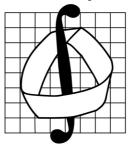
Московский государственный университет имени М. В. Ломоносова механико-математический факультет кафедра высшей геометрии и топологии



Курсовая работа студентки 503 группы Оганисян Виктории Алексеевны

Момент-угол-комплексы и кольца когомологий специального вида

Научный руководитель: профессор, д.ф.-м.н. Панов Тарас Евгеньевич

Введение

Момент-угол-комплексы — интересный и важный класс пространств, отдельный интерес среди которых представляют те, которые соответствуют простым многогранникам P. Такие момент-угол-комплексы \mathcal{Z}_P являются гладкими многообразиями с комплексной структурой; более того, они могут быть заданы как пересечение эрмитовых квадрик. Имеется известный результат, связывающий структуру кольца когомологий $\mathcal{Z}_{\mathcal{K}}$ и комбинаторику симплициального комплекса \mathcal{K} (см. теорему 2.5).

В связи с этим есть много вопросов о том, какие ограничения накладывает кольцо $H^*(\mathcal{Z}_{\mathcal{K}})$ на комбинаторику \mathcal{K} , а также на топологию и геометрию самого $\mathcal{Z}_{\mathcal{K}}$.

В своей курсовой работе я сосредоточу внимание на двух результатах:

- 1. Если P простой четырехмерный многогранник и \mathcal{K}_P имеет хордовый 1-остров, обязательно ли $H^*(\mathcal{Z}_K)$ изоморфно кольцу когомологий связной суммы произведений пар сфер? Оказывается, да (см. теорему 3.4).
- 2. Если $H^*(\mathcal{Z}_{\mathcal{K}})$ изоморфно кольцу когомологий произведения сфер, то каким может быть \mathcal{K} ? Оказывается, в этом случае $\mathcal{K} = \partial \Delta^{q_1} * \ldots * \partial \Delta^{q_r} * \Delta^a$, то есть это джойн границ симплексов и быть может еще одного симплекса (см. теорему 4.1).

В этом направлении остаётся ещё много интересных вопросов.

1 Предварительные сведения и обозначения

Пусть \mathcal{K} — симплициальный комплекс на [m], мы по умолчанию полагаем, что пустое множество \varnothing и все одноэлементные подмножества $\{i\} \subset [m]$ содержатся в \mathcal{K} .

Для $I = \{i_1, \ldots, i_k\} \subset [m]$ будем обозначать \mathcal{K}_I (или же $\mathcal{K}_{\{i_1, \ldots, i_k\}}$) полный подкомплекс в \mathcal{K} на вершинах i_1, \ldots, i_k .

 \mathcal{K}^i будем обозначать i-й остов симплициального комплекса \mathcal{K} .

Момент-угол-комплекс $\mathcal{Z}_{\mathcal{K}}$, соответствующий \mathcal{K} , можно определить следующим образом (см. параграф 4.1 [1]):

$$\mathcal{Z}_{\mathcal{K}} = \bigcup_{I \subset \mathcal{K}} \left(\prod_{i \in I} D^2 \times \prod_{i \notin I} S^1 \right).$$

Графом мы называем симплициальный комплекс, не содержащий симплексов размерности ≥ 2 .

Определение 1.1. Граф Γ называется <u>хордовым</u>, если каждый его цикл c четырьмя и более вершинами содержит хорду (ребро, соединяющее две вершины, которые не являются соседними в цикле).

Нам будет удобнее ещё одно описание хордовых графов:

Теорема 1.2 (см. [2]). Граф является хордовым тогда и только тогда, когда его вершины можно упорядочить таким образом, что для каждой вершины $\{i\}$ множество всех ее соседей, которые меньше ее, образует клику.

Порядок вершин, описываемый в данной теореме, называется $\underline{\text{совершенным}}$ порядком исключения.

Многогранник P размерности n называется <u>простым</u>, если каждая его вершина принадлежит ровно n его гиперграням. Соответственно, если P простой, то двойственный к нему многогранник P^* будет симплициальным; его границу ∂P^* можно рассмотривать как симплициальный комплекс, который мы будем обозначать \mathcal{K}_P (нерв-комплекс простого многогранника P). Соответствующий \mathcal{K}_P момент-угол-комплекс обозначается \mathcal{Z}_P .

Простой многогранник Q является <u>стековым</u>, если он получается из симплекса цепочкой последовательных звёзных подразбиений гиперграней. Соотвественно, двойственный к стековому многогранник P получается из симплекса цепочкой последовательных срезок вершин.

Далее, если не оговорено противное, m будет обозначать количество гиперграней многогранника, а n — его размерность.

Теорема 1.3 ([1, теорема 4.1.4, следствие 6.2.5]). Пусть \mathcal{K} — триангуляция сферы размерности (n-1) с m вершинами. Тогда $\mathcal{Z}_{\mathcal{K}}$ — замкнутое топологическое многообразие размерности m+n.

Пусть P — простой n-мерный многогранник c m гипергранями, тогда \mathcal{Z}_P — гладкое многообразие размерности m+n.

2 Несколько вспомогательных утверждений

Следующая несложная лемма сыграет существенную роль в дальнейших доказательствах:

Лемма 2.1. Пусть \mathcal{K} — симплициальный комплекс на множестве вершин [m], а \mathcal{K}_J — полный подкомплекс, соответствующий $J \subset [m]$. Тогда $\mathcal{Z}_{\mathcal{K}_J}$ — ретракт $\mathcal{Z}_{\mathcal{K}_J}$, а $H^*(\mathcal{Z}_{\mathcal{K}_J})$ — подкольцо в $H^*(\mathcal{Z}_{\mathcal{K}})$.

