z.

[c1 − ϕ(c1), c2 − ϕ(c2)] = [ϕ(c1), ϕ(c2)]

The r.h.s. belongs to U(g+); the l.h.s in an element of U(g)g−; this takes issue in vanishing of both sides �
We will identify Ucrit(ĝln) with the loop algebra as linear spaces. Let us list several important facts

about the loop algebra.

Proposition 4.3. Let us consider g = gln[t, t−1] = gln[t−1] ⊕ tgln[t] those generators e(k)
ij = eijt

k can be
represented by the generating series

Lfull(z) =
∑

s=−∞,∞
Φsz

−s−1 (4.1)

where
Φs =

∑
ij

Eij ⊗ e(s)ij .

Here as above eij are generators of the Lie algebra gln, and Eij are matrix unities in Matn. The Lie algebra
structure on gr can be described as the following commutation relations

{Lfull(z)⊗ Lfull(u)} = [
P

z − u
, Lfull(z)⊗ 1 + 1⊗ Lfull(u)]. (4.2)

Let us remark that these relations are the same as for the Gaudin Lax operator (2.42).

The center of (Ucrit(ĝln)) and a commutative subalgebra in U(tgln[t]) Let us also introduce the
”‘positive”’ Lax operator:

L(z) =
∑
k>0

Φkz
−k−1,

which satisfies the following R-matrix relations:

{L(z)⊗ L(u)} = [
P

z − u
, L(z)⊗ 1 + 1⊗ L(u)]. (4.3)

Theorem 4.4. The commutative subalgebra in U(tgln[t]) defined by the set of coefficients of the quan-
tum characteristic polynomial det(L(z) − ∂z) coincide with the image of z(Ucrit(ĝln)) by the projection
ϕ : Ucrit(ĝln)→ U(tgln[t]).
Proof The proof is based on the results of [62] where it was proved that the centralizer of the set of
quadratic Gaudin Hamiltonians Hi

2 in U(tgln[t]) coincide with the projection of U(ĝln) on the critical level.

Remark 4.2. This particular property, namely the fact that the quadratic generators determine the complete
commutative subalgebra is known also in the theory of Fomenko-Mishenko subalgebras [63] and in the theory
of the Calogero-Moser system [64].

Following the proposed logic and using the fact that the subalgebra defined by the coefficients of det(L(z)−
∂z) commute with Hi

2, one can show that this subalgebra is a subalgebra of the algebra obtained from the
center. In order to prove their coincidence it is sufficient ot consider the classical limit �

Remark 4.3. The analogous strategy is applicable in the case of projection to U(gln[t]). One needs to take
into account that both algebras are invariant with respect with the GL(n) action.
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4.1.2 Explicit description of the center of Ucrit(ĝln))

Theorem 4.5. The center of Ucrit(ĝln) is isomorphic to a subalgebra in U(gln[t−1]⊕ tglop
n [t]) defined by the

coefficients of th quantum characteristic polynomial det(Lfull(z) − ∂z). The isomorphism is induced by the
mapping

I : U(gln[t−1])⊗ U(tglop
n [t])→ Ucrit(ĝln), I : h1 ⊗ h2 → h1h2 (4.4)

Proof follows the same lines as those of [62]. Let us firstly show that the algebra generated by the coefficients
of the characteristic polynomial of the Lax operator Lfull(z) coincide with the centralizer of its quadratic
elements. Further using the Sugawara formula for the quadratic center generators we prove that their image
in U(gln[t−1]) ⊗ U(tgln[t]) coincide with the quadratic elements of the quantum characteristic polynomial.
For proving the first statement we consider a special limit of the commutative family.

Using the commutation relations 4.2, 4.3 and the traditional r-matrix calculations we show that
TrLm

full(z) are central in the symmetric algebra S(gln[t, t−1]) and moreover TrLm
full(z) generate the com-

mutative Poisson subalgebra in S(gln[t−1]⊕ tglop
n [t]).

Let us consider the family of automorphisms of the algebra U(gln[t−1])⊗ U(tglop
n [t]) defined in terms of

the Lax operator as follows: let K is a generic diagonal n× n matrix. The Lax operator

L~
full(z) = Lfull(z) + ~K

also satisfies the r-matrix reletions (4.2). This automorphism family is parameterized by the parameter ~.
Let us consider the family of commutative subalgebras

M~ ⊂ U(gln[t−1])⊗ U(tglop
n [t])

defined by the generating function det(L~
full(z) − ∂z). M~ centralizes the set of quadratic generators

QI2(L~
full(z)). QIk(z, ~) has the following leading term in expansion on ~

QIk(z, ~) = ~kTrAnK1K2 . . .Kk +O(~k−1).

