Московский Государственный Университет им. М.В.Ломоносова

Механико - математический факультет, 4 курс. Кафедра Высшей Геометрии и Топологии

> Каргапольцева Анастасия Игоревна Курсовая работа

Эффективные действия тора на гиперповерхностях Милнора.

Научный руководитель - Тарас Евгеньевич Панов

Москва $2018 \ г.$

1. Постановка задачи и предварительные сведения

В данной работе рассматриваются гиперповерхности Милнора H_{ij} и ставятся следующие вопросы:

- (1) Какова максимальная размерность тора T^k , действующего эффективно на H_{ij} ?
- (2) Как описать образ отображения моментов для этого действия?

Определим гиперповерхность Милнора H_{ij} . Пусть $[z_0: ...: z_i]$ – однородные координаты на пространстве $\mathbb{C}P^i$, $[w_0: ...: w_j]$ – однородные координаты на $\mathbb{C}P^j$. Тогда положим

$$H_{ij} = \{ [z_0 : \dots : z_i] \times [w_0 : \dots : w_j] \in \mathbb{C}P^i \times \mathbb{C}P^j : \sum_{k=0}^{\min(i,j)} z_k w_k = 0 \}.$$

Предположим, что $i\leqslant j$ и $\mathbb{C}^{i+1}\subseteq\mathbb{C}^{j+1}$ – вложение по первым (i+1) координатам. Тогда гиперповерхность H_{ij} можно также представлять как множество пар

(1.1)
$$H_{ij} = \{(l, U) : l - \text{прямая в } \mathbb{C}^{i+1}, U - \text{гиперплоскость в } \mathbb{C}^{j+1} \text{ и } l \subset U\}.$$

В этой работе мы покажем, что на H_{ij} существует эффективное гамильтоново действие тора T^{j} .

2. Описание действия тора T^j на H_{ij}

Рассмотрим стандартное действие тора T^j на \mathbb{C}^{j+1} :

$$(t_1,...t_j)(x_0,...,x_j) = (x_0,x_1t_1,...,x_jt_j).$$

Оно индуцирует действие на прямых в $\mathbb{C}^{i+1} \subseteq \mathbb{C}^{j+1}$

$$[z_0: \ldots: z_i] \to [z_0: t_1z_1: \ldots: t_iz_i]$$

и на гиперплоскостях

$$[w_0: \dots : w_j] \to [w_0: t_1^{-1}w_1: \dots : t_j^{-1}w_j].$$

Тогда, рассматривая H_{ij} как множество пар (l, U) (см. 1.1), получаем действие T^j на H_{ij} :

$$(t_1, \dots t_j)([z_0 : \dots : z_i], [w_0 : \dots : w_j]) = ([z_0 : t_1 z_1 : \dots : t_i z_i], [w_0 : t_1^{-1} w_1 : \dots : t_j^{-1} w_j]).$$

Действие тора T^j на $\mathbb{C}P^i$ вида

$$(t_1, \dots t_i)[z_0 : \dots : z_i] = [z_0 : t_1 z_1 : \dots : t_i z_i]$$

получается из действия тора T^i на $\mathbb{C}P^i$ ограничением на первые (i+1) координаты. Такое действие гамильтоново с отображением моментов $\mu_1:\mathbb{C}P^i\to\mathbb{R}^j$, заданным в однородных координатах следующим образом:

$$\mu_1([z_0:...:z_i]) = -\frac{1}{2} \left(\frac{|z_1|^2}{\sum_{k=0}^i |z_k|^2}, ..., \frac{|z_i|^2}{\sum_{k=0}^i |z_k|^2}, 0, ..., 0 \right).$$

Действие тора T^j на $\mathbb{C}P^j$ вида

$$(t_1, ...t_j)([w_0 : ... : w_j]) = ([w_0 : t_1^{-1}w_1 : ... : t_i^{-1}w_j])$$

также является гамильтоновым с отображением моментов $\mu_2: \mathbb{C}P^j \to \mathbb{R}^j$, заданным в однородных координатах следующим образом:

$$\mu_2([w_0:\ldots:w_j]) = -\frac{1}{2} \left(\frac{|w_1|^2}{\sum_{k=0}^j |w_k|^2}, ..., \frac{|w_j|^2}{\sum_{k=0}^j |w_k|^2} \right).$$