Доказательство. Если профакторизовать $\mathcal{Z}_{\mathcal{K}}$ по всем координатам из множества $[m]\setminus J$, мы получим в точности $\mathcal{Z}_{\mathcal{K}_J}$. Действительно, пусть $i:\mathcal{Z}_{\mathcal{K}}\hookrightarrow (D^2)^m$ — каноническое вложение, а $q:(D^2)^m\to (D^2)^{|J|}$ — отображение факторизации слагаемых с номерами из множества $[m]\setminus J$, тогда $r=q\circ i:\mathcal{Z}_{\mathcal{K}}\to \mathcal{Z}_{\mathcal{K}_J}$ и есть нужная ретракция.

Определение 2.2. Градуированная коммутативная связная ${\bf k}$ -алгебра A называется алгеброй Пуанкаре, если ее размерность над ${\bf k}$ конечна (т.е. $A=\bigoplus_{i=0}^d A^i$), и ${\bf k}$ -линейные отоборажения

$$A^i \longrightarrow \operatorname{Hom}_{\mathbf{k}}(A^{d-i}, A^d), \quad a \mapsto \varphi_a, \text{ where } \varphi_a(b) = ab$$

являются изоморфизмами для всех 0 < i < d.

Алгебра когомологий многообразия в частности является алгеброй Пуанкаре.

Определение 2.3. Пространство X называется пространством c двойственностью Пуанкаре (над \mathbf{k}), если $H^*(X;\mathbf{k})$ — алгебра Пуанкаре.

Теорема 2.4 (Теорема 4.6.8 из [1]). $\mathcal{Z}_{\mathcal{K}}$ — простанство с двойственностью Пуанкаре над полем \mathbf{k} тогда и только тогда, когда \mathcal{K} — Горенштейнов комплекс над \mathbf{k} .

B частности, если P- простой многогранник, тогда \mathcal{Z}_P- пространство c двойственностью Пуанкаре.

Теорема 2.5 (Теорема 4.5.8 из [1]). Имеются изоморфизмы групп

$$H^{l}(\mathcal{Z}_{\mathcal{K}}) \cong \bigoplus_{J \subset [m]} \widetilde{H}^{l-|J|-1}(\mathcal{K}_{J})$$

и изоморфизм колец $H^*(\mathcal{Z}_{\mathcal{K}})\cong\bigoplus_{J\subset [m]}\widetilde{H}^*(\mathcal{K}_J)$, где структура умножения в кольце справа задается каноническими отображениями

$$H^{k-|I|-1}(\mathcal{K}_I) \otimes H^{l-|J|-1}(\mathcal{K}_J) \longrightarrow H^{k+l-|I|-|J|-1}(\mathcal{K}_{I\cup J})$$
,

индуцированными симплициальными отображениями $\mathcal{K}_{I\cup J}\to\mathcal{K}_I*\mathcal{K}_J$ в случае $I\cap J=\varnothing$ и нулем иначе.

Будем обозначать $\mathcal{H}^{*,*}(\mathcal{K})$ кольцо $\bigoplus_{J\subset [m]}\widetilde{H}^*(\mathcal{K}_J)$ с указанной выше структурой.

Соответственно, определим
$$\mathcal{H}^{l,J} = \widetilde{H}^l(\mathcal{K}_J), \ \mathcal{H}^{*,J} = \widetilde{H}^*(\mathcal{K}_J)$$
 и $\mathcal{H}^{l,*} = \bigoplus_{J \subset [m]} \widetilde{H}^l(\mathcal{K}_J).$

Следствие 2.6. Если размерности всех симплексов K не превосходят n, то когомологическая длина \mathcal{Z}_K не превосходит n+1.

Доказательство. Пусть есть r элементов $c_i \in H^{l_i}(\mathcal{Z}_{\mathcal{K}})$ таких, что $c_1 \cdot \ldots \cdot c_r = c \neq 0$. Тогда по теореме выше каждому c_i соответствует элемент $\hat{c}_i \in \widetilde{H}^{l_i-|J_i|-1}(\mathcal{K}_{J_i})$ для некоторого $J_i \subset [m]$, а элементу c соответствует $\hat{c} \in \widetilde{H}^l(\mathcal{K}_J)$, причём $\hat{c}_1 \cdot \ldots \cdot \hat{c}_r = \hat{c} \neq 0$ и соответственно $l = (\Sigma_{i=1}^r l_i - |J_i|) - 1$, а $J = J_1 \sqcup \ldots \sqcup J_r$. Заметим, что $l_i - |J_i| - 1 \geq 0$ (так как это размерности \hat{c}_i), при этом по условию \mathcal{K} не содержит симплексов размерности больше n, следовательно $l \leq n$. Получаем неравенство $n \geq j = (\Sigma_{i=1}^r l_i - |J_i|) - 1 \geq r - 1$, а значит $n+1 \geq r$, что и требовалось доказать.

Теорема 2.7 (Теорема 4.6.12 из [1]). Пусть \mathcal{K} — граница стекового многогранника размерности n с m > n+1 вершинами. Тогда соответствующее момент-угол многообразие гомеоморфно связной сумме произведений сфер,

$$\mathcal{Z}_{\mathcal{K}} \cong \overset{m-n+1}{\underset{k=3}{\#}} (S^k \times S^{m+n-k})^{\#(k-2)C_{m-n}^{k-1}}$$

Заметим, что любой двумерный многогранник является двойственным к стековому, поэтому соответствующие многоугольникам момент-угол-комплексы являются связными суммами произведений пар сфер.

