Darboux transformations in theory of integrable systems

Sergey V. Smirnov

Moscow State University

Research Seminar Nazarbaev University, Astana

May 22, 2015

(日) (四) (日) (日) (日)

-

Outline

Introduction Dynamical systems Hyperbolic PDEs in 2D Other examples

Introduction

Dynamical systems

Hyperbolic PDEs in 2D

Other examples

イロト イヨト イヨト イヨト

-1

What is integrability?

...

Different definitions of integrability are used for different types of equations. There are two most general approaches: to consider properties of the equation itself, or properties of its solutions. Properties of equations:

- explicit integrability
- sufficient number of first integrals in involution (ODEs)
- existence of a Lax representation
- sufficient number of integrals along characteristics (hyperbolic PDEs in 2D)
- existence of higher symmetries
- ► 3D-consistency (P∆Es on quad-graphs in 2D)

First integrals

Function $F(x_1, x_2, ..., x_n)$ is called a *first integral* of the dynamical system

$$\begin{cases} \dot{x}^{1} = f_{1}(x^{1}, x^{2}, \dots, x^{n}) \\ \dot{x}^{2} = f_{2}(x^{1}, x^{2}, \dots, x^{n}) \\ \dots \\ \dot{x}^{n} = f_{n}(x^{1}, x^{2}, \dots, x^{n}) \end{cases}$$

if it is constant along the trajectories: $\frac{d}{dt}(F) = 0$. Existence of a first integral allows to reduce the order of the system by 1.

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ・ ・

Important remark

According to standard rectification theorem in a neighborhood of any non-singular point of a smooth vector field there is a coordinate system such that this vector field becomes constant. But that's not the integrability we are going to discuss!

Hamiltonian systems

A skew-symmetric tensor field ω^{ij} defines a Poisson bracket

$$\{f,g\} = \sum_{i,j=1}^{n} \omega^{ij} \frac{\partial f}{\partial x^{i}} \frac{\partial g}{\partial x^{j}}$$

on a manifold M if the Jacobi identity

$$\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$$

holds for arbitrary smooth functions $f, g, h \in C^{\infty}(M)$. A dynamical system

$$\dot{x}^1 = \{H, x^1\}, \ \dot{x}^2 = \{H, x^2\}, \dots, \dot{x}^n = \{H, x^n\}$$

is called hamiltonian.

(日) (四) (日) (日) (日)

Liouville's Theorem

Consider a hamiltonian system on a symplectic manifold M, $2n = \dim M$, and let I_1, I_2, \ldots, I_n be it's first integrals such that each pair of them is *in involution*:

$$\{I_i,I_j\}=0.$$

If a common level set

$$M_{\mathbf{c}} = \{I_1 = c_1, I_2 = c_2, \dots, I_n = c_n\}$$

is compact, connected and all integrals I_1, I_2, \ldots, I_n are functionally independent on it, then M_c is diffeomorphic to *n*-dimensional torus and hamiltonian system can be integrated in quadratures.

ヘロト 人間ト イヨト イヨト

Example: finite Toda chain

The Toda chain

$$\begin{cases} \ddot{q}_1 = -e^{q_1 - q_2} \\ \ddot{q}_j = e^{q_{j-1} - q_j} - e^{q_j - q_{j+1}}, \quad j = 2, 3, \dots, n-1 \\ \ddot{q}_n = e^{q_{n-1} - q_n} \end{cases}$$

is hamiltionian with respect to the canonical Poisson bracket and the Hamiltomian

$$H = \frac{1}{2} \sum_{j=1}^{n} p_j^2 + \sum_{j=1}^{n-1} e^{q_j - q_{j+1}},$$

where $p_j = \dot{q}_j$.