Пемма 1. Предположим, что группа Ли G действует гамильтоново на двух симплектических многообразия $(M_j, \omega_j), j=1,2, c$ отображениями моментов $\mu_j: M_j \to \mathfrak{g}^*$. Тогда на $M_1 \times M_2$ возникает симплектическая структура ω и диагональное действие G на $(M_1 \times M_2, \omega)$ гамильтоново c отображением моментов $\mu: M_1 \times M_2 \to \mathfrak{g}^*$ вида:

$$\mu(p_1,p_2)=\mu_1(p_1)+\mu_2(p_2),\ \partial$$
ля $p_j\in M_j, j=1,2.$

Из Леммы 1 следует тот факт, что построенное в начале пункта 2 действие гамильтоново с отображением моментов $\mu: \mathbb{C}P^i \times \mathbb{C}P^j \to \mathbb{R}^j$, где μ есть вектор функция

$$\mu = (\mu_1^1 - \mu_2^1, ..., \mu_1^i - \mu_2^i, -\mu_2^{i+1}, ..., -\mu_2^j).$$

Отображение моментов μ , записанное в однородных координатах, будет иметь вил:

$$\begin{split} &\mu([z_0:\ldots:z_i],[w_0:\ldots:w_j]) = \\ &= -\frac{1}{2} \left(\frac{|z_1|^2}{\sum_{k=0}^i |z_k|^2} - \frac{|w_1|^2}{\sum_{k=0}^j |w_k|^2},..., \frac{|z_i|^2}{\sum_{k=0}^i |z_k|^2} - \frac{|w_i|^2}{\sum_{k=0}^j |w_k|^2}, - \frac{|w_{i+1}|^2}{\sum_{k=0}^j |w_k|^2},..., - \frac{|w_j|^2}{\sum_{k=0}^j |w_k|^2} \right). \end{split}$$

Перейдем теперь к описанию образов отображения моментов для построенного действия.

3. Описание образа отображения моментов для действия тора $\,T^j\,$ на $\,H_{ij}\,$

Поскольку построенное действие T^j на H_{ij} гамильтоново, то из теоремы Атьи и Гийемина-Стернберга (о выпуклости образа отображения моментов, см. [2, Theorem 1]) образом гиперповерхности Милнора H_{ij} является выпуклая оболочка образов неподвижных точек этого действия. Неподвижными точками данного действия являются точки вида

где единицы стоят на k и l месте (на всех остальных местах стоят нули), причем k=0,...,i; l=0,...,j и $k\neq l$. Таким образом, всего имеется (ij+j) неподвижных точек.

Рассмотрим образ $\mathbb{C}P^i \times \mathbb{C}P^j$ при отображении μ . Из явного вида μ получаем, что образом будет выпуклый многогранник, который есть сумма Минковского j-мерного симплекса \triangle^j (образ $\mathbb{C}P^j$ при μ_2) и минус i-мерного симплекса \triangle^i (образ $\mathbb{C}P^i$ при μ_1). Тогда $\mu(H_{ij}) \subseteq \triangle^j - \triangle^i$. Но поскольку $\mu(H_{ij})$ является выпуклым многогранником, содержащим образы неподвижных точек действия T^j на $\mathbb{C}P^i \times \mathbb{C}P^j$, то $\mu(H_{ij})$ в точности совпадает с $\triangle^j - \triangle^i$.

Рассмотрим несколько примеров.