3 Основные результаты. Многогранники.

Определение 3.1. Назовём элемент $c \in \widetilde{H}^l(\mathcal{K}_J)$ неразложимым, если он не представляется в виде $c = \Sigma_{i=1}^p a_i \cdot b_i \neq 0$, элементы $a_i \in \widetilde{H}^{r_i}(\mathcal{K}_{I_i}), b_i \in \widetilde{H}^{l-1-r_i}(\mathcal{K}_{J\setminus I_i})$ ненулевые, $0 \leq r_i \leq l-1$, и $I_i \subset J$ — собственные подмножества.

Если же элемент $c \in \widetilde{H}^l(\mathcal{K}_J)$ представляется в вышеуказанном виде, будем называть его разложимым.

Докажем вспомогательный факт, интересный сам по себе:

Лемма 3.2 (Обобщение леммы 4.4 из [3]). Пусть $\Delta_1, \ldots, \Delta_k \in MF_l(\mathcal{K})$ — недостающие грани $\mathcal{K}, |\Delta_i| = l+1, i=1,\ldots,k,$ и пусть соответствующие им классы когомологий $d_1,\ldots,d_k \in \widetilde{H}^{l-1}(\mathcal{K}_J)$ нетривиальны для некоторого J. Тогда класс когомологий $c=d_1+\ldots+d_k \in \widetilde{H}^{l-1}(\mathcal{K}_J)$ перазложим.

Доказательство. Докажем это от противного, предположив разложимость c.

Рассмотрим комплекс \mathcal{K}' , полученный из \mathcal{K} заклеиванием всех недостающих граней размера l+1, то есть $MF_l(\mathcal{K}')=\varnothing$. Тогда вложение $i:\mathcal{K}\hookrightarrow\mathcal{K}'$ индуцирует гомоморфизм колец $i^*:\mathcal{H}^{*,*}(\mathcal{K}')\to\mathcal{H}^{*,*}(\mathcal{K})$, причём в размерностях $r\leq l-2$ это будет изоморфизм $\mathcal{H}^{r,*}(\mathcal{K}')\cong\mathcal{H}^{r,*}(\mathcal{K})$, так как $\mathrm{sk}^{l-1}(\mathcal{K})=\mathrm{sk}^{l-1}(\mathcal{K}')$.

Поэтому все элементы a_i, b_i имеют прообразы a_i', b_i' , то есть $i^*(a_i') = a_i$ и $i^*(b_i') = b_i$; при этом $i_*(\Delta_i) = 0$. Тогда рассмотрим элемент $c' := \sum_{i=1}^p a_i' \cdot b_i'$. Так как $i^* -$ гомоморфизм колец, то $i^*(c') = c$, однако $1 = c(\Delta_i) = i^*(c')(\Delta_i) = c'(i_*(\Delta_i)) = c'(0) = 0$, получили противоречие. Соответственно, элемент c является неразложимым.

Аналогично доказывается следующее утверждение:

Предложение 3.3. Пусть $\Delta \in MF_l(\mathcal{K})$ — недостающая грань, и пусть соответствующий ей класс когомологий $d \in \widetilde{H}^{l-1}(\mathcal{K}_J)$ нетривиален. Тогда любой класс когомологий вида $c = \lambda \cdot d + h \in \widetilde{H}^{l-1}(\mathcal{K}_J)$, где $\lambda \neq 0$ и $h(\Delta) = 0$, является неразложимым.

Перед тем как сформулировать основной результат данного раздела (3.4), дадим некоторую его мотивировку.

В моей прошлогодней курсовой работе [5] было доказано, что для трёхмерного многогранника P эквивалентны следующие условия:

- а) 1-остов \mathcal{K}_P хордовый граф;
- б) $H^*(\mathcal{Z}_P) \cong H^*(M)$, где M связная сумма произведений сфер;
- в) $\mathcal{Z}_P \cong M$, где M связная сумма произведений пар сфер.

Также показывалось, что для многогранников размерности пять и выше условия (а) уже недостаточно для того, чтобы выполнялись условия (б) и (в).

Вопрос о том, как связаны эти условия в случае четырёхмерных многогранников, оставался открытым. И следующее утверждение частично даёт ответ на этот вопрос:

Теорема 3.4. Пусть P — четырёхмерный простой многогранник такой, что 1-остов \mathcal{K}_P — хордовый граф. Тогда $H^*(\mathcal{Z}_P) \cong H^*(M)$, где M — связная сумма произведений пар сфер.

 \mathcal{A} оказательство. Рассмотрим, опираясь на 2.5, какие классы когомологий \mathcal{Z}_P могут перемножаться нетривиально.

Умножения вида $\mathcal{H}^{3,*}(\mathcal{K}) \otimes \mathcal{H}^{i,*}(\mathcal{K}) \longrightarrow \mathcal{H}^{4+i,*}(\mathcal{K}), \, \mathcal{H}^{2,*}(\mathcal{K}) \otimes \mathcal{H}^{2,*}(\mathcal{K}) \longrightarrow \mathcal{H}^{5,*}(\mathcal{K})$ и $\mathcal{H}^{2,*}(\mathcal{K}) \otimes \mathcal{H}^{1,*}(\mathcal{K}) \longrightarrow \mathcal{H}^{4,*}(\mathcal{K})$ тривиальны по соображениям размерности, т.к. \mathcal{K}_P — трехмерная сфера.