Changing the basis

QIk(z, ~) 7→ Q̃Ik(z, ~) = (QIk(z, ~)− ~kTrAnK1K2 . . .Kk)~−k+1

and considering the limit ~→∞

Q̃Ik(z, ~)→ Tr(Lfull(z)Kk−1)

we obtain that these expressions generate the Cartan subalgebra

H = H− ⊗ H+ = U(h[t−1])⊗ U(th[t]).

Let us demonstrate that this subalgebra coincide with the centralizer of its quadratic generators

H∞
2 (z) = lim~→∞Q̃I2(z, ~) =

∑
i=−∞,∞

Tr(ΦiK)z−i−1.

Obviously H ⊂ Z(H∞
2 (z)). Let us introduce the notations (k1, . . . , kn) for the diagonal elements of K. Let

us also denote by hi ∈ H the sum of the form

hi =
n∑

s=1

(Φi)ssks,

then H∞
2 (z) =

∑
i=−∞,∞ hiz

−i−1. The centralizer elements should commute with h1 and h−1. Let∑∞
i=−∞ xiyi be the infinite series such that xi ∈ U(g[t−1]), yi ∈ U(tg[t]). We also suppose that this se-

ries is an element of the considered completion, i.e. such that it contains only finite number of elements of
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each bigrading. The operators [h1, ∗] and [h−1, ∗] are homogeneous of bigrading (0, 1) and (1, 0). Hence the
centralizer description question is reduced to the analogous question in the polynomial algebra. The answer
is given by the formulas

Z(h1) = U(gln[t−1])⊗ H+, Z(h−1) = H− ⊗ U(tglop
n [t]).

An intersection of these subspaces in a completed sense coincides with the Cartan subalgebra H.
Summarizing we obtain that in the generic point ~ of the family the commutative subalgebra M~ belongs

to the centralizer of the set QI2 and in the limit ~ → ∞ generates the centralizer. From the arguments
analogous to those of [62] at the generic point M~ should coincide with the centralizer of the quadratic
generators. To finish the proof let us remind the Sugawara formula Ucrit(ĝln)

c2(z) =: Tr(L2
full(z)) :

This uses the normal ordering symbol : : for currents in sl2. These elements project to QI2(z) up to a central
elements in U(gln[t−1])⊗ U(tgln[t]) �

4.1.3 The Beilinson-Drinfeld scheme

In [65] it was proposed a universal construction for the Hitchin system quantization. Let Σ be the connected
smooth projective curve over C of genus g > 1, G - a semisimple Lie group, g - the corresponding Lie algebra,
BunG - the moduli stack of principal G-bundles on Σ. Let us also define the Langlands dual group LG as a
group determined by the dual root data, namely such that its root lattice coincides with the dual lattice for
G.
The main result of [65] can be reduced to the following:

• There exists a commutative ring of differential operators on z(Σ, G), acting on sections of the canonical
bundle KBunG

such that the symbol map produces the commutative subalgebra of classical Hitchin
Hamiltonians on T ∗BunG.

• The spectrum of the ring z(Σ, G) is canonically isomorphic to the moduli space of Lg-opers (for the
G = SL2 case an Lg-oper is just the Sturm-Liouville operator on S; in general case this is a flat
connection in a principal LG bundle with a parabolic structure).

• To each Lg-per one can correspond a D-module on BunG by fixing eigenvalues of the Hitchin Hamil-
tonians. This D-module is an eigensheaf for the Hecke action defined naturally on the moduli stack of
bundles. Moreover the eigenvalue in this case coincide with the corresponding Lg-oper.

The basement of this construction is the natural action of the center of Ucrit(ĝ) on the loop group of the
corresponding Lie group. This action can induce an action by differential operators on BunG(Σ) in virtue
of one of the realizations of the moduli stack of principal bundles

BunG(Σ) ' G(F )\G(AF )/G(OF ) ' Gin\G[[z, z−1]/Gout

hereGin andGout denote the subgroups of function converging in Uin and Uout, where Uin and Uout determine
a covering of Σ of the type: Uin is an open disk centered in P with the local parameter z, Uout = Σ\P.
The middle part of the equality represents the so-called adelic realization of the moduli stack of principal
G-bundles for an algebraic group G. The construction uses the adel group G(AF ) for the field F of rational
functions on Σ, the group of entire adels G(OF ) and the group of principal adels G(F ). This realization is
convenient for describing the geometric complex analogy of the arithmetic Langlands correspondence and
the quantum Gaudin model.

