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Abstract

There are different methods of discretizing integrable systems. We consider semi-discrete
analog of two-dimensional Toda lattices associated to the Cartan matrices of simple Lie algebras
that was proposed by Habibullin in 2011. This discretization is based on the notion of Darboux
integrability. Generalized Toda lattices are known to be Darboux integrable in the continuous
case (that is, they admit complete families of characteristic integrals in both directions). We
prove that semi-discrete analogs of Toda lattices associated to the Cartan matrices of all simple
Lie algebras are Darboux integrable. By examining the properties of Habibullin’s discretization
we show that if a function is a characteristic integral for a generalized Toda lattice in the
continuous case, then the same function is a characteristic integral in the semi-discrete case
as well. We consider characteristic algebras of such integral-preserving discretizations of Toda
lattices to prove the existence of complete families of characteristic integrals in the second
direction.

1 Introduction

Two-dimensional Toda lattice

qi,xy = exp(qi − qi+1)− exp(qi−1 − qi) (1)

plays an important role both in classical differential geometry and in mathematical physics. It is
known to be Darboux integrable (i.e. it admits complete family of essentially independent charac-
teristic integrals), if the trivial boundary conditions q−1 = −∞ and qr+1 = +∞ are imposed for
some natural r. Toda lattice can be rewritten in the form

u1xy = exp(2u1 − u2)
uixy = exp(−ui−1 + 2ui − ui+1), i = 2, . . . , r − 1
urxy = exp(−ur−1 + 2ur)

, (2)

where qi = ui+1 − ui. This system is a particular case of the so-called exponential systems

uixy = exp

(
r∑
j=1

aiju
j

)
, i = 1, 2, . . . , r, (3)

that were introduced in [1] (here aij are constant coefficients). Such integrable generalizations of
the Toda system corresponding to the Cartan matrices M = (aij) of all simple Lie algebras were
studied in a number of papers in the beginning of 1980-ies [1]-[4]. Almost at the same time, discrete
versions of some of these systems started to appear in literature within the frame of discretizing the
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theory of integrable systems [5, 6]. Due to the fact that generalized Toda systems are related to
many relevant mathematical theories, the number of papers on the subject is enormous: continuous
Toda systems and their discretizations are addressed from different perspectives and studied using
various methods. Not even attempting to make a review, we will mention the papers [7]-[17] that
are important for our approach to the problem of discretizeing Toda lattices.

Purely discrete versions of the generalized Toda lattice, associated with the A-series Cartan
matrices, were studied in [7, 8, 9]. Purely discrete and semi-discrete versions of the C-series Toda
lattice were examined in [11, 15]. Discretizations of generalized Toda lattices introduced in these
papers are based mostly on the notion of the Laplace invariants of hyperbolic difference or differential-
difference operators and on their specific properties, and therefore this approach is not applicable in
the general case of an exponential system associated to arbitrary Cartan matrix.

There are several general approaches that lead to (semi)-discrete versions of exponential sys-
tems (3) corresponding to Cartan matrices. Hamiltonian approach was used in [10] to obtain semi-
discrete analogs of exponential systems associated to Cartan matrices of all simple Lie algebras.
Another approach to the problem of discretization of exponential systems was proposed in [13, 14].
The idea is to look for a semi-discrete system for the functions uin, depending on continuous variable
x and discrete variable n, such that its characteristic n-integrals are given by the same formulas
as y-integrals of the continuous model. We will call this method integral preserving discretization.
This approach had appeared to be fruitful earlier in the study of Darboux integrable semi-discrete
scalar equations [18], before it was applied to the Toda lattices. The analysis of the case r = 2
from the viewpoint of integral preserving method allowed the authors [13] to propose the following
discretization for exponential system (3) with the coefficient matrix M = (aij):

uin+1,x − uin,x = exp

(
i−1∑
j=1

aiju
j
n +

aii
2

(uin + uin+1) +
r∑

j=i+1

aiju
j
n+1

)
. (4)

Similar approach [14] allows to define the analogs of exponential systems in the purely discrete case:

exp(uin+1,m+1 + uin,m − uin+1,m − uin,m+1) =

= 1 + exp

(
i−1∑
j=1

aiju
j
n,m+1 +

aii
2

(ujn,m+1 + ujn+1,m) +
r∑

j=i+1

aiju
j
n+1,m

)
. (5)

In both cases, Darboux integrability was proved only for discretized systems associated with all
Cartan matrices of the rank 2 [13, 14]. In the general case, Darboux integrability for (semi)-discrete
versions of the Toda lattice is proven only for the A- and C-series lattice by constructing a generating
function for characteristic integrals [19], but this method is not applicable for the B-, D-series lattices
and for the systems corresponding to exceptional Cartan matrices E6–E8 and F4.

Although discterizations of A-series Toda lattice given in [10] and in [13] are the same, the meth-
ods used there produce different semi-discrete systems for other series of Cartan matrices (continuum
limits in both cases are the same). Another version of semi-discrete Toda system of the series B
is obtained in [16] by considering a modification of skew-orthogonal polynomials that arise in the
random matrix theory. In [17] direct linearization method was used to study semi-discrete analogs
of Toda systems corresponding to some series of affine Cartan matrices. In the purely discrete case
there also exist different versions of Toda systems corresponding to Cartan matrices, see [14, 12].

Various properties of integrable models are usually taken as a basis for finding discretizations.
Discretization of Toda systems proposed in [13] is based on the notion of Darboux integrability and
hence it is important to show that systems introduced in [13] are Darboux integrable indeed. In this
paper we focus on semi-discrete exponential systems (4) and prove that such systems corresponding
to the Cartan matrices of all simple Lie algebras are Darboux integrable. Therefore we justify the
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integral preserving discretization method for generalized Toda lattices. More precisely, we prove
that if exponential system (3) admits y-integral

I = I(u1x, . . . , u
r
x, u

1
xx, . . . , u

r
xx, u

1
xxx, . . . , u

r
xxx, . . . ),

then the same function

In = I(u1n,x, . . . , u
r
n,x, u

1
n,xx, . . . , u

r
n,xx, u

1
n,xxx, . . . , u

r
n,xxx, . . . ),

whose arguments are replaced by the dynamical variables for the semi-discrete case, is an n-integral
for discretization (4) of this system. Besides this, using characteristic algebras, we prove that semi-
discrete versions (4) of B-, D-series Toda lattices and the systems associated to exceptional Cartan
matrices E6–E8 and F4 admit complete families of essentially independent characteristic x-integrals
(Darboux integrability of A- and C-series lattices have been proved earlier). Altogether, this proves
Darboux integrability of all semi-discrete Toda lattices (4) corresponding to the Cartan matrices of
simple Lie algebras, which was conjectured in [13].