Пример 2. Опишем действие тора T^2 на H_{22} . Тор T^2 действует следующим образом:

$$(t_1, t_2)([z_0: z_1: z_2], [w_0: w_1: w_2]) = ([z_0: t_1z_1: t_2z_2], [w_0: t_1^{-1}w_1: t_2^{-1}w_2]).$$

Отображение моментов имеет вид:

$$\mu([z_0:z_1:z_2],[w_0:w_1:w_2]) =$$

$$= -\frac{1}{2} \left(\frac{|z_1|^2}{\sum_{k=0}^2 |z_k|^2} - \frac{|w_1|^2}{\sum_{k=0}^2 |w_k|^2}, \frac{|z_2|^2}{\sum_{k=0}^2 |z_k|^2} - \frac{|w_2|^2}{\sum_{k=0}^2 |w_k|^2} \right).$$

Данное действие имеет 6 неподвижных точек:

$$([1:0:0],[0:1:0]) \to (\frac{1}{2},0), ([1:0:0],[0:0:1]) \to (0,\frac{1}{2}),$$

$$([0:1:0],[1:0:0]) \to (-\frac{1}{2},0), ([0:1:0],[0:0:1]) \to (-\frac{1}{2},\frac{1}{2}),$$

$$([0:0:1],[1:0:0]) \to (0,-\frac{1}{2}), ([0:0:1],[0:1:0]) \to (\frac{1}{2},-\frac{1}{2}).$$

Получаем, что образом H_{22} при отображении μ будет выпуклая оболочка этих точек – шестиугольник.

Пример 3. Опишем действие тора T^j на H_{1j} . Тор T^j действует следующим образом:

$$(t_1, ..., t_j)([z_0 : z_1], [w_0 : ... : w_j]) = ([z_0 : t_1 z_1], [w_0 : t_1^{-1} w_1 : ... : t_j^{-1} w_j]).$$

Отображение моментов имеет вид:

$$\mu([z_0:z_1],[w_0:\ldots:w_j]) =$$

$$= -\frac{1}{2} \left(\frac{|z_1|^2}{\sum_{k=0}^{1} |z_k|^2} - \frac{|w_1|^2}{\sum_{k=0}^{j} |w_k|^2}, -\frac{|w_2|^2}{\sum_{k=0}^{j} |w_k|^2}, \ldots, -\frac{|w_j|^2}{\sum_{k=0}^{j} |w_k|^2} \right).$$

Образ H_{1j} при отображении μ комбинаторно устроен как $\triangle^1 \times \triangle^{j-1}$. Например, при j=1 образом будет отрезок, при j=2 – трапеция, при j=3 – сдвинутая треугольная призма (две ее боковые стороны имеют вид прямоугольных трапеций).

Таким образом заключаем, что существует эффективное действие тора T^k на H_{ij} при k=j. Покажем, что $k\leqslant i+j-2$ (для $i\geqslant 2$), то есть что не существует эффективного действия T^{i+j-1} на H_{ij} . Для обоснования этого факта потребуется описание кольца когомологий гиперповерхностей Милнора H_{ij} и квазиторических многообразий.

4. Описание кольца когомологий H_{ij}

Теорема 4 (см. [1], Теорема 6.46). Кольцо когомологий гиперповерхности H_{ij} задается следующим образом:

$$H^*(H_{ij}) \cong \mathbb{Z}[u,v] / \left(u^{i+1} = 0, v^{j-i} \sum_{k=0}^{i} u^k v^{i-k} = 0\right),$$

 $r\partial e \ deg \ u = deg \ v = 2.$

5. Описание кольца когомологий квазиторического многообразия

Определение 5. Пусть P – комбинаторный простой многогранник размерности n. Квазиторическим многообразием над P называется 2n-мерное многообразие M с действием тора T^n , удовлетворяющее следующим двум условиям:

- (1) действие тора является локально стандартным;
- (2) существует проекция $\pi: M \to P$, слоями которой являются орбиты действия тора T^n .

Пусть M — квазиторическое многообразие. Предположим, что $F_1,...,F_m$ — гиперграни многогранника P. Для любой гиперграни F_i прообраз $\pi^{-1}(int\,F_i)$ состоит из орбит коразмерности один, имеющих одну и ту же одномерную стационарную подгруппу $T(F_i)$. $\pi^{-1}(F_i)$ называется характерестическим подмногообразием и обозначается M_i . Соответствие

$$l: F_i \to T(F_i)$$

называется характеристическим отображением квазиторического многообразия M.