・ロト ・ 同ト ・ ヨト ・ ヨト

-1

Toda chain, Lax representation

The Toda chain admits a *Lax representation*, i.e. it is equivalent to matrix equation:

$$L_t = [A, L],$$

where

$$L = \begin{pmatrix} a_1 & b_1 & \dots & 0 \\ b_1 & a_2 & \dots & 0 \\ \vdots & \ddots & \ddots & b_{n-1} \\ 0 & \dots & b_{n-1} & a_n \end{pmatrix}, A = \begin{pmatrix} 0 & b_1 & \dots & 0 \\ -b_1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & b_{n-1} \\ 0 & \dots & -b_{n-1} & 0 \end{pmatrix}$$
$$a_j = -\frac{1}{2}p_j, \quad j = 1, 2, \dots, n, \quad b_j = \frac{1}{2}e^{\frac{1}{2}(q_j - q_{j+1})}, \quad j = 1, 2, \dots, n-1.$$

(日) (四) (日) (日) (日)

,

3

Toda chain: Liouville integrability

Theorem

Lax representation provides the sufficient number of first integrals in involution:

$$I_k = \operatorname{tr} L^k, \quad k = 1, 2, \dots, n.$$

The fact that I_1 is a first integrals is obvious:

$$\frac{d}{dt}(I_1) = \frac{d}{dt}(\operatorname{tr} L) = \operatorname{tr} L_t = \operatorname{tr}[A, L] = 0.$$

If k > 1, then this follows from the fact that all eigenfunctions of the Lax matrix L are first integrals.

Darboux transformations

Linear differential operators

$$L=\frac{d^n}{dx^n}+a_{n-1}\frac{d^{n-1}}{dx^{n-1}}+\cdots+a_1\frac{d}{dx}+a_0$$

and

$$\hat{L} = \frac{d^n}{dx^n} + \hat{a}_{n-1}\frac{d^{n-1}}{dx^{n-1}} + \dots + \hat{a}_1\frac{d}{dx} + \hat{a}_0$$

are related by a *Darboux transformation* if there exists a differential operator D such that

$$\hat{L} \circ D = D \circ L.$$

The main property of Darboux transformations is that D maps $\operatorname{Ker} L$ to $\operatorname{Ker} \hat{L}$.

Decomposition theorem

Theorem

Any Darboux transformation of the order r can be represented as a composition of first-order Darboux transformations, i.e. if

$$\hat{L} \circ D = D \circ L,$$

then there exist a sequence of operators L_j , such that $L_0 = L$, $L_r = \hat{L}$ and

$$L_{j+1} \circ D_j = D_j \circ L_j, \quad j = 0, 1, \ldots, r-1,$$

where $D_j = \frac{d}{dx} + \gamma_j$. In this case, $D = D_r D_{r-1} \dots D_1$.

Veselov-Shabat dressing chain

Consider a Shrödinger operator $L_0 = -\frac{d^2}{dx^2} + u_0(x)$, it can be factorized as follows:

$$L_0 = D_0 D_0^+ - \alpha_0, \ \alpha_0 = \text{const},$$

where $D_0 = d/dx + f_0(x)$ and $D_0^+ = -d/dx + f_0(x)$. Define a new operator and refactorize it in the same way:

$$L_1 = D_0^+ D_0 = -\frac{d^2}{dx^2} + u_1 = D_1 D_1^+,$$

etc. On each step operators L_j and $L_{j+1} - \alpha_j$ are related by a Darboux transformation:

$$(L_{j+1}-\alpha_j)D_j^+=D_j^+L_j.$$

Veselov-Shabat dressing chain, continued

Periodic closure $L_r = L_0$ of this sequence is equivalent to the following system of ODEs:

$$\begin{cases} (f_r + f_1)' = f_r^2 - f_1^2 + \alpha_1 \\ (f_1 + f_2)' = f_1^2 - f_2^2 + \alpha_2 \\ \cdots \\ (f_{r-1} + f_r)' = f_{r-1}^2 - f_r^2 + \alpha_r \end{cases}$$

This system is called the *Veselov-Shabat dressing chain*. It is related to the famous KdV equation.

Denote
$$\alpha = \sum_{j=1}^{\prime} \alpha_j$$
. Cases $\alpha = 0$ and $\alpha \neq 0$ are essentially different.

(日)

.