The paper is structured as follows: in Section 2 we review the notions of Darboux integrability,
characteristic algebra and the relation between them. In Section 3 we describe Habibullin’s method
and prove the existence of a complete family of characteristic n-integrals for semi-discrete lattices (4)
corresponding to the Cartan matrices of all simple Lie algebras and hence we justify Habibullin’s
integral preserving discretization method by showing that if a function is a y-integral of discrete
exponential system, then the same function defines an n-integral for its semi-discrete analog. Basic
properties of characteristic algebras for exponential systems associated to the Cartan matrices of
simple Lie algebras are discussed in Section 4. In Section 5 we prove the existence of a complete
family of independent x-integrals for semi-discrete exponential systems corresponding to the Cartan
matrices of all simple Lie algebras.

2 Darboux integrability and characteristic algebras

In the theory of integrable systems there are several different approaches to integrability depend-
ing in the class in the systems that are being considered: Liouville integrability, existence of a Lax
pair, existence of higher symmetries. Darboux integrability is a kind of “very strong” integrability
that is defined for hyperbolic systems and that is closely related to explicit integrability. We start
this Section with a series of definitions and notation [1, 20] that will be used in this paper.

Function
I = I(u1, . . . , ur, u1x, . . . , u

r
x, u

1
xx, . . . , u

r
xx, u

1
xxx, . . . , u

r
xxx, . . . )

is called a y-integral of hyperbolic system

uixy = F i(x, y, u1, . . . , ur, u1x, . . . , u
r
x, u

1
y, . . . , u

r
y), i = 1, . . . , r, (6)

if its total derivative with respect to y by virtue of the system vanishes:

0 = Dy(I) =
r∑
i=1

(
uiy
∂I

∂ui
+ F i ∂I

∂uix
+Dx(F

i)
∂I

∂uixx
+D2

x(F
i)

∂I

∂uixxx
+ . . .

)
,

where Dx is the total derivative with respect to x. The highest order of x-derivative of the functions
u1, . . . ur, on which y-integral I depends, is called the order of I; y-integral is called non-trivial if it
depends not only on the independent variable x. Here and further we will consider only non-trivial
integrals; x-integrals of hyperbolic system (6) are defined similarly. Both x- and y-integrals are
called characteristic integrals. Denote

ui1 = uix, ui2 = uixx, ui3 = uixxx, . . . , i = 1, . . . , r.
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Characteristic y-integrals I1, . . . , Ik of orders d1, . . . dk are called essentially independent if the rank
of the matrix 

∂I1
∂u1d1

∂I1
∂u2d1

. . . ∂I1
∂urd1

∂I2
∂u1d2

∂I2
∂u2d2

. . . ∂I2
∂urd2

...
. . .

∂Ik
∂u1dk

∂Ik
∂u2dk

. . . ∂Ik
∂urdk


is equal to k.

Definition 1. Hyperbolic system (6) is called Darboux integrable if it admits complete families of
essentially independent x- and y-integrals.

Example 1. Liouville equation
uxy = expu (7)

is Darboux integrable since it admits characteristic integrals in both directions: functions

I = uxx −
1

2
u2x and J = uyy −

1

2
u2y (8)

are y- and x-integrals respectively.

Exponential systems associated with the Cartan matrices of simple Lie algebras (i.e. exponential
systems (3) such that the coefficient matrix is the Cartan matrix of one of simple Lie algebras)
are known to be Darboux integrable [2]. These systems are also known in literature as generalized
Toda lattices corresponding to the Cartan matrices of simple Lie algebras. Explicit formulas for
characteristic integrals in terms of wronskians were found in [21] for Toda lattices of series A–D.
Another approach that allows to obtain generating function for characteristic integrals was developed
in [22] for the A-series Toda lattices and in [19] for lattices of the series A–C.

Characteristic integrals are two-dimensional analogs of first integrals for ODEs, but there is an
essential difference between these two cases: hyperbolic equations having characteristic integrals are
exceptional. If function I is a y-integral of (6), then its x-derivatives Dx(I), D2

x(I), . . . are obviously
also y-integrals, but these integrals are not essentially independent. The existence of a complete
family of characteristic integrals is controlled by an algebraic tool — Lie algebra of differential
operators that is called the characteristic algebra of hyperbolic system [23, 1, 4]. Characteristic
algebra can be defined for arbitrary hyperbolic system of form (6), but in this general case it should
be considered as a Lie-Rinehart algebra (see discussion in [24]). In the special case of exponential
systems (3) the situation is more simple and the characteristic algebra can be referred to as a Lie
algebra generated by differential operators of a certain kind.

Definition 2. Lie algebra generated by operators

∂

∂u1
, . . . ,

∂

∂ur
, Dy =

r∑
i=1

(
ew

i ∂

∂ui1
+Dx

(
ew

i
) ∂

∂ui2
+D2

x

(
ew

i
) ∂

∂ui3
+ . . .

)
,

where wi = ai1u
1 + · · ·+ airu

r, is called the characteristic algebra of exponential system (3).

One can easily show that y-integrals of exponential systems (3) cannot depend on u1, . . . ur: they
depend only on their x-derivatives. Therefore any y-integral annihilates the whole characteristic
algebra.

4



Remark 1. In the general case of hyperbolic systems (6), one has to define characteristic algebra
in the direction of the variable x and characteristic algebra in the direction y. For exponential sys-
tems (3), these Lie algebras are isomorphic since variables x and y enter the equations symmetrically.

Proposition 1. Let the matrix M = (aij) of exponential system (3) be non-degenerate. Then its
characteristic algebra is generated by operators

∂

∂ui
, X̃i = ew

i

(
∂

∂ui1
+ bi1

∂

∂ui2
+ bi2

∂

∂ui3
+ . . .

)
, i = 1, . . . , r,

where bik = bik(w
i
1, w

i
2, . . . w

i
k) = e−w

i
Dk
x(e

wi
) is the k-th complete Bell polynomial of the variables

wi1, w
i
2, . . . w

i
k and wik = Dk

x(w
i).