4.1.4 Correspondence

Historically the Langlands hypothesis generalize the field-class theory [66, 67], one of those principal results
is the following statement in the case of a number field. Namely let F be a number field (this means a finite
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extension of Q), F̄ - its maximal algebraic extension, F ab - its maximal abelian extension. The Galois group
of an extension F ⊂ F ′ is

Gal(F ′, F ) = {σ ∈ Aut(F ′) : σ(x) = x ∀x ∈ F}.

The abelian reciprocity law
There exists a group isomorphism

Gal(F ab, F ) ' The group of connectivity components of F×\A×F

where A×F is the idel group of the ring F, F× is the group of invertible elements of F. The topology of of the
completion product is considered.

The Langlands hypothesis is formulated as an n-dimensional (non-commutative) generalization of the
abelian reciprocity law. Namely it is assumed the isomorphism between the cathegory of the Galois group
representations of the maximal algebraic extension of a ring and the category of automorphic representations
for the corresponding idel group. By an automorphic representation we mean a GLn(AF ) - representation
realized on the space of functions on

GLn(F )\GLn(AF ),

meet some additional conditions [68, 69]. The right part is traditionally called automorphic for the following
reason. For n = 2 these representations are related with the theory of modular functions. It should be
reminded that modular functions are functions on the upper-half Siegel plain matching the condition

f((az + b)/(cz + d)) = χ(a)(cz + d)kf(z)
(
a b
c d

)
∈ SL2(Z).

In particular, the modular functions can be represented as functions on the following quotient space

SL2(R)/SL2(Z) ' K\GL2(AQ)/GL2(Q)

The Langlands program covers the following types of fields F :

• A number field.

• Field of functions on an algebraic curve over the finite field Fq (In this case, the hypothesis was proven
in [70]).

• Field of functions on an algebraic curve over C. This is called the geometrical case over C. The following
papers are on the subject [71].

The correspondence over C:
In this case on the Galois side one considers classed of representations of the fundamental group or classes of
flat connections in a holomorphic bundle of rank n. The automorphic side deals with the Hitchin D-module
on

GL(F )\GL(AF )/GL(OF ) ' Bunn(Σ).

The results of [65] and [61] ensures the correspondence between Hitchin D-modules and flat connections
related to Lg-opers. Due to the construction of the quantum characteristic polynomial for the loop algebra,
as well as an explicit construction for the center of Ucrit(ĝln) in theorem 4.5 the correspondence for the Lie
algebra gln can be realized in a more effective way. The scheme demonstrate the correspondence

Hitchin D-module
FF, BD⇔ Character χ on z(Ucrit(ĝln)) CT⇔ χdet(Lfull − ∂z).

Remark 4.4. The construction of a character on z(Ucrit(ĝln)) by a Hitchin D-module is a corollary of
the Feigin and Frenkel theorem on existence of the center and the Beilinson and Drinfeld quantization. To
obtain the explicit description for the corresponding flat connection [26] one should exploit the identification
of commutative algebras: the commutative subalgebra in U(gln[t−1]) ⊗ U(tgln[t]) defined by the coefficients
of the quantum characteristic polynomial on one side and the image of the center of z(Ucrit(ĝ)) by the AKS
map on another side.
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4.2 Non-commutative geometry

The main plot of these lectures is relevant to the emerging field of Noncommutative Geometry, substantive
issues of which consist in geometric interpretation of algebraic structures in which the commutativity property
is weakened. In this context the quantum characteristic polynomial is a natural generalization of classical
one. Some properties of this object, in particular the role played by quantum characteristic polynomial in the
program of effective solution of the quantum integrable models, suggest it to be a natural noncommutative
generalization of an algebraic curve the spectral curve of an integrable system. This section describes some
linear algebraic properties of the quantum characteristic polynomial obtained in [27].

