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Abstract. There is a well-known in toric topology construction which
associates a smooth manifold with a combinatorial simple polytope.
Topological and analytic properties of these toric varieties, called moment-
angle-manifolds, are in the area of main interest of toric topology and
geometry. In this work we consider the manifolds, which arise from
the parametried series of the so called Stashe� polytopes and stacked
polytopes. we compute bigraded Betti numbers in the case of Stashe�
polytopes Kn+2 with n ≤ 5 and the stacked polytopes of arbitrary di-
mension and an arbitrary amount of cut vertices. The bigraded Betti
numbers in our examples are computed with the help of computer pro-
gram Macaulay2, a brief description of the method is given below.

1. Introduction

In the �rst section we are going to introduce the notions of the so called
face rings and bigraded Betti numbers of moment-angle-complexes that will
be used during the whole work. The second section is dedicated to the case of
the so called Stashe� polytopes or associahedra. The third one is dedicated
to the stacked polytopes, which also gives us a series of simple polytopes.
The author is grateful to Taras Panov for fruitful discussions and advice
which was always so kindly proposed during all this work.

2. Stasheff polytopes

In the following we will denote by n the dimension, by m - the number of
facets (vertices) of the simple (symplicial) polytopes. A few combinatorial
ways to de�ne the Stashe� polytope Kn+2 are known. For details, see [3,
Lecture II]. We will point out the following

Theorem 2.1. (see [3, Lecture II, Theorem 5.1]).
There exists an embedding

J : Kn+1 → Rn−1

with an image

y = (y1, · · · , yn−1) : 0 ≤ yl ≤ l · (n− l), yi − yi+l ≤ i · l,
where l = 1, · · · , n− 1, i = 1, · · · , n− l − 1.

If one considers

Li,l = {y ∈ Rn−1 : yi−yi+l ≤ i · l, 1 ≤ l ≤ n− 1, 0 ≤ i ≤ n− l, y0 = yn = 0}.

Key words and phrases. Betti numbers, moment-angle-complexes, Stashe� polytopes,
stacked polytopes.
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than our description gives us the image of Kn+1 as an intersection of a
(n − 1)-cube with all the sets Li,l. The proposition [3, Lecture II, Cor
6.2] allows us to reduce the computation of bigraded Betti numbers to the
problem of �nding the number of all noninteresecting pairs of diagonales in
a corresponding polygon. In the examples below bigraded Betti numbers are
got as a result of a program work, which is based on the following commands
in the Macaulay2 computer stu�:

kk = ZZ/32749,

ringP = kk[v1, · · · , vm],

I = ideal(· · · ),

betti res(ringP 1/I).

in the �rst line we generate the �eld of coe�cients, in the third, in brackets,
the monomial Stanley-Raisner ideal, consisting of elements of the form vi ·vj

is written, the res-command in the last line builds a minimal resolvent, and
the betti-command gives us the cardinalities of the corresponding minimal
bases.

In what follows the result of the described program work when n ≤ 5
is given. For the convenience of the further observations, we will write
the numbers appear in sets of (n − 1) vectors, which elements are the
β−i,2j , i = 1, · · · ,m−n−1, where j− i = 1, · · · , n−1. Here we assume that
β0,0 = β−(m−n),2m = 1.

Example 2.2. (1) n = 2,m = 5

(5, 5)

(2) n = 3,m = 9
(15, 35, 24, 3, 0)

(0, 3, 24, 35, 15)

(3) n = 4,m = 14

(35, 140, 217, 154, 49, 7, 0, 0, 0)

(0, 28, 266, 784, 1094, 784, 266, 28, 0)

(0, 0, 0, 7, 49, 154, 217, 140, 35)

(4) n = 5,m = 20

(70, 420, 1089, 1544, 1300, 680, 226, 44, 4, 0, 0, 0, 0, 0)

(0, 144, 1796, 8332, 20924, 32309, 32184, 20798, 8480, 2053, 264, 12, 0, 0)

(0, 0, 12, 264, 2053, 8480, 20798, 32184, 32309, 20924, 8332, 1796, 144, 0)

(0, 0, 0, 0, 0, 4, 44, 226, 680, 1300, 1544, 1089, 420, 70)
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3. Stacked polytopes

We are now to review the following

De�nition. Lets call a stacked polytopeP (n, k) a simple polytope, which
appears from a n-symplex by a consequtive cut of k vertices.

In our previous notation we immediately have k = m− n− 1.
The dual symplicial polytope to the P (n, k) is called a pyramid suspension
polytope Q(n, k). It can be obtained from the n-symplex by a consequtive
suspension of cones above its facets. It is easy to convince oneself that
for k = 1 and k = 2 the combinatorial type of the obtained polytope is
independent of which vertices are cut. One can also easily see that for k ≥ 3
this does not remain true.

Denote by Q ≡ Q(n, k), V - its vertex set, and the symplicial polytope Q
′

is obtained from Q by only one suspension of a cone with a leading vertex v
above its certain facet σ, which vertex set we will denote by V (σ). Lets also
consider V

′
- as a vertex set of Q

′
,W ⊂ V

′
and KW - a full subcomplex on

the vertex set of W in the sense of [1, p. 44].
Due to the well known Hochster's formula (see. [1, Theorem 3.17]) lets try

to ask the following question: what is happening with the reduced homology
groups of the full subcomplexes KW under some determined �eld of coe�-
cients k when one goes from Q to Q

′
? Therefore we are going to consider

the only 4 logically possible cases (in what follows we have W as a proper

subset of V
′
)

(1) v ∈ W,W ∩ V (σ) 6= ∅
If V (σ) ⊂ W, then ‖K ′

W ‖ ∼= ‖KW−{v}‖. If W ∩V (σ) 6= V (σ), then
we have:

KW−{v} ∪K
W∩V (σ)∪{v}′ = K

′
W ,KW−{v} ∩K

W∩V (σ)∪{v}′ = KW∩v(σ).