Умножения $\widetilde{H}^i(\mathcal{K}_I)\otimes\widetilde{H}^{2-i}(\mathcal{K}_J)\longrightarrow\widetilde{H}^3(\mathcal{K}_{I\cup J})$ «продиктованы» двойственностью Пуанкаре: $|\mathcal{K}_P|\cong S^3$, поэтому из 2.4 и 2.5 следует, что эти умножения нетривиальны тогда и только тогда, когда $J=[m]\setminus I$, а также для любой образующей a из $\widetilde{H}^i(\mathcal{K}_I),\ i=0,1$ существует единственная образующая b из $\widetilde{H}^{2-i}(\mathcal{K}_{[m]\setminus I}),$ что $0\neq a\cdot b=c$, где c — фундаментальный класс \mathcal{K} . Примечание: группы $\widetilde{H}^i(\mathcal{K}_I),\ i=0,1$ не имеют кручений, поэтому мы действительно имеем изоморфизм $\widetilde{H}^i(\mathcal{K}_I)\cong\widetilde{H}^{2-i}(\mathcal{K}_{[m]\setminus I}),$ задаваемый двойственностью Пуанкаре.

Докажем теперь, что все умножения вида $\mathcal{H}^{0,*}(\mathcal{K})\otimes\mathcal{H}^{0,*}(\mathcal{K})\longrightarrow\mathcal{H}^{1,*}(\mathcal{K})$ и $\mathcal{H}^{0,*}(\mathcal{K})\otimes\mathcal{H}^{1,*}(\mathcal{K})\longrightarrow\mathcal{H}^{2,*}(\mathcal{K})$ тривиальны.

Заметим, что достаточно доказать тривиальность всех умножений вида $\mathcal{H}^{0,*}(\mathcal{K}) \otimes \mathcal{H}^{0,*}(\mathcal{K}) \longrightarrow \mathcal{H}^{1,*}(\mathcal{K})$, так как если есть нетривиальное умножение $\alpha^0 \cdot \beta^1 = \gamma^2 \neq 0$ для каких-то классов $\alpha^0 \in \widetilde{H}^0(\mathcal{K}_I)$, $\beta^1 \in \widetilde{H}^1(K_J)$, $\gamma^2 \in \widetilde{H}^2(\mathcal{K}_{I\cup J})$, то по двойственности Пуанкаре найдется элемент $\alpha' \in \widetilde{H}^0(\mathcal{K}_{[m]\setminus (I\cup J)})$ такой, что $0 \neq \alpha' \cdot \gamma^2 = \alpha' \cdot \alpha^0 \cdot \beta^1 \in \widetilde{H}^3(\mathcal{K})$, а следовательно и $\alpha^0 \cdot \alpha' \neq 0$ — значит, есть нетривиальное умножение и в $\widetilde{H}^0(\mathcal{K}_I) \otimes \widetilde{H}^0(\mathcal{K}_J) \longrightarrow \widetilde{H}^1(\mathcal{K}_{I\cup J})$.

Проведем доказательство от противного: пусть есть два класса $a,b \in \mathcal{H}^{*,0}(\mathcal{K})$ такие, что $0 \neq a \cdot b = c \in \mathcal{H}^{1,*}(\mathcal{K})$. Любая одномерная цепь гомологична сумме простых циклов, поэтому c раскладывается в сумму $c = d_1 + \ldots + d_k$, где d_i — коциклы, соответствующие каким-то простым циклам в графе $(\mathcal{K})^1$. Однако 1-остов \mathcal{K} — хордовый граф, а значит, все простые циклы в $(\mathcal{K})^1$ имеют меньше 4-х вершин. Это равносильно тому, что все простые циклы являются недостающими гранями, в частности и $d_i \in MF_2(\mathcal{K})$, а значит, по лемме 3.2 класс c не может быть разложимым, получили противоречие.

Следовательно, все умножения в $\mathcal{H}^{*,*}(\mathcal{K})$ тривиальны, кроме тех, которые задаются двойственностью Пуанкаре. В таком случае $H^*(\mathcal{Z}_P)$ является кольцом, порождаемым элементами $\{a_i^r,b_i^{2-r},c\mid r=0,1,\ i=\ldots\}$, которые умножаются по правилу $a_i^k\cdot b_j^l=\delta_{ij}\delta_{k,2-l}c$ (где $\delta_{ij},\delta_{k,2-l}-$ символы Кронекера), то есть как раз совпадает с кольцом когомологий связной суммы произведений пар сфер. Получили желаемое.

Из леммы 3.2 и доказательства теоремы 3.4 возникает очевидное следствие:

Следствие 3.5. Пусть $\mathcal{K}-$ такая симплициальная сфера размерности n, что кольца $\mathcal{H}^{l,*}(\mathcal{K})$ для $l \leq \left[\frac{2n-1}{3}\right]$ порождается недостающими гранями \mathcal{K} . Тогда $H^*(\mathcal{Z}_{\mathcal{K}})$ изоморфно кольцу когомологий связной суммы произведений пар сфер.

Действительно, ведь из указанного условия следует, что никакие три элемента в $\mathcal{H}^{*,*}(\mathcal{K})$ не могут перемножаться нетривиально.

4 Основные результаты. Сферы.

Теорема 4.1. Пусть $H^*(\mathcal{Z}_{\mathcal{K}}) \cong H^*(M)$, где $M = S^{p_1} \times \ldots \times S^{p_n}$ — произведение сфер.

Тогда $\mathcal{K} = \partial \Delta^{q_1} * \dots * \partial \Delta^{q_r} * \Delta^a - \partial$ эсойн границ симплексов и быть может еще одного симплекса.

Доказательство. Докажем этот факт от противного.