Dressing chain: Lax representation

Suppose $\alpha = 0$. Consider an eigenfunction ψ_0 such that $L_0\psi_0 = \lambda\psi_0$ for some $\lambda \in \mathbb{R}$ and denote $\psi_j = D_{j-1}^+\psi_j$, $j = 1, 2, \ldots, r$. Hence $L_j\psi = \lambda_j\psi_j$, where

$$\lambda_j = \lambda - \alpha_1 - \alpha_2 - \dots - \alpha_j, \quad j = 1, 2, \dots, r.$$

The scalar equation $-\psi_j'' + u_j\psi_j = \lambda_j\psi_j$ is equivalent to the matrix equation $\Psi_j' = U_j\Psi_j$, where $\Psi_j = (\psi_j, \psi_j')^T$,

$$U_j = \begin{pmatrix} 0 & 1 \\ u_j - \lambda_j & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ f'_j + f^2_j - \lambda + \beta_j & 0 \end{pmatrix}$$

and $\alpha_j = \beta_{j-1} - \beta_j$.

(D) (A) (A) (A)

Dressing chain: Lax representation, continued

The equation $\psi_{j+1} = D_j^+ \psi_j$ is equivalent to the matrix equation $\Psi_{j+1} = W_j \Psi_j$, where

$$W_j = \begin{pmatrix} f_j & -1 \\ f'_j - u_j + \lambda_j & f_j \end{pmatrix} = \begin{pmatrix} f_j & -1 \\ f'_j - u_j + \lambda - \beta_j & f_j \end{pmatrix}.$$

On one hand,

$$\Psi'_{j+1} = (W_j \Psi_j)' = W'_j \Psi_j + W_j \Psi'_j = W'_j \Psi_j + W_j U_j \Psi_j = (W'_j + W_j U_j) \Psi_j,$$

and on the other hand,

$$\Psi_{j+1}'=U_{j+1}\Psi_{j+1}=U_{j+1}W_j\Psi_j.$$

Hence, the dressing chain is equivalent to the sequence of matrix equations

$$W_j' = U_{j+1}W_j - W_jU_j.$$

-

Dressing chain: Lax representation, continued

Theorem

[Shabat, Yamilov, 1990] If $\alpha = 0$, then the periodic dressing chain admits a parametric dependent Lax representation, i.e. it is equivalent to the following matrix equation

$$\frac{d}{dx}W(\lambda)=[U_1,W(\lambda)],$$

where $W(\lambda) = W_n W_{r-1} \dots W_1$.

Due to the obvious fact that $\operatorname{tr} W'(\lambda) = 0$, such Lax representation provides a generating function for first integrals:

$$\tau(\lambda) = \operatorname{tr} W(\lambda) = (-1)^r (I_0 + I_1 \lambda + I_2 \lambda^2 + \dots + I_r).$$

Note that these integrals are a direct consequence of the structure of the dressing chain related to Darboux transformations.

Dressing chain: Liouville integrability

Theorem

[Veselov, Shabat, 1993] Dressing chain is a hamiltonian system with respect to the Poisson structure

$$\omega^{ij} = (-1)^{i-j(\textit{mod }r)} \text{ if } j
eq i, \quad \omega^{ii} = 0$$

and with the following hamiltonian:

$$H = \sum_{j=1}^r \left(\frac{1}{3}f_j^3 + \beta_j f_j\right).$$

If $\alpha = 0$ and r is odd, then it is Liouville integrable.

Integrability follows from the fact that the first integrals provided by the Lax representation appear to be in involution.

Laplace invariants

Definition

Functions $h = b_y - ab - c$ and $k = a_x - ab - c$ are called *the* Laplace invariants of the hyperbolic differential operator

$$L = \partial_x \partial_y + a \partial_x + b \partial_y + c.$$

Hyperbolic operator can be factorized if one the Laplace invariants is zero:

$$L = (\partial_x + b)(\partial_y + a) + k = (\partial_y + a)(\partial_x + b) + h.$$

(日) (四) (日) (日) (日)

2D-Toda lattice

Consider a sequence of hyperbolic operators

$$L_j = \partial_x \partial_y + a(j)\partial_x + b(j)\partial_y + c(j)$$

such that any two neighboring operators are related by a *Darboux-Laplace transformation*:

$$L_{j+1}D_j=D_{j+1}L_j,$$

where $D_j = \partial_x + b(j)$. Then the Laplace invariants of these operators satisfy the *two-dimensional Toda lattice*:

$$(\ln h(j))_{xy} = h(j+1) - 2h(j) + h(j-1).$$

Different forms of 2D-Toda lattice

Toda lattice can be represented in various forms in terms of different sets of variables.