Proof. Simple calculation shows that for all i = 1, . . . , r[
∂

∂ui
, Dy

]
= ai1X̃1 + ai2X̃2 + · · ·+ airX̃r.

Hence, all operators of the form ai1X̃1 + ai2X̃2 + · · · + airX̃r belong to the characteristic algebra,
and it follows from non-degeneracy of the matrix M that operators X̃i are linear combinations of
these operators. Therefore, they belong to characteristic algebra, and since Dy = X̃1 + · · · + X̃r,
they generate the characteristic algebra together with ∂

∂ui
, where i = 1, . . . , r. �

Theorem 1. [1] Exponential system (3) is Darboux integrable if and only if its characteristic algebra
is finite-dimensional.

Example 2. Characteristic algebra of the Liouville equation (7) is two-dimensional:
[
∂
∂u
, Dy

]
= Dy.

Remark 2. Since [
∂

∂uj
, X̃i

]
= aijX̃i

for all i, j = 1, . . . , r and characteristic y-integrals of an exponential system (3) cannot depend on
u1, . . . , ur, it is sufficient for the study of Darboux integrability to consider reduced characteristic
algebra generated by X̃1, . . . , X̃r: obviously, exponential system (3) is Darboux integrable if and only
if its reduced characteristic algebra is finite-dimensional. Note that this Lie algebra is isomorphic to
Lie algebra generated by vector fields X1, . . . Xr where Xi = e−w

i
X̃i for all i = 1, . . . r.

The notion of Darboux integrability can be extended to the case of (semi)-discrete hyperbolic
systems. Function

In = I(u1n, . . . , u
r
n, u

1
n,x, . . . , u

r
n,x, u

1
n,xx, . . . , u

r
n,xx, u

1
n,xxx, . . . , u

r
n,xxx, . . . )

is called an n-integral of semi-discrete hyperbolic system

uin+1,x − uin,x = F i(x, n, u1n, . . . , u
r
n, u

1
n,x, . . . , u

r
n,x, u

1
n+1, . . . , u

r
n+1), i = 1, . . . , r, (9)

if its total difference derivative by virtue of the system vanishes: In+1− In = 0. One can verify that
in the semi-discrete case n-integrals cannot depend on shifted variables uin+1 and x-integrals cannot
depend on the derivatives uin,x, where i = 1, . . . , r. The order d of an x-integral is defined as the
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highest shift un+d on which it depends. Family of x-integrals J1, . . . Jk of orders d1, . . . dk are called
essentially independent if the rank of the matrix

∂J1
∂u1n+d1

∂J1
∂u2n+d1

. . . ∂J1
∂urn+d1

∂J2
∂u1n+d2

∂J2
∂u2n+d2

. . . ∂J2
∂urn+d2

...
. . .

∂Jk
∂u1n+dk

∂Jk
∂u2n+dk

. . . ∂Jk
∂urn+dk


is equal to k. Similarly to the continuous case, hyperbolic system (9) is called Darboux integrable if
it admits complete families of essentially independent n- and x- integrals. In the entirely discrete
case, Darboux integrability of hyperbolic system

uin+1,m+1 − uin+1,m − uin,m+1 + uin,m = F i(n,m, u1n,m, . . . , u
r
n,m, u

1
n+1,m, . . . , u

r
n+1,m, u

1
n,m+1, . . . , u

r
n,m+1),

where i = 1, . . . , r, requires the existence of essentially independent families of m- and n-integrals.
Darboux integrability of semi-discrete and entirely discrete exponential systems corresponding to

the Cartan matrices of the series A and C (i.e. generalized (semi)-discrete Toda lattices of the series
A and C) was proved in [19]. Another approach allowing to obtain a complete family of essentially
independent x-integrals for semi-discrete A-series Toda lattice in terms of casoratians was developed
in [25].

3 Integral preserving discretization

There are many different ways to discretize integrable systems. One of the popular methods to
discretize a PDE with two independent variables is to consider iterations of its Bäcklund transfor-
mations as shinfts in a new discrete variable. Then the formula for Bäcklund transformation that
relates the unknown function u with its Bäcklund-image u1 is a differential-difference equation and
it can be referred to as a semi-discrete analog of the initial PDE. In this case, the superposition
formula plays the role of entirely discrete analog. Although this approach is widely used in the
theory of integrable systems, we will use another approach proposed by Habibullin et al. [18] that
is based on the existence of characteristic integrals for generalized Toda lattices, which is a very
specific property for this class of systems.

In this section, we describe the integral preserving discretization method for exponential systems
associated to the Cartan matrices of simple Lie algebras and justify it by proving that this approach
provides Darboux integrable semi-discrete systems.

Goursat [26] had found a complete list of scalar hyperbolic equations having both characteristic
integrals of order not greater than 2 (the so-called Goursat list) within the frame of the study
of hyperbolic equations that admit characteristic integrals. The idea proposed in [18] is to take
characteristic y-integral for an equation in the Goursat list and to find semi-discrete hyperbolic
equation such that this function is its n-integral. The discretization obtained using this method
inherits the main property of its continuous counterpart: by construction, it admits an n-integral of
order not greater than 2. Surprisingly, all semi-discrete equations found in [18] appear to be Darboux
integrable, i.e. in addition to n-integrals they also admit characteristic x-integrals. Moreover, this
method was also applied to these semi-discrete equations in order to get entirely discrete analogs of
the equations from the Goursat list [18].

The same method was used in [13] to guess an appropriate formula for semi-discrete analog
of exponential systems (3) corresponding to the Cartan matrices of simple Lie algebras. More
precisely, careful analysis of the systems corresponding to the Cartan matrices of the rank 2 and
their characteristic integrals allowed the authors to find semi-discrete analogs for exponential systems
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of the rank 2, to obtain formula (4) and to conjecture that systems (4) are Darboux integrable for the
Cartan matrices of all simple Lie algebras. The following theorem is the main result of this section
and it proves the first part of the conjecture from [13] (that Habilullin’s discretization preserves
y-integrals); the second part that states the existence of sufficient number of essentially independent
x-integrals is proved in section 5.

Theorem 2. Let I = I(u1x, . . . , u
r
x, u

1
xx, . . . , u

r
xx, u

1
xxx, . . . , u

r
xxx, . . . ) be a y-integral of exponential

system (3) with non-degenerate matrix M = (aij). Then the same function

In = I(u1n,x, . . . , u
r
n,x, u

1
n,xx, . . . , u

r
n,xx, u

1
n,xxx, . . . , u

r
n,xxx, . . . )

is an n-integral of discretization (4) of this system.