Пусть $\mathcal{K} \neq \partial \Delta^{q_1} * \dots * \partial \Delta^{q_r} * \Delta^a$, тогда \mathcal{K} имеет смежные недостающие грани I_1, I_2 , то есть $I_1 \cap I_2 \neq \emptyset$ и $I_1, I_2 \in MF(\mathcal{K})$. Обозначим $|I_i| = k_i, i = 1, 2$.

Для i=1,2 обозначим α_i образующую $\widetilde{H}^{k_i-2}(\mathcal{K}_{I_i})$, а соответствующую ей образующую в $H^*(\mathcal{Z}_{\mathcal{K}})$ обозначим как a_i , $\deg(a_i)=(k_i-2)+|I_i|+1=2k_i-1$.

 $\mathit{Случай}\ 1$ (простой): если $k_1 \neq k_2$, то положим $\beta := \alpha_2, \ b := a_2$. Можем считать без ограничения общности, что $k_2 > k_1$, тогда $\deg(b) > \deg(a_1)$.

Cлучай 2 (сложный): если $k_1=k_2$, то рассмотрим $J:=I_1\cup I_2$. Заметим, что любая недостающая грань I полного подкомплекса \mathcal{K}_J пересекается одновременно и с I_1 , и с I_2 .

Тогда, если $I \in MF(\mathcal{K}_J)$ и $|I| \neq k_1$, то рассмотрим пару смежных недостающих граней I_1 и I (вместо I_1 и I_2) — это ситуация из случая 1, действуем как в случае 1.

Если же любая недостающая грань \mathcal{K}_J имеет k_1 вершин, то имеется полный подкомплекс $\mathcal{L} = \mathcal{K}_{I_{1'} \cup I_{2'}} \subset \mathcal{K}_J$, где $I_{1'}$ и $I_{2'}$ — какие-то недостающие грани \mathcal{K}_J (мощности k_1 соответственно), являющийся нетривиальным букетом сфер, причем все сферы имеют размерность $\geq k_1-2$, так как \mathcal{L} содержит свой полный (k_1-2) -остов; доказательство этого факта вынесено в лемму 4.2.

Тогда для некоторого $k \geq k_1$ верно $\widetilde{H}^{k-2}(\mathcal{L}) \neq 0$, поэтому возьмем оттуда любой ненулевой элемент β и обозначим b соответствующий ему элемент в $H^*(\mathcal{Z}_{\mathcal{K}})$; так как $|I_{1'} \cap I_{2'}| \leq |I_{1'}| - 1 = k_1 - 1$, то $\deg(b) = (k-2) + |I_{1'} \cup I_{2'}| + 1 = (k-2) + (2k_1 - |I_{1'} \cap I_{2'}|) + 1 \geq k + k_1 > 2k_1 - 1$.

Таким образом, есть нетривиальные элементы $a_1, b \in H^*(\mathcal{Z}_K), q := \deg(b) > \deg(a_1) =: p,$ и $b \cdot a_1 = 0$, так как I_1 и I_2 (в случае 1) или I_1 и J (в случае 2) пересекаются по непустому множеству.

Заметим, что элементы α_1 и β неразложимы в смысле определения 3.1. Для α_1 это непосредственно следует из леммы 3.2, так как α_1 соответствует недостающей грани \mathcal{K} . В случае 1 элемент β тоже соответствует недостающей грани \mathcal{K} , а для случая 2 доказательство неразложимости β вынесем в отдельную лемму 4.4.

Если разложить любой элемент $c \in H^p(\mathcal{Z}_K)$ по базису мультипликативных образующих, то c будет иметь вид:

$$c = \sum_{i=1}^{m_1} \lambda_i e_i^p + \sum_{j=1}^{m_2} \mu_j e_1^{p_{j,1}} \times \dots \times e_{n_j}^{p_{j,n_j}}, \quad \lambda_i \neq 0, \ \mu_j \neq 0, \ m_1, m_2 \geq 0,$$

где коцепи e_i^q в $H^*(\mathcal{Z}_K)\cong H^*(M)$ соответствуют сферам S_i^q в M. Пусть $\gamma\in\mathcal{H}^{*,*}(\mathcal{K})$ — элемент, которому соответствует $c\in H^*(\mathcal{Z}_K)$. Тогда неразложимость γ равносильна тому, что $m_1>0$ (очевидно, что свойство элемента быть неразложимым сохраняется при изоморфизме колец, так как неразложимость элемента x, $\deg(x)=d$, равносильна наличию образующих степени d в разложении x по базису мультипликативных образующих и это не зависит от выбора базиса мультипликативных образующих; кольца $\mathcal{H}^{*,*}(\mathcal{K})\cong H^*(\mathcal{Z}_K)\cong H^*(M)$ изоморфны, а неразложимость c равносильна $m_1>0$).

Тогда, в силу неразложимости α_1 и β , элементы $a_1, b \in H^*(\mathcal{Z}_{\mathcal{K}}) \cong H^*(M)$ тоже неразложимы и представляются в виде:

$$a_1 = \sum_{i=1}^{m_1} \lambda_i e_i^p + h_1, \quad b = \sum_{j=1}^{m_2} \mu_j e_j^q + h_2, \quad \lambda_i \neq 0, \ \mu_j \neq 0, \ m_1, m_2 > 0,$$

где h_1,h_2 — разложимые элементы, то есть суммы произведений каких-то образующих e^r_s , где каждое слагаемое имеет не менее двух множителей.