►
$$q_{xy}(j) = \exp(q(j+1) - q(j)) - \exp(q(j) - q(j-1)),$$

or

$$(\ln h(j))_{xy} = h(j+1) - 2h(j) + h(j-1),$$

where $h(j) = \exp(q(j+1) - q(j)),$

or

$$u_{xy}(j) = \exp(u(j+1) - 2u(j) + u(j-1))$$

where $h(j) = u_{xy}(j)$.

イロト イヨト イヨト イヨト

-1

How to obtain a finite system?

- Trivial boundary conditions: $u(-1) = u(r) = -\infty$.
- Periodic boundary conditions: u(j + r) = u(j).

These Toda lattices are particular cases of the so-called *exponential system*:

$$u_{xy}(i) = \exp\left(\sum_{j=1}^r a_{ij}u(j)\right), \quad i=1,2,\ldots,r,$$

where $a_{ij} = \text{const.}$ Shabat, Yamilov (1981): What exponential systems are integrable?

Integrable boundary conditions

Trivial boundary conditions correspond to the matrix

$$M = (a_{ij}) = \begin{pmatrix} -2 & 1 & 0 & \dots & 0 \\ 1 & -2 & 1 & \dots & 0 \\ 0 & 1 & -2 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -2 \end{pmatrix}$$

- ► Notice that -M is the Cartan matrix of an A-series Lie algebra. There are other simple Lie algebras!
- $\blacktriangleright \approx$ 1980: Many papers by various authors on finite 2D-Toda lattices.

Integrals along characteristics

Definition Function $I = I(\mathbf{u}_x, \mathbf{u}_{xx}, \mathbf{u}_{xxx}, \dots)$ is called *y*-integral of the system

 $\mathbf{u}_{xy} = F(\mathbf{u}, \mathbf{u}_x, \mathbf{u}_y)$

if $D_y(I) = 0$ on solutions of the system. Integrals in direction x are defined similarly.

Example Functions $I = u_{xx} - \frac{1}{2}u_x^2$ and $J = u_{yy} - \frac{1}{2}u_y^2$ are y- and x-integrals resp. of the Liouville equation $u_{xy} = e^u$.

(日) (四) (王) (王)

Darboux integrability

Definition

Integrals I_1, I_2, \ldots, I_k of orders d_1, d_2, \ldots, d_k resp. are called *essentially independent*, if

$$\operatorname{rk}\left(\frac{\partial I_i}{\partial(\partial_x^{d_i}u_j)}\right) = k.$$

Hyperbolic system

$$\mathbf{u}_{xy} = F(\mathbf{u}, \mathbf{u}_x, \mathbf{u}_y)$$

is called *Darboux integrable* if it admits complete families of essentially independent *x*- and *y*-integrals.

(日) (四) (日) (日) (日)

Generating function for *y*-integrals

Theorem

[S., 2015] Coefficients of the differential operator

$$\mathcal{B} = (\partial_x - q_x(r))(\partial_x - q_x(r-1))\dots(\partial_x - q_x(0))$$

are y-integrals of the A-series Toda lattice defined by boundary conditions $q(-1) = +\infty$, $q(r) = -\infty$. These integrals are essentially independent.