Proof.
Let I be a y-integral or order d of the continuous system (3). Similarly to the continuous case,

denote uin,k = Dk
x(u

i
n) and win = ai1u

i
n + · · · + airu

i
r for all i = 1, . . . , k. Using Taylor’s expansion,

rewrite the difference In+1 − In, where variables uin satisfy semidiscrete system (4):

In+1 − In =
r∑
i=1

d∑
k=1

∂I

∂uik

(
uin+1,k − uin,k

)
+

+
1

2

r∑
i1,i2=1

d∑
k1,k2=1

∂2I

∂ui1k1∂u
i2
k2

(
ui2n+1,k2

− ui2n,k2
) (
ui1n+1,k1

− ui1n,k1
)

+ · · · =

=
∞∑
s=1

 1

s!

∑
λik:

r∑
i=1

d∑
k=1

λik=s

s!
r∏
i=1

d∏
k=1

λik!

r∏
i=1

d∏
k=1

(
uin+1,k − uin,k

)λik ∂sI

(∂u11)
λ11 . . . (∂urd)

λrd

 (10)

Denote

Ei = exp(win), ∆i = exp
(aii

2

(
uin+1 − uin

)
+ ai,i+1

(
ui+1
n+1 − ui+1

n

)
+ · · ·+ air

(
urn+1 − urn

))
,

ti = Ei∆i, where i = 1, . . . , r (here we omit the dependence on n for simplicity in notation). Hence,
the i-th equation of (4) can be rewritten as uin+1,x − uin,x = ti and therefore we need to simplify the
terms of the form Dk−1

x (ti) in (10) using equations (4).
The remaining part of the proof of this Theorem is divided into a series of propositions on some

specific properties of the the functions ti and the operators

Xi = e−w
i

X̃i =
∂

∂ui1
+ bi1

∂

∂ui2
+ bi2

∂

∂ui3
+ . . .

Proposition 2. For all i = 1, . . . , r functions ti satisfy the relation

Dx(ti) = ti

(
bi1 +

aii
2
ti + ai,i+1ti+1 + · · ·+ airtr

)
. (11)

Proof. Differentiate ti and use relations

Dx(Ei) = bi1Ei, Dx(∆i) =
aii
2
ti + ai,i+1ti+1 + · · ·+ airtr. �

Proposition 3. Operators Xj satisfy the relation

Xj(Dx + bi1) = (Dx + bi1 + bj1)Xj + aij

for all i, j = 1, . . . , r.
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Proof. Complete Bell polynomials Bk = Bk(v1, . . . , vk) are known to satisfy the relation

Dx(Bk) = Bk+1 −B1Bk, k = 1, 2, . . .

Apply this relation to calculate the commutator:

[
Xj, Dx + bi1

]
=

(
∂

∂uj1
+ bj1

∂

∂uj2
+ bj2

∂

∂uj3
+ . . .

)(
bi1 +

r∑
l=1

(
ul2

∂

∂ul1
+ ul3

∂

∂ul2
+ . . .

))
−

−
(
bi1 +Dx

)( ∂

∂uj1
+ bj1

∂

∂uj2
+ bj2

∂

∂uj3
+ . . .

)
=

= Xj(b
i
1) +Xj(u

j
2)

∂

∂uj1
+Xj(u

j
3)

∂

∂uj2
+ · · · −Dx(b

j
1)

∂

∂uj2
−Dx(b

j
2)

∂

∂uj3
− · · · =

= aij + bj1
∂

∂uj1
+ bj2

∂

∂uj2
+ · · ·+ (bj1b

j
1 − b

j
2)

∂

∂uj2
+ (bj1b

j
2 − b

j
3)

∂

∂uj3
+ · · · =

= aij + bj1

(
∂

∂uj1
+ bj1

∂

∂uj2
+ bj2

∂

∂uj3
+ . . .

)
= aij + bj1Xj. �

Proposition 4. Operators Xj satisfy the relation

Xk
j (Dx + bi1) = (Dx + bi1 + kbj1)Xj +

(
kaij +

k(k − 1)

2
ajj

)
Xk−1
j

for all i, j = 1, . . . , r and for all natural k.

Proof. Use induction in k. The base of induction follows from Proposition 3. �

Proposition 5. Let k1, . . . , ks be arbitrary natural numbers and assume 1 6 j1 < j2 < · · · < js 6 r.
Then

Xks
js
X
ks−1

js−1
. . . Xk1

j1

(
Dx + bi1

)
=
(
Dx + ksb

js
1 + · · ·+ k1b

j1
1 + bi1

)
Xks
js
X
ks−1

js−1
. . . Xk1

j1
+

+ ks

(
aijs +

ks − 1

2
ajsjs + ks−1ajs−1js + ks−2ajs−2js + · · ·+ k1aj1js

)
Xks−1
js

X
ks−1

js−1
. . . Xk1

j1
+

+ks−1

(
aijs−1 +

ks−1 − 1

2
ajs−1js−1 + ks−2ajs−2js−1 + ks−3ajs−3js−1 + · · ·+ k1aj1js−1

)
Xks
js
X
ks−1−1
js−1

. . . Xk1
j1

+. . .

+ k3

(
aij3 +

k3 − 1

2
aj3j3 + k2aj2j3 + k1aj1j3

)
Xks
js
. . . Xk3−1

j3
Xk2
j2
Xk1
j1

+

+ k2

(
aij2 +

k2 − 1

2
aj2j2 + k1aj1j2

)
Xks
js
. . . Xk2−1

j2
Xk1
j1

+ k1

(
aij1 +

k1 − 1

2
aj1j1

)
Xks
js
. . . Xk2

j2
Xk1−1
j1

(12)

for any i = 1, . . . , r.

Proof. Use induction in s. The base of induction follows from Proposition 4. �

Proposition 6. Let k ∈ N. Then Dk
x(ti) is a polynomial in ti, . . . , tr of the degree k + 1,

Dk
x(ti) =

k+1∑
κ=1

Ck
ki...kr

tkii t
ki+1

i+1 . . . t
kr
r , (13)

where the summation is taken over all partitions κ = ki + · · ·+ kr into a sum of non-negative whole
numbers such that ki > 0. Coefficients are given by

Ck
ki...kr

=
1

ki! . . . kr!
Xkr
r X

kr−1

r−1 . . . X
ki+1

i+1 X
ki−1
i (bki ). (14)

8



Proof. Use induction in k. The base of the induction follows from (11) since Xj(b
i
1) = aij.