Поэтому получаем, что

$$0 = b \cdot a_1 = \sum \lambda_i \mu_j e_i^p \cdot e_j^q + h_1 \cdot \left(\sum_{j=1}^{m_2} \mu_j e_j^q \right) + h_2 \cdot \left(\sum_{i=1}^{m_1} \lambda_i e_i^p \right) + h_1 \cdot h_2 \neq 0,$$

так как никакое слагаемое $e_i^p \cdot e_j^q$ не сократится, ведь все они различны (для каждой пары i,j существует ровно одно слагаемое такого вида), и все ненулевые, так как $p \neq q$, и значит никакие сферы e_i^p и e_j^q не равны, а каждое слагаемое коцепи $h = h_1 \cdot \left(\sum_{j=1}^{m_2} \mu_j \ e_j^q\right) + h_2 \cdot \left(\sum_{i=1}^{m_1} \lambda_i \ e_i^p\right) + h_1 \cdot h_2$ содержит минимум три множителя, поэтому они не могут сократиться со слагаемыми $e_i^p \cdot e_j^q$, в которых по два множителя.

Получили противоречие $0 \neq 0$, последовавшее из предположения о существовании двух смежных недостающих граней. Утверждение теоремы доказано. \square

Осталось доказать две обещанные леммы, доказательство довольно техническое.

Лемма 4.2. Пусть \mathcal{K} — симплициальный комплекс на множестве вершин [k+l], и все недостающие грани \mathcal{K} имеют мощность k. Пусть $I_1 = \{1, \ldots, k\} \in MF(\mathcal{K})$ и $I_2 = \{l+1, \ldots, k+l\} \in MF(\mathcal{K})$ — недостающие грани. Тогда найдётся полный подкомплекс $\mathcal{L} \subset \mathcal{K}$, содержащий хотя бы две недостающие грани, и имеющий гомотопический тип нетривиального букета сфер размерности $\geq k-2$.

Доказательство. Докажем утверждение индукцией по мощности пересечения $|I_1\cap I_2|=k-l.$

Ваза индукции будет при l=1, соответственно, когда $|I_1\cap I_2|=k-1$. В таком случае \mathcal{K} — это $\partial\Delta^k\setminus\bigcup_{i=1}^p\Delta_i^{k-1}$, где объединение идёт по недостающим граням \mathcal{K} , и $p\geq 2$, так как \mathcal{K} имеет минимум 2 недостающие грани I_1 и I_2 , а значит, \mathcal{K} — это S^{k-1} с $p\geq 2$ дырками, то есть нетривиальный букет S^{k-2} . База доказана.

Шаг: пусть утверждение верно для всех $l < l_0$, докажем его и для $l = l_0$ (соответственно, $|I_1 \setminus I_2| = l_0$). Пусть I — недостающая грань K, не совпадающая с I_i , i = 1, 2. Обозначим

$$r_1 = |I \cap (I_1 \setminus I_2)|, \quad r_2 = |I \cap (I_2 \setminus I_1)|, \quad r = |I \cap (I_1 \cap I_2)|.$$

Так как $I_1 \cup I_2 = [k+l_0]$, то $I \subset I_1 \cup I_2$ и следовательно $|I| = r+r_1+r_2$, при этом $I \in MF(\mathcal{K})$ и все недостающие грани \mathcal{K} имеют мощность k, получаем $k = r+r_1+r_2$. Давайте заметим, что если $|I \cap I_1| = r_1+r > k-l_0 \iff |I \setminus I_1| = r_2 < l_0$, то мы можем спуститься на предыдущий шаг индукции, взяв I_1 и I вместо I_1 и I_2 , и работать с комплексом $\mathcal{L} := \mathcal{K}_{I_1 \cup I} \subset \mathcal{K}$. Аналогично со случаем $|I \cap I_2| = r_2 + r > k - l_0$. Действуем так же, если в \mathcal{K} имеется 2 другие недостающие грани с пересечением мощности $I_1 \cap I_2 = r_2 + r > k - l_0$.

Если же все недостающие грани $I\in MF(\mathcal{K})$ таковы, что $r_i\geq l_0$, то получается, что $r_i=l_0$, так как тогда $l_0\leq r_1=|I\cap (I_1\setminus I_2)|\leq |I_1\setminus I_2|=l_0\implies l_0\leq r_1\leq l_0$. Это возможно только при $k\geq 2l_0$, но это не повлияет на доказательство. Таким образом, любая недостающая грань $I\in MF(\mathcal{K})$ такова, что

$$|I \setminus I_1| = |I \cap (I_2 \setminus I_1)| = r_2 = l_0 = |I_2 \setminus I_1| = |[k + l_0] \setminus I_1|,$$

а следовательно $|I\cup I_1|=|I_1|+|I\setminus I_1|=k+l_0$, то есть $I\cup I_1=[k+l_0]$, аналогично выполнено $I\cup I_2=[k+l_0]$, а также $I\cup I'=[k+l_0]$ для любых двух недостающих граней I и I'.

Из этого следует, что если какое-то подмножество A содержит обе недостающие грани I и I', то $A = [k+l_0]$. (1)

Итак, давайте поймем, каков гомотопический тип \mathcal{K} . Пусть $MF(\mathcal{K})=\{I_1,I_2,\ldots,I_p\}$ — недостающие грани \mathcal{K} ; по доказанному ранее $I_i\cup I_j=[k+l_0]$. \mathcal{K} получается из $\partial\Delta^{k+l_0-1}$ выкидыванием симплексов, то есть $\mathcal{K}=\partial\Delta^{k+l_0-1}\setminus M$, где M — какое-то объединение симплексов. Какие симплексы не содержатся в \mathcal{K} ? Ровно такие, которые содержат I_i для некоторого $i=1,\ldots,p$ как подмножество. Будем считать, что все подмножества J в $[k+l_0]$ пронумерованы индексом α , тогда обозначим

$$A_i = \{\alpha : I_i \subset J_\alpha, |J_\alpha| < k + l_0\}, \quad M_i = \bigcup_{\alpha \in A_i} \operatorname{int}(\Delta_\alpha), \quad i = 1, \dots, p,$$

где $\operatorname{int}(\Delta_{\alpha})$ — внутренние точки соответствующего J_{α} симплекса Δ_{α} .