Proof: use of DLTs

$$q(-1) = +\infty, \ q(r) = -\infty \Longrightarrow h(-1) = k(0) = 0, \ h(r) = 0$$

Therefore, $L_0 = (\partial_x + b(0))\partial_y$, $L_r = \partial_y(\partial_x + b(r))$. In the Toda lattice $b(j) = -q_x(j)$. Hence, $B = D_r D_{r-1} \dots D_0$. Now use DLTs:

$$B \circ \partial_y = D_r D_{r-1} \dots D_0 \partial_y = D_r \dots D_1 L_0 = D_r \dots L_1 D_0 = \dots = L_r D_{r-1} D_{r-2} \dots D_0 = \partial_y \circ B.$$

 $[\partial_y, B] = 0 \Longrightarrow$ coeffs. of B do not depend on y.

(I) (A) (A) (A) (A)

Integrability of finite lattices

A-series Toda lattice equations are symmetric about the change of variables $x \leftrightarrow y$. Therefore, the similar construction allows to obtain x-integrals

$J_1, J_2, \ldots J_r$

as well. These integrals are independent.

Explicit formulas that define reductions of an A-series lattice to B- or C-series lattice allows to prove the following

Theorem

[S., 2015] *B*- and *C*-series Toda lattices are Darboux integrable.

Discrete dressing chain

Consider second-order difference operators $L_j = A_j A_j^+ - \alpha_j$, related by Darboux transformations

$$(L_{j+1}-\alpha_j)A_j^+=A_j^+L_j,$$

where $A_j = a_j(n) + b_j(n)T$, $A_j^+ = a_j(n) + b_j(n-1)T^{-1}$ and T is a shift operator on 1D-lattice: $T\psi(n) = \psi(n+1)$. Periodic closure of this Darboux chain is equivalent to the system of difference equations:

$$\begin{cases} a_j^2(n) + b_j^2(n) = a_{j-1}^2(n) + b_{j-1}^2(n-1) + \alpha_j \\ a_j(n)b_j(n-1) = a_{j-1}(n-1)b_{j-1}(n-1) \end{cases}$$

Darboux transformations imply a Lax representation for this system and therefore allow to obtain conserved quantities for the discrete dynamics [S., 2005].

Darboux q-chain

In the discrete case consider a modified operator relation

$$L_j = A_j A_j^+ - \alpha_j = q A_{j-1}^+ A_{j-1},$$

where 0 < q < 1, with the following closure condition:

$$L_{j+r} = T^{-r}L_jT^r.$$

This system is called the *Darboux q-chain*. All operators L_j are bounded and have purely discrete spectrum that can be obtained using the Darboux scheme [Dynnikov, S., 2002, S.,2003]

Discrete Toda lattices

In the semidiscrete case DLTs for hyperbolic operators

$$L = \partial_x T + a \partial_x + b T + c,$$

lead to the following differential-difference equations

$$\left(\ln \frac{h_n(j)}{h_{n+1}(j)}\right)_{\times}' = h_{n+1}(j+1) - h_{n+1}(j) - h_n(j) + h_n(j-1), \ n \in \mathbb{Z}.$$

(日) (四) (日) (日) (日)

3

Discrete Toda lattices, continued

In the purely discrete case

$$L_{j} = T_{1}T_{2} + a(j)T_{1} + b(j)T_{2} + c(j),$$

we obtain similarly the following system of $P\Delta Es$:

$$\frac{h_{n,m+1}(j)h_{n-1,m}(j)}{h_{n,m}(j)h_{n-1,m+1}(j)} = \frac{(1+h_{n,m}(j+1))(1+h_{n-1,m+1}(j-1))}{(1+h_{n,m}(j))(1+h_{n-1,m+1}(j))}.$$

In both case the DT approach allows to obtain a generating function for integrals along characteristics and therefore to prove Darboux integrability on the *A*-series lattice and of some its reductions [S., 2012, 2015].

Discretization using DTs

Consequent application of Darboux transformations to solutions of integrable models always produce a discrete system. In some cases it is trivial, but sometimes it is very nontrivial and inherits some properties of initial integrable system (Adler, Mikhailov, Sokolov,...)

(D) (A) (A) (A)

Thank you!

Sergey V. Smirnov Darboux transformations in theory of integrable systems

・ロ・ ・ 日・ ・ 田・ ・ 田・ ・

-2