Assume the proposition holds for

Dx(ti), D2
x(ti), . . . , D

k
x(ti)

and differentiate (13) with respect to x. The total derivative of the coefficient Ck
ki...ks

contributes

only to the coefficient of tkii . . . t
kr
r in the expansion of Dk+1

x . Due to (11), the derivative of tkii . . . t
kr
r

contributes to the coefficient of tkii . . . t
kr
r and to all coefficients of the terms of degree ki+ · · ·+kr +1

such that only one power differs from ki, . . . , kr by one. First consider one of the leading coefficients
Ck+1
ki...kr

in Dk+1
x (ti). It appears as the result of differentiation of the terms

tki−1i t
ki+1

i+1 . . . t
kr
r , tkii t

ki+1−1
i+1 . . . tkrr , . . . , t

ki
i t

ki+1

i+1 . . . t
kr−1
r ,

where the corresponding power ks − 1 is non-negative. Hence,

Ck+1
kiki+1...kr

= Ck
ki−1,ki+1...kr

(ki − 1)
aii
2

+ Ck
kiki+1−1...kr

(
kiai,i+1 + (ki+1 − 1)

ai+1,i+1

2

)
+

+ Ck
kiki+1ki+2−1...kr

(
kiai,i+2 + ki+1ai+1,i+2 + (ki+2 − 1)

ai+2,i+2

2

)
+ · · ·+

+ Ck
kiki+1−1...kr−1

(
kiai,r + ki+1ai+1,r + ki+2ai+2,r + · · ·+ kr−1ar−1,r + (kr − 1)

arr
2

)
=

=
1

ki! . . . kr!

(
ki
ki − 1

2
aiiX

kr
r . . . X

ki+1

i+1 X
ki−2
i (bki )+

+ ki+1

(
kiai,i+1 +

ki+1 − 1

2
ai+1,i+1

)
Xkr
r . . . X

ki+1−1
i+1 Xki−1

i (bki ) + · · ·+

+ kr

(
kiai,r + ki+1ai+1,r + ki+2ai+2,r + · · ·+ kr−1ar−1,r +

kr − 1

2
arr

)
Xkr−1
r . . . X

ki+1

i+1 X
ki−1
i (bki )

)
.

(15)

Apply now formula (12):

Xkr
r X

kr−1

r−1 . . . X
ki+1

i+1 X
ki−1
i (bk+1

i ) = Xkr
r X

kr−1

r−1 . . . X
ki+1

i+1 X
ki−1
i (Dx + bi1)(b

k
i ) =

= kr

(
air +

kr − 1

2
arr + kr−1ar−1,r + · · ·+ (ki − 1)air

)
Xkr−1
r X

kr−1

r−1 . . . Xki−1
i (bki ) + · · ·+

+ ki+1

(
ai,i+1 +

ki+1 − 1

2
ai+1,i+1 + (ki − 1)ai,i+1

)
Xkr
r . . . X

ki+1−1
i+1 Xki−1

i (bki )+

+ ki

(
aii +

ki − 2

2
aii

)
Xkr
r . . . X

ki+1

i+1 X
ki−2
i (bki ). (16)

Here we used relation
Xkr
r X

kr−1

r−1 . . . X
ki+1

i+1 X
ki−1
i (bki ) = 0,

which holds since ki + · · · + kr = k + 2. Comparing formulas (15) and (16) proves the claim for
leading coefficients in the expansion for Dk+1

x (ti).
The formula for non-leading coefficients is proved similarly, although the calculation is more nasty

in this case since one has to take into account the terms bs1t
ki
i t

ki+1

i+1 . . . t
kr
r , where s = i, . . . r, that come

from the differentiation of tkii t
ki+1

i+1 . . . t
kr
r , and the terms that appear from the differentiation of the

coefficient Ck
ki...ks

which are non-zero if κ < k + 1. Note that formula (12) has to be used also to
simplify the coefficient that comes from differentiation of Ck

ki...ks
. �

Proposition 7. Polynomial Dk
x(ti) is divisible by ti for all i = 1, . . . , r and k ∈ N. The coefficient

of ti in Dk
x(ti) equals bki :

Dk
x(ti) = ti(b

k
i + . . . ).

9



Proof. The first claim follows from (11). The second claim immediately follows from (14). �

Proposition 8. Let I be an analytic y-integral of exponential system (3). Then

In+1 − In =
∞∑
m=1

( ∑
k1+···+kr=m

1

k1! . . . kr!
Xkr
r X

kr−1

r−1 . . . Xk1
1 (I)tk11 . . . tkrr

)
, (17)

where the sum is taken over all partitions m = k1 + · · ·+ kr such that k1, . . . , kr > 0.

Proof. Use induction in m. If m = 1, then we need to prove that the coefficient of ti in the
sum (10) equals Xi(I) for all i = 1, . . . , r. Since the monomial ti is contained only in the expansions
of form (13) for ti, ti,x, ti,xx, . . . , the coefficient of ti in (10) equals

1 · ∂I
∂ui1

+ C1
1,0,...,0

∂I

∂ui2
+ C2

1,0,...,0

∂I

∂ui3
+ · · · = ∂I

∂ui1
+ bi1

∂I

∂ui2
+ bi2

∂I

∂ui3
+ · · · = Xi(I)

due to Proposition 7.
Assume now the coefficient B of tkll . . . t

kj
j in (10) has the form

1

kl! . . . kj!
X
kj
j X

kj−1

j−1 . . . Xkl
l (I)

for all l < j and kl + · · ·+kj 6 m. According to (10), the coefficient B is obtained from the product

r∏
i=1

d∏
k=1

(
Dk−1
x (ti)

)λik
by extracting the coefficients of tkll . . . t

kj
j and multiplying them by appropriate multiple derivatives

of I. Hence,

B =
∑
p

((
µp
∏
i,k

Ck
i,ql...qj

)
∂sI

(∂u11)
λ11 . . . (∂urd)

λrd

)
,

where Ck
i,ql...qj

are the coefficients of the form (14) in one of the expansions of Dk
x(ti) in (10),

0 6 qi 6 ki for all i = l, . . . , j (here ql . . . qj depend on i and k) and µp ∈ R are products of
binomial coefficients which appear when expansions of Dk

x(ti) are raised to powers λi,k in (10). We
do not need to specify the set of indices over which the sum and the products are taken — we will
only need the general form of B.