Заметим, что $A_i \cap A_j = \emptyset$ и $M_i \cap M_j = \emptyset$ для любых $i \neq j$, так как только всё множество $[k+l_0]$ может содержать две различные недостающие грани одновременно (1), а $|J_{\alpha}| < k + l_0 \ \forall \alpha \in A_i$, и любая точка $x \in M_i$ — это внутренняя точка некоторого симплекса Δ_{α} , а значит $\alpha \in A_i$ и $\alpha \notin A_j$.

Заметим также, что все M_i стягиваемы, так как любая точка $x \in M_i$ представляется в виде выпуклой суммы

$$t_1v_1+t_2v_2+\ldots+t_{k+l_0}v_{k+l_0},$$
 где $\sum_{j=1}^{k+l_0}t_j=1,\;t_j\geq0,$

а v_1,\dots,v_{k+l_0} — вершины объемлющего симплекса Δ^{k+l_0-1} . Также для некоторого $j_0\notin I_i$ выполнено $t_{j_0}=0$ и $t_j>0$ для всех $j\in I_i$, потому что $x\in\overline{\Delta_\alpha}$ для некоторого $\alpha:|J_\alpha|=k+l_0-1,\ J_\alpha=[k+l_0]\setminus\{j_0\},\ I_i\subset J_\alpha$, при этом если $t_j=0$ для некоторого $j\in I_i$, то получится, что $x\in \mathrm{int}(\Delta_\beta)\subset\overline{\Delta_\alpha}$ и $j\notin J_\beta\Longrightarrow I_i\not\subset J_\beta$, что противоречит $x\in M_i$. Тогда можно рассмотреть следующую гомотопию $F_\tau,\ \tau\in[0,1]$:

$$F_{\tau}: \sum_{j=1}^{k+l_0} t_j v_j \mapsto \sum_{j=1}^{k+l_0} \alpha_j t_j v_j, \text{ где } \alpha_j = \tau \text{ при } j \notin I_i \text{ и } \alpha_j = \frac{1-\tau \sum_{j\notin I_i} t_j}{\sum_{j\in I_i} t_j} \text{ при } j \in I_i.$$

Гомотопия непрерывна в силу условия $t_j>0$ для всех $j\in I_i$ и $F_1=\mathrm{id},$ а F_0 — проекция M_i на симплекс $\mathrm{int}(\Delta_i),$ т.е. $F_0(M_i)$ стягиваемо, а значит и M_i стягиваемо.

Более того, заметим, что $M_i\cap \overline{M_j}=\varnothing=\overline{M_i}\cap M_j$ для любых $i\neq j$, то есть $M_i\cup M_j$ имеет две компоненты связности, а не одну. Действительно, обозначим $M_i'=\operatorname{int}(M_i)$ и $N_i=M_i\setminus M_i'$, то есть

$$M_i' = \bigcup_{\alpha \in A_i: |J_{\alpha}| = k + l_0 - 1} \operatorname{int}(\Delta_{\alpha}), \qquad N_i = \bigcup_{\alpha \in A_i: |J_{\alpha}| < k + l_0 - 1} \operatorname{int}(\Delta_{\alpha}).$$

В таком случае заметим, что при доказанном условии $M_i\cap M_j=\varnothing$ утверждение $M_i\cap \overline{M_j}\neq\varnothing\iff\exists x\in N_i\cap(\partial M_j\setminus N_j).$ То есть $x\in\operatorname{int}(\Delta_\alpha)$ для некоторого $\alpha\in A_i,\ |J_\alpha|< k+l_0-1$ и при этом $x\in\Delta_\beta$ для некоторого $\beta\notin A_j$ такого, что $\Delta_\beta\subset\partial\Delta_\gamma,$ где $|\Delta_\gamma|=k+l_0-1,\ \gamma\in A_j.$ Значит, $\operatorname{int}(\Delta_\alpha)\cap\Delta_\beta\neq\varnothing$, тогда $\operatorname{int}(\Delta_\alpha)\subset\Delta_\beta.$ Но тогда получаем, что $I_i\subset J_\alpha\subset J_\beta,$ в то же время $\Delta_\beta\subset\partial\Delta_\gamma\Longrightarrow J_\beta\subset J_\gamma\supset I_j,$ итого получаем, что $I_i\subset J_\alpha\subset J_\beta\subset J_\gamma\supset I_j,$ то есть $I_i\cup I_j\subset J_\gamma,$ что противоречит $|J_\gamma|< k+l_0$ (1). Итак, данное утверждение тоже доказано.

Теперь с учетом всего вышеперечисленного (и обозначив как B^{k+l_0-2} открытый шар размерности $k+l_0-2$), получаем:

$$\mathcal{K} = \partial \Delta^{k+l_0-1} \setminus \bigsqcup_{i=1}^{p} M_i \cong \partial \Delta^{k+l_0-1} \setminus \bigsqcup_{i=1}^{p} B^{k+l_0-2} \simeq \bigvee_{i=1}^{p-1} S_i^{k+l_0-3}$$
 (2)

Получаем, что \mathcal{K} — нетривиальный букет сфер размерности $k+l_0-3\geq k-2$, шаг индукции сделан. Что и требовалось доказать.