4.2.1 The Drinfeld-Sokolov form of the quantum Lax operator

Let L(z) ∈Matn⊗U(gln)⊗N ⊗Fun(z) be the quantum Lax operator for the Gaudin model (1.14), here and
further Fun(z) means the space of rational functions on a parameter z. Let us denote by L[i](z) quantum
powers of the Lax operator defined by the formula:

L[0] = Id,

L[i] = L[i−1]L+ ∂zL
[i−1].

Theorem 4.6. The expression C(z) ∈Matn ⊗ U(gln)⊗N ⊗ Fun(z) defined by the formula

C(z) =


v
vL
. . .

vL[n−1]

 , (4.5)

where v ∈ Cn is a generic vector defines a gauge transformation

C(z)(L(z)− ∂z) =




0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 ... 0 1

QHn QHn−1 ... QH2 QH1

− ∂z

C(z), (4.6)

where the r.h.s. lower line coefficients are determined by the coefficients of the quantum characteristic
polynomial

det(L(z)− ∂z) = TrAn(L1(z)− ∂z) . . . (Ln(z)− ∂z)

= (−1)n(∂n
z −

∑
i

QHn−i∂
i
z). (4.7)

Knizhnik-Zamolodchikov equation Here and further we denote by V a finite-dimensional represen-
tation of U(gln)⊗N . It was shown in [72] that there exists a relation between solutions of the Knizhnik-
Zamolodchikov (KZ) equation [73]

(L(z)− ∂z)S(z) = 0,

where S(z) is a function with values in Cn ⊗ V, solutions of the Baxter equation

det(L(z)− ∂z)Ψ(z) = 0 (4.8)

where Ψ(z) is a function with values in V. To make this relation clear it is sufficient to take the antisymmetric
projection of U(z) = v1⊗ . . .⊗vn−1⊗S(z) where vi are some vectors in Cn. For special choice of such vectors
one obtains that vector components of S(z) solves the equation (4.8).
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Proof of theorem 4.6 Let us consider both sides of (4.6)applied to a function S(z) ∈ Cn ⊗ V ⊗ Fun(z),

L.H.S = C(L− ∂z)S =


< v,LS − ∂zS >

< v,L[1](LS − ∂zS >
. . .

< v, L[n−1](LS − ∂zS) >

 , (4.9)

R.H.S = (LDS − ∂z)CS =


< v,LS − ∂zS >

. . .
< v, L[n−1]S − ∂z(L[n−2]S) >

< v,
∑n−1

i=0 QHn−iL
[i]S − ∂z(L[n−1]S) >

 . (4.10)

Using the definition for quantum powers we obtain

L[k]S − ∂z(L[k−1]S) = L[k−1](LS − ∂zS).

The difference (4.10) - (4.9) takes the form
0
. . .
0

< v,
∑n−1

i=0 QHn−iL
[i]S − L[n]S >

 . (4.11)

Let us now consider this expression if S(z) is a solution for the KZ equation

L(z)S(z) = ∂zS(z).

Let Φ(z) = C(z)S(z), where C(z) is given by the formula (4.5). Then

Φ1(z) = < v, S(z) >
Φ2(z) = < vL(z), S(z) >=< v, ∂zS(z) >
. . .

Φk(z) = < v(L[k−1]L(z) + ∂zL
[k−1]), S(z) >

= < vL[k−1], ∂zS(z) > + < v∂zL
[k−1], S(z) >= ∂zΦk−1(z)

One of the consequences of [72] is that Φ1(z) =< v, S(z) > solves the Baxter equation

n−1∑
i=0

QHn−i∂
i
zΦ1(z)− ∂n

z Φ1(z) = 0 (4.12)

for each solution S(z) of the KZ equation and each vector v ∈ Cn. The general position argument allows to
claim that the n-th element of (4.11) vanishes identically on S(z) ∈ Cn ⊗ V ⊗ Fun(z). Theorem 2.5.7 [74]
induces the equality of universal differential operators with values in the quantum algebra. �

4.2.2 Caley-Hamilton identity

Corollary 4.6.1. The quantum powers of the Lax operator satisfy the quantum version of the Caley-Hamilton
identity

L[n](z) =
n∑

i=1

QHi(z)L[n−i](z). (4.13)

Proof Let us consider the last line of the equation (4.6)

vL[n−1](z)(L(z)− ∂z) =
n∑

i=1

vQHi(z)L[n−i](z)− ∂zvL
[n−1](z).

The result follows from the general choice of the vector v ∈ Cn. �
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