Consider the coefficient B̃ of tkll . . . t
kj
j tj+1 in (10). It is the sum of the terms of two types: the

first one is the product of the coefficient of tkll . . . t
kj
j in (10) by the coefficient of tj+1 in expansions

of Dk
x(tj+1) for all k = 0, 1, . . . , and the second one appears when tj+1 is additionally taken from

one of the expansions of Dk(ti), where i < j + 1. For the terms of the first type, the derivative of
the function I in (10) is differentiated by uj+1

k+1 since the whole expression is multiplied by Dk
x(tj+1).

According to Proposition 7 the coefficient of tj+1 in Dk
x(tj+1) equals bj+1

k . Therefore, it follows from
the inductive assumption that the contribution of the terms of the first type to B̃ has the form

1

kl! . . . kj!

(
X
kj
j X

kj−1

j−1 . . . Xkl
l

(
∂I

∂uj+1
1

)
+ bj+1

1 X
kj
j X

kj−1

j−1 . . . Xkl
l

(
∂I

∂uj+1
2

)
+

+ bj+1
2 X

kj
j X

kj−1

j−1 . . . Xkl
l

(
∂I

∂uj+1
3

)
+ . . .

)
. (18)
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Examine now the contribution of the terms of the second type to B̃. Since tj+1 is additionally
taken from one of the expansions of Dk(ti) in this case, the terms contributing to B̃ have the form(

µp
∏
i,k

Ck
i,ql...qjqj+1

)
∂sI

(∂u11)
λ11 . . . (∂urd)

λrd
,

where qj+1 = 1 for only one pair (i, k) and is zero for all other pairs (i, k). Note that due to (14)

Ck
i,ql...qjqj+1

= Xj+1

(
Ck
i,ql...qj

)
(19)

for all i = 1, . . . , r and for all k ∈ N.
Since X

kj
j X

kj−1

j−1 . . . Xkl
l (I) is a linear combination of various multiple derivatives of the function

I with certain coefficients and Xj+1 is a linear first order operator, all the terms in the expression
for

Xj+1

(
1

kl! . . . kj!
X
kj
j X

kj−1

j−1 . . . Xkl
l (I)

)
can be grouped into two families: the operator Xj+1 is applied to the derivatives of I in the first
family and it is applied to the coefficients in the second family. Clearly, it follows from (18,19) and
the Leibniz rule that the first family corresponds to the terms of the first type in B̃ and the second
family corresponds to the terms of the second type. Therefore, B̃ = Xj+1(B).

The proof that the coefficient of tkll . . . t
kj+1
j in (10) has the form

1

kl! . . . kj−1!(kj + 1)!
X
kj+1
j X

kj−1

j−1 . . . Xkl
l (I)

is conducted in the same way, but one has to take into account additional coefficient kj + 1 that
comes from multiplicity in this case. �

Proof of Theorem 2 immediately follows from (17) since every y-integral annihilates the whole
characteristic algebra and, in particular, it annihilates the generators X̃1, . . . X̃r. Since Xi = e−w

i
X̃i,

it also annihilates operators X1, . . . Xr. �

4 Characteristic algebra of exponential system

In this Section we review a number of basic properties of characteristic algebras for exponential
systems corresponding to the Cartan matrices of simple Lie algebras in the continuous case.

Lemma 1. Let

X =
r∑
i=1

∞∑
k=1

P i
k

∂

∂uik
, D =

r∑
i=1

∞∑
k=0

uik+1

∂

∂uik
,

where P i
k = P i

k(u
1, . . . , ur, u11, . . . , u

r
1, u

1
2, . . . , u

r
2, . . . ) and ui0 = ui. If [D,X] = 0, then X = 0.

This lemma and its various analogs are widely used for explicit description of characteristic
algebras. The proof is straightforward and trivial.

Proposition 9. [1] For any 1 6 i1, . . . , ik 6 r operators Xi satisfy following commutation relations:

[D, [Xi1 , [Xi2 , . . . , [Xik−1
, Xik ] . . . ]]] = −(bi11 + · · ·+ bik1 )[Xi1 , [Xi2 , . . . , [Xik−1

, Xik ] . . . ]]−
− (ai2i1 + ai3i1 + · · ·+ aiki1)[Xi2 , [Xi3 , . . . , [Xik−1

, Xik ] . . . ]]−
− (ai3i2 + ai4i2 + · · ·+ aiki2)[Xi1 , [Xi3 , . . . , [Xik−1

, Xik ] . . . ]]− . . .
− (aik−1ik−2

+ aikik−2
)[Xi1 , . . . , [Xik−3

, [Xik−1
, Xik ]] . . . ]−

− aikik−1
[Xi1 , . . . , [Xik−3

, [Xik−2
, Xik ]] . . . ] + aik−1ik [Xi1 , . . . , [Xik−3

, [Xik−2
, Xik−1

]] . . . ]. (20)
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Technical Propositions 10–14 can be proved straightforwardly using Lemma 1.

Proposition 10. Reduced characteristic algebra of exponential system (3) corresponding to the
A-series Cartan matrix of the rank r is a linear span of the following vector fields:

Xk, k = 1, 2, . . . , r,

[Xk, [Xk+1, . . . , [Xl−1, Xl] . . . ]], 1 6 k < l 6 r.

Proposition 11. Reduced characteristic algebra of exponential system (3) corresponding to the
B-series Cartan matrix of the rank r is a linear span of the following linearly independent vector
fields:

Xk, k = 1, 2, . . . , r,

[Xk, [Xk+1, . . . , [Xl−1, Xl] . . . ]], 1 6 k < l 6 r,

[Xk, [Xk−1, [Xk−2, . . . , [X2, [X1, [X1, [X2, . . . , [Xl−2, [Xl−1, Xl]] . . . ]]]] . . . ]]], 1 6 k < l 6 r.