Подгруппа $T(F_i) \subset T^n$ задается целочисленным вектором $\lambda_i = (\lambda_{1i}, ..., \lambda_{ni}),$ i = 1, ..., m, который определен с точностью до знака. Выбор знака соответствует выбору ориентации для $T(F_i)$. Введем линейные формы

$$\theta_i = \lambda_{i1}v_1 + ... + \lambda_{im}v_m \in \mathbb{Z}[v_1, ..., v_m], i = 1, ..., n.$$

Образы этих линейных форм в $\mathbb{Z}[P]$ будем обозначать теми же символами. Пусть \mathcal{J}_l обозначает идеал в кольце $\mathbb{Z}[P]$, порожденный элементами $\theta_1, ..., \theta_n$.

Теорема 6 (Дэвис-Янушкиевич, см. [1], Теорема 6.24). *Имеет место изомор-физм колец*

$$H^*(M) \cong \mathbb{Z}[v_1, ... v_m]/(\mathscr{I}_P + \mathscr{J}_l) = \mathbb{Z}[P]/\mathscr{J}_l,$$

где v_i - двумерный класс когомологий, двойственный подмногообразию M_i (с выбранной ориентацией), i=1,...m.

6. ОТСУТСТВИЕ ЭФФЕКТИВНОГО ДЕЙСТВИЯ ТОРА T^{i+j-1} НА H_{ij}

Следствием теорем пунктов 4 и 5 является следующий результат

Теорема 7 (см. [1], Теорема 6.47). H_{ij} не является квазиторическим многообразием $npu \ i > 1$.

Таким образом, при i>1 на H_{ij} не существует эффективного действия тора T^{i+j-1} . Следовательно было получено следующее ограничение на размерность эффективного действия тора T^k на H_{ij} :

$$j \leqslant k \leqslant i + j - 2$$
,

при $i \geqslant 2$.

Видно, что для i=2 получен полный ответ: максимальный тор, действующий эффективно на H_{2j} , это тор T^j .

Полученное ограничение на размерность тора T^k сверху верно только при $i\geqslant 2.$ Возникают следующие вопросы:

- (1) какое ограничение на k сверху можно получить в случае i = 1?
- (2) как устроено многообразие H_{1i} ?

Понятно, что на H_{1j} не существует эффективного действия тора T^{j+1} . То есть, описанное в пункте 2 действие тора T^j является максимальным. Явный вид действия T^j на H_{1j} и отображения моментов описан в примере 3. Перейдем к рассмотрению второго вопроса.

7. Как устроено торическое многообразие H_{1j} ?

Рассмотрим следующую конструкцию

Конструкция 8. Отождествим пространство $\mathbb{C}P^i$ с множеством прямых $l\subset \mathbb{C}^{i+1}$. Каждой прямой l сопоставим множество гиперплоскостей $\alpha\subset \mathbb{C}^{j+1}$, содержащих l. Это множество отождествляется с $\mathbb{C}P^{j-1}$. Рассмотрим пространство пар $E=\{(l,\alpha): l\subset \alpha\}$. Проекция $(l,\alpha)\to l$ определяет расслоение $E\to \mathbb{C}P^i$ со слоем $\mathbb{C}P^{j-1}$.

Нетрудно заметить (см. 1.1), что гиперповерхность Милнора H_{ij} отождествляется с пространством E из предыдущей конструкции. Таким образом, определено расслоение $H_{ij} \to \mathbb{C}P^i$ со слоем $\mathbb{C}P^{j-1}$.

Замечание 9. Можно показать, что поверхность, задаваемая в $\mathbb{C}P^1 \times \mathbb{C}P^2$ уравнением $z_0^k w_0 = z_1^k w_1$ является поверхностью Хирцебруха \mathscr{H}_k . В силу определения гиперповерхностей Милнора, отмечаем, что H_{12} является поверхностью Хирцебруха \mathscr{H}_1 .

Список литературы

- [1] Бухштабер В. М; Панов Т. Е. Торические действия в топологии и комбинаторике. Издательство МЦНМО, 2004.
- [2] Atiyah, M.F. Convexity and commuting hamiltonians. Bulletin of the London Math. Soc., 1982.