Замечание 4.3. Утверждения (1) и (2) очевидно верны и для базы индукции l=1, поэтому мы будем пользоваться ими при доказательстве следующей леммы без дополнительных оговорок.

Пемма 4.4. В условиях и обозначениях леммы 4.2 любой элемент $\beta \in \mathcal{H}^{*,*}(\mathcal{L})$ «неразложим» в смысле леммы 3.2.

Доказательство. Вспомним, что для любых $l=1,\dots,k-1$ искомый в 4.2 комплекс $\mathcal L$ имеет вид (2):

$$\mathcal{L} \simeq \bigvee_{i=1}^{p-1} S_i^{k+l-3} ,$$

а также все недостающие грани \mathcal{L} имеют мощность k, попарно пересекаются, и по утверждению (1) только всё множество [k+l] может содержать две недостающие грани \mathcal{L} одновременно.

В таком случае легко понять, что из себя представляет $\mathcal{H}^{*,*}(\mathcal{L})$:

1. Пусть $J \subsetneq [k+l]$, тогда J содержит не более одной недостающей грани. Если J не содержит недостающих граней вообще, то полный подкомплекс \mathcal{L}_J — это просто симплекс, и подкольцо $\mathcal{H}^{*,J}(\mathcal{L})$ тривиально. Если же J содержит ровно одну недостающую грань I, то \mathcal{L}_J — это джойн симплекса $\mathcal{L}_{J\setminus I}$ и сферы $\mathcal{L}_I \simeq S^{k-2}$, тогда при $J\setminus I\neq\varnothing$ это конус, то есть стягиваемое пространство, и $\mathcal{H}^{*,J}(\mathcal{L})$ тривиально, а при J=I это сфера, тогда $\mathcal{H}^{*,J}(\mathcal{L})$ содержит единственный нетривиальный элемент α_I , $\deg(\alpha_I)=k-2$, соответствующий недостающей грани I.

2. Пусть J=[k+l], тогда $\mathcal{H}^{*,[k+l]}(\mathcal{L})=\widetilde{H}^*(\mathcal{L})=\langle \gamma_i| \deg(\gamma_i)=k+l-3, \ i=1,\dots,p-1\rangle$ — линейная оболочка образующих γ_i , соответствующих сферам в букете \mathcal{L} .

Итак, $\mathcal{H}^{*,*}(\mathcal{L})$ порождается элементами α_I и γ_i , причём все произведения в $\mathcal{H}^{*,*}(\mathcal{L})$ тривиальны, а значит, разложимых элементов в $\mathcal{H}^{*,*}(\mathcal{L})$ быть не может.

Действительно, согласно теореме 2.5 произведение элементов может быть ненулевым только в том случае, если соответствующие подкомплексы имеют пустое пересечение. Соответственно, $\alpha_I \cdot \alpha_{I'} = 0$, так как все недостающие грани $\mathcal L$ попарно пересекаются, а $\gamma_i \cdot \gamma_j = 0$ и $\alpha_I \cdot \gamma_i = 0$, так как $\gamma_i \in \mathcal H^{*,[k+l]}(\mathcal L)$ и для любого непустого J пересечение $J \cap [k+l]$ будет непусто.

Утверждение доказано.

Определение 4.5. Простой многогранник P называется B-экёстким, если любой изоморфизм колец когомологий $H^*(\mathcal{Z}_P) = H^*(\mathcal{Z}_{P'})$ момент-угол-многообразий влечёт комбинаторную эквивалентность $P \cong P'$.

С учетом данного определения теорема 4.1 имеет следствие:

Следствие 4.6. Многогранники вида

$$P = \Delta^{q_1} \times \ldots \times \Delta^{q_r} \iff \mathcal{K}_P = \partial \Delta^{q_1} * \ldots * \partial \Delta^{q_r}.$$

то есть произведения симплексов, являются В-жёсткими.

Замечание 4.7. В недавней работе С.Амелотта и Б.Бриггса [4, теорема 3.2] доказан красивый результат для Горенштейновых симплициальных комплексов, из которого в частности следуют результаты 4.6 и 4.1. Несмотря на то, что утверждение 4.1, напрямую не требует Горенштейновости от симплициального комплекса K, по условию $H^*(\mathcal{Z}_K) \cong H^*(M)$ — алгебра Пуанкаре, тогда по теореме 2.4 комплекс K автоматически будет Горенштейновым.

Тем не менее, этот результат доказан другими методами.

5 Благодарности

Выражаю огромную благодарность моему научному руководителю Панову Тарасу Евгеньевичу за чуткое руководство, помощь и поддержку, за постановку задач и продуктивное обсуждение.

Также большое спасибо коллективу F.Fan, L.Chen, J.Ma, X.Wang за вдохновляющие работы.

Список литературы

- [1] V. M. Buchstaber, T. E. Panov, «Toric Topology», Mathematical Surveys and Monographs 204, American Mathematical Society, 2015.
- [2] D. R. Fulkerson, O. A. Gross, «Incidence matrices and interval graphs», Pacific J.Math, 15:3 (1965), 835–855.
- [3] Feifei Fan, Liman Chen, Jun Ma, Xiangjun Wang, «Moment-angle manifolds and connected sums of sphere products» arXiv:1406.7591.pdf
- [4] Steven Amelotte, Benjamin Briggs, «Product decompositions of moment-angle manifolds and B-rigidity Steven Amelotte, Benjamin Briggs» arxiv:2205.00337.pdf
- [5] В. Оганисян (Ковыршина), «Момент-угол-комплексы, простые многогранники и связные суммы произведений сфер»