Proposition 12. Reduced characteristic algebra of exponential system (3) corresponding to the
C-series Cartan matrix of the rank r is a linear span of the following linearly independent vector
fields:

Xk, k = 1, 2, . . . , r,

[Xk, [Xk+1, . . . , [Xl−1, Xl] . . . ]], 1 6 k < l 6 r,

[Xk, [Xk−1, [Xk−2, . . . , [X2, [X1, [X2, . . . , [Xl−2, [Xl−1, Xl]] . . . ]]] . . . ]]], 2 6 k 6 l 6 r.

Proposition 13. Reduced characteristic algebra of exponential system (3) corresponding to the
D-series Cartan matrix of the rank r is a linear span of the following linearly independent vector
fields:

Xk, k = 1, 2, . . . , r,

[Xk, [Xk+1, . . . , [Xl−1, Xl] . . . ]], 2 6 k < l 6 r,

[X1, [X2, . . . , [Xl−1, Xl] . . . ]], 3 6 l 6 r,

[X1, [X3, . . . , [Xl−1, Xl] . . . ]], 3 6 l 6 r,

[Xk, [Xk−1, [Xk−2, . . . , [X3, [X1, [X2, [X3, . . . , [Xl−2, [Xl−1, Xl]] . . . ]]]] . . . ]]], 3 6 k < l 6 r.

Remark 3. The above bases for the series A and D can be found in [1] but with no proofs. Detailed
proofs for all these four cases can be found in [35].

Remark 4. One can verify that in characteristic algebras of exponential systems corresponding to
the Cartan matrices of the series A–D there are no non-trivial relations between multiple commuta-
tors of the form [Xi1 , [Xi2 , . . . , Xik ]]. More precisely, any such non-zero commutator is proportional
to some element from the corresponding basis (see Propositions 10–13).

Proposition 14. Reduced characteristic algebra of exponential systems (3) corresponding to the
Cartan matrices of the E-series, of G2 and F4 root systems are finite-dimensional, and in each of
these cases there exist a basis such that any non-zero multiple commutator [Xi1 , [Xi2 , . . . , Xik ]] is
proportional to some element from this basis1.

1We do not provide here suitable bases because they cannot be represented in a compact form like in Proposi-
tions 10–13.
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5 Characteristic x-integrals of semi-discrete exponential sys-

tems

Integral preserving discretization (4) of a Darboux integrable exponential system (3) admits a
complete family of independent n-integrals. Darboux integrability of a semi-discrete system also
requires the existence of a complete family of essentially independent x-integrals, and since the
variables x and n do not enter the equations symmetrically (one of them is continuous and the other
one is discrete), such family of integrals cannot be obtained just by renaming the variables (as in the
continuous case). Complete family of characteristic integrals was obtained explicitly in [19] for semi-
discrete A- and C-series lattices, but this approach is not applicable for the lattices associated with
the Cartan matrices of other simple Lie algebras since it is not known whether they are reductions
of an A-series lattice or not. In this section we are going to prove the existence of complete families
of characteristic x-integrals for semi-discrete lattices corresponding to the Cartan matrices of all
simple Lie algebras using the concept of characteristic algebra.

Characteristic algebras for (semi)-discrete hyperbolic system were defined in [27]–[29]; these Lie
algebras for (semi)-discrete exponential systems (4),(5) associated with the Cartan matrices of rank 2
where described explicitly in terms of generators and relations in [13, 14]. Characteristic algebras are
an effective tool in the study of Darboux integrability of hyperbolic equations both in the continuous
and in the (semi)-discrete cases (see papers [30]–[34] by Ufa mathematical school).

In this section we define a special Lie algebra of differential operators that controls the existence
of complete family of x-integrals for semi-discrete exponential systems (4). Although this Lie algebra
is very similar by its properties to characteristic algebra defined in [28] and its construction is based
on the same ideas, these Lie algebras are not isomorphic.

We will not describe the construction of characteristic algebra in the semi-discrete case from [28]
here. Instead, we introduce a Lie algebra with similar properties that allows to prove Darboux
integrability of all exponential systems associated with the Cartan matrices of simple Lie algebras.

Consider semi-discrete exponential system (4) and introduce the following notation:

vin = uin+1−uin, win = ai1u
1
n+· · ·+airurn, zin = win+1−win, ∆i

n = exp
(aii

2
vin + ai,i+1v

i+1
n + · · ·+ airv

r
n

)
,

where i = 1, . . . , r. Hence, equations (4) can be rewritten as

vin,x = ew
i
n∆i

n, i = 1, . . . , r. (21)

Consider differential operators

Yi = ci0
∂

∂vin
+ ci1

∂

∂vin+1

+ ci2
∂

∂vin+2

+ . . . , i = 1, . . . , r,

where

ci0 = ∆i
n, ci1 = exp

(
zin
)

∆i
n+1, . . . , c

i
k = exp

(
zin + zin+1 + · · ·+ zin+k−1

)
∆i
n+k, i = 1, . . . , r. (22)

Proposition 15. Let the matrix M = (aij) of exponential system (4) be non-degenerate. Then
function

J = J(v1n, . . . , v
r
n, v

1
n+1, . . . , v

r
n+1, v

1
n+2, . . . , v

r
n+2, . . . )

is an x-integral of (4) if and only if it annihilates operators Y1, . . . , Yr.

Proof. Since
vin+1,x = ew

i
n+1∆i

n+1 = ew
i
n exp(zin)∆i

n+1

13



due to (21), one can easily verify by induction that

vin+k,x = ew
i
n exp(zin + zin+1 + · · ·+ zin+k−1)∆

i
n+k.

Hence, apply the total derivative with respect to x:

Dx(J) =
r∑
i=1

∞∑
k=0

vin+k,x
∂J

∂vin+k
=

r∑
i=1

∞∑
k=0

ew
i
n exp(zin + zin+1 + · · ·+ zin+k−1)∆

i
n+k

∂J

∂vin+k
=

=
r∑
i=1

∞∑
k=0

ew
i
ncik

∂J

∂vin+k
=

r∑
i=1

ew
i
nYi(J).

Therefore, if M is non-degenerate, then exponents ew
i
n are linearly independent and J is an x-integral

if and only if it annihilates operators Y1, . . . , Yr. �
Variables

u1n, . . . , u
r
n, v

1
n, . . . , v

r
n, v

1
n+1, . . . , v

r
n+1, v

1
n+2, . . . , v

r
n+2, . . .

are independent. Lie algebra L̃ generated by vector fields

∂

∂u1n
, . . . ,

∂

∂urn
, Ỹ1, . . . , Ỹr,

where Ỹi = ew
i
nYi for all i = 1, . . . , r, is a discrete analog of the characteristic algebra for exponential

system (3). Similarly, Lie algebra L generated by vector fields Y1, . . . , Yr is a discrete analog of
the reduced characteristic algebra for (3). Nevertheless, in order to avoid ambiguity in the use of
terminology, we will call this Lie algebra the defining algebra for semi-discrete system (4). The
following theorem is proved exactly as Theorem 1 in the continuous case.