But KW∩V (σ) and K
′

W∩V (σ)∪{v} - in this case are, obviously, con-

tractable. With the help of the Mayer-Vietoris exact sequence, we
�nally have:

H̃i(K
′
W , k) ∼= H̃i(KW−{v}, k).

(2) v ∈ W,W ∩ V (σ) = ∅
In this case it is easy to see that K

′
W = KW−{v} t {v}. From this

follows:

dimkH̃i(K
′
W , k) =

{
dimkH̃i(KW−{v}, k) + 1, for i = 0;
dimkH̃i(KW−{v}, k), for i > 0.

(3) v 6∈ W,V (σ) ⊂ W,W 6= V
Consider a set ∆σ of all subsets of V (σ). Then as a boundary of

this set we will naturally have δ = ∆σ −V (σ). It is clear that in this
particular case we must obtain the following statements:

K
′
W ∪∆σ = KW ,K

′
W ∩∆σ = δ,
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(only the former facet F is vanishing.) But δ - is a symplicial (n −
2)−sphere, ∆σ - is a symplicial (n − 1)−disk. Then with the help
of the exact homology sequence with respect to i = (n− 1), one can
soon obtain:

dimkH̃i(K
′
W , k) =

{
dimkH̃i(KW , k), for i < (n− 2);
dimkH̃i(KW , k) + 1, for i = (n− 2).

(4) v 6∈ W,V (σ) 6⊂ W

In this case it is not hard to convince oneself, that K
′
W ≡ KW .

That's why we have:

dimkH̃i(K
′
W , k) = dimkH̃i(KW , k),∀i.

Now we can formulate our main statement as follows:

Theorem 3.1. For n ≥ 3 the following formulae for bigraded Betti numbers
associated with the simple polytopes P (n, k) take place:

β−i,2(i+1) = i ·
(

k + 1
i + 1

)
,

β−i,2(i+n−1) = (k + 1− i) ·
(

k + 1
k + 2− i

)
,

β−i,2j = 0, j 6= i + 1, i + n− 1;
for n = 2 the following takes place:

β−i,2(i+1) = i ·
(

k + 1
i + 1

)
+ (k + 1− i) ·

(
k + 1

k + 2− i

)
,

β−i,2j = 0, j 6= i + 1.

Proof. The �rst formulae is proved in [4]; the second - its obvious conse-
quence, if one notices the case of Poincare duality. The formulae above for
the case of n = 2 - are obtained from the analogous formulae for grater n
with the help of dimension matters (for example, nonzero element of the Betti
number table - is just a sum of corresponding 2 elements nonzero elements
from the case of higher dimension). Lest prove the rest of the statement
about the zero Betti numbers. More precise:

Theorem 3.2. The following formula takes place:

H̃i(KW , k) = 0,∀i 6= 0, n− 2,∀∅6= W ( V .

Proof. If m = n + 1, then P (n, k) - n-symplex, so KW - is contactable. The
induction statement: lets take that the conclusion of the theorem is true for
all proper subsets of W of V for all i 6= 0, n− 2, and consider W - as a proper
subset of V

′
. If W = V

′ − {v} = V, then K
′
W - is a symplicial (n− 1)−disk

and that makes the conclusion be true. If W = {v}, then we can say the
same. In the common case, according to what is mentioned above, while
considering the 4 cases, we obtain the following:

dimkH̃i(K
′
W , k) = dimkH̃i(KW−{v}, k) = 0;

�

�
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From our observations it is easy to see, that the following takes place

Corollary 3.3. Bigraded Betti numbers, associated with P (n, k) and its dual
one Q(n, k), are independent of the combinatorial types of the latter ones,
and the numbers, corresponding to j = i + 1 are as well independent of the
dimension of the total euclidean space.

4. Final remarks

In the conclusion, lets consider the following interesting

Example 4.1. In [2, Theorem 6.3] the following result is stated:

Theorem 4.2. Denote X - is a moment-angle-manifold, corresponding to
P (n, k). Then X is di�eomorphic to the connected sum of sphere products:

]k
j=1j ·

(
k + 1
j + 1

)
S2+j × S2n+k−j−1.

In accordance with our main statement, the coe�cients in this formula give
us an opportunity to �nd the full Betti numbers for X, for which computation
the following formula could be used:

dimkH
k(ZP ) =

∑
−i+2j=k

β−i,2j(P ).

From this fact we have:

b3 = β−1,4 =
(

k + 1
2

)
=

(
m− n

2

)
,

which coincides with the result of the main statement with k = m−n−1, i =
1, j = 2.

If we �nally analyse the numerical examples, considered above, we can
proclaim the following:

Conjecture 4.3. For the n-dimensional Stashe� polytope Kn+2, with n ≥ 2
the following take place:

β−i,2(n+i−1) = 0, i = 1, · · · , 2n− 5,

β−(2n−4),2(3n−5) =

{
n + 3, if n - is even;
n+3

2 , if n - is odd.

It is possible that "minimal" properties of such type can be observed also
in the cases of other nestohedra (stellohedra, permutohedra, cyclohedra), as
the author has information in the case of n = 3, but he could not prove or
even just formulate corresponding statements.
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