Theorem 3. Semi-discrete exponential system (4) admits a complete family of essentially indepen-
dent x-integrals if and only if its defining algebra is finite-dimensional.

We are going to prove the existence of a complete family of independent x-integrals for semi-
discrete exponential systems (4) corresponding to the Cartan matrices of all simple Lie algebras by
applying Theorem 3 and by describing the defining algebras L explicitly.

Proposition 16. Let T be the shift operator, T (vn) = vn+1. Then

T [Yi1 , [Yi2 , . . . , [Yik−1
, Yik ] . . . ]]T−1 = exp(−(zi1n + · · ·+ zikn ))

(
[Yi1 , [Yi2 , . . . , [Yik−1

, Yik ] . . . ]]−
− ci1n (ai2i1 + ai3i1 + · · ·+ aiki1)[Yi2 , [Yi3 , . . . , [Yik−1

, Yik ] . . . ]]−
− ci2n (ai3i2 + ai4i2 + · · ·+ aiki2)[Yi1 , [Yi3 , . . . , [Yik−1

, Yik ] . . . ]]− . . .
− cik−2

n (aik−1ik−2
+ aikik−2

)[Yi1 , . . . , [Yik−3
, [Yik−1

, Yik ]] . . . ]−
− cik−1

n aikik−1
[Yi1 , . . . , [Yik−3

, [Yik−2
, Yik ]] . . . ] +cikn aik−1ik [Yi1 , . . . , [Yik−3

, [Yik−2
, Yik−1

]] . . . ]
)

+ . . . , (23)

where the dots in the end stand for multiple commutators of the degrees 1, . . . , k − 2.

Proof
It follows from relations (22) that

TYiT
−1 = e−z

i
nYi

for all i = 1, . . . , r. Formula (23) is proved by induction using relation

Yi0
(
exp(−(zi1n + · · ·+ zikn ))

)
= −ci0n (ai1i0 + ai2i0 + · · ·+ aiki0)
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and representation

T [Yi0 , [Yi1 , [Yi2 , . . . , [Yik−1
, Yik ] . . . ]]]T−1 =

=
(
TYi0T

−1) (T [Yi1 , [Yi2 , . . . , [Yik−1
, Yik ] . . . ]]T−1

)
−
(
T [Yi1 , [Yi2 , . . . , [Yik−1

, Yik ] . . . ]]T−1
) (
TYi0T

−1) . �
Theorem 4. The defining algebra of semi-discrete exponential system (4) corresponding to the Car-
tan matrix of any simple Lie algebra is finite-dimensional.

Proof. We will prove that the defining algebra of semi-discrete exponential system (4) corre-
sponding to the Cartan matrix of any simple Lie algebra is isomorphic to the reduced characteristic
algebra of its continuous analog. Since in characteristic algebras corresponding to the Cartan ma-
trices of all simple Lie algebras there are no relations between non-trivial multiple commutators
except for the skew-symmetry, the Jacobi identity and their implications (see Propositions 10–14),
it follows from Lemma 1 and from formula (20) that commutator

[Xi1 , [Xi2 , . . . , [Xik−1
, Xik ] . . . ]] (24)

is trivial if and only if all terms in (20) vanish. Therefore, either commutator

[Xi1 , [Xi2 , . . . , [Xl−1, [Xl+1, . . . , [Xik−1
, Xik ] . . . ]] . . . ]]

is trivial, or its coefficient
ail+1il + ail+2il + · · ·+ aikil

is zero for all l = 1, . . . , k.
For each of the Cartan matrices the isomorphism is established by induction in the degree of

multiple commutators. Note that the coefficients of multiple commutators of degree k − 1 in for-
mula (23) are the same as the coefficients in (20). If commutator (24) is trivial, then all the terms
in (20) vanish. Hence, relation (23) for the corresponding multiple commutator of Yi1 , . . . , Yik does
not contain terms of degree k − 1. Careful analysis of the relations between coefficients in for-
mula (23) for multiple commutators of degrees l and l − 1 for each Cartan matrix shows that the
absence of the terms of degree k − 1 yields the absence of all terms of degrees 1, . . . , k − 2. Hence,
commutator (24) satisfies relation

T [Yi1 , [Yi2 , . . . , [Yik−1
, Yik ] . . . ]]T−1 = exp(−(zi1n + · · ·+ zikn ))[Yi1 , [Yi2 , . . . , [Yik−1

, Yik ] . . . ]]

which holds only if k = 1. Therefore, if commutator (24) is trivial in the reduced characteristic
algebra of exponential system in the continuous case, then the corresponding multiple commutator
of Yi1 , . . . , Yik also vanishes. This proves the isomorphism. �

Remark 5. We used the concept of characteristic algebra in order to prove the existence of a
complete family of x-integrals. Although our attempts to find explicit formulas for x-integrals did
not give any result in general, some integrals can be found explicitly. For example, semi-discrete
Toda lattice (4) corresponding to the B-series Cartan matrix of the rank r > 3 admits x-integral

J =
r−1∑
j=2

(
exp(vj+1

n+j+1 − v
j
n+j+1) + exp(vin − v

j+1
n+1)

)
+ exp(v2n+1 − 2v1n+1)+

+ exp(2v1n − v2n+1) + 2 exp(v1n − v1n+1) + exp(vrn) + exp(−vrn+r).
Remark 6. It would have been interesting to prove that Habibullin’s integral preserving discretiza-
tion leads to Darboux integrable systems in the purely discrete case as well. Entirely discrete ex-
ponential systems were introduced in [14] and it was proved there that for all Cartan matrices of
the rank 2 characteristic x-integrals of corresponding semi-discrete lattices appear to be m-integrals
of their purely discrete analogs. It was conjectured in [14] that the same property holds for purely
discrete exponential systems associated with the Cartan matrices of all simple Lie algebras, but un-
fortunately our approach appears to be not applicable for proving the integral preserving property
in the entirely discrete case due to the form of equations (5).
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